SlideShare uma empresa Scribd logo
1 de 48
Baixar para ler offline
Effective picture of bubble expansion
王少江
Based on 2011.11451 with Prof. Rong-Gen Cai
/101
2020引⼒和宇宙学研讨会 2020/12/20 08:55-09:15
GWs from FOPT
/102
GWs from FOPT
/102
GWs from FOPT
/102
TeV PeVMeV
BSMTPT
QCDPT EWPT PQPT
Phase dynamics
/103
Phase dynamics
/103
ϕ
Veff(ϕ)
ϕ−
ϕ+
Phase dynamics
/103
ϕ
Veff(ϕ)
ϕ−
ϕ+
α ∼
ΔVeff
ρRad
Γ(t) ∼ e−S(t)
Phase dynamics
/103
ϕ
Veff(ϕ)
ϕ−
ϕ+
α ∼
ΔVeff
ρRad
Γ(t) ∼ e−S(t)
Phase dynamics
/103
ϕ
Veff(ϕ)
ϕ−
ϕ+
α ∼
ΔVeff
ρRad
Γ(t) ∼ e−S(t)
Phase dynamics
/103
ϕ
Veff(ϕ)
ϕ−
ϕ+
α ∼
ΔVeff
ρRad
Γ(t) ∼ e−S(t)
Phase dynamics
/103
ϕ
Veff(ϕ)
ϕ−
ϕ+
α ∼
ΔVeff
ρRad
Γ(t) ∼ e−S(t) Γ(T*) ∼ H(T*)
R* ∼ ⟨Ri (T*)⟩
Phase dynamics
/103
ϕ
Veff(ϕ)
ϕ−
ϕ+
α ∼
ΔVeff
ρRad
Γ(t) ∼ e−S(t) Γ(T*) ∼ H(T*)
R* ∼ ⟨Ri (T*)⟩
fpeak ∼
1
R*
Bubble dynamics
/104
Bubble dynamics
/104
Bubble expansion in vacuum
vw → 1
Bubble dynamics
/104
Ωscalar
GW ∝ κ2
collision ∼
(
Ewall
kinetic
ρvac )
2
Bubble expansion in vacuum
vw → 1
Bubble dynamics
/104
Ωscalar
GW ∝ κ2
collision ∼
(
Ewall
kinetic
ρvac )
2
Bubble expansion in vacuum
vw → 1
Bubble expansion in plasma
vw ↑ → veq
Bubble dynamics
/104
Ωscalar
GW ∝ κ2
collision ∼
(
Ewall
kinetic
ρvac )
2
Bubble expansion in vacuum
vw → 1
Bubble expansion in plasma
vw ↑ → veq
Ωplasma
GW
∝ κ2
soundwave ∼
(
Efluid
kinetic
ρvac )
2
Numerical simulation
/105
Numerical simulation
/105
□ ϕ =
∂Veff
∂ϕ
+δf
∂μTμν
p + ∂ν
ϕ
∂VT
∂ϕ
= − ∂ν
ϕ ⋅ δf
δf =
∑
i=B,F
gi
dm2
i
dϕ ∫
d3 ⃗k
(2π)3
δfi
2Ei( ⃗k )
Numerical simulation
/105
□ ϕ =
∂Veff
∂ϕ
+δf
∂μTμν
p + ∂ν
ϕ
∂VT
∂ϕ
= − ∂ν
ϕ ⋅ δf
δf =
∑
i=B,F
gi
dm2
i
dϕ ∫
d3 ⃗k
(2π)3
δfi
2Ei( ⃗k )
Numerical simulation
/105
□ ϕ =
∂Veff
∂ϕ
+δf
∂μTμν
p + ∂ν
ϕ
∂VT
∂ϕ
= − ∂ν
ϕ ⋅ δf
δf =
∑
i=B,F
gi
dm2
i
dϕ ∫
d3 ⃗k
(2π)3
δfi
2Ei( ⃗k )
σγ3
w
··rw +
2σγw
rw
= Δpdr + Δpfr□ ϕ =
∂Veff
∂ϕ
+ηTuμ
∂μϕ
∫
+∞
−∞
dr′ϕ′(r′) EOM  = 0
Effective EOM
Numerical simulation
/105
□ ϕ =
∂Veff
∂ϕ
+δf
∂μTμν
p + ∂ν
ϕ
∂VT
∂ϕ
= − ∂ν
ϕ ⋅ δf
δf =
∑
i=B,F
gi
dm2
i
dϕ ∫
d3 ⃗k
(2π)3
δfi
2Ei( ⃗k )
σγ3
w
··rw +
2σγw
rw
= Δpdr + Δpfr□ ϕ =
∂Veff
∂ϕ
+ηTuμ
∂μϕ
∫
+∞
−∞
dr′ϕ′(r′) EOM  = 0
Effective EOM
Parameterization
Numerical simulation
/105
□ ϕ =
∂Veff
∂ϕ
+δf
∂μTμν
p + ∂ν
ϕ
∂VT
∂ϕ
= − ∂ν
ϕ ⋅ δf
δf =
∑
i=B,F
gi
dm2
i
dϕ ∫
d3 ⃗k
(2π)3
δfi
2Ei( ⃗k )
σγ3
w
··rw +
2σγw
rw
= Δpdr + Δpfr□ ϕ =
∂Veff
∂ϕ
+ηTuμ
