SlideShare uma empresa Scribd logo
1 de 34
Baixar para ler offline
Seminar:	
  Deep	
  networks	
  
for	
  learning	
  molecular	
  
representation
PRESENTER:	
  HAI	
  NGUYEN
INSTITUTE	
  OF	
  INFORMATION	
  TECHNOLOGY
VIETNAM	
  ACAD.	
  OF	
  SCI.	
  &	
  TECH.,	
  VIETNAM
01/08/2017 1
Outline
qResearch	
  topic
qRelated	
  works
qProposed	
  method
qExperiments	
  and	
  results
qNext	
  work
01/08/2017 2
Research	
  topic
q Goal:	
  predicting	
  properties	
  of	
  molecules	
  by	
  Deep	
  Networks
E.g.,	
  Prediction	
  of	
  toxicity	
  of	
  a	
  molecule
qConventional	
  approach
E.g.,	
  Morgan	
  fingerprint	
  (aka:	
  ECFP)
-­‐Fingerprint	
  is	
  a	
  feature	
  vector	
  to	
  encode	
  which	
  substructures
are	
  present	
  in	
  the	
  molecule
qEnd-­‐to-­‐end	
  learning	
  is	
  Better???
E.g.,	
  Molecular	
  Convolutional	
  Neural	
  Networks
-­‐data-­‐driven	
  features	
  are	
  more	
  interpretable	
  and
efficient
Fingerprint
Feature	
  extraction
End-­‐to-­‐end	
  learnable	
  
fingerprint
01/08/2017 3
Related	
  works
q D.	
  Duvenaud et	
  al,	
  CNNs	
  on	
  Graphs	
  for	
  Learning	
  Molecular	
  Fingerprint	
  (NIPS2015)
qM.	
  Defferrardet	
  al,	
  CNNs on	
  Graphs	
  with	
  Fast Localized	
  Spectral	
  Filtering	
  (NIPS2016)
qKipf et	
  al,	
  Semi-­‐supervised	
  Classification	
  with	
  Graph	
  Convolutional	
  Networks	
  (ICLR2017)
q J.	
  Gilmer	
  et	
  al,	
  Neural	
  Message	
  Passing	
  for	
  Quantum	
  Chemistry	
  (ICML2017)
01/08/2017 4
Related	
  works
q D.	
  Duvenaud et	
  al,	
  CNNs	
  on	
  Graphs	
  for	
  Learning	
  Molecular	
  Fingerprint	
  (NIPS2015)
qM.	
  Defferrardet	
  al,	
  CNNs on	
  Graphs	
  with	
  Fast Localized	
  Spectral	
  Filtering	
  (NIPS2016)
qKipf et	
  al,	
  Semi-­‐supervised	
  Classification	
  with	
  Graph	
  Convolutional	
  Networks	
  (ICLR2017)
q J.	
  Gilmer	
  et	
  al,	
  Neural	
  Message	
  Passing	
  for	
  Quantum	
  Chemistry	
  (ICML2017)
01/08/2017 5
[CNNs	
  on	
  Graphs	
  for	
  Learning	
  Molecular	
  
Fingerprint	
  (NIPS2015)]
Contribution
q provide	
  an	
  end-­‐to-­‐end	
  learning	
  framework	
  to	
  learn	
  fingerprint	
  with	
  
better	
  predictive	
  performance,	
  the	
  inputs	
  are	
  graphs	
  with	
  arbitrary	
  size	
  
and	
  shape
q Efficient	
  computation
1. Fixed	
  fingerprint	
  must	
  be	
  large	
  to	
  encode	
  all	
  possible	
  substructures
2. Neural	
  fingerprint	
  can	
  be	
  learned	
  to	
  encode	
  relevant	
  features	
  for	
  classification-­‐>	
  
reduce	
  the	
  size
qNeural	
  fingerprint	
  is	
  more	
  interpretable-­‐>	
  meaningful
01/08/2017 6
N
CC
C
O
r1
rN
ra
Algorithm
01/08/2017 7
N
CC
C
O
+
r1
rN
ra
v
Algorithm
01/08/2017 8
N
CC
C
O
+
H
r1
rN
ra
v
ra
Algorithm
Representation	
  at	
  atom	
  ‘a’	
  represent	
  the	
  
substructure	
  in	
  which	
  ‘a’	
  is	
  a	
  root
01/08/2017 9
N
CC
C
O
+
W
H
NN
+
r1
rN
ra
v
ra
i
f
output
Algorithm
Transform	
  it	
  to	
  
probability	
  vector	
  and	
  
accumulated	
  to	
  
fingerprint
01/08/2017 10
N
CC
C
O
+
W
H
NN
+
r1
rN
ra
v
ra
i
f
output
Algorithm
This	
  process	
  is	
  repeated	
  many	
  
times	
  to	
  extract	
  substructures	
  
of	
  different	
  levels	
  
01/08/2017 11
N
CC
C
O
+
W
H
NN
+
r1
rN
ra
v
ra
i
f
output
Algorithm
01/08/2017 12
N
CC
C
O
+
W
H
NN
+
r1
rN
ra
v
ra
i
f
output
Algorithm
01/08/2017 13
Proposed	
  improvement
q Disadvantage	
  of	
  NFP:
oConsider	
  equally	
  different	
  bond	
  types	
  to	
  
different	
  neighboring	
  atoms
oE.g.,	
  C-­‐O	
  #	
  C=O	
  ,	
  etc
oSoftmax output	
  of	
  all	
  substructruresare	
  
