SlideShare uma empresa Scribd logo
1 de 119
Baixar para ler offline
Depth estimation: Do we need to throw old things away?
Hae-Gon Jeon (전해곤)
1
Assistant Professor
My Research Timeline
2011 MS course 2013~2018: Ph.D. course 2015~Present
Coded exposure imaging:
Motion deblurring
[ICCV’13, ICCV’15, IJCV’17, TIP’17]
Light-field imaging
[ECCV’14, CVPR’15, ICCVW’15, PAMI’17,
SPL’17, TPAM’19, CVPR’18]
[CVPR’16, CVPR’18, TIP’19]
Depth + Denoising in low-light
2016~Present
[ICIP’15, ICCV’15, CVPR’16, ECCV16, SPL’17,
CVPR’17, TPAM’19]
Depth from small motion
2018~Present: Post-doc
Highly accurate
3D map
Optimized path
generation
From real map
information
Visual and AI system for rescue robotics
2
Visual and AI system for rescue robotics
[ICRA’19, Submitted to IROS19(1/2), IROS’19(1/2); IEEE TPAMI (Major Revision); IEEE TIP (Major Revision) ]
3
Traditional Stereo Matching
4
Traditional Stereo Matching
5
Traditional Stereo Matching
6
Traditional Stereo Matching
7
DispNet (FlowNet)
Encoder Decoder
8
Image: https://myweb.rollins.edu/jsiry/Visual_Cortex.html
Human Visual System
9
Human Visual System and DispNet
N, Mayer et al., A Large Dataset to Train Convolutional Networks for
Disparity, Optical Flow, and Scene Flow Estimation, CVPR16
10
Human Visual System
A multilayered membrane that contains millions of light-
sensitive cells that detect the image and translate it into a
series of electrical signals.
The optic nerves from both eyes join at the optic chiasma
where information from their retinas is correlated.
Humans constantly scan objects in their field of view,
usually resulting in a perceived image that is uniformly
sharp
11
Upconvolutional layers
• high-level information passed from
coarser feature maps
• fine local information provided in
lower layer feature maps
Correlation layer
• Multiplicative patch
comparisons between two
feature maps
• No trainable weights
Convolution layer
• identical processing streams for the two images
• With this architecture the network is constrained to
first produce meaningful representations of the two
images separately
DispNet End-to-end disparity estimation network (No need optimization)
12
Encoding images
Correlation between two images estimation
High-level information
Human Visual System and DispNet
13
DispNet, CVPR 16
PSMNet, CVPR 18
Is DispNet the best??
Rank Method Out-Noc Runtime
1 PSMNet, CVPR18 1.49% 0.41s
2 iResNet-i2, CVPR18 1.71% 0.12s
15 MC-CNN-arct, JMLR16 2.43% 67s
27 Content_CNN, CVPR16 3.07% 0.7s
28 Deep Embed, ICCV15 3.10% 3s
46 DispNetC, CVPR16 4.11% 0.06s
2018/04/23KITTI stereo evaluation 2012
18
Asymmetric stereo Light-field camera Monocular camera
[CVPR’16, Silver Prize of Samsung Humantech
Paper Award, Submitted to IEEE TIP]
[ECCV’14, CVPR’15, ICCVW’15, CVPR’18, IEEE
TPAMI’17, IEEE SPL’17, IEEE TPAMI’19,
Robustness champion of CVPR’17 workshop]
[ICCV’15, CVPR’16, ECCV’16, CVPR’18,
ICLR’19, IEEE TPAMI’17, IEEE SPL’17, IEEE
TPAMI’19, IEEE TPAMI under minor revision]
Today’s Talk
Stereo Matching with Color and Monochrome cameras
Publications
• Stereo Matching with Color and Monochrome Cameras in Low-light Conditions
Hae-Gon Jeon, Joon-Young Lee, Sunghoon Im, Hyowon Ha and In So Kweon
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016
• HumanTech Paper Award 2016, Silver Prize
• CMSNet: Deep Color and Monochrome Stereo
Hae-Gon Jeon, Sunghoon Im, Joon-Young Lee and Martial Hebert
Submitted to IEEE Transactions on Image Processing
19
Low-light imaging1: Burst photography
[Ziwei Liu et al., SIGGRAPH Asia 14,
Sam Hasinoff et al., SIGGRAPH Asia 16]
Courtesy of S. Im, H.-G. Jeon and I.S. Kweon,
[Submitted to CVPR 18]
Results from Google Camera HDR+
Sam Hasinoff et al., SIGGRAPH Asia 16
Burst shot with a short exposure
Suffering from under-exposure
20
Noisy Visible IR image Fused Output
Multi-spectral Video Fusion [IEEE TIP 07]
- Twin cameras: IR/Visible
- Temporal smoothing
- Cross-bilateral filter
Low-light imaging2: Multi-spectral fusion
21
300 400 500 600 700 800 900 1000
0
10
20
30
40
50
60
70
Imaging Performance
Wavelength (nm)
QuantumEfficiency(%)
Blue
Green
Red
300 400 500 600 700 800 900 1000
0
10
20
30
40
50
60
70
Imaging Performance
Wavelength (nm)
QuantumEfficiency(%)
Blue
Green
Red
Gray
Color camera (RGB) Monochrome Camera (W)
Color information
Reducing sharpness
Vulnerable to noise
No color information
Sharp image
Robust to noise1) Different spectral sensitivity 2) Severe noise
Issues on Depth from RGB-W image pair
RGB2Gray
Monochrome
The proposed RGB-W stereo
22
Commercial product
23
Gain map Monochrome by
gain adjustment
Decolorized image
Disparity map
Monochrome
Overview of the proposed method`
(1) Input
pair
(2) Gain map
(3) Decolorization
(4) Disparity map by
iterative gain
adjustment
(5) Refined map by
a tree-based filtering
(6) High-quality
color image
Solution
24
1) Contrast Preservation
2) Noise suppression
𝐸𝐸𝑛𝑛 𝛾𝛾 =
𝛻𝛻𝑢𝑢 𝐼𝐼𝛾𝛾
1 + 𝛻𝛻𝑣𝑣 𝐼𝐼𝛾𝛾
1
𝛻𝛻𝑢𝑢 𝐼𝐼𝛾𝛾
2 + 𝛻𝛻𝑣𝑣 𝐼𝐼𝛾𝛾
2
𝐸𝐸𝑐𝑐 𝛾𝛾 = 𝐺𝐺 𝐼𝐼, 𝐼𝐼 − 𝐺𝐺(𝐼𝐼, �𝐼𝐼𝛾𝛾) 1
𝐺𝐺: the guided output image
𝛻𝛻 𝑢𝑢,𝑣𝑣 : image gradient of horizontal 𝑢𝑢 and vertical 𝑣𝑣 directions
RGB2Gray Only contrast Proposed
𝐼𝐼𝛾𝛾
= 𝜔𝜔𝑟𝑟 𝐼𝐼𝑟𝑟 + 𝜔𝜔𝑔𝑔 𝐼𝐼𝑔𝑔 + 𝜔𝜔𝑏𝑏 𝐼𝐼𝑏𝑏
𝜔𝜔𝑟𝑟 + 𝜔𝜔𝑔𝑔 + 𝜔𝜔𝑏𝑏 = 1 𝜔𝜔𝑟𝑟 ≥ 0, 𝜔𝜔𝑔𝑔 ≥ 0, 𝜔𝜔𝑏𝑏 ≥ 0
𝜔𝜔 𝑟𝑟,𝑔𝑔,𝑏𝑏 ∈ {0.1, 0.2, ⋯ , 1.0}
High
Low
𝐼𝐼𝛾𝛾: the decolorized image
𝜔𝜔 𝑟𝑟,𝑔𝑔,𝑏𝑏 : weighting parameters of each color channel
𝐼𝐼 𝑟𝑟,𝑔𝑔,𝑏𝑏 : three color channels
Decolorization
Cost
Gain compensation
Impossible linear and global gain compensation due to different spectral sensitivities
Decolorization Gain compensationTractable solution :
Decolorization and Gain compensation
25
𝒱𝒱 𝑥𝑥, 𝑙𝑙 = 𝛼𝛼𝒱𝒱𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥, 𝑙𝑙 + 1 − 𝛼𝛼 𝒱𝒱𝑆𝑆𝑆𝑆 𝑆𝑆(𝑥𝑥, 𝑙𝑙)
𝒱𝒱𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥, 𝑙𝑙 = �
𝑥𝑥∈Ω𝑥𝑥
min( 𝐼𝐼𝐿𝐿 − 𝐼𝐼𝑅𝑅
𝛾𝛾
𝑥𝑥 + 𝑑𝑑 , 𝜏𝜏1) 𝒱𝒱𝑆𝑆𝑆𝑆 𝑆𝑆 𝑥𝑥, 𝑙𝑙 = �
𝑥𝑥∈Ω𝑥𝑥
min( 𝐽𝐽(𝐼𝐼𝐿𝐿) − 𝐽𝐽(𝐼𝐼𝑅𝑅
𝛾𝛾
𝑥𝑥 + 𝑑𝑑 ) , 𝜏𝜏2)
𝑠𝑠. 𝑡𝑡. 𝐽𝐽 𝐼𝐼 =
| ∑𝑥𝑥∈Ω𝑥𝑥
𝛻𝛻𝛻𝛻(𝑥𝑥) |
∑𝑥𝑥∈Ω𝑥𝑥
𝛻𝛻𝛻𝛻 𝑥𝑥 + 0.5
0.5
1
Sum of absolute differences (SAD):
Robust to image noise
Sum of informative edges (SIE):
Robust to non-linear intensity variation
Color image Informative edge map 𝑱𝑱(𝑰𝑰)Conventional gradient map 𝛻𝛻𝐼𝐼
Sum of intensity
Intensity ×3
Ω𝑥𝑥: supporting window centered pixel at 𝑥𝑥, 𝑑𝑑: disparity, 𝜏𝜏 1,2 : truncated value
Brightness consistency Edge similarity
Sum of signed gradients
cancels out image noise
Sum of absolute gradients
computes how strong the edges
RGB-W Stereo Matching
26
Experiment setup
27
6
ANCC : Heo et al., Robust stereo matching using adaptive normalized cross-correlation, IEEE PAMI 2011
DASC : Kim et al., DASC: Dense adaptive self-correlation descriptor for multimodal and multi-spectral correspondence, CVPR 2015
JDMCC : Heo et al., Joint depth map and color consistency estimation for stereo images with different illuminations and cameras, IEEE PAMI 2013
CCNG : Holloway et al., Generalized assorted camera arrays: Robust cross-channel registration and applications, IEEE TIP 2015