∂μϕ
∫
+∞
−∞
dr′ϕ′(r′) EOM  = 0
Effective EOM
Δpfr ∝ − γwParticle physicsParameterization
Numerical simulation
/105
□ ϕ =
∂Veff
∂ϕ
+δf
∂μTμν
p + ∂ν
ϕ
∂VT
∂ϕ
= − ∂ν
ϕ ⋅ δf
δf =
∑
i=B,F
gi
dm2
i
dϕ ∫
d3 ⃗k
(2π)3
δfi
2Ei( ⃗k )
σγ3
w
··rw +
2σγw
rw
= Δpdr + Δpfr□ ϕ =
∂Veff
∂ϕ
+ηTuμ
∂μϕ
∫
+∞
−∞
dr′ϕ′(r′) EOM  = 0
Effective EOM
Δpfr ∝ − γwParticle physicsParameterization
Thermal friction
/106
Thermal friction
/106
P1→1 ≈
Δm2
T2
24
≡ ΔpLO
Bodeker & Moore 09 Particle transmission and reflection
Run-away
Thermal friction
/106
Transition splitting of a fermion
emitting a soft vector boson
Bodeker & Moore 17
P1→2 ≈ γwg2
ΔmVT3
≡ γwΔpNLO Non-run-away
P1→1 ≈
Δm2
T2
24
≡ ΔpLO
Bodeker & Moore 09 Particle transmission and reflection
Run-away
Thermal friction
/106
Transition splitting of a fermion
emitting a soft vector boson
Bodeker & Moore 17
P1→2 ≈ γwg2
ΔmVT3
≡ γwΔpNLO Non-run-away
P1→1 ≈
Δm2
T2
24
≡ ΔpLO
Bodeker & Moore 09 Particle transmission and reflection
Run-away
Re-summing multiple soft gauge
bosons scattering to all orders
Hoche et al 2007.10343
P1→N ≈ 0.005γ2
wg2
T4
≡ γ2
wΔpNLO
⋯
Non-run-away
Thermal friction
/106
Transition splitting of a fermion
emitting a soft vector boson
Bodeker & Moore 17
P1→2 ≈ γwg2
ΔmVT3
≡ γwΔpNLO Non-run-away
P1→1 ≈
Δm2
T2
24
≡ ΔpLO
Bodeker & Moore 09 Particle transmission and reflection
Run-away
Re-summing multiple soft gauge
bosons scattering to all orders
Hoche et al 2007.10343
P1→N ≈ 0.005γ2
wg2
T4
≡ γ2
wΔpNLO
⋯
Non-run-away
Thermal
Equilibrium
Thermal
Equilibrium
Mancha et al 2005.10875
Δp = − (γ2
w − 1)TΔs
Thermal friction
/106
Transition splitting of a fermion
emitting a soft vector boson
Bodeker & Moore 17
P1→2 ≈ γwg2
ΔmVT3
≡ γwΔpNLO Non-run-away
P1→1 ≈
Δm2
T2
24
≡ ΔpLO
Bodeker & Moore 09 Particle transmission and reflection
Run-away
Re-summing multiple soft gauge
bosons scattering to all orders
Hoche et al 2007.10343
P1→N ≈ 0.005γ2
wg2
T4
≡ γ2
wΔpNLO
⋯
Non-run-away
Thermal
Equilibrium
Thermal
Equilibrium
Mancha et al 2005.10875
Δp = − (γ2
w − 1)TΔs
δf = − ˜ηT(uμ
∂μϕ)2
Δpfr ∝ − (γ2
w − 1)
Effective picture
/107
Effective picture
/107
Δpfr = − ΔpLO − h(γw)ΔpNLO
γ-independent friction term γ-dependent friction term
Effective picture
/107
Δpfr = − ΔpLO − h(γw)ΔpNLO
γ-independent friction term γ-dependent friction term
σγ3
w
··rw +
2σγw
