SlideShare uma empresa Scribd logo
1 de 17
Baixar para ler offline
EE321 Final Project
THIRD ORDER FILTER DESIGN FOR FREQUENCY
NATHAN WENDT 11401887 11/18/2015
Wendt 1
INTRODUCTION
This report documents the process and results of designing various passive, third-order,
frequency-selective circuits. All of the circuits designed and analyzed in this report have the
same structure (as seen on the cover or figure1) while the behavior is manipulated by changing
the components and their configuration. Sections I and II focus on a low-pass configuration
while section III covers a high-pass configuration.
SECTION I: General Transfer Function and Low-Pass Behavior
A) S-domain transfer function
In the frequency domain, the circuit elements can be represented by their
complex impedances. This enables us to use basic circuit analysis techniques to determine the
s-domain transfer function, H(s). To determine the output value, V0(s), in terms of input value,
Vi(s), and complex impedances Z1, Z2, Z3, and Z4 we utilize Kirchhoff’s voltage law around the
loops shown in figure 1.
Figure 1: Complex impedance representation of circuit. Loop 1 on left, loop 2 on right.
KVL loop 1:
𝑉𝑖(𝑠) − 𝑍1 𝐼1 − 𝑍2(𝐼1 − 𝐼2) = 0
KVL loop 2:
𝐼1 𝑍2 − 𝐼2(𝑍2 + 𝑍3 + 𝑍4) = 0
𝐼1 =
𝑍2 + 𝑍3 + 𝑍4
𝑍2
𝐼2
1 2
Wendt 2
Combine:
𝑉𝑖(𝑠) = 𝐼2(𝑍1
𝑍2 + 𝑍3 + 𝑍4
𝑍2
− 𝑍2 + 𝑍2
𝑍2 + 𝑍3 + 𝑍4
𝑍2
)
𝐼2 =
𝑉𝑜(𝑠)
𝑍4
Substituting and rearranging yields:
𝐻(𝑠) =
𝑉𝑜(𝑠)
𝑉𝑖(𝑠)
=
𝑍4 𝑍2
𝑍1(𝑍2 + 𝑍3 + 𝑍4) − 𝑍2
2
+ 𝑍2(𝑍2 + 𝑍3 + 𝑍4)
B) Low-pass implementation
Figure 2: Low-pass configuration
KVL 1:
𝑉𝑖(𝑡) = 𝐿
𝑑𝑖1
𝑑𝑡
+
1
𝐶2
(∫ 𝑖1 𝑑𝑡 − ∫ 𝑖2 𝑑𝑡)
KVL 2:
𝑖2 𝑅 +
1
𝐶4
∫ 𝑖2 𝑑𝑡 +
1
𝐶2
∫ 𝑖2 𝑑𝑡 −
1
𝐶2
∫ 𝑖1 𝑑𝑡 = 0
Differentiate twice and solve for di1/dt:
𝑑𝑖1
𝑑𝑡
= 𝑅𝐶2
𝑑2
𝑖2
𝑑𝑡2
+ (
𝐶2
𝐶4
+ 1)
𝑑𝑖2
𝑑𝑡
Wendt 3
Also noting:
𝑖2 𝑅 +
1
𝐶4
∫ 𝑖2 𝑑𝑡 = −
1
𝐶2
∫ 𝑖2 𝑑𝑡 +
1
𝐶2
∫ 𝑖1 𝑑𝑡
Substitute the above two equations into KVL 1 and substitute:
1
𝐶4
∫ 𝑖2 𝑑𝑡 = 𝑣0(𝑡)
End up with
𝑣𝑖(𝑡) = 𝐿𝑅𝐶2
𝑑2
𝑖2
𝑑𝑡2
+ (
𝐿𝐶2
𝐶4
+ 𝐿)
𝑑𝑖2
𝑑𝑡
+ 𝑅𝑖2 + 𝑣𝑜(𝑡)
Transfer to the s domain, noting that initial conditions = 0:
𝑉𝑖(𝑠) = 𝐿𝑅𝐶2 𝐼2 𝑠2
+ (
𝐿𝐶2
𝐶4
+ 𝐿) 𝐼2 𝑠 + 𝑅𝐼2 + 𝑉𝑜(𝑠)
Substituting:
𝑉𝑜(𝑠) =
𝐼2
𝑠𝐶4
𝑉𝑖(𝑠) = 𝐿𝑅𝐶2 𝐶4 𝑉𝑜(𝑠)𝑠3
+ (𝐿𝐶2 + 𝐿𝐶4)𝑉𝑜(𝑠)𝑠2
+ 𝑅𝐶4 𝑉𝑜(𝑠)𝑠 + 𝑉𝑜(𝑠)
Translating back to the time domain gives the third order differential equation:
𝑣𝑖(𝑡) = 𝐿𝑅𝐶2 𝐶4
𝑑3
𝑣𝑜(𝑡)
𝑑𝑡3
+ (𝐿𝐶2 + 𝐿𝐶4)
𝑑2
𝑣𝑜(𝑡)
𝑑𝑡2
+ 𝑅𝐶4
𝑑𝑣𝑜(𝑡)
𝑑𝑡
+ 𝑣𝑜(𝑡)
From this equation the state equation matrices are:
𝐴 =
0 1 0
0 0 1
−1
𝐿𝑅𝐶4 𝐶2
−1
𝐿𝐶2
−(𝐶1 + 𝐶2)
(𝑅𝐶1 𝐶2)
𝐵 =
0
0
1
𝐿𝑅𝐶4 𝐶2
𝐶 =
1 0 0
−1 −(𝑅𝐶2) 0
0 0 0
𝐷 =
0
1
0
with 𝑦 =
𝑣𝑜
𝑣 𝐿
Wendt 4
Using MATLAB’s lsim function and the state matrices listed above, the step responses of
vo and vL were determined and plotted shown in Figure 2:
Figure 3: Step response of vo and inductor voltage. vo → 1 and vL → 0 as ω → ∞
The lsiminfo function produced data on 100% rise time, peak, and 2% settling time:
Figure 4: Step response data (left) and annotated plot (right)
Wendt 5
SECTION II: Low-Pass Frequency Response, Sinusoidal Steady
State, and Butterworth