36.64% 34.29% 11.55%21.45%22.44%
Dark illumination
ANCC
37.89%
JDMCC
36.24% 19.24%
ProposedCCNG
32.56%41.71%
DASC
Bright illuminationStructured light
Ground truth
Quantitative evaluation
28
ANCC JDMCC ProposedCCNGDASC
40.13%
44.83%
17.07%
24.23%
11.79%
14.48%
19.20%
24.45%
19.52%
41.71%Dark illumination
Bright illuminationStructured light
Ground truth
Quantitative evaluation
29
7
ProposedColorMono ANCC DASC JDMCC CCNG
Monochrom
e
Color ANCC (40.10%) DASC (39.85%)
Ground truth CCNG (31.80%)JDMCC (32.86%) Proposed (8.89%)
Dataset : Reindeer ( ) is a bad pixel
rate
Monochrome Color ANCC (26.58%) DASC (26.91%)
Ground truth CCNG (18.44%)JDMCC (18.54%) Proposed (15.14%)
Dataset : Moebious
Evaluations
30
8
Colorization method
Color image Y channel of color image
SLIC super-pixelU & V channel mapping Colorization result
Colorization and enhancement
V channel of color image
High-quality color image recovery
31
Colorized and enhanced image
Input color image
High-quality color image recovery
32
9
Applications
33
34
(1) Input
pair
(2) Gain map
(3) Decolorization
(4) Disparity map by
iterative gain
adjustment
(5) Refined map by
a tree-based filtering
(6) High-quality
color image
Problem
2. Matching window size
3. Balance value
1. Gain threshold
5. Smoothness
parameter
4. # of iterations
6. # of super-pixel
7. Color similarity
35
Deep Material Stereo [CVPR’18]
36
CNN version of RGB-W Stereo
Image recovery
Depth estimation
Encoder
Consistency
37
W C
Denoising
Left - Mono
Right - Color
Disparity
Denoised - Chrominance
Denoised - Mono
Initial colorization
Final color image
-
Occlusion
Occlusion
Disparity Colorization
CNN version of RGB-W Stereo
38
Final color image
Occlusion
Occlusion
Colorization
Occlusion
Without
occlusion
With
occlusion
39
Denoising
Left - Mono
Right - Color
Denoised - Chrominance
Denoised - Mono
Conv3X3X64,st=1
BatchNorm
Subtract
Relu
Gaussian distribution:
benefit for Gaussian noise model
Residual: noise
Denoising
40
41
42
43
44
45
RGB NIR Estimated disparity
46
Asymmetric stereo Light-field camera Monocular camera
[CVPR’16, Silver Prize of Samsung Humantech
Paper Award, Submitted to IEEE TIP]
[ECCV’14, CVPR’15, ICCVW’15, CVPR’18, IEEE
TPAMI’17, IEEE SPL’17, IEEE TPAMI’19,
Robustness champion of CVPR’17 workshop]
[ICCV’15, CVPR’16, ECCV’16, CVPR’18,
ICLR’19, IEEE TPAMI’17, IEEE SPL’17, IEEE
TPAMI’19, IEEE TPAMI under minor revision]
Today’s Talk
Depth from Single Light Field Images
Publications
• Accurate Depth Map Estimation from a Lenslet Light Field Camera
Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park, Yunsu Bok, Yu-Wing Tai and In So Kweon
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2015
• Depth from a Light Field Image with Learning- based Matching Costs
Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park, Yunsu Bok, Yu-Wing Tai and In So Kweon
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Feb 2019
• Depth Estimation Challenge: Robustness Champion, CVPR workshop on Light Field for Computer Vision
• EPINET: A Fully-Convolutional Neural Network using Epipolar Geometry for Depth from Light Field Images
Changha Shin, Hae-Gon Jeon, Youngjin Yoon, In So Kweon and Seon Joo Kim
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2018
47
Epiploar plane image(EPI)
Synthetic EPI
Estimate slopes of lines
[Wanner and Goldluecke PAMI 13, Tao et al. ICCV 13, Tao et al. CVPR 15,
Wang et al. CVPR 16, Williem et al. CVPR 16, Heber et al. CVPR 17]
Light-field image
48
Commercial light-field camera
Main lens Microlens sensorObject
Blocking penetration of light
Capturing angular
information of rays in one
sensor
Sensor size 3280*3280
Sub-aperture image
328*328
Problem1. Reduce spatial resolution Problem2. Increase photon noise
49
Real world EPI
Epipolar plane image
EPIs from plenoptic camera are filled with many noises and aliasing, and
have vertical luminance changes due to the circular micro-lens used
50
Flipping adjacent views
Sub-aperture images
Very narrow baseline;
Physically 0.45mm
Within 1px
Averbuch and Keller, “A unified approach to FFT
based images registration”, IEEE TIP 2003
Accuracy with
1/100 pixel
precision!!
ℱ 𝐼𝐼 𝕩𝕩 + ∆𝕩𝕩 = ℱ{𝐼𝐼(𝕩𝕩)𝑒𝑒2𝜋𝜋𝑖𝑖∆𝕩𝕩
}
𝐼𝐼 𝕩𝕩 + ∆𝕩𝕩 = ℱ−1{ℱ{𝐼𝐼 𝕩𝕩 𝑒𝑒2𝜋𝜋𝑖𝑖∆𝕩𝕩}}
ℱ : Fourier transform
∆𝕩𝕩 : Sub-pixel displacement 𝕩𝕩
Bilinear Bicubic Phase Original
Multiview Stereo-Based Approach [CVPR’15]
51
Cost Volume
𝑓𝑓( )
Sub-aperture images
Matching Cost
,
Reference view Target view
Cost volume
Depthlabel
Sum of Absolute
Difference (SAD)
Sum of Gradient
Difference (GRAD)
52
Quantitative evaluation on interpolation methods
5.37
16.2
11.3
7.38
2.89
11.18
9.03
5.33
15.35
9.02
7.4
2.35
6.65
8.73
4.69
9.88
8.91
6.06
2.27
6.22 6.38
0
2
4
6
8
10
12
14
16
18
Bilinear Bicubic Ours
Bad pixel ratio
MedievalBuddha Buddha2 Mona Papillon Still life Horses
53
GT Bilinear Bicubic Phase
0.2 %
1 %
0.2 %
1 %
16.2% 15.35% 9.88%
9.03% 8.73% 6.38%
Refinements
Sub aperture
image
Cost volume Cost
aggregation
Graph-cuts Iterative
refinement
Conventional stereo matching
[Rhemann et al., CVPR 2011]
Proposed [CVPR 2015]Center view
54
Quantitative Evaluation
Center View
Depth from
Structured Light
Emitted Pattern
Synthesized View
0
0.2
0.4
0.6
0.8
1
Ours
Absolute Error
(in pixels)
55
Lytro
GCDL LAGC CADC OursCenter view
Comparison to Lytro Bulit-in
Lytro Built-in
Ours
Raytrix
Central view GCDL LAGC Ours
Qualitative Evaluation
56
Center View 3D mesh Actual scale Measured distance in 3D
Lytro Illum
Our Simple Lens Light Field Camera Dataset
Our simple lens camera w/o distortion correction With distortion correction
Qualitative Evaluation
57
There are still Problems
Problem2:
Severe noise
Problem1:
Severe vignetting 1. Hard to find accurate correspondence in
radiometric distortions and severe noise
⇒ Using various hand-craft matching cost
2. Which one is correct matching cost?
⇒ Predicting the correct matching cost using
two random forests
3. Does it work well in real world light-field images?
⇒ Realistic dataset generation based on an
imaging pipeline of the Lytro camera
58
Overview of the Proposed Method [TPAM’19]
1. Realistic Light Field Image Generation;
Emulating an imaging pipeline of Lytro camera
3. Random Forest 1 - Classification;
Selecting dominant matching costs
4. Random Forest 2 - Regression;
Predicting a disparity value with sub-pixel precision
2. Making Cost Volumes using Phase Shift;
Overcoming inherent degradation of light-field
images caused by a microlens array
SAD GRAD Census ZNCC
q = [ ]
59
60
?
Raw image Sub-aperture images
x
y
tθ
x·sinθ+y·cosθ+t=0
θ
t
Template for indirect line fitting
Best
match
Proposed
( )ccc ZYX ,,
( )ZYX ,,
F
point
micro-lens
center
image
Ll
( )cc yx ,
( )yx,
projected
micro-lens
center
projected
point
main lens
Projection of
adjacent corners
Closest point to
micro-lens center
(u, v)
(u’, v’)
Line feature
( ) ( ) 0=+−⋅+−⋅ cvvbuua cc
Micro-lens center
(uc, vc)