rw
= Δpdr + Δpfr
E = 4πσr2
wγw −
4
3
πr3
w(Δpdr + Δpfr)
Effective picture
/107
Δpfr = − ΔpLO − h(γw)ΔpNLO
γ-independent friction term γ-dependent friction term
σγ3
w
··rw +
2σγw
rw
= Δpdr + Δpfr
E = 4πσr2
wγw −
4
3
πr3
w(Δpdr + Δpfr)
(
σ+
rw
3
d|Δpfr |
dγw )
γ3
w
··rw +
2σγw
rw
= Δpdr + Δpfr
Effective picture
/107
Δpfr = − ΔpLO − h(γw)ΔpNLO
γ-independent friction term γ-dependent friction term
σγ3
w
··rw +
2σγw
rw
= Δpdr + Δpfr
E = 4πσr2
wγw −
4
3
πr3
w(Δpdr + Δpfr)
(
σ+
rw
3
d|Δpfr |
dγw )
γ3
w
··rw +
2σγw
rw
= Δpdr + Δpfr
h(γ) − h(1)
h(γeq) − h(1)
+
3γ
2R
= 1 +
1
2R3
, h(γeq) ≡
Δpdr − ΔpLO
ΔpNLO
General solution
Wall velocity
/108
Wall velocity
/108
1 10 100 1000 104
105
1
10
100
1000
104
105
R / R 0
(R)
eq = 101
eq = 102
eq = 103
eq = 104
eq =
γ(R) =
2γeqR3
+ γeq − 1
2R3 + 3(γeq − 1)R2
P1→2 ≡ h(γ)ΔpNLO, h(γ) = γ
Wall velocity
/108
1 10 100 1000 104
105
1
10
100
1000
104
105
R / R 0
(R)
eq = 101
eq = 102
eq = 103
eq = 104
eq =
γ(R) =
2γeqR3
+ γeq − 1
2R3 + 3(γeq − 1)R2
P1→2 ≡ h(γ)ΔpNLO, h(γ) = γ
1 10 100 1000 104
105
1
10
100
1000
104
105
R / R 0
(R)
eq = 101
eq = 102
eq = 103
eq = 104
eq =
γ(R) = γ2
eq +
9(γ2
eq − 1)2
16R2
+
γ2
eq − 1
2R3
−
3(γ2
eq − 1)
4R
P1→N ≡ h(γ)ΔpNLO, h(γ) = γ2
Wall velocity
/108
1 10 100 1000 104
105
1
10
100
1000
104
105
R / R 0
(R)
eq = 101
eq = 102
eq = 103
eq = 104
eq =
γ(R) =
2γeqR3
+ γeq − 1
2R3 + 3(γeq − 1)R2
P1→2 ≡ h(γ)ΔpNLO, h(γ) = γ
1 10 100 1000 104
105
1
10
100
1000
104
105
R / R 0
(R)
eq = 101
eq = 102
eq = 103
eq = 104
eq =
γ(R) = γ2
eq +
9(γ2
eq − 1)2
16R2
+
γ2
eq − 1
2R3
−
3(γ2
eq − 1)
4R
P1→N ≡ h(γ)ΔpNLO, h(γ) = γ2
lim
γeq→∞
γ(R) =
2
3
R +
1
3R2
lim
R→∞
γ(R) = γeq
Efficiency factor
/109
Efficiency factor
/109
1 10 100 1000 104
105
0.0
0.2
0.4
0.6
0.8
1.0
Rcol / R0
col(Rcol;/,eq)
eq = 101
eq = 102
eq = 103
eq = 104
/ =0.1
1 10 100 1000 104
105
0.0
0.2
0.4
0.6
0.8
1.0
Rcol / R0
col(Rcol;/,eq)
eq = 101
eq = 102
eq = 103
eq = 104
/ =0.1
Efficiency factor
/109
1 10 100 1000 104
105
0.0
0.2
0.4
0.6
0.8
1.0
Rcol / R0
col(Rcol;/,eq)
eq = 101
eq = 102
eq = 103
eq = 104
/ =0.1
1 10 100 1000 104
105
0.0
0.2
0.4
0.6
0.8
1.0
Rcol / R0
col(Rcol;/,eq)
eq = 101
eq = 102
eq = 103
eq = 104
/ =0.1
Rcol ≳ 𝒪(103
)Rσ
1. Previous estimations are the late-time limit of our estimation when
bubbles collide with radius much larger than the transition radius