A) Zeros, Poles, Frequency Response, and Sinusoidal Steady State
The poles and zeros of a function represent the values of s that result in a zero
denominator or numerator respectively. In the case of the low-pass filter, the numerator is a
constant and thus there are no zeros. To find the poles, the denominator must first be factored.
MATLAB was used in this step to factor and determine the poles. Being a third-order filter,
there were 3 poles:
𝑃 =
−639.9
−330.3 + 𝑗3005.9
−330.3 − 𝑗3005.9
One real pole and one complex conjugate pair for a total of three poles. Below is a plot
of the poles on the real vs imaginary plane:
Figure 5: Three poles of third-order low-pass filter
Wendt 6
The Bode plot of the transfer function shows the relations between the logarithmic
magnitude of gain and phase with respect to input frequency. Using MATLAB’s bode() function,
the frequency response to of the systems transfer function is plotted shown below:
Figure 6: Bode Diagram for third-order low-pass filter
A frequency of 0 correlates to a DC or unit-step input. Being that the y-axis depicts
20log10|H(jw)|, a value of 0 actually corresponds to a gain of 1, which is exactly as to be
expected from this filter.
Introducing a sinusoidal forcing function changes the time domain response to a
sinusoid. Using vi(t) = 10sin(2500t) u(t) and the state space model determined in section I, we
can plot the transient response with MATLAB:
Figure 7: vo(t) due to sinusoidal input
Wendt 7
It is convenient to use the phasor to determine the response of a sinusoidal function.
H(j2500) = -.1803 – j0.6559. The magnitude of H(j2500) = 0.68 while the 3rd quadrant phase
angle comes out to -106*. So the phasor of H(j2500) is 0.68⁄-106. Tracing from the Bode plot at
angular frequency 2500 rads/s verifies the 0.68 gain and -106 phase. Also, the sinusoidal steady
state output shows an amplitude of 6.8 which corresponds to the multiplication of the
amplitudes of the input and the frequency response (10 * 0.68).
B) Third-Order Butterworth Low-Pass
The Butterworth filters follow a simple rubric. For a third-order Butterworth low-pass
filter, the transfer function must be as follows:
𝐻(𝑠) =
𝜔𝑐
3
𝑠3 + 2𝜔𝑐 𝑠2 + 2𝑠𝜔𝑐
2 + 𝜔𝑐
3
Using a known value of L and 𝜔𝑐, it is easy to determine the other component values by
relating the coefficients in front of s between the transfer functions. The transfer function for
the low-pass filter with RLC variables is shown below:
𝐻(𝑠) =
1
𝐿𝑅𝐶4 𝐶2
𝑠3 +
(𝐶1 + 𝐶2)
(𝑅𝐶1 𝐶2)
𝑠2 +
1
𝐿𝐶2
𝑠 +
1
𝐿𝑅𝐶4 𝐶2
By substituting the various combinations of R,L, and C variables the 3 equation, 3
unknown system can be solved for R, C2, and C4.
ωc = 40,000π rads/s
L = 0.4548 H
R = 53865 Ω
C2 = 6.962*10-11 F
C4 = 2.785*10-10 F
a) The pole locations of the transfer function with its new values is found in the same
manner as in part A:
𝑃 =
−237700
−47800 + 𝑗8106
−47800 − 𝑗8106
The s-plane plot of the poles is shown in figure 8 on the next page:
Wendt 8