−





′
′
′+





=





v
u
v
u
k
v
u
v
u
ˆ
ˆ
Adjacent
corners
[Y. Bok, H.-G. Jeon, and I. S. Kweon., Geometric Calibration of Micro-Lens-Based
Light-Field Cameras using Line Features, ECCV 2014, IEEE TPAMI 2017]
ProposedDansereau et al., ICCV13
Light-field Camera Geometric Calibration
Dansereau et al., ICCV13
Data Generation Vignetting Map
Noise-free multi-view images Vignetting map from averaged
white plane images
Sub-aperture image with
vignetting map
61
Data Generation Lenslet Image Generation
Sub-aperture image with
vignetting map
Extract a pixel from each sub-
aperture image
Aggregate these pixels in a lenslet
62
Data Generation Add Noise
Noise level estimation of each color channel
0.2 0.3 0.4 0.5 0.6
0
0.005
0.01
0.015
0.02
0.025
Intensity
StandardDeviation
Green Channel1
0.2 0.3 0.4 0.5 0.6
0
0.005
0.01
0.015
0.02
0.025
Intensity
StandardDeviation
Green Channel2
0.2 0.3 0.4 0.5 0.6
0
0.005
0.01
0.015
0.02
0.025
Intensity
StandardDeviation
Blue Channel
0.2 0.3 0.4 0.5 0.6
0
0.005
0.01
0.015
0.02
0.025
Intensity
StandardDeviation
Red Channel
Convert color image to raw image
Y. Schechner et al., “Multiplexing for
optimal lighting”, IEEE TPAMI 2007
63
Data Generation Realistic Sub-aperture Image Generation
Noisy raw imageDemosaicing
Rearrange pixels at each lenslet to
each sub-aperture image
64
Effectiveness of the augmented training dataset
Depth
profilewithout
Depth
profilewithDepth
profileGaussian noise
65
Training Set http://hci-lightfield.iwr.uni-heidelberg.de/
Antinous, Range: [ -3.3, 2.8 ]
Boardgames, Range: [ -1.8, 1.6 ]
Dishes, Range: [ -3.1, 3.5 ]
Greek, Range: [ -3.5, 3.1 ]
Kitchen, Range: [ -1.6, 1.8 ]
Medieval2, Range: [ -1.7, 2.0 ]
Museum, Range: [ -1.5, 1.3 ]
Pens, Range: [ -1.7, 2.0 ]
Pillows, Range: [ -1.7, 1.8 ]
Platonic, Range: [ -1.7, 1.5 ]
Rosemary, Range: [ -1.8, 1.8 ]
Table, Range: [ -2.0, 1.6 ]
Tomb, Range: [ -1.5, 1.9 ]
Tower, Range: [ -3.6, 3.5 ]
Town, Range: [ -1.6, 1.6 ]
Vinyl, Range: [ -1.6, 1.2 ]
66
Cost Volumes Matching Costs
Sum of Absolute Difference (SAD)
Zero-mean Normalized Cross correlation (ZNCC)
Census Transform (Census)
Sum of Gradient Difference (GRAD)
+ Robust to image noise;
act as averaged filter
+ Compensate for differences in
both gain and offset
+ Synergy with other matching costs
+ imposing higher weights at edge boundaries
+ Tolerate radiometric
distortions
H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching
costs on images with radiometric differences,” IEEE TPAMI 2009.
67
Cost Volumes Matching group1
𝑓𝑓( )
Sub-aperture images
Matching Cost
,
Reference view Target view
Cost volume
Depthlabel
68
Cost Volumes Matching group2
𝑓𝑓( )
Sub-aperture images
Matching Cost
,
Reference view Target view
Cost volume
Depthlabel
69
Cost Volumes Computed Cost Volumes
Matchinggroup
Matching cost
Sum of
Absolute
Difference
(SAD)
Zero-mean
Normalized
Cross
correlation
(ZNCC)
Census
Transform
(Census)
Sum of
Gradient
Difference
(GRAD)
70
Cost Volumes Computed Cost Volumes
Disparities from each cost volume
via Winner-Takes-All
71
Cost Volumes Computed Cost Volumes
Vectorizing estimated depth labels
with a ground truth depth label
31 53 43 55
55
55
55
55 6160 74
Ground truth
67 51 53 37 6658 12
25 42 49 55 6143 57
76 72 66 23 5558 56
SAD+GRAD GRAD+Census Census+SAD 𝛼𝛼 ∈ [0, 1.0]
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
Multiple disparity hypotheses
Campbell et al., “Using Multiple hypotheses to improve
depth-maps for multi-view stereo”, ECCV 2008
Multiple disparity hypotheses
Multiple disparity hypotheses
72
Cost Volumes Computed Cost Volumes
Vectorizing estimated depth labels
with a ground truth depth label
25 54 48 32
32
32
32
32 3442 11
Ground truth
19 20 43 37 3233 5
31 42 29 12 4134 57
44 39 56 49 4317 32
SAD+GRAD GRAD+Census Census+SAD 𝛼𝛼 ∈ [0, 1.0]
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
⋯
Multiple disparity hypotheses
Multiple disparity hypotheses
Multiple disparity hypotheses
73
Training a random forest
32
32
31 42 29 12 4134 57
44 39 56 49 4317 32
⋯
⋯
⋯
⋯
25 54 48 3232 3442 11⋯ ⋯ ⋯
3219 20 43 37 3233 5⋯ ⋯ ⋯
⋯
⋯
𝐪𝐪
Random forest 1
Classification
Random Forest1 - Classification
74
Random Forest1 - Classification
Importance
�q4
�q3
�q1 �q2
�q7
�q9
�q5
�q8 �q10
�q11
�q6
𝐪𝐪
Retrieving a set of
important matching costs
using the permutation
importance measure
[L. Breiman, “Random forests,” Machine learning]
+ Removing unnecessary
matching cost
+ Designing a better
prediction model
Matching Group1 Matching Group2 Matching Group3 Matching Group4
75
Random Forest2 - Regression
Random forest 2
Regression�𝐪𝐪 �q4�q3�q1 �q2 �q7 �q9�q5 �q8 �q10 �q11�q6
vs.
Estimated disparity value
with sub-pixel precision
SAD+GRAD
[H.-G. Jeon et al., IEEE CVPR 2015]
with Weighted Median Filter
[Z. Ma et al., IEEE ICCV 2013]
Input of a random forest
for regression
76
Real-world examples – Lytro Illum
Wanner and Goldluecke,
IEEE TPAMI 14
Yu et al,
ICCV 13
Ours,
CVPR 15
Williem et al,
CVPR 16
Wang et al,
IEEE TPAMI 16
Tao et al,
IEEE TPAMI 17 Proposed
Wanner and Goldluecke,
IEEE TPAMI 14
Yu et al,
ICCV 13
Williem et al,
CVPR 16
Wang et al,
IEEE TPAMI 16
Tao et al,
IEEE TPAMI 17 Proposed
Ours,
CVPR 15
77
(1-α)SAD+ αCensus
SAD
Census
(1-α)Census+ αGRAD
GRAD
(1-α)GRAD+ αSAD
ZNCC
smooth
smooth
discontinuity
strong
texture
strong
texture
weak
texture
discontinuity
weak
texture
strong
texture
discontinuity
Which matching costs are selected?
78
Benchmark Bad pixel ratio (>0.07px) & Mean square error
Bad pixel ratio Mean square error
(2017.05.23)
Robustness Champion!!
79
Qualitative evaluation on different input setups
Kim et al., “Scene Reconstruction from High Spatio-
Angular Resolution Light Fields”, SIGGRAPH 2013
DSLR camera mounted on
motorized linear stage
Center view Kim et al. (# of input: 51) Proposed (# of input: 9)
80
Qualitative evaluation on different input setups
Samsung Galaxy Note 8
Input images SGM Proposed
H. Hirschmuller. Stereo processing by
semiglobal matching and mutual
information, IEEE PAMI 2008
81
One more Problem…
Runtime
Very slow …
82
Convolutional Neural Network
DispNet, CVPR 16
PSMNet, CVPR 18 EdgeStereo, ArXiv
83
EPINET [CVPR’18]
2
2
22
2
2
2
2
22
2
2
2
2
22
2
2
2
2
22
2
2
2
2
2
2
2
2
2
2
280280
Angular directions
of LF images
8 blocks
3 blocks
Convolutional Block
70 70 70
1
7
7
7
7
Disparity Map
70 70 70
70 70 70
70 70 70
280
Last Convolutional Block
Stack I0°
Stack I90°
Stack I135°
Stack I45°
Concatenation
C
O
N
V
R
E
L
U
C
O
N
V
C
O
N
V
R
E
L
U
C
O
N
V
R
E
L
U
B
N
84
Lack of Data
Antinous, Range: [ -3.3, 2.8 ]
Boardgames, Range: [ -1.8, 1.6 ]
Dishes, Range: [ -3.1, 3.5 ]
Greek, Range: [ -3.5, 3.1 ]
Kitchen, Range: [ -1.6, 1.8 ]
Medieval2, Range: [ -1.7, 2.0 ]
Museum, Range: [ -1.5, 1.3 ]
Pens, Range: [ -1.7, 2.0 ]
Pillows, Range: [ -1.7, 1.8 ]
Platonic, Range: [ -1.7, 1.5 ]
Rosemary, Range: [ -1.8, 1.8 ]
Table, Range: [ -2.0, 1.6 ]
Tomb, Range: [ -1.5, 1.9 ]
Tower, Range: [ -3.6, 3.5 ]
Town, Range: [ -1.6, 1.6 ]
Vinyl, Range: [ -1.6, 1.2 ]
85
View-shift augmentation Rotation augmentation
Scale augmentation
D(Disparity)
L(Image width)
D/2
D/3
L/2 L/3
Data Augmentation
86
Results
• 4D Light Field Benchmark
• 16 synthetic light-field images(9x9 views)
• Depth/disparity map for training scenes
• http://hci-lightfield.iwr.uni-heidelberg.de
87
4D Light field Benchmark: http://hci-lightfield.iwr.uni-heidelberg.de/
Evaluations
88
Cotton
Boxes
Dots
BadPixel(>0.03)BadPixel(>0.03)BadPixel(>0.03)DisparityDisparityDisparity
(a) GT (b) EPI2 (c) LF_OCC (l) Proposed(g) SPO(d) LF (e) EPI1 (f) CAE (h) SC_GC (i) RPRF5 (j) OFSY_330 (k) PS_RF
Evaluations
89
Center View (b) (c) (d)
Ours(e) (f) (g)
Center View (b) (c) (d)
Ours(e) (f) (g)
B: Globally consistent depth
labeling of 4D lightfields. S.
Wanner and B. Goldluecke
C: Accurate depth map
estimation from a lenslet light
field camera.H.-G. Jeon et al ,
D: Robust light field depth
estimation for noisy scene with
occlusion. W. Williem et al
E: Occlusionaware depth
estimation using light-field
cameras. T.-C. Wang,.
F: Shape estimation from
shading, defocus, and
correspondence using light-field
angular coherence. Tao et al
G: Line assisted light field
triangulation and stereo
matching.Z. Yu, et al
90
Unknown geometry:
Rotation, translation
Two Research Topics
91
92
Asymmetric stereo Light-field camera Monocular camera
[CVPR’16, Silver Prize of Samsung Humantech
Paper Award, Submitted to IEEE TIP]
[ECCV’14, CVPR’15, ICCVW’15, CVPR’18, IEEE
TPAMI’17, IEEE SPL’17, IEEE TPAMI’19,
Robustness champion of CVPR’17 workshop]
[ICCV’15, CVPR’16, ECCV’16, CVPR’18,
ICLR’19, IEEE TPAMI’17, IEEE SPL’17, IEEE
TPAMI’19, IEEE TPAMI under minor revision]
Today’s Talk
Depth from Small Motion Video Clip
Publications (Co-author papers)
• High Quality Structure from Small Motion for Rolling Shutter Cameras
Sunghoon Im, Hyowon Ha, Gyeongmin Choe, Hae-Gon Jeon, Kyungdon Joo and In So Kweon
IEEE International Conference on Computer Vision (ICCV), Dec 2015
• High-quality Depth from Uncalibrated Small Motion Clip [Oral presentation]
Hyowon Ha, Sunghoon Im, Jaesik Park, Hae-Gon Jeon and In So Kweon
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , Jun 2016
• All-around Depth from Small Motion with A Spherical Panoramic Camera
Sunghoon Im, Hyowon Ha, François Rameau, Hae-Gon Jeon, Gyeongmin Choe and In So Kweon
European Conference on Computer Vision (ECCV), Oct 2016
• Robust Depth Estimation from Auto Bracketed Images
Sunghoon Im, Hae-Gon Jeon and In So Kweon
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2018
• Accurate 3D Reconstruction from Small Motion Clip for Rolling Shutter Cameras
Sunghoon Im, Hyowon Ha, Gyeongmin Choe, Hae-Gon Jeon, Kyungdon Joo and In So Kweon
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Apr 2019
• DPSNet: End-to-end Deep Plane Sweep Stereo
Sunghoon Im, Hae-Gon Jeon, Steve Lin and In So Kweon
International Conference on Learning Representations (ICLR), May 2019
93
94
Yu & Gallup (CVPR14)
Yu and Gallup, "3d reconstruction from
accidental motion“, CVPR2014
95
96
3. Dense 3D
reconstruction
2. Sparse 3D
reconstruction
1. Feature extraction
& tracking
Depth from Small Motion
97
∑∑= =
−=
I JN
i
N
j
jijijC
1 1
2
||)(||),( XKPxPX φ
 Bundle adjustment
TT
JI
T
j
T
ij
Z
Y
Z
X
ZYX
NN
ZYX
vu
]1,,[)],,([
featureof#:image,of#:
coordinateWorld:]1,,,[
coordinateimage2D:]1,,[
=
=
=
φ
X
x
matrixExtrinsic:matrix,Intrinsic: ijPK










=
100
0 yy
xx
cf
cf α
K
Sparse 3D reconstruction [ICCV’15]
2*Thenumberofre-projectionpoints
The number of refine value
 Jacobian matrix with rolling shutter
The number of features : 8
The number of images : 6
2*Thenumberofre-projectionpoints
The number of refine value
 Small angle approximation - Rotation matrix










−
−
−
==
1
1
1
x
ij
y
ij
x
ij
z
ij
y
ij
z
ij
ijijijij
rr
rr
rr
RR )(],|)([ rtrP where
)( iiiij w rrrr −+= +1
)( iiiij w tttt −+= +1
 Rotation and translation components
 Jacobian matrix without rolling shutter
98
Input Image Sequence
Proposed methodYu & Gallup (CVPR14)
Sparse 3D reconstruction
99
Input Image Only color smoothness
• Results of dense 3D reconstruction
Input Image Only color
smoothness
Dense 3D Reconstruction
100
 Geometry guidance term
∑ ∑∈ ⋅
⋅
−=
p Wq
q
pp
qp
p
g
pg
p
DDwE 2
)
ˆ
ˆ
()(
Xn
Xn
D
Key Idea
Neighboring pixels with similar color
should have similar normal
 Normal vectors guide the 3D
position of neighboring pixels
∑∈