Efficiency factor
/109
1 10 100 1000 104
105
0.0
0.2
0.4
0.6
0.8
1.0
Rcol / R0
col(Rcol;/,eq)
eq = 101
eq = 102
eq = 103
eq = 104
/ =0.1
1 10 100 1000 104
105
0.0
0.2
0.4
0.6
0.8
1.0
Rcol / R0
col(Rcol;/,eq)
eq = 101
eq = 102
eq = 103
eq = 104
/ =0.1
2. The difference between previous estimations and our estimation
is most pronounced in the intermediate regime Rσ ≲ Rcol ≲ 𝒪(102
)Rσ
Rcol ≳ 𝒪(103
)Rσ
1. Previous estimations are the late-time limit of our estimation when
bubbles collide with radius much larger than the transition radius
Efficiency factor
/109
1 10 100 1000 104
105
0.0
0.2
0.4
0.6
0.8
1.0
Rcol / R0
col(Rcol;/,eq)
eq = 101
eq = 102
eq = 103
eq = 104
/ =0.1
1 10 100 1000 104
105
0.0
0.2
0.4
0.6
0.8
1.0
Rcol / R0
col(Rcol;/,eq)
eq = 101
eq = 102
eq = 103
eq = 104
/ =0.1
2. The difference between previous estimations and our estimation
is most pronounced in the intermediate regime Rσ ≲ Rcol ≲ 𝒪(102
)Rσ
Rcol ≳ 𝒪(103
)Rσ
1. Previous estimations are the late-time limit of our estimation when
bubbles collide with radius much larger than the transition radius
3. Our estimation could evaluate in the regime when bubbles collide
before they start to approach the terminal velocity Rcol ≲ Rσ
Conclusion and discussions
/1010
Conclusion and discussions
/1010
(
σ +
R
3
dP1→N
dγ )
dγ
dR
+
2σγ
R
= Δpdr − P1→1 − P1→N
Derive an effective EOM for an expanding bubble wall in thermal plasma out-of equilibrium
Conclusion and discussions
/1010
(
σ +
R
3
dP1→N
dγ )
dγ
dR
+
2σγ
R
= Δpdr − P1→1 − P1→N
Derive an effective EOM for an expanding bubble wall in thermal plasma out-of equilibrium
Solve for bubble expansion with arbitrary -scaling friction P1→N ≡ h(γ)ΔpNLOγ
h(γ) − h(1)
h(γeq) − h(1)
+
3γ
2R
= 1 +
1
2R3
Conclusion and discussions
/1010
(
σ +
R
3
dP1→N
dγ )
dγ
dR
+
2σγ
R
= Δpdr − P1→1 − P1→N
Derive an effective EOM for an expanding bubble wall in thermal plasma out-of equilibrium
Solve for bubble expansion with arbitrary -scaling friction P1→N ≡ h(γ)ΔpNLOγ
h(γ) − h(1)
h(γeq) − h(1)
+
3γ
2R
= 1 +
1
2R3
□ ϕ =
∂Veff
∂ϕ
+
∑
i=B,F
gi
dm2
i
dϕ ∫
d3 ⃗k
(2π)3
δfi
2Ei( ⃗k )
=
∂Veff
∂ϕ
− ˜ηT(uμ
∂μϕ)2
? What kind of parametrization for the out-of equilibrium term could reproduce our
effective EOM of an expanding bubble wall with friction P1→N ≡ h(γ)ΔpNLO, h(γ) = γ2