Figure 8: S-plane pole locations for 3rd order Butterworth low-pass
Calculating the pole angles of the two complex poles yields:
θ1 = 126.11*
θ2 = 233.89*
The expected complex pole angles for a 3rd order Butterworth low-pass are at 120* and
240*. That shows that this circuit is a reasonable representation of a 3rd order Buttwerworth
low-pass.
Wendt 9
b) The step response for the Butterworth low-pass was found using a state space model
and the lsim() function in MATLAB. Again, lsiminfo() produces the rise, settle, and peak:
Figure 9: Unit step response (left) corresponding data (right)
c) The frequency response is found using the same method as in section II)A:
Figure 10: Frequency response (Bode plot) of 3rd O low-pass Butterworth
Tracing the above plots confirms the -3dB cutoff frequency to be ~125krads/s.
Wendt 10
d) The impulse response of the system can be determined by hand using inverse
Laplace. The s-domain representation of the impulse, δ(s), is constant at 1. Therefore, the
impulse response of the filter is equal to the inverse Laplace of the transfer function. To
determine this by hand, the function must be factored to the form with one real and two
complex roots:
𝐻(𝑠) =
𝜔𝑐
3
(𝑠 + 𝜔𝑐)(𝑠2 + 𝑠𝜔𝑐 + 𝜔𝑐
2)
=
𝐴
(𝑠 + 40𝜋 ∗ 103)
+
𝐵
(𝑠 − 62.8 ∗ 103 + 𝑗108.8 ∗ 103)
+
𝐶
(𝑠 − 62.8 ∗ 103 − 𝑗108.8 ∗ 103)
ℎ(𝑡) = ʆ−1{𝐻(𝑠)} = 2.65 ∗ 10−6
𝑒−40000𝜋𝑡
+ (41.9 + 𝑗72.6)103
𝑒(62.8−𝑗108.8)103 𝑡
+
(−20.9 + 𝑗36.3)103
𝑒(62.8+𝑗108.8)103 𝑡
e) The step response is found in the same manner as the impulse response, however,
u(s) = 1/s.
f) The steady-state sinusoidal response is found using the frequency response of the
transfer function at the applied frequency. Finding the phasor of H(jω) and using phasor
multiplication with the phasor of the input [|H(jω)|*|Ainput| < (θjw + θinput)] yields the
theoretical steady state response.
Figure 11: Input, response, and theoretical SSS response due to sinusoidal input
By 0.1ms, the response has reached the theoretical settling amplitude. This indicates
that the peak time is < 1*10-4 s. Step response data indicates a rise time of 0.44*10-4.
Wendt 11
SECTION III: High-Pass Butterworth
To create a high-pass filter we set Z1 to be a capacitor, Z2 and Z4 to be inductors, and Z3 is
a resistor. Plugging in the corresponding complex impedances to the generic transfer function
from Section I)A yields:
𝐻(𝑠) =
𝑠3
𝑠3 +
𝑅
𝐿4
𝑠2 +
𝐿4 + 𝐿2
𝐶𝐿2 𝐿4
𝑠 +
𝑅
𝐶𝐿2 𝐿4
Also, the Butterworth high-pass is of the form:
𝐻(𝑠) =
𝑠3
𝑠3 + 2𝜔𝑐 𝑠2 + 2𝑠𝜔𝑐
2 + 𝜔𝑐
3
a) Using R = 188.7 and ωc = 400π rads/s, the other component values can be found by
the same method as in section II)B:
ωc = 400π rads/s
L2 = 0.225 H
L4 = 0.0751 H
R = 188.7 Ω
C = 5.62*10-6 F
b) Using MATLAB, the Bode plot is shown below:
Figure 12: Bode of High-Pass Butterworth
It can be seen that the high-pass Bode has the correct -3dB frequency.
Wendt 12
c) The steady state sinusoidal output is found using an input of sin(400πt)u(t) and