 ⋅−−
=
pWq g
qp
g
g
p
N
w
γ
)(
exp
nn11
8
1
=
=
gg
p
p
pp
p
ppp
N
W
n
DXD
pD
yxX
constant,
neighbors-8
vectornormal:
coordinate3
ateDepth valu:
coordinateimageNormalized
:
:
:ˆ
:],,[ˆ
γ
)()()()( DDDD ggccd EEEE λλ ++=
 Energy function
)XDX(Dn ppqqp
ˆˆ −⋅
Dense 3D Reconstruction
Input image Sparse 3D points
Normal of 3D points Normal map
101
Input Image
Sparse 3D points Proposed method
Conventional method
• Results of dense 3D reconstruction
Dense 3D Reconstruction
102
Dense 3D Reconstruction
Proposed methodYu & Gallup (CVPR14)
Dataset from Yu & Gallup
103
Proposed methodYu & Gallup (CVPR14)
Dataset from Yu & Gallup
104
Application
105
There are still Problems
1. Exact definition of small motion 2. Blurry depth
106
Reference image Depth difference
Ground truth Our depth map (𝒃𝒃 = 𝟏𝟏. 𝟓𝟓)
Camera motion: Closest object
= 1:100
Small Motion Issue [CVPR’16]
107
Solution to Blurry Depth: Plane Sweeping
FarNear
P1
P2
P3
Sweeping depth
P1
P2
P3
Reference image
Mean
image
Intensity
profile
Mean
image
Intensity
profile
Mean
image
Intensity
profile
Reference view
Other views
Flat
Flat
Flat
Sharp
Sharp
Sharp
Given intrinsic and extrinsic parameters of camera,
108
Depth Quantization Error [TPAM’19]
Caused by Quantized depth
range in Plane sweeping
Depth range
109
Adaptive Matching Window [TPAM’19]
Adaptive depth range
The usage of blurry depth to
estimate min-max depth range
for per-pixel
controls the confidence weight [0,1]
controls the steepness of the exponential function
confidence map
Initial depth
110
Results
Kinect2 Ours Error map
111
Ours, IEEE TPAMIOurs., CVPR 16Yu and GallupOurs, ICCV 15
Results
112
One more Problem…
Runtime
Camera pose: 2s
+ Surface normal: 5min
+ Plane sweeping: 5min
+ Refinement: 1s
About 10 min
113
Procedure of stereo matching
Parametric – AD, SAD, BT, mean filter,
Laplacian of Gaussian,
Bilateral filtering, ZSAD,
NCC, ZNCC
Nonparametric – Rank filter, Softrank filter,
Census filter, Ordinal
Mutual Information – Hierarchical MI
Input
Guide
Output
Cost volume
Cost aggregation Iterative refinementGraph-cuts
𝐸𝐸 = 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
+𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟
𝑙𝑙𝑟𝑟 −
𝐶𝐶 𝑙𝑙+ + 𝐶𝐶(𝑙𝑙−)
2(𝐶𝐶(𝑙𝑙+ + 𝐶𝐶 𝑙𝑙− − 2𝐶𝐶(𝑙𝑙𝑟𝑟)))
Image Cost volume Cost aggregation Graph-cuts Iterative refinement
Cost computation
Common Pipeline of Traditional Approaches
Accurate Depth Map Estimation from a Lenslet Light Field Camera
Hae-Gon Jeon et al., IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2015
Stereo Matching with Color and Monochrome Cameras in Low-light Conditions
Hae-Gon Jeon et al., IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016
Fully End-to-end process
114
Design a network inferred by traditional Plane Sweeping Algorithm
𝒊𝒊𝒕𝒕𝒕𝒕 Pair Image
W × H × 2CH
Feature Concatenate
: Volume Generation
* No learnable para.
1
𝒍𝒍
𝑳𝑳
W × H × 2CH × L
Cost Volume
Generation
* 3D CNN
W × H × L Averaging
Cost
(𝒊𝒊 ∈ {𝟏𝟏, . . 𝑵𝑵})
* No learnable para.
W × H × L
Cost Aggregation
+ Upsampling
* 2D CNN
𝒊𝒊𝒕𝒕𝒕𝒕
Cost
Volume
(𝒊𝒊 + 𝟏𝟏)𝒕𝒕𝒕𝒕
Cost
Volume
Reference Image
⋯
4W×4H×1
Depth regression
(SoftMax)
* No learnable para.
W × H × CH
Feature Extraction
(1/4 Downsampled)
* 2D CNN
4W × 4H × 3
Input Image
Warping through
𝒍𝒍𝒕𝒕𝒕𝒕 plane (sweep)
Overview of DPSNet [ICLR19]
115
Testing
Do same process using reference and i-th images (i=1, … , N)
Add all of the cost volume (N), then average them
𝒊𝒊𝒕𝒕𝒕𝒕 Pair Image
W × H × 2CH
Feature Concatenate
: Volume Generation
* No learnable para.
1
𝒍𝒍
𝑳𝑳
W × H × 2CH × L
Cost Volume
Generation
* 3D CNN
W × H × L Averaging
Cost
(𝒊𝒊 ∈ {𝟏𝟏, . . 𝑵𝑵})
* No learnable para.
W × H × L
Cost Aggregation
+ Upsampling
* 2D CNN
𝒊𝒊𝒕𝒕𝒕𝒕
Cost
Volume
(𝒊𝒊 + 𝟏𝟏)𝒕𝒕𝒕𝒕
Cost
Volume
Reference Image
⋯
4W×4H×1
Depth regression
(SoftMax)
* No learnable para.
W × H × CH
Feature Extraction
(1/4 Downsampled)
* 2D CNN
4W × 4H × 3
Input Image
Warping through
𝒍𝒍𝒕𝒕𝒕𝒕
plane (sweep)
Iteratively add
cost volume
Training & Test Process
116
Filter each cost layers
using reference image features
Inspired by traditional cost volume filtering
We use shared weight for all layers
Aggre-
gated
Volume
Initial
+
Residual
Context Network
(2D Convolution)
Reference
Image Feature
Cost Volume Slice
Deep Cost Aggregation
Rhemann et al., CVPR2011
117
Reference GT depth
Estimated
Depth
Slice of volume along a label
(far/close)
Slice of volume along the green row in
reference image (x: Column, y: Cost layer)
Before
Aggregation
After
Aggregation
Ablation Study: Cost Aggregation
118
Confidence measures
Depth map evaluation
Lower is better Higher is better
* Winner Margin (WM):
Difference of maximum
and second maximum
* Curvature (CUR): Difference near
maximum response
Ablation Study: Cost Aggregation
119
⇐ Error metrics
w.r.t the number of images
⇐ Depth map result
w.r.t the number of images
Reference GT depth 2-view 3-view 4-view
Ablation Study: Number of Input Images
120
MVS, SUN3D, RGBD, Scenes11 datasets
Reference GT depth DeMoN
CVPR17
COLMAP
CVPR16
DeepMVS
CVPR18
Ours
Experimental Results
121
Quantitative Evaluation
Depth map evaluation Lower is better Higher is better
Experimental Results
122
Summary
Step1: Solution
Propose new ideas;
Iterative decolorization
Phase shift
Rolling shutter bundle
-> heavy computational burden
Cascade optimization;
Cost aggregation, Graph-cuts,
weighted median filtering, tree-
based filtering
-> Need for careful tuning user-
parameters`
123
Step2: maturity
Handling remaining issues;
Photometric distortion
-- Random forest prediction
Depth quantization error
-- adaptive matching window
-> Still suffering from
computational issues
Step3: Breakthrough
Design of CNNs via Re-Search;
CMSNet: fraction of iterative stereo
matching
EPINet: Merging traditional approaches
DPSNet: inspired by traditional plane
sweeping algorithm
-> No user parameters in test phase
-> Fast depth prediction
-> Accurate results
-> Large number of training parameters
-> New applications
Personal website https://sites.google.com/site/hgjeoncv/home

Mais conteúdo relacionado

Mais procurados

Understanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksUnderstanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksJeremy Nixon
 
Presentation on Digital Image Processing
Presentation on Digital Image ProcessingPresentation on Digital Image Processing
Presentation on Digital Image ProcessingSalim Hosen
 
Stereo Matching by Deep Learning
Stereo Matching by Deep LearningStereo Matching by Deep Learning
Stereo Matching by Deep LearningYu Huang
 
What Is Augmented Reality or AR?
What Is Augmented Reality or AR?What Is Augmented Reality or AR?
What Is Augmented Reality or AR?Sushil Deshmukh
 
Image compression standards
Image compression standardsImage compression standards
Image compression standardskirupasuchi1996
 
3D Display Technology
3D Display Technology3D Display Technology
3D Display TechnologyDilip Singh
 
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis taeseon ryu
 
Enhancement in spatial domain
Enhancement in spatial domainEnhancement in spatial domain
Enhancement in spatial domainAshish Kumar
 
Image Filtering in the Frequency Domain
Image Filtering in the Frequency DomainImage Filtering in the Frequency Domain
Image Filtering in the Frequency DomainAmnaakhaan
 
Image super resolution
Image super resolutionImage super resolution
Image super resolutionAkshay Hazare
 
Augmented reality intro for mobile apps
Augmented reality intro for mobile appsAugmented reality intro for mobile apps
Augmented reality intro for mobile appsHeather Downing
 
Point processing
Point processingPoint processing
Point processingpanupriyaa7
 
Augmented Reality: Merging Our Real World WIth The Virtual
Augmented Reality: Merging Our Real World WIth The VirtualAugmented Reality: Merging Our Real World WIth The Virtual
Augmented Reality: Merging Our Real World WIth The VirtualLynne d Johnson
 
Image segmentation
Image segmentationImage segmentation
Image segmentationDeepak Kumar
 

Mais procurados (20)

Understanding Convolutional Neural Networks
Understanding Convolutional Neural NetworksUnderstanding Convolutional Neural Networks
Understanding Convolutional Neural Networks
 
Hog
HogHog
Hog
 
Presentation on Digital Image Processing
Presentation on Digital Image ProcessingPresentation on Digital Image Processing
Presentation on Digital Image Processing
 
Global illumination
Global illuminationGlobal illumination
Global illumination
 
Histogram processing
Histogram processingHistogram processing
Histogram processing
 
Stereo Matching by Deep Learning
Stereo Matching by Deep LearningStereo Matching by Deep Learning
Stereo Matching by Deep Learning
 
Stereo vision
Stereo visionStereo vision
Stereo vision
 
What Is Augmented Reality or AR?
What Is Augmented Reality or AR?What Is Augmented Reality or AR?
What Is Augmented Reality or AR?
 
Image compression standards
Image compression standardsImage compression standards
Image compression standards
 
3D Display Technology
3D Display Technology3D Display Technology
3D Display Technology
 
3d transformation
3d transformation3d transformation
3d transformation
 
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
 
Enhancement in spatial domain
Enhancement in spatial domainEnhancement in spatial domain
Enhancement in spatial domain
 
Image Filtering in the Frequency Domain
Image Filtering in the Frequency DomainImage Filtering in the Frequency Domain
Image Filtering in the Frequency Domain
 
Image super resolution
Image super resolutionImage super resolution
Image super resolution
 
Augmented reality intro for mobile apps
Augmented reality intro for mobile appsAugmented reality intro for mobile apps
Augmented reality intro for mobile apps
 
Digital Image Processing
Digital Image ProcessingDigital Image Processing
Digital Image Processing
 
Point processing
Point processingPoint processing
Point processing
 
Augmented Reality: Merging Our Real World WIth The Virtual
Augmented Reality: Merging Our Real World WIth The VirtualAugmented Reality: Merging Our Real World WIth The Virtual
Augmented Reality: Merging Our Real World WIth The Virtual
 
Image segmentation
Image segmentationImage segmentation
Image segmentation
 

Semelhante a Depth estimation do we need to throw old things away

Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...Norishige Fukushima
 
Robust Digital Watermarking Scheme of Anaglyphic 3D for RGB Color Images
Robust Digital Watermarking Scheme of Anaglyphic 3D for RGB Color ImagesRobust Digital Watermarking Scheme of Anaglyphic 3D for RGB Color Images
Robust Digital Watermarking Scheme of Anaglyphic 3D for RGB Color ImagesCSCJournals
 
Implementation of Noise Removal methods of images using discrete wavelet tran...
Implementation of Noise Removal methods of images using discrete wavelet tran...Implementation of Noise Removal methods of images using discrete wavelet tran...
Implementation of Noise Removal methods of images using discrete wavelet tran...IRJET Journal
 
Generation and weighting of 3D point correspondences for improved registratio...
Generation and weighting of 3D point correspondences for improved registratio...Generation and weighting of 3D point correspondences for improved registratio...
Generation and weighting of 3D point correspondences for improved registratio...Kourosh Khoshelham
 
quantization and sampling presentation ppt
quantization and sampling presentation pptquantization and sampling presentation ppt
quantization and sampling presentation pptKNaveenKumarECE
 
Edge Detection with Detail Preservation for RVIN Using Adaptive Threshold Fil...
Edge Detection with Detail Preservation for RVIN Using Adaptive Threshold Fil...Edge Detection with Detail Preservation for RVIN Using Adaptive Threshold Fil...
Edge Detection with Detail Preservation for RVIN Using Adaptive Threshold Fil...iosrjce
 
introduction to jpeg for image proce.ppt
introduction to jpeg for image proce.pptintroduction to jpeg for image proce.ppt
introduction to jpeg for image proce.pptnaghamallella
 
JPEG XR objective and subjective evaluations
JPEG XR objective and subjective evaluationsJPEG XR objective and subjective evaluations
JPEG XR objective and subjective evaluationsTouradj Ebrahimi
 
Survey paper on image compression techniques
Survey paper on image compression techniquesSurvey paper on image compression techniques
Survey paper on image compression techniquesIRJET Journal
 
Robustness of Median Filter For Suppression of Salt and Pepper Noise (SPN) an...
Robustness of Median Filter For Suppression of Salt and Pepper Noise (SPN) an...Robustness of Median Filter For Suppression of Salt and Pepper Noise (SPN) an...
Robustness of Median Filter For Suppression of Salt and Pepper Noise (SPN) an...CSCJournals
 
Image Compression Using Discrete Cosine Transform & Discrete Wavelet Transform
Image Compression Using Discrete Cosine Transform & Discrete Wavelet TransformImage Compression Using Discrete Cosine Transform & Discrete Wavelet Transform
Image Compression Using Discrete Cosine Transform & Discrete Wavelet Transformijbuiiir1
 

Semelhante a Depth estimation do we need to throw old things away (20)

W6P3622650776P65
W6P3622650776P65W6P3622650776P65
W6P3622650776P65
 
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
Non-essentiality of Correlation between Image and Depth Map in Free Viewpoin...
 