Mais conteúdo relacionado

Semelhante a Effective picture of bubble expansion

Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Stephane Meteodyn
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
Nir Morgulis
 
PVT_Gas condesate
PVT_Gas condesatePVT_Gas condesate
PVT_Gas condesate
krackkuk
 

Semelhante a Effective picture of bubble expansion (20)

Drift flux
Drift fluxDrift flux
Drift flux
 
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
A Coupled Thermoelastic Problem of A Half – Space Due To Thermal Shock on the...
 
Problem and solution i ph o 31
Problem and solution i ph o 31Problem and solution i ph o 31
Problem and solution i ph o 31
 
Bjs green belt ppt
Bjs green belt pptBjs green belt ppt
Bjs green belt ppt
 
Krkk tugas
Krkk tugasKrkk tugas
Krkk tugas
 
IA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationIA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equation
 
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
 
Waste_Transm.ppt
Waste_Transm.pptWaste_Transm.ppt
Waste_Transm.ppt
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 
B02708012
B02708012B02708012
B02708012
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
PVT_Gas condesate
PVT_Gas condesatePVT_Gas condesate
PVT_Gas condesate
 
Quang pho hong ngoai
Quang pho hong ngoaiQuang pho hong ngoai
Quang pho hong ngoai
 
Response Spectrum
Response SpectrumResponse Spectrum
Response Spectrum
 
4 5920118410397615496
4 59201184103976154964 5920118410397615496
4 5920118410397615496
 
Convective Heat Transfer Lectures ppt
Convective Heat Transfer Lectures       pptConvective Heat Transfer Lectures       ppt
Convective Heat Transfer Lectures ppt
 
Proof of Cook Levin Theorem (Presentation by Xiechuan, Song and Shuo)
Proof of Cook Levin Theorem (Presentation by Xiechuan, Song and Shuo)Proof of Cook Levin Theorem (Presentation by Xiechuan, Song and Shuo)
Proof of Cook Levin Theorem (Presentation by Xiechuan, Song and Shuo)
 
The CHE Data Book - KFUPM.pdf
The CHE Data Book - KFUPM.pdfThe CHE Data Book - KFUPM.pdf
The CHE Data Book - KFUPM.pdf
 
Hydrodynamic scaling and analytically solvable models
Hydrodynamic scaling and analytically solvable modelsHydrodynamic scaling and analytically solvable models
Hydrodynamic scaling and analytically solvable models
 
slides
slidesslides
slides
 

Último

Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Silpa
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Silpa
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Silpa
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Silpa
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Silpa
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 

Último (20)

Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 

Effective picture of bubble expansion

  • 1. Effective picture of bubble expansion 王少江 Based on 2011.11451 with Prof. Rong-Gen Cai /101 2020引⼒和宇宙学研讨会 2020/12/20 08:55-09:15
  • 4. GWs from FOPT /102 TeV PeVMeV BSMTPT QCDPT EWPT PQPT
  • 11. Phase dynamics /103 ϕ Veff(ϕ) ϕ− ϕ+ α ∼ ΔVeff ρRad Γ(t) ∼ e−S(t) Γ(T*) ∼ H(T*) R* ∼ ⟨Ri (T*)⟩
  • 12. Phase dynamics /103 ϕ Veff(ϕ) ϕ− ϕ+ α ∼ ΔVeff ρRad Γ(t) ∼ e−S(t) Γ(T*) ∼ H(T*) R* ∼ ⟨Ri (T*)⟩ fpeak ∼ 1 R*
  • 15. Bubble dynamics /104 Ωscalar GW ∝ κ2 collision ∼ ( Ewall kinetic ρvac ) 2 Bubble expansion in vacuum vw → 1
  • 16. Bubble dynamics /104 Ωscalar GW ∝ κ2 collision ∼ ( Ewall kinetic ρvac ) 2 Bubble expansion in vacuum vw → 1 Bubble expansion in plasma vw ↑ → veq
  • 17. Bubble dynamics /104 Ωscalar GW ∝ κ2 collision ∼ ( Ewall kinetic ρvac ) 2 Bubble expansion in vacuum vw → 1 Bubble expansion in plasma vw ↑ → veq Ωplasma GW ∝ κ2 soundwave ∼ ( Efluid kinetic ρvac ) 2
  • 19. Numerical simulation /105 □ ϕ = ∂Veff ∂ϕ +δf ∂μTμν p + ∂ν ϕ ∂VT ∂ϕ = − ∂ν ϕ ⋅ δf δf = ∑ i=B,F gi dm2 i dϕ ∫ d3 ⃗k (2π)3 δfi 2Ei( ⃗k )
  • 20. Numerical simulation /105 □ ϕ = ∂Veff ∂ϕ +δf ∂μTμν p + ∂ν ϕ ∂VT ∂ϕ = − ∂ν ϕ ⋅ δf δf = ∑ i=B,F gi dm2 i dϕ ∫ d3 ⃗k (2π)3 δfi 2Ei( ⃗k )
  • 21. Numerical simulation /105 □ ϕ = ∂Veff ∂ϕ +δf ∂μTμν p + ∂ν ϕ ∂VT ∂ϕ = − ∂ν ϕ ⋅ δf δf = ∑ i=B,F gi dm2 i dϕ ∫ d3 ⃗k (2π)3 δfi 2Ei( ⃗k ) σγ3 w ··rw + 2σγw rw = Δpdr + Δpfr□ ϕ = ∂Veff ∂ϕ +ηTuμ ∂μϕ ∫ +∞ −∞ dr′ϕ′(r′) EOM  = 0 Effective EOM
  • 22. Numerical simulation /105 □ ϕ = ∂Veff ∂ϕ +δf ∂μTμν p + ∂ν ϕ ∂VT ∂ϕ = − ∂ν ϕ ⋅ δf δf = ∑ i=B,F gi dm2 i dϕ ∫ d3 ⃗k (2π)3 δfi 2Ei( ⃗k ) σγ3 w ··rw + 2σγw rw = Δpdr + Δpfr□ ϕ = ∂Veff ∂ϕ +ηTuμ ∂μϕ ∫ +∞ −∞ dr′ϕ′(r′) EOM  = 0 Effective EOM Parameterization
  • 23. Numerical simulation /105 □ ϕ = ∂Veff ∂ϕ +δf ∂μTμν p + ∂ν ϕ ∂VT ∂ϕ = − ∂ν ϕ ⋅ δf δf = ∑ i=B,F gi dm2 i dϕ ∫ d3 ⃗k (2π)3 δfi 2Ei( ⃗k ) σγ3 w ··rw + 2σγw rw = Δpdr + Δpfr□ ϕ = ∂Veff ∂ϕ +ηTuμ ∂μϕ ∫ +∞ −∞ dr′ϕ′(r′) EOM  = 0 Effective EOM Δpfr ∝ − γwParticle physicsParameterization
  • 24. Numerical simulation /105 □ ϕ = ∂Veff ∂ϕ +δf ∂μTμν p + ∂ν ϕ ∂VT ∂ϕ = − ∂ν ϕ ⋅ δf δf = ∑ i=B,F gi dm2 i dϕ ∫ d3 ⃗k (2π)3 δfi 2Ei( ⃗k ) σγ3 w ··rw + 2σγw rw = Δpdr + Δpfr□ ϕ = ∂Veff ∂ϕ +ηTuμ ∂μϕ ∫ +∞ −∞ dr′ϕ′(r′) EOM  = 0 Effective EOM Δpfr ∝ − γwParticle physicsParameterization
  • 26. Thermal friction /106 P1→1 ≈ Δm2 T2 24 ≡ ΔpLO Bodeker & Moore 09 Particle transmission and reflection Run-away
  • 27. Thermal friction /106 Transition splitting of a fermion emitting a soft vector boson Bodeker & Moore 17 P1→2 ≈ γwg2 ΔmVT3 ≡ γwΔpNLO Non-run-away P1→1 ≈ Δm2 T2 24 ≡ ΔpLO Bodeker & Moore 09 Particle transmission and reflection Run-away
  • 28. Thermal friction /106 Transition splitting of a fermion emitting a soft vector boson Bodeker & Moore 17 P1→2 ≈ γwg2 ΔmVT3 ≡ γwΔpNLO Non-run-away P1→1 ≈ Δm2 T2 24 ≡ ΔpLO Bodeker & Moore 09 Particle transmission and reflection Run-away Re-summing multiple soft gauge bosons scattering to all orders Hoche et al 2007.10343 P1→N ≈ 0.005γ2 wg2 T4 ≡ γ2 wΔpNLO ⋯ Non-run-away