averaged
o(Assumption:	
  properties	
  of	
  molecules	
  are	
  determined	
  
by	
  very	
  few	
  subgraphs)
N
CC
C
O
+
W
H
NN
+
r1
rN
ra
v
ra
i
f
output
01/08/2017 14
Proposed	
  improvement
01/08/2017 15
Experiments	
  and	
  Results
q Data	
  sets:	
  Toxic21 (train:	
  10K,	
  test:	
  296),	
  Solubility	
  log	
  Mol/L	
  (#	
  samples:	
  1100)
q Goal:	
  comparison	
  of	
  ANFP	
  with	
  original	
  NFP
q Configuration:	
  same	
  for	
  two	
  methods	
  (NFP:	
  100x100),	
  MLP(100x100)
q Implementation:	
  Chainer,	
  Opt:	
  Adam.
Acc (%)
NFP 91.58
proposed 92.35
RMSE
NFP 0.64±0.05
proposed 0.53±0.06
Toxic21 Solubility	
  logMol/L
01/08/2017 16
[Message	
  Passing	
  Neural	
  Networks	
  for	
  
quantum	
  chemistry]
q accepted	
  at	
  ICML2017
qA	
  general	
  framework	
  for	
  supervised	
  learning	
  for	
  graph	
  structured	
  data
q It	
  abstracts	
  the	
  commonalities	
  between	
  existing	
  neural	
  models	
  for	
  graph
qEasy	
  to	
  understand	
  the	
  general	
  ideas	
  of	
  different	
  proposed	
  models	
  and	
  come	
  up	
  
with	
  new	
  variations	
  suitable	
  for	
  specific	
  data	
  type
01/08/2017 17
[Message	
  Passing	
  Neural	
  Networks	
  for	
  
quantum	
  chemistry]
Forward	
  consists	
  2	
  phases:
q Message	
  Passing
1. Message	
  function
𝑚"
#$%
= ' 𝑀#(ℎ"
#
, ℎ,
#
, 𝑒",
#
)
,∈0(")
2. Update	
  function
ℎ"
#$%
= 𝑈#(ℎ"
#
, 𝑚"
#$%
)
q Readout
𝑦 = 𝑅({ℎ"
#
|𝑣 ∈ 𝐺})
ℎ,
#
ℎ"
#
𝑀#(ℎ"
#
, ℎ,
#
, 𝑒",
#
)
Message	
  passing	
  at	
  t-­‐th step
Repeat	
  T	
  times
01/08/2017 18
[Message	
  Passing	
  Neural	
  Networks	
  for	
  
quantum	
  chemistry]
Forward	
  consists	
  2	
  phases:
q Message	
  Passing
1. Message	
  function
𝑚"
#$%
= ' 𝑀#(ℎ"
#
, ℎ,
#
, 𝑒",
#
)
,∈0(")
2. Update	
  function
ℎ"
#$%
= 𝑈#(ℎ"
#
, 𝑚"
#$%
)
q Readout
𝑦 = 𝑅({ℎ"
#
|𝑣 ∈ 𝐺})
ℎ,
#
ℎ"
#
𝑀#(ℎ"
#
, ℎ,
#
, 𝑒",
#
)
Message	
  passing	
  at	
  t-­‐th step
Repeat	
  T	
  times
Note:	
  all	
  these	
  functions	
  are	
  learnable	
  and	
  differentiable	
  and	
  can	
  be	
  learned	
  by	
  backpropagation
01/08/2017 19
[[Message	
  Passing	
  Neural	
  Networks	
  for	
  
quantum	
  chemistry]
[CNNs	
  for	
  learning	
  Molecular	
  Fingerprint]	
  is	
  a	
  specific	
  case	
  of	
  MPNN
q Message	
  Passing
1. Message	
  function
𝑀# ℎ"
#
, ℎ,
#
, 𝑒",
#
= ℎ,
#
2. Update	
  function
𝑈# ℎ"
#
, 𝑚"
#$%
= 𝜎 𝐻#
;<= "
𝑚"
#$%
q Readout
𝑦 = 𝑓(' 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊#ℎ"
# )
",#
)
01/08/2017 20
Next	
  work:	
  [distributed	
  representation	
  
learning	
  for	
  molecules	
  (Mol2vec)]
q Motivation:
Ø learning	
  molecule	
  representation	
  without	
  labeled	
  or	
  with	
  limited	
  number	
  of	
  samples
ØUseful	
  for	
  many	
  tasks,	
  e.g.,	
  Kernel	
  learning	
  for	
  graph	
  structured	
  data
Proposed	
  idea:	
  based	
  on	
  word2vector (used	
  in	
  NLP)	
  and	
  Neural	
  Message	
  Passing	
  (NMP)
q Skip-­‐gram	
  model	
  for	
  word2vec	
  and	
  doc2vec
𝑤F
𝑤FG#
𝑤FG%
𝑤F$%
𝑤F$#
𝑚𝑎𝑥 ' ' log Pr	
  (𝑤F$N|𝑤F)
#
NOG#,P
𝑑𝑜𝑐
𝑤%
𝑤S
𝑤N
𝑤T
𝑚𝑎𝑥 ' ' logPr	
  (𝑤N |𝑑𝑜𝑐)
#
,U∈VWFVWF
Correspondence
Ø Docs	
  	