Robust Digital Watermarking Scheme of Anaglyphic 3D for RGB Color Images
Robust Digital Watermarking Scheme of Anaglyphic 3D for RGB Color ImagesRobust Digital Watermarking Scheme of Anaglyphic 3D for RGB Color Images
Robust Digital Watermarking Scheme of Anaglyphic 3D for RGB Color Images
 
Chapter1.ppt
Chapter1.pptChapter1.ppt
Chapter1.ppt
 
Implementation of Noise Removal methods of images using discrete wavelet tran...
Implementation of Noise Removal methods of images using discrete wavelet tran...Implementation of Noise Removal methods of images using discrete wavelet tran...
Implementation of Noise Removal methods of images using discrete wavelet tran...
 
M.sc. m hassan
M.sc. m hassanM.sc. m hassan
M.sc. m hassan
 
2.ppt
2.ppt2.ppt
2.ppt
 
Generation and weighting of 3D point correspondences for improved registratio...
Generation and weighting of 3D point correspondences for improved registratio...Generation and weighting of 3D point correspondences for improved registratio...
Generation and weighting of 3D point correspondences for improved registratio...
 
quantization and sampling presentation ppt
quantization and sampling presentation pptquantization and sampling presentation ppt
quantization and sampling presentation ppt
 
Edge Detection with Detail Preservation for RVIN Using Adaptive Threshold Fil...
Edge Detection with Detail Preservation for RVIN Using Adaptive Threshold Fil...Edge Detection with Detail Preservation for RVIN Using Adaptive Threshold Fil...
Edge Detection with Detail Preservation for RVIN Using Adaptive Threshold Fil...
 
K010615562
K010615562K010615562
K010615562
 
introduction to jpeg for image proce.ppt
introduction to jpeg for image proce.pptintroduction to jpeg for image proce.ppt
introduction to jpeg for image proce.ppt
 
JPEG XR objective and subjective evaluations
JPEG XR objective and subjective evaluationsJPEG XR objective and subjective evaluations
JPEG XR objective and subjective evaluations
 
ICRA Nathan Piasco
ICRA Nathan PiascoICRA Nathan Piasco
ICRA Nathan Piasco
 
Survey paper on image compression techniques
Survey paper on image compression techniquesSurvey paper on image compression techniques
Survey paper on image compression techniques
 
Image Filtering
Image FilteringImage Filtering
Image Filtering
 
COMPUTED RADIOGRAPHY
COMPUTED RADIOGRAPHYCOMPUTED RADIOGRAPHY
COMPUTED RADIOGRAPHY
 
E-Forensics
E-Forensics E-Forensics
E-Forensics
 
Robustness of Median Filter For Suppression of Salt and Pepper Noise (SPN) an...
Robustness of Median Filter For Suppression of Salt and Pepper Noise (SPN) an...Robustness of Median Filter For Suppression of Salt and Pepper Noise (SPN) an...
Robustness of Median Filter For Suppression of Salt and Pepper Noise (SPN) an...
 
Image Compression Using Discrete Cosine Transform & Discrete Wavelet Transform
Image Compression Using Discrete Cosine Transform & Discrete Wavelet TransformImage Compression Using Discrete Cosine Transform & Discrete Wavelet Transform
Image Compression Using Discrete Cosine Transform & Discrete Wavelet Transform
 

Mais de NAVER Engineering

디자인 시스템에 직방 ZUIX
디자인 시스템에 직방 ZUIX디자인 시스템에 직방 ZUIX
디자인 시스템에 직방 ZUIXNAVER Engineering
 
진화하는 디자인 시스템(걸음마 편)
진화하는 디자인 시스템(걸음마 편)진화하는 디자인 시스템(걸음마 편)
진화하는 디자인 시스템(걸음마 편)NAVER Engineering
 
서비스 운영을 위한 디자인시스템 프로젝트
서비스 운영을 위한 디자인시스템 프로젝트서비스 운영을 위한 디자인시스템 프로젝트
서비스 운영을 위한 디자인시스템 프로젝트NAVER Engineering
 
BPL(Banksalad Product Language) 무야호
BPL(Banksalad Product Language) 무야호BPL(Banksalad Product Language) 무야호
BPL(Banksalad Product Language) 무야호NAVER Engineering
 
이번 생에 디자인 시스템은 처음이라
이번 생에 디자인 시스템은 처음이라이번 생에 디자인 시스템은 처음이라
이번 생에 디자인 시스템은 처음이라NAVER Engineering
 
날고 있는 여러 비행기 넘나 들며 정비하기
날고 있는 여러 비행기 넘나 들며 정비하기날고 있는 여러 비행기 넘나 들며 정비하기
날고 있는 여러 비행기 넘나 들며 정비하기NAVER Engineering
 
쏘카프레임 구축 배경과 과정
 쏘카프레임 구축 배경과 과정 쏘카프레임 구축 배경과 과정
쏘카프레임 구축 배경과 과정NAVER Engineering
 
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기NAVER Engineering
 
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)NAVER Engineering
 
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드NAVER Engineering
 
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기NAVER Engineering
 
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활NAVER Engineering
 
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출NAVER Engineering
 
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우NAVER Engineering
 
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...NAVER Engineering
 
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법NAVER Engineering
 
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며NAVER Engineering
 
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기NAVER Engineering
 
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기NAVER Engineering
 

Mais de NAVER Engineering (20)

React vac pattern
React vac patternReact vac pattern
React vac pattern
 
디자인 시스템에 직방 ZUIX
디자인 시스템에 직방 ZUIX디자인 시스템에 직방 ZUIX
디자인 시스템에 직방 ZUIX
 
진화하는 디자인 시스템(걸음마 편)
진화하는 디자인 시스템(걸음마 편)진화하는 디자인 시스템(걸음마 편)
진화하는 디자인 시스템(걸음마 편)
 
서비스 운영을 위한 디자인시스템 프로젝트
서비스 운영을 위한 디자인시스템 프로젝트서비스 운영을 위한 디자인시스템 프로젝트
서비스 운영을 위한 디자인시스템 프로젝트
 
BPL(Banksalad Product Language) 무야호
BPL(Banksalad Product Language) 무야호BPL(Banksalad Product Language) 무야호
BPL(Banksalad Product Language) 무야호
 
이번 생에 디자인 시스템은 처음이라
이번 생에 디자인 시스템은 처음이라이번 생에 디자인 시스템은 처음이라
이번 생에 디자인 시스템은 처음이라
 
날고 있는 여러 비행기 넘나 들며 정비하기
날고 있는 여러 비행기 넘나 들며 정비하기날고 있는 여러 비행기 넘나 들며 정비하기
날고 있는 여러 비행기 넘나 들며 정비하기
 
쏘카프레임 구축 배경과 과정
 쏘카프레임 구축 배경과 과정 쏘카프레임 구축 배경과 과정
쏘카프레임 구축 배경과 과정
 
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
 
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
 
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
 
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
 
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
 
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
 
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
 
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
 
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
 
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
 
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
 
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
 

Último

Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024The Digital Insurer
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 

Último (20)

Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 

Depth estimation do we need to throw old things away

  • 1. Depth estimation: Do we need to throw old things away? Hae-Gon Jeon (전해곤) 1 Assistant Professor
  • 2. My Research Timeline 2011 MS course 2013~2018: Ph.D. course 2015~Present Coded exposure imaging: Motion deblurring [ICCV’13, ICCV’15, IJCV’17, TIP’17] Light-field imaging [ECCV’14, CVPR’15, ICCVW’15, PAMI’17, SPL’17, TPAM’19, CVPR’18] [CVPR’16, CVPR’18, TIP’19] Depth + Denoising in low-light 2016~Present [ICIP’15, ICCV’15, CVPR’16, ECCV16, SPL’17, CVPR’17, TPAM’19] Depth from small motion 2018~Present: Post-doc Highly accurate 3D map Optimized path generation From real map information Visual and AI system for rescue robotics 2 Visual and AI system for rescue robotics [ICRA’19, Submitted to IROS19(1/2), IROS’19(1/2); IEEE TPAMI (Major Revision); IEEE TIP (Major Revision) ]
  • 9. 9 Human Visual System and DispNet N, Mayer et al., A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation, CVPR16
  • 10. 10 Human Visual System A multilayered membrane that contains millions of light- sensitive cells that detect the image and translate it into a series of electrical signals. The optic nerves from both eyes join at the optic chiasma where information from their retinas is correlated. Humans constantly scan objects in their field of view, usually resulting in a perceived image that is uniformly sharp
  • 11. 11 Upconvolutional layers • high-level information passed from coarser feature maps • fine local information provided in lower layer feature maps Correlation layer • Multiplicative patch comparisons between two feature maps • No trainable weights Convolution layer • identical processing streams for the two images • With this architecture the network is constrained to first produce meaningful representations of the two images separately DispNet End-to-end disparity estimation network (No need optimization)
  • 12. 12 Encoding images Correlation between two images estimation High-level information Human Visual System and DispNet
  • 13. 13 DispNet, CVPR 16 PSMNet, CVPR 18 Is DispNet the best?? Rank Method Out-Noc Runtime 1 PSMNet, CVPR18 1.49% 0.41s 2 iResNet-i2, CVPR18 1.71% 0.12s 15 MC-CNN-arct, JMLR16 2.43% 67s 27 Content_CNN, CVPR16 3.07% 0.7s 28 Deep Embed, ICCV15 3.10% 3s 46 DispNetC, CVPR16 4.11% 0.06s 2018/04/23KITTI stereo evaluation 2012
  • 14. 18 Asymmetric stereo Light-field camera Monocular camera [CVPR’16, Silver Prize of Samsung Humantech Paper Award, Submitted to IEEE TIP] [ECCV’14, CVPR’15, ICCVW’15, CVPR’18, IEEE TPAMI’17, IEEE SPL’17, IEEE TPAMI’19, Robustness champion of CVPR’17 workshop] [ICCV’15, CVPR’16, ECCV’16, CVPR’18, ICLR’19, IEEE TPAMI’17, IEEE SPL’17, IEEE TPAMI’19, IEEE TPAMI under minor revision] Today’s Talk
  • 15. Stereo Matching with Color and Monochrome cameras Publications • Stereo Matching with Color and Monochrome Cameras in Low-light Conditions Hae-Gon Jeon, Joon-Young Lee, Sunghoon Im, Hyowon Ha and In So Kweon IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016 • HumanTech Paper Award 2016, Silver Prize • CMSNet: Deep Color and Monochrome Stereo Hae-Gon Jeon, Sunghoon Im, Joon-Young Lee and Martial Hebert Submitted to IEEE Transactions on Image Processing 19
  • 16. Low-light imaging1: Burst photography [Ziwei Liu et al., SIGGRAPH Asia 14, Sam Hasinoff et al., SIGGRAPH Asia 16] Courtesy of S. Im, H.-G. Jeon and I.S. Kweon, [Submitted to CVPR 18] Results from Google Camera HDR+ Sam Hasinoff et al., SIGGRAPH Asia 16 Burst shot with a short exposure Suffering from under-exposure 20
  • 17. Noisy Visible IR image Fused Output Multi-spectral Video Fusion [IEEE TIP 07] - Twin cameras: IR/Visible - Temporal smoothing - Cross-bilateral filter Low-light imaging2: Multi-spectral fusion 21
  • 18. 300 400 500 600 700 800 900 1000 0 10 20 30 40 50 60 70 Imaging Performance Wavelength (nm) QuantumEfficiency(%) Blue Green Red 300 400 500 600 700 800 900 1000 0 10 20 30 40 50 60 70 Imaging Performance Wavelength (nm) QuantumEfficiency(%) Blue Green Red Gray Color camera (RGB) Monochrome Camera (W) Color information Reducing sharpness Vulnerable to noise No color information Sharp image Robust to noise1) Different spectral sensitivity 2) Severe noise Issues on Depth from RGB-W image pair RGB2Gray Monochrome The proposed RGB-W stereo 22
  • 20. Gain map Monochrome by gain adjustment Decolorized image Disparity map Monochrome Overview of the proposed method` (1) Input pair (2) Gain map (3) Decolorization (4) Disparity map by iterative gain adjustment (5) Refined map by a tree-based filtering (6) High-quality color image Solution 24
  • 21. 1) Contrast Preservation 2) Noise suppression 𝐸𝐸𝑛𝑛 𝛾𝛾 = 𝛻𝛻𝑢𝑢 𝐼𝐼𝛾𝛾 1 + 𝛻𝛻𝑣𝑣 𝐼𝐼𝛾𝛾 1 𝛻𝛻𝑢𝑢 𝐼𝐼𝛾𝛾 2 + 𝛻𝛻𝑣𝑣 𝐼𝐼𝛾𝛾 2 𝐸𝐸𝑐𝑐 𝛾𝛾 = 𝐺𝐺 𝐼𝐼, 𝐼𝐼 − 𝐺𝐺(𝐼𝐼, �𝐼𝐼𝛾𝛾) 1 𝐺𝐺: the guided output image 𝛻𝛻 𝑢𝑢,𝑣𝑣 : image gradient of horizontal 𝑢𝑢 and vertical 𝑣𝑣 directions RGB2Gray Only contrast Proposed 𝐼𝐼𝛾𝛾 = 𝜔𝜔𝑟𝑟 𝐼𝐼𝑟𝑟 + 𝜔𝜔𝑔𝑔 𝐼𝐼𝑔𝑔 + 𝜔𝜔𝑏𝑏 𝐼𝐼𝑏𝑏 𝜔𝜔𝑟𝑟 + 𝜔𝜔𝑔𝑔 + 𝜔𝜔𝑏𝑏 = 1 𝜔𝜔𝑟𝑟 ≥ 0, 𝜔𝜔𝑔𝑔 ≥ 0, 𝜔𝜔𝑏𝑏 ≥ 0 𝜔𝜔 𝑟𝑟,𝑔𝑔,𝑏𝑏 ∈ {0.1, 0.2, ⋯ , 1.0} High Low 𝐼𝐼𝛾𝛾: the decolorized image 𝜔𝜔 𝑟𝑟,𝑔𝑔,𝑏𝑏 : weighting parameters of each color channel 𝐼𝐼 𝑟𝑟,𝑔𝑔,𝑏𝑏 : three color channels Decolorization Cost Gain compensation Impossible linear and global gain compensation due to different spectral sensitivities Decolorization Gain compensationTractable solution : Decolorization and Gain compensation 25
  • 22. 𝒱𝒱 𝑥𝑥, 𝑙𝑙 = 𝛼𝛼𝒱𝒱𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥, 𝑙𝑙 + 1 − 𝛼𝛼 𝒱𝒱𝑆𝑆𝑆𝑆 𝑆𝑆(𝑥𝑥, 𝑙𝑙) 𝒱𝒱𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥, 𝑙𝑙 = � 𝑥𝑥∈Ω𝑥𝑥 min( 𝐼𝐼𝐿𝐿 − 𝐼𝐼𝑅𝑅 𝛾𝛾 𝑥𝑥 + 𝑑𝑑 , 𝜏𝜏1) 𝒱𝒱𝑆𝑆𝑆𝑆 𝑆𝑆 𝑥𝑥, 𝑙𝑙 = � 𝑥𝑥∈Ω𝑥𝑥 min( 𝐽𝐽(𝐼𝐼𝐿𝐿) − 𝐽𝐽(𝐼𝐼𝑅𝑅 𝛾𝛾 𝑥𝑥 + 𝑑𝑑 ) , 𝜏𝜏2) 𝑠𝑠. 𝑡𝑡. 𝐽𝐽 𝐼𝐼 = | ∑𝑥𝑥∈Ω𝑥𝑥 𝛻𝛻𝛻𝛻(𝑥𝑥) | ∑𝑥𝑥∈Ω𝑥𝑥 𝛻𝛻𝛻𝛻 𝑥𝑥 + 0.5 0.5 1 Sum of absolute differences (SAD): Robust to image noise Sum of informative edges (SIE): Robust to non-linear intensity variation Color image Informative edge map 𝑱𝑱(𝑰𝑰)Conventional gradient map 𝛻𝛻𝐼𝐼 Sum of intensity Intensity ×3 Ω𝑥𝑥: supporting window centered pixel at 𝑥𝑥, 𝑑𝑑: disparity, 𝜏𝜏 1,2 : truncated value Brightness consistency Edge similarity Sum of signed gradients cancels out image noise Sum of absolute gradients computes how strong the edges RGB-W Stereo Matching 26
  • 24. 6 ANCC : Heo et al., Robust stereo matching using adaptive normalized cross-correlation, IEEE PAMI 2011 DASC : Kim et al., DASC: Dense adaptive self-correlation descriptor for multimodal and multi-spectral correspondence, CVPR 2015 JDMCC : Heo et al., Joint depth map and color consistency estimation for stereo images with different illuminations and cameras, IEEE PAMI 2013 CCNG : Holloway et al., Generalized assorted camera arrays: Robust cross-channel registration and applications, IEEE TIP 2015 36.64% 34.29% 11.55%21.45%22.44% Dark illumination ANCC 37.89% JDMCC 36.24% 19.24% ProposedCCNG 32.56%41.71% DASC Bright illuminationStructured light Ground truth Quantitative evaluation 28
  • 25. ANCC JDMCC ProposedCCNGDASC 40.13% 44.83% 17.07% 24.23% 11.79% 14.48% 19.20% 24.45% 19.52% 41.71%Dark illumination Bright illuminationStructured light Ground truth Quantitative evaluation 29
  • 26. 7 ProposedColorMono ANCC DASC JDMCC CCNG Monochrom e Color ANCC (40.10%) DASC (39.85%) Ground truth CCNG (31.80%)JDMCC (32.86%) Proposed (8.89%) Dataset : Reindeer ( ) is a bad pixel rate Monochrome Color ANCC (26.58%) DASC (26.91%) Ground truth CCNG (18.44%)JDMCC (18.54%) Proposed (15.14%) Dataset : Moebious Evaluations 30
  • 27. 8 Colorization method Color image Y channel of color image SLIC super-pixelU & V channel mapping Colorization result Colorization and enhancement V channel of color image High-quality color image recovery 31
  • 28. Colorized and enhanced image Input color image High-quality color image recovery 32
  • 30. 34 (1) Input pair (2) Gain map (3) Decolorization (4) Disparity map by iterative gain adjustment (5) Refined map by a tree-based filtering (6) High-quality color image Problem 2. Matching window size 3. Balance value 1. Gain threshold 5. Smoothness parameter 4. # of iterations 6. # of super-pixel 7. Color similarity
  • 31. 35 Deep Material Stereo [CVPR’18]
  • 32. 36 CNN version of RGB-W Stereo Image recovery Depth estimation Encoder Consistency
  • 33. 37 W C Denoising Left - Mono Right - Color Disparity Denoised - Chrominance Denoised - Mono Initial colorization Final color image - Occlusion Occlusion Disparity Colorization CNN version of RGB-W Stereo
  • 35. 39 Denoising Left - Mono Right - Color Denoised - Chrominance Denoised - Mono Conv3X3X64,st=1 BatchNorm Subtract Relu Gaussian distribution: benefit for Gaussian noise model Residual: noise Denoising
  • 36. 40
  • 37. 41
  • 38. 42
  • 39. 43
  • 40. 44
  • 41. 45 RGB NIR Estimated disparity
  • 42. 46 Asymmetric stereo Light-field camera Monocular camera [CVPR’16, Silver Prize of Samsung Humantech Paper Award, Submitted to IEEE TIP] [ECCV’14, CVPR’15, ICCVW’15, CVPR’18, IEEE TPAMI’17, IEEE SPL’17, IEEE TPAMI’19, Robustness champion of CVPR’17 workshop] [ICCV’15, CVPR’16, ECCV’16, CVPR’18, ICLR’19, IEEE TPAMI’17, IEEE SPL’17, IEEE TPAMI’19, IEEE TPAMI under minor revision] Today’s Talk
  • 43. Depth from Single Light Field Images Publications • Accurate Depth Map Estimation from a Lenslet Light Field Camera Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park, Yunsu Bok, Yu-Wing Tai and In So Kweon IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2015 • Depth from a Light Field Image with Learning- based Matching Costs Hae-Gon Jeon, Jaesik Park, Gyeongmin Choe, Jinsun Park, Yunsu Bok, Yu-Wing Tai and In So Kweon IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Feb 2019 • Depth Estimation Challenge: Robustness Champion, CVPR workshop on Light Field for Computer Vision • EPINET: A Fully-Convolutional Neural Network using Epipolar Geometry for Depth from Light Field Images Changha Shin, Hae-Gon Jeon, Youngjin Yoon, In So Kweon and Seon Joo Kim IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2018 47
  • 44. Epiploar plane image(EPI) Synthetic EPI Estimate slopes of lines [Wanner and Goldluecke PAMI 13, Tao et al. ICCV 13, Tao et al. CVPR 15, Wang et al. CVPR 16, Williem et al. CVPR 16, Heber et al. CVPR 17] Light-field image 48
  • 45. Commercial light-field camera Main lens Microlens sensorObject Blocking penetration of light Capturing angular information of rays in one sensor Sensor size 3280*3280 Sub-aperture image 328*328 Problem1. Reduce spatial resolution Problem2. Increase photon noise 49