  • 29. Thermal friction /106 Transition splitting of a fermion emitting a soft vector boson Bodeker & Moore 17 P1→2 ≈ γwg2 ΔmVT3 ≡ γwΔpNLO Non-run-away P1→1 ≈ Δm2 T2 24 ≡ ΔpLO Bodeker & Moore 09 Particle transmission and reflection Run-away Re-summing multiple soft gauge bosons scattering to all orders Hoche et al 2007.10343 P1→N ≈ 0.005γ2 wg2 T4 ≡ γ2 wΔpNLO ⋯ Non-run-away Thermal Equilibrium Thermal Equilibrium Mancha et al 2005.10875 Δp = − (γ2 w − 1)TΔs
  • 30. Thermal friction /106 Transition splitting of a fermion emitting a soft vector boson Bodeker & Moore 17 P1→2 ≈ γwg2 ΔmVT3 ≡ γwΔpNLO Non-run-away P1→1 ≈ Δm2 T2 24 ≡ ΔpLO Bodeker & Moore 09 Particle transmission and reflection Run-away Re-summing multiple soft gauge bosons scattering to all orders Hoche et al 2007.10343 P1→N ≈ 0.005γ2 wg2 T4 ≡ γ2 wΔpNLO ⋯ Non-run-away Thermal Equilibrium Thermal Equilibrium Mancha et al 2005.10875 Δp = − (γ2 w − 1)TΔs δf = − ˜ηT(uμ ∂μϕ)2 Δpfr ∝ − (γ2 w − 1)
  • 32. Effective picture /107 Δpfr = − ΔpLO − h(γw)ΔpNLO γ-independent friction term γ-dependent friction term
  • 33. Effective picture /107 Δpfr = − ΔpLO − h(γw)ΔpNLO γ-independent friction term γ-dependent friction term σγ3 w ··rw + 2σγw rw = Δpdr + Δpfr E = 4πσr2 wγw − 4 3 πr3 w(Δpdr + Δpfr)
  • 34. Effective picture /107 Δpfr = − ΔpLO − h(γw)ΔpNLO γ-independent friction term γ-dependent friction term σγ3 w ··rw + 2σγw rw = Δpdr + Δpfr E = 4πσr2 wγw − 4 3 πr3 w(Δpdr + Δpfr) ( σ+ rw 3 d|Δpfr | dγw ) γ3 w ··rw + 2σγw rw = Δpdr + Δpfr
  • 35. Effective picture /107 Δpfr = − ΔpLO − h(γw)ΔpNLO γ-independent friction term γ-dependent friction term σγ3 w ··rw + 2σγw rw = Δpdr + Δpfr E = 4πσr2 wγw − 4 3 πr3 w(Δpdr + Δpfr) ( σ+ rw 3 d|Δpfr | dγw ) γ3 w ··rw + 2σγw rw = Δpdr + Δpfr h(γ) − h(1) h(γeq) − h(1) + 3γ 2R = 1 + 1 2R3 , h(γeq) ≡ Δpdr − ΔpLO ΔpNLO General solution
  • 37. Wall velocity /108 1 10 100 1000 104 105 1 10 100 1000 104 105 R / R 0 (R) eq = 101 eq = 102 eq = 103 eq = 104 eq = γ(R) = 2γeqR3 + γeq − 1 2R3 + 3(γeq − 1)R2 P1→2 ≡ h(γ)ΔpNLO, h(γ) = γ
  • 38. Wall velocity /108 1 10 100 1000 104 105 1 10 100 1000 104 105 R / R 0 (R) eq = 101 eq = 102 eq = 103 eq = 104 eq = γ(R) = 2γeqR3 + γeq − 1 2R3 + 3(γeq − 1)R2 P1→2 ≡ h(γ)ΔpNLO, h(γ) = γ 1 10 100 1000 104 105 1 10 100 1000 104 105 R / R 0 (R) eq = 101 eq = 102 eq = 103 eq = 104 eq = γ(R) = γ2 eq + 9(γ2 eq − 1)2 16R2 + γ2 eq − 1 2R3 − 3(γ2 eq − 1) 4R P1→N ≡ h(γ)ΔpNLO, h(γ) = γ2
  • 39. Wall velocity /108 1 10 100 1000 104 105 1 10 100 1000 104 105 R / R 0 (R) eq = 101 eq = 102 eq = 103 eq = 104 eq = γ(R) = 2γeqR3 + γeq − 1 2R3 + 3(γeq − 1)R2 P1→2 ≡ h(γ)ΔpNLO, h(γ) = γ 1 10 100 1000 104 105 1 10 100 1000 104 105 R / R 0 (R) eq = 101 eq = 102 eq = 103 eq = 104 eq = γ(R) = γ2 eq + 9(γ2 eq − 1)2 16R2 + γ2 eq − 1 2R3 − 3(γ2 eq − 1) 4R P1→N ≡ h(γ)ΔpNLO, h(γ) = γ2 lim γeq→∞ γ(R) = 2 3 R + 1 3R2 lim R→∞ γ(R) = γeq