  <-­‐>	
  molecules
Ø Atoms	
  <-­‐>	
  words
Ø How	
  about	
  substructures???
word2vec doc2vec
01/08/2017 21
[distributed	
  representation	
  learning	
  for	
  molecules]
Objective	
  function
𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 ' ' logPr	
  (𝑠𝑢𝑏N |𝑚𝑜𝑙)
^_`U ∈a
bcdae"ea
aO%
= 𝑎𝑟𝑔𝑚𝑎𝑥 ' ' log
exp	
  (𝑣bWa
i
𝑣^_`N)
∑ exp	
  (𝑣bWa
i
𝑣^_`k
)caa	
  l^_`U∈a
bcdae"ea
aO%
Where	
  𝜃 are	
  parameters	
  to	
  be	
  trained	
  (vector	
  representation	
  
of	
  molecules,	
  atoms,	
  and	
  substructures	
  as	
  well)
C
C
O
N
[N,	
  C,	
  C,	
  O]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Level	
  1
[N-­‐C,	
  C-­‐C,	
  C=O]	
  	
  	
  Level	
  2
[N-­‐C-­‐C,	
  C-­‐C=O]	
  	
  Level	
  3
etc
Model	
  for	
  learning	
  
molecule	
  representation
Two	
  questions:
1. How	
  to	
  represent	
  substructures,	
  atoms,	
  and	
  molecules	
  in	
  vector	
  form?
2. How	
  to	
  maximize	
  the	
  above	
  objective	
  function?	
  (i.e.,	
  calculate	
  the	
  denominator	
   with	
  huge	
  
number	
  of	
  possible	
  subgraphs)
01/08/2017 22
[distributed	
  representation	
  learning	
  for	
  molecules]
1. How	
  to	
  represent	
  substructures,	
  atoms,	
  and	
  molecules	
  in	
  vector	
  form?
Using	
  message	
  function	
  and	
  update	
  function
Level	
  1:
Atoms’	
  representation
Level	
  2:
substructures’	
  representation
Level	
  3:
substructures’	
  representation	
  
with	
  larger	
  coverage
01/08/2017 23
Level	
  4:
Cover	
  the	
  whole	
  graph
Consider	
  this	
  atom
[distributed	
  representation	
  learning	
  for	
  
molecules]
Given	
  representation	
  vectors	
  of	
  atoms,	
  how	
  to	
  represent	
  
substructures	
  ????
ℎc
#
01/08/2017 24
ℎ`
#
ℎF
#
ℎm
#
[distributed	
  representation	
  learning	
  for	
  
molecules]
Given	
  representation	
  vectors	
  of	
  atoms,	
  how	
  to	
  represent	
  
substructures	
  ????
Message	
  and	
  update:
ℎm
#$%
= 𝑓(ℎm
#$%
+ ℎc
#
𝑊mc + ℎ`
#
𝑊m`+ℎF
#
𝑊mF)
Where	
   𝑓 is	
  non-­‐linear	
  function
ℎc
#
01/08/2017 25
ℎ`
#
ℎF
#
ℎm
#
𝑊mc
𝑊m`
𝑊mF
[distributed	
  representation	
  learning	
  for	
  
molecules]
Given	
  representation	
  vectors	
  of	
  atoms,	
  how	
  to	
  represent	
  
substructures	
  ????
Message	
  and	
  update:
ℎm
#$%
= 𝑓(ℎm
#$%
+ ℎc
#
𝑊mc + ℎ`
#
𝑊m`+ℎF
#
𝑊mF)
ℎc
#
01/08/2017 26
ℎ`
#
ℎF
#
ℎm
#
𝑊mc
𝑊m`
𝑊mF
At	
  this	
  step,	
  representation	
  at	
  atom	
  r	
  
represent	
  the	
  subgraph (r,	
  a,	
  b,	
  c)	
  with	
  root	
  r
By	
  doing	
  so,	
  we	
  can	
  represent	
  any	
  
substructure	
  based	
  on	
  atoms’	
  representation
[distributed	
  representation	
  learning	
  for	
  molecules]
2. How	
  to	
  maximize	
  the	
  above	
  objective	
  function?	
  (i.e.,	
  calculate	
  the	
  denominator	
  with	
  
huge	
  number	
  of	
  possible	
  subgraphs)
Objective	
  function:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ ∑ log
<op	
  ("qrs
t
"uvwU)
∑ <op	
  ("qrs
t
"uvwk
)xss	
  k
^_`U∈a
bcdae"ea
aO%
Consider:	
  
∑ log
<op	
  ("qrs
t
"uvwU)
∑ <op	
  ("qrs
t
"uvwk
)xss	
  k
^_`U∈a =∑ 𝑣bWa
i
𝑣^_`N − log∑ exp	
  (𝑣bWa
i
𝑣^_`k
)caa	
  l^_`U∈a
01/08/2017 27
Computationally	
  expensive
[distributed	
  representation	
  learning	
  for	
  molecules]
2. How	
  to	
  maximize	
  the	
  above	
  objective	
  function?	
  (i.e.,	
  calculate	
  the	
  denominator	
  with	
  huge	
  
number	
  of	
  possible	
  subgraphs)
Objective	
  function:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ ∑ log
<op	
  ("qrs
t "uvwU )
∑ <op	
  ("qrs
t "uvwk
)xss	
  k
^_`U∈a
bcdae"ea
aO%
Consider:	
  