  • 46. Real world EPI Epipolar plane image EPIs from plenoptic camera are filled with many noises and aliasing, and have vertical luminance changes due to the circular micro-lens used 50
  • 47. Flipping adjacent views Sub-aperture images Very narrow baseline; Physically 0.45mm Within 1px Averbuch and Keller, “A unified approach to FFT based images registration”, IEEE TIP 2003 Accuracy with 1/100 pixel precision!! ℱ 𝐼𝐼 𝕩𝕩 + ∆𝕩𝕩 = ℱ{𝐼𝐼(𝕩𝕩)𝑒𝑒2𝜋𝜋𝑖𝑖∆𝕩𝕩 } 𝐼𝐼 𝕩𝕩 + ∆𝕩𝕩 = ℱ−1{ℱ{𝐼𝐼 𝕩𝕩 𝑒𝑒2𝜋𝜋𝑖𝑖∆𝕩𝕩}} ℱ : Fourier transform ∆𝕩𝕩 : Sub-pixel displacement 𝕩𝕩 Bilinear Bicubic Phase Original Multiview Stereo-Based Approach [CVPR’15] 51
  • 48. Cost Volume 𝑓𝑓( ) Sub-aperture images Matching Cost , Reference view Target view Cost volume Depthlabel Sum of Absolute Difference (SAD) Sum of Gradient Difference (GRAD) 52
  • 49. Quantitative evaluation on interpolation methods 5.37 16.2 11.3 7.38 2.89 11.18 9.03 5.33 15.35 9.02 7.4 2.35 6.65 8.73 4.69 9.88 8.91 6.06 2.27 6.22 6.38 0 2 4 6 8 10 12 14 16 18 Bilinear Bicubic Ours Bad pixel ratio MedievalBuddha Buddha2 Mona Papillon Still life Horses 53 GT Bilinear Bicubic Phase 0.2 % 1 % 0.2 % 1 % 16.2% 15.35% 9.88% 9.03% 8.73% 6.38%
  • 50. Refinements Sub aperture image Cost volume Cost aggregation Graph-cuts Iterative refinement Conventional stereo matching [Rhemann et al., CVPR 2011] Proposed [CVPR 2015]Center view 54
  • 51. Quantitative Evaluation Center View Depth from Structured Light Emitted Pattern Synthesized View 0 0.2 0.4 0.6 0.8 1 Ours Absolute Error (in pixels) 55
  • 52. Lytro GCDL LAGC CADC OursCenter view Comparison to Lytro Bulit-in Lytro Built-in Ours Raytrix Central view GCDL LAGC Ours Qualitative Evaluation 56
  • 53. Center View 3D mesh Actual scale Measured distance in 3D Lytro Illum Our Simple Lens Light Field Camera Dataset Our simple lens camera w/o distortion correction With distortion correction Qualitative Evaluation 57
  • 54. There are still Problems Problem2: Severe noise Problem1: Severe vignetting 1. Hard to find accurate correspondence in radiometric distortions and severe noise ⇒ Using various hand-craft matching cost 2. Which one is correct matching cost? ⇒ Predicting the correct matching cost using two random forests 3. Does it work well in real world light-field images? ⇒ Realistic dataset generation based on an imaging pipeline of the Lytro camera 58
  • 55. Overview of the Proposed Method [TPAM’19] 1. Realistic Light Field Image Generation; Emulating an imaging pipeline of Lytro camera 3. Random Forest 1 - Classification; Selecting dominant matching costs 4. Random Forest 2 - Regression; Predicting a disparity value with sub-pixel precision 2. Making Cost Volumes using Phase Shift; Overcoming inherent degradation of light-field images caused by a microlens array SAD GRAD Census ZNCC q = [ ] 59
  • 56. 60 ? Raw image Sub-aperture images x y tθ x·sinθ+y·cosθ+t=0 θ t Template for indirect line fitting Best match Proposed ( )ccc ZYX ,, ( )ZYX ,, F point micro-lens center image Ll ( )cc yx , ( )yx, projected micro-lens center projected point main lens Projection of adjacent corners Closest point to micro-lens center (u, v) (u’, v’) Line feature ( ) ( ) 0=+−⋅+−⋅ cvvbuua cc Micro-lens center (uc, vc)               −      ′ ′ ′+      =      v u v u k v u v u ˆ ˆ Adjacent corners [Y. Bok, H.-G. Jeon, and I. S. Kweon., Geometric Calibration of Micro-Lens-Based Light-Field Cameras using Line Features, ECCV 2014, IEEE TPAMI 2017] ProposedDansereau et al., ICCV13 Light-field Camera Geometric Calibration Dansereau et al., ICCV13
  • 57. Data Generation Vignetting Map Noise-free multi-view images Vignetting map from averaged white plane images Sub-aperture image with vignetting map 61
  • 58. Data Generation Lenslet Image Generation Sub-aperture image with vignetting map Extract a pixel from each sub- aperture image Aggregate these pixels in a lenslet 62
  • 59. Data Generation Add Noise Noise level estimation of each color channel 0.2 0.3 0.4 0.5 0.6 0 0.005 0.01 0.015 0.02 0.025 Intensity StandardDeviation Green Channel1 0.2 0.3 0.4 0.5 0.6 0 0.005 0.01 0.015 0.02 0.025 Intensity StandardDeviation Green Channel2 0.2 0.3 0.4 0.5 0.6 0 0.005 0.01 0.015 0.02 0.025 Intensity StandardDeviation Blue Channel 0.2 0.3 0.4 0.5 0.6 0 0.005 0.01 0.015 0.02 0.025 Intensity StandardDeviation Red Channel Convert color image to raw image Y. Schechner et al., “Multiplexing for optimal lighting”, IEEE TPAMI 2007 63
  • 60. Data Generation Realistic Sub-aperture Image Generation Noisy raw imageDemosaicing Rearrange pixels at each lenslet to each sub-aperture image 64
  • 61. Effectiveness of the augmented training dataset Depth profilewithout Depth profilewithDepth profileGaussian noise 65
  • 62. Training Set http://hci-lightfield.iwr.uni-heidelberg.de/ Antinous, Range: [ -3.3, 2.8 ] Boardgames, Range: [ -1.8, 1.6 ] Dishes, Range: [ -3.1, 3.5 ] Greek, Range: [ -3.5, 3.1 ] Kitchen, Range: [ -1.6, 1.8 ] Medieval2, Range: [ -1.7, 2.0 ] Museum, Range: [ -1.5, 1.3 ] Pens, Range: [ -1.7, 2.0 ] Pillows, Range: [ -1.7, 1.8 ] Platonic, Range: [ -1.7, 1.5 ] Rosemary, Range: [ -1.8, 1.8 ] Table, Range: [ -2.0, 1.6 ] Tomb, Range: [ -1.5, 1.9 ] Tower, Range: [ -3.6, 3.5 ] Town, Range: [ -1.6, 1.6 ] Vinyl, Range: [ -1.6, 1.2 ] 66
  • 63. Cost Volumes Matching Costs Sum of Absolute Difference (SAD) Zero-mean Normalized Cross correlation (ZNCC) Census Transform (Census) Sum of Gradient Difference (GRAD) + Robust to image noise; act as averaged filter + Compensate for differences in both gain and offset + Synergy with other matching costs + imposing higher weights at edge boundaries + Tolerate radiometric distortions H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with radiometric differences,” IEEE TPAMI 2009. 67
  • 64. Cost Volumes Matching group1 𝑓𝑓( ) Sub-aperture images Matching Cost , Reference view Target view Cost volume Depthlabel 68
  • 65. Cost Volumes Matching group2 𝑓𝑓( ) Sub-aperture images Matching Cost , Reference view Target view Cost volume Depthlabel 69
  • 66. Cost Volumes Computed Cost Volumes Matchinggroup Matching cost Sum of Absolute Difference (SAD) Zero-mean Normalized Cross correlation (ZNCC) Census Transform (Census) Sum of Gradient Difference (GRAD) 70
  • 67. Cost Volumes Computed Cost Volumes Disparities from each cost volume via Winner-Takes-All 71
  • 68. Cost Volumes Computed Cost Volumes Vectorizing estimated depth labels with a ground truth depth label 31 53 43 55 55 55 55 55 6160 74 Ground truth 67 51 53 37 6658 12 25 42 49 55 6143 57 76 72 66 23 5558 56 SAD+GRAD GRAD+Census Census+SAD 𝛼𝛼 ∈ [0, 1.0] ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ Multiple disparity hypotheses Campbell et al., “Using Multiple hypotheses to improve depth-maps for multi-view stereo”, ECCV 2008 Multiple disparity hypotheses Multiple disparity hypotheses 72
  • 69. Cost Volumes Computed Cost Volumes Vectorizing estimated depth labels with a ground truth depth label 25 54 48 32 32 32 32 32 3442 11 Ground truth 19 20 43 37 3233 5 31 42 29 12 4134 57 44 39 56 49 4317 32 SAD+GRAD GRAD+Census Census+SAD 𝛼𝛼 ∈ [0, 1.0] ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ Multiple disparity hypotheses Multiple disparity hypotheses Multiple disparity hypotheses 73
  • 70. Training a random forest 32 32 31 42 29 12 4134 57 44 39 56 49 4317 32 ⋯ ⋯ ⋯ ⋯ 25 54 48 3232 3442 11⋯ ⋯ ⋯ 3219 20 43 37 3233 5⋯ ⋯ ⋯ ⋯ ⋯ 𝐪𝐪 Random forest 1 Classification Random Forest1 - Classification 74
  • 71. Random Forest1 - Classification Importance �q4 �q3 �q1 �q2 �q7 �q9 �q5 �q8 �q10 �q11 �q6 𝐪𝐪 Retrieving a set of important matching costs using the permutation importance measure [L. Breiman, “Random forests,” Machine learning] + Removing unnecessary matching cost + Designing a better prediction model Matching Group1 Matching Group2 Matching Group3 Matching Group4 75
  • 72. Random Forest2 - Regression Random forest 2 Regression�𝐪𝐪 �q4�q3�q1 �q2 �q7 �q9�q5 �q8 �q10 �q11�q6 vs. Estimated disparity value with sub-pixel precision SAD+GRAD [H.-G. Jeon et al., IEEE CVPR 2015] with Weighted Median Filter [Z. Ma et al., IEEE ICCV 2013] Input of a random forest for regression 76
  • 73. Real-world examples – Lytro Illum Wanner and Goldluecke, IEEE TPAMI 14 Yu et al, ICCV 13 Ours, CVPR 15 Williem et al, CVPR 16 Wang et al, IEEE TPAMI 16 Tao et al, IEEE TPAMI 17 Proposed Wanner and Goldluecke, IEEE TPAMI 14 Yu et al, ICCV 13 Williem et al, CVPR 16 Wang et al, IEEE TPAMI 16 Tao et al, IEEE TPAMI 17 Proposed Ours, CVPR 15 77
  • 74. (1-α)SAD+ αCensus SAD Census (1-α)Census+ αGRAD GRAD (1-α)GRAD+ αSAD ZNCC smooth smooth discontinuity strong texture strong texture weak texture discontinuity weak texture strong texture discontinuity Which matching costs are selected? 78
  • 75. Benchmark Bad pixel ratio (>0.07px) & Mean square error Bad pixel ratio Mean square error (2017.05.23) Robustness Champion!! 79
  • 76. Qualitative evaluation on different input setups Kim et al., “Scene Reconstruction from High Spatio- Angular Resolution Light Fields”, SIGGRAPH 2013 DSLR camera mounted on motorized linear stage Center view Kim et al. (# of input: 51) Proposed (# of input: 9) 80
  • 77. Qualitative evaluation on different input setups Samsung Galaxy Note 8 Input images SGM Proposed H. Hirschmuller. Stereo processing by semiglobal matching and mutual information, IEEE PAMI 2008 81
  • 79. Convolutional Neural Network DispNet, CVPR 16 PSMNet, CVPR 18 EdgeStereo, ArXiv 83
  • 80. EPINET [CVPR’18] 2 2 22 2 2 2 2 22 2 2 2 2 22 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 280280 Angular directions of LF images 8 blocks 3 blocks Convolutional Block 70 70 70 1 7 7 7 7 Disparity Map 70 70 70 70 70 70 70 70 70 280 Last Convolutional Block Stack I0° Stack I90° Stack I135° Stack I45° Concatenation C O N V R E L U C O N V C O N V R E L U C O N V R E L U B N 84
  • 81. Lack of Data Antinous, Range: [ -3.3, 2.8 ] Boardgames, Range: [ -1.8, 1.6 ] Dishes, Range: [ -3.1, 3.5 ] Greek, Range: [ -3.5, 3.1 ] Kitchen, Range: [ -1.6, 1.8 ] Medieval2, Range: [ -1.7, 2.0 ] Museum, Range: [ -1.5, 1.3 ] Pens, Range: [ -1.7, 2.0 ] Pillows, Range: [ -1.7, 1.8 ] Platonic, Range: [ -1.7, 1.5 ] Rosemary, Range: [ -1.8, 1.8 ] Table, Range: [ -2.0, 1.6 ] Tomb, Range: [ -1.5, 1.9 ] Tower, Range: [ -3.6, 3.5 ] Town, Range: [ -1.6, 1.6 ] Vinyl, Range: [ -1.6, 1.2 ] 85