MATLAB. The phasor magnitude of the filter at 400π should be 0.707. The plots of the response
and the theoretical SSS are shown below:
Figure 13: Input (grey) response (blue) of HP Butterworth with sinusoidal input
Figure 14: Theoretical SSS response of HPBW to sin input
The phase of the theoretical and response plots match and the magnitude is 0.707. Both
parts are verified.
Wendt 13
APPENDIX A: Matlab code
t = [0:0.00001:0.02];
xyz = 0.887;
L=0.1;C2=(1.4-xyz*0.4)*10^-6;C1=(1+xyz*0.2)*10^-
6;R=1300+xyz*100;
A = [0 1 0; 0 0 1; -1/(L*R*C1*C2) -1/(L*C2) -
(C1+C2)/(R*C1*C2)]
B = [0;0;1/(L*R*C1*C2)]
C = [1 0 0; -1 -(R*C2) 0; 0 0 0]
D = [0;1;0]
x0 = [0;0;0];
vi = ones(1,length(t)); %Step input
[y,x] = lsim(A,B,C,D,vi,t,x0);
figure(1)
subplot(2,1,1)
plot(t,y(:,1))
xlabel('Time (t) sec')
ylabel('Voltage v(t) V')
title('Output (v(t)) voltage, Inductor (v_L(t)) voltage
Third Order Low-Pass')
subplot(2,1,2)
plot(t,y(:,2))
xlabel('Time (t) sec')
ylabel('Voltage v_L(t) V')
s = lsiminfo(y(:,1),t,1) %rise/settle/%
overshoot/undershoot
H = tf([1/(R*L*C2*C1)],[1 (C1+C2)/(R*C1*C2) 1/(L*C2)
1/(R*L*C2*C1)]);
figure(2)
bode(H)
z = zero(H);
p = pole(H)
figure(3)
zplane(z,p)
xlabel('Real Axis')
Wendt 14
ylabel('Imaginary Axis')
title('Poles (x) and Zeroes (o)')
t2 = [0:0.00001:0.045];
vi2 = 10*sin(2500*t2); %sinuiodal input
[y1,x1] = lsim(A,B,C,D,vi2,t2,x0);
figure(4)
plot(t2,y1(:,1))
xlabel('Time (t) sec')
ylabel('Voltage v(t) V')
title('Output Voltage (v(t)) Sinusoidal Steady State')
R2 = 53865;
L2 = 0.4548;
C3 = 6.962*10^-11;
C4 = 2.785*10^-10;
H2 = tf([1/(R2*L2*C3*C4)],[1 (C4+C3)/(R2*C4*C3)
1/(L2*C3) 1/(R2*L2*C3*C4)]);
z2 = zero(H2);
p2 = pole(H2)
figure (5)
zplane(z2,p2)
xlabel('Real Axis')
ylabel('Imaginary Axis')
title('Poles (x) and Zeroes (o)')
figure(6)
step(H2)
RT = [0 1];
S = stepinfo(H2,'RiseTimeLimits', RT)
figure(7)
bode(H2)
t4 = [0:0.000001:0.001];
vi4 = cos(40000*pi*t4);
v0theoretical = 0.569*cos(40000*pi*t4-141);
[y4,x4] = lsim(Am2,Bm2,Cm2,Dm2,vi4,t4,x0);
Wendt 15
figure(8)
plot(t4,y4(:,1),'-*r',t4,vi4,'-.b',t4,v0theoretical,'-
g','MarkerSize',1)
legend('response','input','theoretical SSS')
xlabel('Time (t) sec')
ylabel('Voltage v(t) V')
title('SSS Output Voltage (v(t)) to cos(40000*pi*t)')
R3 = 188.7;
Am2 = [0 1 0; 0 0 1; -1/(L2*R2*C4*C3) -1/(L2*C3) -
(C4+C3)/(R2*C4*C3)];
Bm2 = [0;0;1/(L2*R2*C4*C3)];
Cm2 = [1 0 0; 0 0 0; 0 0 0];
Dm2 = [0;0;0];
t3 = [0:0.000001:0.0005];
vi3 = ones(1,length(t3));
[y3,x3] = lsim(Am2,Bm2,Cm2,Dm2,vi3,t3,x0);
figure(9)
plot(t3,y3)
xlabel('Time (t) sec')
ylabel('Voltage v(t) V')
title('Output Voltage (v(t)) Sinusoidal Steady State')
s3 = lsiminfo(y3(:,1),t3,1)
L4 = 0.0751;
L3 = 0.225;
C5 = 5.62*10^-6;
H3 = tf([1 0 0 0],[1 (R3/L4) (L4+L3)/(C5*L4*L3)
R3/(C5*L3*L4)]);
vi5 = sin(400*pi*t);
VI = tf([400*pi],[1 0 (400*pi)^2]);
figure(10)
bode(H3)
figure(11)
hplot = lsimplot(H3, vi5, t);
figure(12)
Wendt 16
plot(t, 0.707*cos(400*pi*t+45))
xlabel('Time (t) sec')
ylabel('Voltage v_o(t) V')
title('SSS Output Voltage (v(t)) to sin(400*pi*t)')