∑ log
<op	
  ("qrs
t "uvwU )
∑ <op	
  ("qrs
t "uvwk
)xss	
  k
^_`U∈a =∑ 𝑣bWa
i
𝑣^_`N − log∑ exp	
  (𝑣bWa
i
𝑣^_`k
)caa	
  l^_`U∈a
Solution:	
  
a) Compute	
  gradient	
  and	
  then	
  use	
  MCMC	
  to	
  obtain	
  approximate	
  gradients,	
  e.g.,	
  (adaptive)	
  importance	
  sampling	
  -­‐
>	
  but	
  not	
  trivial	
  to	
  define	
  the	
  proposal	
  distribution	
  for	
  subgraphs (><)
b) Use	
  negative	
  sampling	
  -­‐>	
  maybe	
  good	
  because	
  it	
  is	
  easy	
  to	
  sample	
  incorrect	
  subgraphs not	
  present	
  in	
  a	
  
molecule	
  by	
  comparing	
  vector	
  representations.	
  (^^)	
  -­‐>	
  You	
  do	
  not	
  need	
  to	
  compare	
  graph	
  which	
  is	
  NP-­‐hard	
  
problem
01/08/2017 28
Conclusion
q What	
  I	
  have	
  done:
v Covered	
  some	
  problems	
  and	
  solutions	
  on	
  application	
  of	
  CNNs	
  for	
  molecules.
vProposed	
  simple	
  ideas	
  to	
  improve	
  the	
  NFP	
  models
vProposed	
  supervised	
  variational models	
  for	
  predicting	
  molecules’	
  properties.	
  
However,	
  this	
  is	
  lack	
  of	
  theoretical	
  correctness	
  -­‐>	
  gave	
  up
vProposed	
  a	
  simple	
  unsupervised	
  learning	
  model	
  for	
  learning	
  vector	
  
representation	
  for	
  molecules
q What	
  next?
v Implement	
  the	
  proposed	
  model	
  and	
  experiment	
  on	
  some	
  data	
  sets.
01/08/2017 29
Thanks	
  for	
  listening
01/08/2017 30
[CNNs	
  with	
  fast	
  localized	
  spectral	
  filter]
q Convolution	
  on	
  graphs
1. Graph	
  Fourier	
  Transform:	
   𝑥 −> 𝑥{ = 𝑈i
𝑥
where	
   𝑈 = 𝑢%, … , 𝑢T is	
  a	
  set	
  of	
  eigenvectors	
  of	
  Laplacian 𝐿 (i.e.,	
   𝐿 = 𝑈Λ𝑈i
)
2. Convolution	
  with	
   𝜃: 𝑥{ −> 𝜃⨀𝑥{
3. Inverse	
  Graph	
  Fourier:	
   𝜃⨀𝑥{ → 𝑈(𝜃⨀𝑥{)
In	
  short,	
  convolution	
  process	
  with	
  filter	
   𝜃 can	
  be	
  summarized	
  as:
𝑥 −> 𝑈 𝜃⨀𝑈i
𝑥 = 𝑈𝑑𝑖𝑎𝑔(𝜃)𝑈i
𝑥
01/08/2017 31
[CNNs	
  with	
  fast	
  localized	
  spectral	
  filter	
  (2)]
q Convolution	
  with	
  filter	
   𝜃
q Replace	
   𝑑 𝑖𝑎𝑔(𝜃) with	
  eigenvalues	
  of	
  	
   𝐿 = 𝑈Λ𝑈i
,	
  obtaining:
𝑥 −> 𝑈Λ𝑈i
𝑥 = 𝐿𝑥
q In	
  general,	
  
𝑥 → 𝑔ƒ 𝐿 𝑥 = (' 𝜃„ 𝐿„
)𝑥
…G%
„O†
Where	
   𝜃	
  is	
  the	
  parameters	
  to	
  be	
  learnt
01/08/2017 32
[CNNs	
  with	
  fast	
  localized	
  spectral	
  filter	
  (3)]
q Given	
  signal	
  x,	
  the	
  filtered	
  signal	
  y	
  is	
  determined	
  by
y = 𝑔ƒ 𝐿 𝑥 = (∑ 𝜃„ 𝐿„
)𝑥…G%
„O† = 𝜃𝑥̅ Where	
   𝜃 = 𝜃†, … , 𝜃…G%
q 𝜃 can	
  be	
  learnt	
  by	
  applying	
  chain	
  rule
01/08/2017 33
[Message	
  Passing	
  Neural	
  Networks]
[CNN	
  for	
  graph	
  with	
  fast	
  localized	
  spectral	
  filtering]	
  is	
  a	
  specific	
  case	
  of	
  MPNN
q Message	
  Passing
1. Message	
  function
𝑀# ℎ"
#
,ℎ,
#
, 𝑒",
#
= 𝐶",
#
ℎ,
#
Where	
  matrices	
   𝐶",
#
are	
  parameterized	
  by	
  the	
  eigenvectors	
  of	
  the	
  graph	
  laplacian L
2. Update	
  function
𝑈# ℎ"
#
, 𝑚"
#$%
= 𝜎 𝑚"
#$%
01/08/2017 34

Mais conteúdo relacionado

Mais procurados

Lattice Based Cryptography - GGH Cryptosystem
Lattice Based Cryptography - GGH CryptosystemLattice Based Cryptography - GGH Cryptosystem
Lattice Based Cryptography - GGH Cryptosystem
Varun Janga
 

Mais procurados (20)

Intepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural NetworksIntepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural Networks
 
Gnn overview
Gnn overviewGnn overview
Gnn overview
 
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
Deep Learning without Annotations - Xavier Giro - UPC Barcelona 2018
 
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
 
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
 
Graph R-CNN for Scene Graph Generation
Graph R-CNN for Scene Graph GenerationGraph R-CNN for Scene Graph Generation
Graph R-CNN for Scene Graph Generation
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
 
Introduction - Lattice-based Cryptography
Introduction - Lattice-based CryptographyIntroduction - Lattice-based Cryptography
Introduction - Lattice-based Cryptography
 
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
Transfer Learning and Domain Adaptation - Ramon Morros - UPC Barcelona 2018
 
Lattice Based Cryptography - GGH Cryptosystem
Lattice Based Cryptography - GGH CryptosystemLattice Based Cryptography - GGH Cryptosystem
Lattice Based Cryptography - GGH Cryptosystem
 
Recent Progress in RNN and NLP
Recent Progress in RNN and NLPRecent Progress in RNN and NLP
Recent Progress in RNN and NLP
 
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
 
Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...
Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...
Transfer Learning and Domain Adaptation (DLAI D5L2 2017 UPC Deep Learning for...
 
Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...
Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...
Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...
 
Graph Neural Network - Introduction
Graph Neural Network - IntroductionGraph Neural Network - Introduction
Graph Neural Network - Introduction
 
Lattice Cryptography
Lattice CryptographyLattice Cryptography
Lattice Cryptography
 
RNN & LSTM: Neural Network for Sequential Data
RNN & LSTM: Neural Network for Sequential DataRNN & LSTM: Neural Network for Sequential Data
RNN & LSTM: Neural Network for Sequential Data
 
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
Recurrent Neural Networks RNN - Xavier Giro - UPC TelecomBCN Barcelona 2020
 

Semelhante a Seminar

Kernal based speaker specific feature extraction and its applications in iTau...
Kernal based speaker specific feature extraction and its applications in iTau...Kernal based speaker specific feature extraction and its applications in iTau...
Kernal based speaker specific feature extraction and its applications in iTau...
TELKOMNIKA JOURNAL
 
Paper id 24201464
Paper id 24201464Paper id 24201464
Paper id 24201464
IJRAT
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 

Semelhante a Seminar (20)

Comparison of Various RCNN techniques for Classification of Object from Image
Comparison of Various RCNN techniques for Classification of Object from ImageComparison of Various RCNN techniques for Classification of Object from Image
Comparison of Various RCNN techniques for Classification of Object from Image
 
Kernal based speaker specific feature extraction and its applications in iTau...
Kernal based speaker specific feature extraction and its applications in iTau...Kernal based speaker specific feature extraction and its applications in iTau...
Kernal based speaker specific feature extraction and its applications in iTau...
 
A Pointing Gesture-based Signal to Text Communication System Using OpenCV in ...
A Pointing Gesture-based Signal to Text Communication System Using OpenCV in ...A Pointing Gesture-based Signal to Text Communication System Using OpenCV in ...
A Pointing Gesture-based Signal to Text Communication System Using OpenCV in ...
 
Devanagari Digit and Character Recognition Using Convolutional Neural Network
Devanagari Digit and Character Recognition Using Convolutional Neural NetworkDevanagari Digit and Character Recognition Using Convolutional Neural Network
Devanagari Digit and Character Recognition Using Convolutional Neural Network
 
K means report
K means reportK means report
K means report
 
Machine learning based augmented reality for improved learning application th...
Machine learning based augmented reality for improved learning application th...Machine learning based augmented reality for improved learning application th...
Machine learning based augmented reality for improved learning application th...
 
Ire presentation
Ire presentationIre presentation
Ire presentation
 
Understanding Large Social Networks | IRE Major Project | Team 57 | LINE
Understanding Large Social Networks | IRE Major Project | Team 57 | LINEUnderstanding Large Social Networks | IRE Major Project | Team 57 | LINE
Understanding Large Social Networks | IRE Major Project | Team 57 | LINE
 
IPT.pdf
IPT.pdfIPT.pdf
IPT.pdf
 
Hand Written Digit Classification
Hand Written Digit ClassificationHand Written Digit Classification
Hand Written Digit Classification
 
最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - 最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に -
 
Validation of pervasive cloud task migration with colored petri net
Validation of pervasive cloud task migration with colored petri netValidation of pervasive cloud task migration with colored petri net
Validation of pervasive cloud task migration with colored petri net
 
An Optimized Parallel Algorithm for Longest Common Subsequence Using Openmp –...
An Optimized Parallel Algorithm for Longest Common Subsequence Using Openmp –...An Optimized Parallel Algorithm for Longest Common Subsequence Using Openmp –...
An Optimized Parallel Algorithm for Longest Common Subsequence Using Openmp –...
 
Text Recognition using Convolutional Neural Network: A Review
Text Recognition using Convolutional Neural Network: A ReviewText Recognition using Convolutional Neural Network: A Review
Text Recognition using Convolutional Neural Network: A Review
 
Recognition of Handwritten Mathematical Equations
Recognition of  Handwritten Mathematical EquationsRecognition of  Handwritten Mathematical Equations
Recognition of Handwritten Mathematical Equations
 
Paper id 24201464
Paper id 24201464Paper id 24201464
Paper id 24201464
 
Ripple Algorithm to Evaluate the Importance of Network Nodes
Ripple Algorithm to Evaluate the Importance of Network NodesRipple Algorithm to Evaluate the Importance of Network Nodes
Ripple Algorithm to Evaluate the Importance of Network Nodes
 
IRJET- K-SVD: Dictionary Developing Algorithms for Sparse Representation ...
IRJET-  	  K-SVD: Dictionary Developing Algorithms for Sparse Representation ...IRJET-  	  K-SVD: Dictionary Developing Algorithms for Sparse Representation ...
IRJET- K-SVD: Dictionary Developing Algorithms for Sparse Representation ...
 