  • 82. View-shift augmentation Rotation augmentation Scale augmentation D(Disparity) L(Image width) D/2 D/3 L/2 L/3 Data Augmentation 86
  • 83. Results • 4D Light Field Benchmark • 16 synthetic light-field images(9x9 views) • Depth/disparity map for training scenes • http://hci-lightfield.iwr.uni-heidelberg.de 87
  • 84. 4D Light field Benchmark: http://hci-lightfield.iwr.uni-heidelberg.de/ Evaluations 88
  • 85. Cotton Boxes Dots BadPixel(>0.03)BadPixel(>0.03)BadPixel(>0.03)DisparityDisparityDisparity (a) GT (b) EPI2 (c) LF_OCC (l) Proposed(g) SPO(d) LF (e) EPI1 (f) CAE (h) SC_GC (i) RPRF5 (j) OFSY_330 (k) PS_RF Evaluations 89
  • 86. Center View (b) (c) (d) Ours(e) (f) (g) Center View (b) (c) (d) Ours(e) (f) (g) B: Globally consistent depth labeling of 4D lightfields. S. Wanner and B. Goldluecke C: Accurate depth map estimation from a lenslet light field camera.H.-G. Jeon et al , D: Robust light field depth estimation for noisy scene with occlusion. W. Williem et al E: Occlusionaware depth estimation using light-field cameras. T.-C. Wang,. F: Shape estimation from shading, defocus, and correspondence using light-field angular coherence. Tao et al G: Line assisted light field triangulation and stereo matching.Z. Yu, et al 90
  • 88. 92 Asymmetric stereo Light-field camera Monocular camera [CVPR’16, Silver Prize of Samsung Humantech Paper Award, Submitted to IEEE TIP] [ECCV’14, CVPR’15, ICCVW’15, CVPR’18, IEEE TPAMI’17, IEEE SPL’17, IEEE TPAMI’19, Robustness champion of CVPR’17 workshop] [ICCV’15, CVPR’16, ECCV’16, CVPR’18, ICLR’19, IEEE TPAMI’17, IEEE SPL’17, IEEE TPAMI’19, IEEE TPAMI under minor revision] Today’s Talk
  • 89. Depth from Small Motion Video Clip Publications (Co-author papers) • High Quality Structure from Small Motion for Rolling Shutter Cameras Sunghoon Im, Hyowon Ha, Gyeongmin Choe, Hae-Gon Jeon, Kyungdon Joo and In So Kweon IEEE International Conference on Computer Vision (ICCV), Dec 2015 • High-quality Depth from Uncalibrated Small Motion Clip [Oral presentation] Hyowon Ha, Sunghoon Im, Jaesik Park, Hae-Gon Jeon and In So Kweon IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , Jun 2016 • All-around Depth from Small Motion with A Spherical Panoramic Camera Sunghoon Im, Hyowon Ha, François Rameau, Hae-Gon Jeon, Gyeongmin Choe and In So Kweon European Conference on Computer Vision (ECCV), Oct 2016 • Robust Depth Estimation from Auto Bracketed Images Sunghoon Im, Hae-Gon Jeon and In So Kweon IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2018 • Accurate 3D Reconstruction from Small Motion Clip for Rolling Shutter Cameras Sunghoon Im, Hyowon Ha, Gyeongmin Choe, Hae-Gon Jeon, Kyungdon Joo and In So Kweon IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Apr 2019 • DPSNet: End-to-end Deep Plane Sweep Stereo Sunghoon Im, Hae-Gon Jeon, Steve Lin and In So Kweon International Conference on Learning Representations (ICLR), May 2019 93
  • 90. 94
  • 91. Yu & Gallup (CVPR14) Yu and Gallup, "3d reconstruction from accidental motion“, CVPR2014 95
  • 92. 96
  • 93. 3. Dense 3D reconstruction 2. Sparse 3D reconstruction 1. Feature extraction & tracking Depth from Small Motion 97
  • 94. ∑∑= = −= I JN i N j jijijC 1 1 2 ||)(||),( XKPxPX φ  Bundle adjustment TT JI T j T ij Z Y Z X ZYX NN ZYX vu ]1,,[)],,([ featureof#:image,of#: coordinateWorld:]1,,,[ coordinateimage2D:]1,,[ = = = φ X x matrixExtrinsic:matrix,Intrinsic: ijPK           = 100 0 yy xx cf cf α K Sparse 3D reconstruction [ICCV’15] 2*Thenumberofre-projectionpoints The number of refine value  Jacobian matrix with rolling shutter The number of features : 8 The number of images : 6 2*Thenumberofre-projectionpoints The number of refine value  Small angle approximation - Rotation matrix           − − − == 1 1 1 x ij y ij x ij z ij y ij z ij ijijijij rr rr rr RR )(],|)([ rtrP where )( iiiij w rrrr −+= +1 )( iiiij w tttt −+= +1  Rotation and translation components  Jacobian matrix without rolling shutter 98
  • 95. Input Image Sequence Proposed methodYu & Gallup (CVPR14) Sparse 3D reconstruction 99
  • 96. Input Image Only color smoothness • Results of dense 3D reconstruction Input Image Only color smoothness Dense 3D Reconstruction 100
  • 97.  Geometry guidance term ∑ ∑∈ ⋅ ⋅ −= p Wq q pp qp p g pg p DDwE 2 ) ˆ ˆ ()( Xn Xn D Key Idea Neighboring pixels with similar color should have similar normal  Normal vectors guide the 3D position of neighboring pixels ∑∈         ⋅−− = pWq g qp g g p N w γ )( exp nn11 8 1 = = gg p p pp p ppp N W n DXD pD yxX constant, neighbors-8 vectornormal: coordinate3 ateDepth valu: coordinateimageNormalized : : :ˆ :],,[ˆ γ )()()()( DDDD ggccd EEEE λλ ++=  Energy function )XDX(Dn ppqqp ˆˆ −⋅ Dense 3D Reconstruction Input image Sparse 3D points Normal of 3D points Normal map 101
  • 98. Input Image Sparse 3D points Proposed method Conventional method • Results of dense 3D reconstruction Dense 3D Reconstruction 102
  • 99. Dense 3D Reconstruction Proposed methodYu & Gallup (CVPR14) Dataset from Yu & Gallup 103
  • 100. Proposed methodYu & Gallup (CVPR14) Dataset from Yu & Gallup 104
  • 102. There are still Problems 1. Exact definition of small motion 2. Blurry depth 106
  • 103. Reference image Depth difference Ground truth Our depth map (𝒃𝒃 = 𝟏𝟏. 𝟓𝟓) Camera motion: Closest object = 1:100 Small Motion Issue [CVPR’16] 107
  • 104. Solution to Blurry Depth: Plane Sweeping FarNear P1 P2 P3 Sweeping depth P1 P2 P3 Reference image Mean image Intensity profile Mean image Intensity profile Mean image Intensity profile Reference view Other views Flat Flat Flat Sharp Sharp Sharp Given intrinsic and extrinsic parameters of camera, 108
  • 105. Depth Quantization Error [TPAM’19] Caused by Quantized depth range in Plane sweeping Depth range 109
  • 106. Adaptive Matching Window [TPAM’19] Adaptive depth range The usage of blurry depth to estimate min-max depth range for per-pixel controls the confidence weight [0,1] controls the steepness of the exponential function confidence map Initial depth 110
  • 108. Ours, IEEE TPAMIOurs., CVPR 16Yu and GallupOurs, ICCV 15 Results 112
  • 109. One more Problem… Runtime Camera pose: 2s + Surface normal: 5min + Plane sweeping: 5min + Refinement: 1s About 10 min 113
  • 110. Procedure of stereo matching Parametric – AD, SAD, BT, mean filter, Laplacian of Gaussian, Bilateral filtering, ZSAD, NCC, ZNCC Nonparametric – Rank filter, Softrank filter, Census filter, Ordinal Mutual Information – Hierarchical MI Input Guide Output Cost volume Cost aggregation Iterative refinementGraph-cuts 𝐸𝐸 = 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟 𝑙𝑙𝑟𝑟 − 𝐶𝐶 𝑙𝑙+ + 𝐶𝐶(𝑙𝑙−) 2(𝐶𝐶(𝑙𝑙+ + 𝐶𝐶 𝑙𝑙− − 2𝐶𝐶(𝑙𝑙𝑟𝑟))) Image Cost volume Cost aggregation Graph-cuts Iterative refinement Cost computation Common Pipeline of Traditional Approaches Accurate Depth Map Estimation from a Lenslet Light Field Camera Hae-Gon Jeon et al., IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2015 Stereo Matching with Color and Monochrome Cameras in Low-light Conditions Hae-Gon Jeon et al., IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016 Fully End-to-end process 114
  • 111. Design a network inferred by traditional Plane Sweeping Algorithm 𝒊𝒊𝒕𝒕𝒕𝒕 Pair Image W × H × 2CH Feature Concatenate : Volume Generation * No learnable para. 1 𝒍𝒍 𝑳𝑳 W × H × 2CH × L Cost Volume Generation * 3D CNN W × H × L Averaging Cost (𝒊𝒊 ∈ {𝟏𝟏, . . 𝑵𝑵}) * No learnable para. W × H × L Cost Aggregation + Upsampling * 2D CNN 𝒊𝒊𝒕𝒕𝒕𝒕 Cost Volume (𝒊𝒊 + 𝟏𝟏)𝒕𝒕𝒕𝒕 Cost Volume Reference Image ⋯ 4W×4H×1 Depth regression (SoftMax) * No learnable para. W × H × CH Feature Extraction (1/4 Downsampled) * 2D CNN 4W × 4H × 3 Input Image Warping through 𝒍𝒍𝒕𝒕𝒕𝒕 plane (sweep) Overview of DPSNet [ICLR19] 115
  • 112. Testing Do same process using reference and i-th images (i=1, … , N) Add all of the cost volume (N), then average them 𝒊𝒊𝒕𝒕𝒕𝒕 Pair Image W × H × 2CH Feature Concatenate : Volume Generation * No learnable para. 1 𝒍𝒍 𝑳𝑳 W × H × 2CH × L Cost Volume Generation * 3D CNN W × H × L Averaging Cost (𝒊𝒊 ∈ {𝟏𝟏, . . 𝑵𝑵}) * No learnable para. W × H × L Cost Aggregation + Upsampling * 2D CNN 𝒊𝒊𝒕𝒕𝒕𝒕 Cost Volume (𝒊𝒊 + 𝟏𝟏)𝒕𝒕𝒕𝒕 Cost Volume Reference Image ⋯ 4W×4H×1 Depth regression (SoftMax) * No learnable para. W × H × CH Feature Extraction (1/4 Downsampled) * 2D CNN 4W × 4H × 3 Input Image Warping through 𝒍𝒍𝒕𝒕𝒕𝒕 plane (sweep) Iteratively add cost volume Training & Test Process 116
  • 113. Filter each cost layers using reference image features Inspired by traditional cost volume filtering We use shared weight for all layers Aggre- gated Volume Initial + Residual Context Network (2D Convolution) Reference Image Feature Cost Volume Slice Deep Cost Aggregation Rhemann et al., CVPR2011 117
  • 114. Reference GT depth Estimated Depth Slice of volume along a label (far/close) Slice of volume along the green row in reference image (x: Column, y: Cost layer) Before Aggregation After Aggregation Ablation Study: Cost Aggregation 118
  • 115. Confidence measures Depth map evaluation Lower is better Higher is better * Winner Margin (WM): Difference of maximum and second maximum * Curvature (CUR): Difference near maximum response Ablation Study: Cost Aggregation 119
  • 116. ⇐ Error metrics w.r.t the number of images ⇐ Depth map result w.r.t the number of images Reference GT depth 2-view 3-view 4-view Ablation Study: Number of Input Images 120
  • 117. MVS, SUN3D, RGBD, Scenes11 datasets Reference GT depth DeMoN CVPR17 COLMAP CVPR16 DeepMVS CVPR18 Ours Experimental Results 121
  • 118. Quantitative Evaluation Depth map evaluation Lower is better Higher is better Experimental Results 122
  • 119. Summary Step1: Solution Propose new ideas; Iterative decolorization Phase shift Rolling shutter bundle -> heavy computational burden Cascade optimization; Cost aggregation, Graph-cuts, weighted median filtering, tree- based filtering -> Need for careful tuning user- parameters` 123 Step2: maturity Handling remaining issues; Photometric distortion -- Random forest prediction Depth quantization error -- adaptive matching window -> Still suffering from computational issues Step3: Breakthrough Design of CNNs via Re-Search; CMSNet: fraction of iterative stereo matching EPINet: Merging traditional approaches DPSNet: inspired by traditional plane sweeping algorithm -> No user parameters in test phase -> Fast depth prediction -> Accurate results -> Large number of training parameters -> New applications Personal website https://sites.google.com/site/hgjeoncv/home