  • 41. Efficiency factor /109 1 10 100 1000 104 105 0.0 0.2 0.4 0.6 0.8 1.0 Rcol / R0 col(Rcol;/,eq) eq = 101 eq = 102 eq = 103 eq = 104 / =0.1 1 10 100 1000 104 105 0.0 0.2 0.4 0.6 0.8 1.0 Rcol / R0 col(Rcol;/,eq) eq = 101 eq = 102 eq = 103 eq = 104 / =0.1
  • 42. Efficiency factor /109 1 10 100 1000 104 105 0.0 0.2 0.4 0.6 0.8 1.0 Rcol / R0 col(Rcol;/,eq) eq = 101 eq = 102 eq = 103 eq = 104 / =0.1 1 10 100 1000 104 105 0.0 0.2 0.4 0.6 0.8 1.0 Rcol / R0 col(Rcol;/,eq) eq = 101 eq = 102 eq = 103 eq = 104 / =0.1 Rcol ≳ 𝒪(103 )Rσ 1. Previous estimations are the late-time limit of our estimation when bubbles collide with radius much larger than the transition radius
  • 43. Efficiency factor /109 1 10 100 1000 104 105 0.0 0.2 0.4 0.6 0.8 1.0 Rcol / R0 col(Rcol;/,eq) eq = 101 eq = 102 eq = 103 eq = 104 / =0.1 1 10 100 1000 104 105 0.0 0.2 0.4 0.6 0.8 1.0 Rcol / R0 col(Rcol;/,eq) eq = 101 eq = 102 eq = 103 eq = 104 / =0.1 2. The difference between previous estimations and our estimation is most pronounced in the intermediate regime Rσ ≲ Rcol ≲ 𝒪(102 )Rσ Rcol ≳ 𝒪(103 )Rσ 1. Previous estimations are the late-time limit of our estimation when bubbles collide with radius much larger than the transition radius
  • 44. Efficiency factor /109 1 10 100 1000 104 105 0.0 0.2 0.4 0.6 0.8 1.0 Rcol / R0 col(Rcol;/,eq) eq = 101 eq = 102 eq = 103 eq = 104 / =0.1 1 10 100 1000 104 105 0.0 0.2 0.4 0.6 0.8 1.0 Rcol / R0 col(Rcol;/,eq) eq = 101 eq = 102 eq = 103 eq = 104 / =0.1 2. The difference between previous estimations and our estimation is most pronounced in the intermediate regime Rσ ≲ Rcol ≲ 𝒪(102 )Rσ Rcol ≳ 𝒪(103 )Rσ 1. Previous estimations are the late-time limit of our estimation when bubbles collide with radius much larger than the transition radius 3. Our estimation could evaluate in the regime when bubbles collide before they start to approach the terminal velocity Rcol ≲ Rσ
  • 46. Conclusion and discussions /1010 ( σ + R 3 dP1→N dγ ) dγ dR + 2σγ R = Δpdr − P1→1 − P1→N Derive an effective EOM for an expanding bubble wall in thermal plasma out-of equilibrium
  • 47. Conclusion and discussions /1010 ( σ + R 3 dP1→N dγ ) dγ dR + 2σγ R = Δpdr − P1→1 − P1→N Derive an effective EOM for an expanding bubble wall in thermal plasma out-of equilibrium Solve for bubble expansion with arbitrary -scaling friction P1→N ≡ h(γ)ΔpNLOγ h(γ) − h(1) h(γeq) − h(1) + 3γ 2R = 1 + 1 2R3
  • 48. Conclusion and discussions /1010 ( σ + R 3 dP1→N dγ ) dγ dR + 2σγ R = Δpdr − P1→1 − P1→N Derive an effective EOM for an expanding bubble wall in thermal plasma out-of equilibrium Solve for bubble expansion with arbitrary -scaling friction P1→N ≡ h(γ)ΔpNLOγ h(γ) − h(1) h(γeq) − h(1) + 3γ 2R = 1 + 1 2R3 □ ϕ = ∂Veff ∂ϕ + ∑ i=B,F gi dm2 i dϕ ∫ d3 ⃗k (2π)3 δfi 2Ei( ⃗k ) = ∂Veff ∂ϕ − ˜ηT(uμ ∂μϕ)2 ? What kind of parametrization for the out-of equilibrium term could reproduce our effective EOM of an expanding bubble wall with friction P1→N ≡ h(γ)ΔpNLO, h(γ) = γ2