IRJET- Image Captioning using Multimodal Embedding
IRJET-  	  Image Captioning using Multimodal EmbeddingIRJET-  	  Image Captioning using Multimodal Embedding
IRJET- Image Captioning using Multimodal Embedding
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
 

Mais de Dai-Hai Nguyen (7)

Advanced machine learning for metabolite identification
Advanced machine learning for metabolite identificationAdvanced machine learning for metabolite identification
Advanced machine learning for metabolite identification
 
Metrics for generativemodels
Metrics for generativemodelsMetrics for generativemodels
Metrics for generativemodels
 
IBSB tutorial
IBSB tutorialIBSB tutorial
IBSB tutorial
 
Brief introduction on GAN
Brief introduction on GANBrief introduction on GAN
Brief introduction on GAN
 
Hierarchical selection
Hierarchical selectionHierarchical selection
Hierarchical selection
 
Semi-supervised learning model for molecular property prediction
Semi-supervised learning model for molecular property predictionSemi-supervised learning model for molecular property prediction
Semi-supervised learning model for molecular property prediction
 
Collaborative DL
Collaborative DLCollaborative DL
Collaborative DL
 

Último

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 

Último (20)

Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 

Seminar

  • 1. Seminar:  Deep  networks   for  learning  molecular   representation PRESENTER:  HAI  NGUYEN INSTITUTE  OF  INFORMATION  TECHNOLOGY VIETNAM  ACAD.  OF  SCI.  &  TECH.,  VIETNAM 01/08/2017 1
  • 2. Outline qResearch  topic qRelated  works qProposed  method qExperiments  and  results qNext  work 01/08/2017 2
  • 3. Research  topic q Goal:  predicting  properties  of  molecules  by  Deep  Networks E.g.,  Prediction  of  toxicity  of  a  molecule qConventional  approach E.g.,  Morgan  fingerprint  (aka:  ECFP) -­‐Fingerprint  is  a  feature  vector  to  encode  which  substructures are  present  in  the  molecule qEnd-­‐to-­‐end  learning  is  Better??? E.g.,  Molecular  Convolutional  Neural  Networks -­‐data-­‐driven  features  are  more  interpretable  and efficient Fingerprint Feature  extraction End-­‐to-­‐end  learnable   fingerprint 01/08/2017 3
  • 4. Related  works q D.  Duvenaud et  al,  CNNs  on  Graphs  for  Learning  Molecular  Fingerprint  (NIPS2015) qM.  Defferrardet  al,  CNNs on  Graphs  with  Fast Localized  Spectral  Filtering  (NIPS2016) qKipf et  al,  Semi-­‐supervised  Classification  with  Graph  Convolutional  Networks  (ICLR2017) q J.  Gilmer  et  al,  Neural  Message  Passing  for  Quantum  Chemistry  (ICML2017) 01/08/2017 4
  • 5. Related  works q D.  Duvenaud et  al,  CNNs  on  Graphs  for  Learning  Molecular  Fingerprint  (NIPS2015) qM.  Defferrardet  al,  CNNs on  Graphs  with  Fast Localized  Spectral  Filtering  (NIPS2016) qKipf et  al,  Semi-­‐supervised  Classification  with  Graph  Convolutional  Networks  (ICLR2017) q J.  Gilmer  et  al,  Neural  Message  Passing  for  Quantum  Chemistry  (ICML2017) 01/08/2017 5
  • 6. [CNNs  on  Graphs  for  Learning  Molecular   Fingerprint  (NIPS2015)] Contribution q provide  an  end-­‐to-­‐end  learning  framework  to  learn  fingerprint  with   better  predictive  performance,  the  inputs  are  graphs  with  arbitrary  size   and  shape q Efficient  computation 1. Fixed  fingerprint  must  be  large  to  encode  all  possible  substructures 2. Neural  fingerprint  can  be  learned  to  encode  relevant  features  for  classification-­‐>   reduce  the  size qNeural  fingerprint  is  more  interpretable-­‐>  meaningful 01/08/2017 6
  • 9. N CC C O + H r1 rN ra v ra Algorithm Representation  at  atom  ‘a’  represent  the   substructure  in  which  ‘a’  is  a  root 01/08/2017 9
  • 10. N CC C O + W H NN + r1 rN ra v ra i f output Algorithm Transform  it  to   probability  vector  and   accumulated  to   fingerprint 01/08/2017 10
  • 11. N CC C O + W H NN + r1 rN ra v ra i f output Algorithm This  process  is  repeated  many   times  to  extract  substructures   of  different  levels   01/08/2017 11
  • 14. Proposed  improvement q Disadvantage  of  NFP: oConsider  equally  different  bond  types  to   different  neighboring  atoms oE.g.,  C-­‐O  #  C=O  ,  etc oSoftmax output  of  all  substructruresare   averaged o(Assumption:  properties  of  molecules  are  determined   by  very  few  subgraphs) N CC C O + W H NN + r1 rN ra v ra i f output 01/08/2017 14
  • 16. Experiments  and  Results q Data  sets:  Toxic21 (train:  10K,  test:  296),  Solubility  log  Mol/L  (#  samples:  1100) q Goal:  comparison  of  ANFP  with  original  NFP q Configuration:  same  for  two  methods  (NFP:  100x100),  MLP(100x100) q Implementation:  Chainer,  Opt:  Adam. Acc (%) NFP 91.58 proposed 92.35 RMSE NFP 0.64±0.05 proposed 0.53±0.06 Toxic21 Solubility  logMol/L 01/08/2017 16
  • 17. [Message  Passing  Neural  Networks  for   quantum  chemistry] q accepted  at  ICML2017 qA  general  framework  for  supervised  learning  for  graph  structured  data q It  abstracts  the  commonalities  between  existing  neural  models  for  graph qEasy  to  understand  the  general  ideas  of  different  proposed  models  and  come  up   with  new  variations  suitable  for  specific  data  type 01/08/2017 17
  • 18. [Message  Passing  Neural  Networks  for   quantum  chemistry] Forward  consists  2  phases: q Message  Passing 1. Message  function 𝑚" #$% = ' 𝑀#(ℎ" # , ℎ, # , 𝑒", # ) ,∈0(") 2. Update  function ℎ" #$% = 𝑈#(ℎ" # , 𝑚" #$% ) q Readout 𝑦 = 𝑅({ℎ" # |𝑣 ∈ 𝐺}) ℎ, # ℎ" # 𝑀#(ℎ" # , ℎ, # , 𝑒", # ) Message  passing  at  t-­‐th step Repeat  T  times 01/08/2017 18
  • 19. [Message  Passing  Neural  Networks  for   quantum  chemistry] Forward  consists  2  phases: q Message  Passing 1. Message  function 𝑚" #$% = ' 𝑀#(ℎ" # , ℎ, # , 𝑒", # ) ,∈0(") 2. Update  function ℎ" #$% = 𝑈#(ℎ" # , 𝑚" #$% ) q Readout 𝑦 = 𝑅({ℎ" # |𝑣 ∈ 𝐺}) ℎ, # ℎ" # 𝑀#(ℎ" # , ℎ, # , 𝑒", # ) Message  passing  at  t-­‐th step Repeat  T  times Note:  all  these  functions  are  learnable  and  differentiable  and  can  be  learned  by  backpropagation 01/08/2017 19
  • 20. [[Message  Passing  Neural  Networks  for   quantum  chemistry] [CNNs  for  learning  Molecular  Fingerprint]  is  a  specific  case  of  MPNN q Message  Passing 1. Message  function 𝑀# ℎ" # , ℎ, # , 𝑒", # = ℎ, # 2. Update  function 𝑈# ℎ" # , 𝑚" #$% = 𝜎 𝐻# ;<= " 𝑚" #$% q Readout 𝑦 = 𝑓(' 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊#ℎ" # ) ",# ) 01/08/2017 20
  • 21. Next  work:  [distributed  representation   learning  for  molecules  (Mol2vec)] q Motivation: Ø learning  molecule  representation  without  labeled  or  with  limited  number  of  samples ØUseful  for  many  tasks,  e.g.,  Kernel  learning  for  graph  structured  data Proposed  idea:  based  on  word2vector (used  in  NLP)  and  Neural  Message  Passing  (NMP) q Skip-­‐gram  model  for  word2vec  and  doc2vec 𝑤F 𝑤FG# 𝑤FG% 𝑤F$% 𝑤F$# 𝑚𝑎𝑥 ' ' log Pr  (𝑤F$N|𝑤F) # NOG#,P 𝑑𝑜𝑐 𝑤% 𝑤S 𝑤N 𝑤T 𝑚𝑎𝑥 ' ' logPr  (𝑤N |𝑑𝑜𝑐) # ,U∈VWFVWF Correspondence Ø Docs    <-­‐>  molecules Ø Atoms  <-­‐>  words Ø How  about  substructures??? word2vec doc2vec 01/08/2017 21
  • 22. [distributed  representation  learning  for  molecules] Objective  function 𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 ' ' logPr  (𝑠𝑢𝑏N |𝑚𝑜𝑙) ^_`U ∈a bcdae"ea aO% = 𝑎𝑟𝑔𝑚𝑎𝑥 ' ' log exp  (𝑣bWa i 𝑣^_`N) ∑ exp  (𝑣bWa i 𝑣^_`k )caa  l^_`U∈a bcdae"ea aO% Where  𝜃 are  parameters  to  be  trained  (vector  representation   of  molecules,  atoms,  and  substructures  as  well) C C O N [N,  C,  C,  O]                    Level  1 [N-­‐C,  C-­‐C,  C=O]      Level  2 [N-­‐C-­‐C,  C-­‐C=O]    Level  3 etc Model  for  learning   molecule  representation Two  questions: 1. How  to  represent  substructures,  atoms,  and  molecules  in  vector  form? 2. How  to  maximize  the  above  objective  function?  (i.e.,  calculate  the  denominator   with  huge   number  of  possible  subgraphs) 01/08/2017 22
  • 23. [distributed  representation  learning  for  molecules] 1. How  to  represent  substructures,  atoms,  and  molecules  in  vector  form? Using  message  function  and  update  function Level  1: Atoms’  representation Level  2: substructures’  representation Level  3: substructures’  representation   with  larger  coverage 01/08/2017 23 Level  4: Cover  the  whole  graph Consider  this  atom
  • 24. [distributed  representation  learning  for   molecules] Given  representation  vectors  of  atoms,  how  to  represent   substructures  ???? ℎc # 01/08/2017 24 ℎ` # ℎF # ℎm #
  • 25. [distributed  representation  learning  for   molecules] Given  representation  vectors  of  atoms,  how  to  represent   substructures  ???? Message  and  update: ℎm #$% = 𝑓(ℎm #$% + ℎc # 𝑊mc + ℎ` # 𝑊m`+ℎF # 𝑊mF) Where   𝑓 is  non-­‐linear  function ℎc # 01/08/2017 25 ℎ` # ℎF # ℎm # 𝑊mc 𝑊m` 𝑊mF
  • 26. [distributed  representation  learning  for   molecules] Given  representation  vectors  of  atoms,  how  to  represent   substructures  ???? Message  and  update: ℎm #$% = 𝑓(ℎm #$% + ℎc # 𝑊mc + ℎ` # 𝑊m`+ℎF # 𝑊mF) ℎc # 01/08/2017 26 ℎ` # ℎF # ℎm # 𝑊mc 𝑊m` 𝑊mF At  this  step,  representation  at  atom  r   represent  the  subgraph (r,  a,  b,  c)  with  root  r By  doing  so,  we  can  represent  any   substructure  based  on  atoms’  representation
  • 27. [distributed  representation  learning  for  molecules] 2. How  to  maximize  the  above  objective  function?  (i.e.,  calculate  the  denominator  with   huge  number  of  possible  subgraphs) Objective  function:                                     𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ ∑ log <op  ("qrs t "uvwU) ∑ <op  ("qrs t "uvwk )xss  k ^_`U∈a bcdae"ea aO% Consider:   ∑ log <op  ("qrs t "uvwU) ∑ <op  ("qrs t "uvwk )xss  k ^_`U∈a =∑ 𝑣bWa i 𝑣^_`N − log∑ exp  (𝑣bWa i 𝑣^_`k )caa  l^_`U∈a 01/08/2017 27 Computationally  expensive
  • 28. [distributed  representation  learning  for  molecules] 2. How  to  maximize  the  above  objective  function?  (i.e.,  calculate  the  denominator  with  huge   number  of  possible  subgraphs) Objective  function:                                     𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ ∑ log <op  ("qrs t "uvwU ) ∑ <op  ("qrs t "uvwk )xss  k ^_`U∈a bcdae"ea aO% Consider:   ∑ log <op  ("qrs t "uvwU ) ∑ <op  ("qrs t "uvwk )xss  k ^_`U∈a =∑ 𝑣bWa i 𝑣^_`N − log∑ exp  (𝑣bWa i 𝑣^_`k )caa  l^_`U∈a Solution:   a) Compute  gradient  and  then  use  MCMC  to  obtain  approximate  gradients,  e.g.,  (adaptive)  importance  sampling  -­‐ >  but  not  trivial  to  define  the  proposal  distribution  for  subgraphs (><) b) Use  negative  sampling  -­‐>  maybe  good  because  it  is  easy  to  sample  incorrect  subgraphs not  present  in  a   molecule  by  comparing  vector  representations.  (^^)  -­‐>  You  do  not  need  to  compare  graph  which  is  NP-­‐hard   problem 01/08/2017 28
  • 29. Conclusion q What  I  have  done: v Covered  some  problems  and  solutions  on  application  of  CNNs  for  molecules. vProposed  simple  ideas  to  improve  the  NFP  models vProposed  supervised  variational models  for  predicting  molecules’  properties.   However,  this  is  lack  of  theoretical  correctness  -­‐>  gave  up vProposed  a  simple  unsupervised  learning  model  for  learning  vector   representation  for  molecules q What  next? v Implement  the  proposed  model  and  experiment  on  some  data  sets. 01/08/2017 29
  • 31. [CNNs  with  fast  localized  spectral  filter] q Convolution  on  graphs 1. Graph  Fourier  Transform:   𝑥 −> 𝑥{ = 𝑈i 𝑥 where   𝑈 = 𝑢%, … , 𝑢T is  a  set  of  eigenvectors  of  Laplacian 𝐿 (i.e.,   𝐿 = 𝑈Λ𝑈i ) 2. Convolution  with   𝜃: 𝑥{ −> 𝜃⨀𝑥{ 3. Inverse  Graph  Fourier:   𝜃⨀𝑥{ → 𝑈(𝜃⨀𝑥{) In  short,  convolution  process  with  filter   𝜃 can  be  summarized  as: 𝑥 −> 𝑈 𝜃⨀𝑈i 𝑥 = 𝑈𝑑𝑖𝑎𝑔(𝜃)𝑈i 𝑥 01/08/2017 31
  • 32. [CNNs  with  fast  localized  spectral  filter  (2)] q Convolution  with  filter   𝜃 q Replace   𝑑 𝑖𝑎𝑔(𝜃) with  eigenvalues  of     𝐿 = 𝑈Λ𝑈i ,  obtaining: 𝑥 −> 𝑈Λ𝑈i 𝑥 = 𝐿𝑥 q In  general,   𝑥 → 𝑔ƒ 𝐿 𝑥 = (' 𝜃„ 𝐿„ )𝑥 …G% „O† Where   𝜃  is  the  parameters  to  be  learnt 01/08/2017 32
  • 33. [CNNs  with  fast  localized  spectral  filter  (3)] q Given  signal  x,  the  filtered  signal  y  is  determined  by y = 𝑔ƒ 𝐿 𝑥 = (∑ 𝜃„ 𝐿„ )𝑥…G% „O† = 𝜃𝑥̅ Where   𝜃 = 𝜃†, … , 𝜃…G% q 𝜃 can  be  learnt  by  applying  chain  rule 01/08/2017 33
  • 34. [Message  Passing  Neural  Networks] [CNN  for  graph  with  fast  localized  spectral  filtering]  is  a  specific  case  of  MPNN q Message  Passing 1. Message  function 𝑀# ℎ" # ,ℎ, # , 𝑒", # = 𝐶", # ℎ, # Where  matrices   𝐶", # are  parameterized  by  the  eigenvectors  of  the  graph  laplacian L 2. Update  function 𝑈# ℎ" # , 𝑚" #$% = 𝜎 𝑚" #$% 01/08/2017 34