Mais conteúdo relacionado

Mais procurados

Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1
mkazree
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
manish katara
 
Electrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperElectrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved Paper
Vasista Vinuthan
 
Chap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsChap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equations
Umesh Kumar
 

Mais procurados (20)

Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33
 
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1
 
EE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheetEE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheet
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
 
Ec gate 13
Ec gate 13Ec gate 13
Ec gate 13
 
control engineering revision
control engineering revisioncontrol engineering revision
control engineering revision
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
 
Chebyshev filter
Chebyshev filterChebyshev filter
Chebyshev filter
 
3D Single-Segment Cable Analysis
3D Single-Segment Cable Analysis3D Single-Segment Cable Analysis
3D Single-Segment Cable Analysis
 
DSP_FOEHU - MATLAB 03 - The z-Transform
DSP_FOEHU - MATLAB 03 - The z-TransformDSP_FOEHU - MATLAB 03 - The z-Transform
DSP_FOEHU - MATLAB 03 - The z-Transform
 
Ch24 ssm
Ch24 ssmCh24 ssm
Ch24 ssm
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
Electrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperElectrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved Paper
 
Electrical Circuit Analysis Ch 01 basic concepts
Electrical Circuit Analysis Ch 01 basic conceptsElectrical Circuit Analysis Ch 01 basic concepts
Electrical Circuit Analysis Ch 01 basic concepts
 
Chap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsChap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equations
 
E 2017 1
E 2017 1E 2017 1
E 2017 1
 
Graph Kernelpdf
Graph KernelpdfGraph Kernelpdf
Graph Kernelpdf
 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
 

Destaque

Company background V1
Company background V1Company background V1
Company background V1
Yuling Lei
 
Intern Project - Tech
Intern Project - TechIntern Project - Tech
Intern Project - Tech
NIKET GOSRANI
 
Grandiôse*&Trésor Lumineuse
Grandiôse*&Trésor LumineuseGrandiôse*&Trésor Lumineuse
Grandiôse*&Trésor Lumineuse
Maria Karevskaya
 
Formación de alumnos para el futuro
Formación de alumnos para el futuroFormación de alumnos para el futuro
Formación de alumnos para el futuro
Gloribel Ortiz
 
Formacion de los alumnos para el futuro
Formacion de los alumnos para el futuroFormacion de los alumnos para el futuro
Formacion de los alumnos para el futuro
Gloribel Ortiz
 
Final_Report_NathanWendt_11401887
Final_Report_NathanWendt_11401887Final_Report_NathanWendt_11401887
Final_Report_NathanWendt_11401887
Nathan Wendt
 

Destaque (20)

Question 3
Question 3Question 3
Question 3
 
Diapositivas
DiapositivasDiapositivas
Diapositivas
 
Company background V1
Company background V1Company background V1
Company background V1
 
Intern Project - Tech
Intern Project - TechIntern Project - Tech
Intern Project - Tech
 
Grandiôse*&Trésor Lumineuse
Grandiôse*&Trésor LumineuseGrandiôse*&Trésor Lumineuse
Grandiôse*&Trésor Lumineuse
 
Brochure 2016
Brochure 2016Brochure 2016
Brochure 2016
 
Mapa Conceptual
Mapa ConceptualMapa Conceptual
Mapa Conceptual
 
Comunicacion
ComunicacionComunicacion
Comunicacion
 
Ensayo Alicia Ortiz
Ensayo Alicia OrtizEnsayo Alicia Ortiz
Ensayo Alicia Ortiz
 
Cuadro comparativo
Cuadro comparativoCuadro comparativo
Cuadro comparativo
 
Formación de alumnos para el futuro
Formación de alumnos para el futuroFormación de alumnos para el futuro
Formación de alumnos para el futuro
 
SEGUNDA GUERRA MUNDIAL
SEGUNDA GUERRA MUNDIALSEGUNDA GUERRA MUNDIAL
SEGUNDA GUERRA MUNDIAL
 
Профстандарты
ПрофстандартыПрофстандарты
Профстандарты
 
Formacion de los alumnos para el futuro
Formacion de los alumnos para el futuroFormacion de los alumnos para el futuro
Formacion de los alumnos para el futuro
 
Ficheros morosos
Ficheros morososFicheros morosos
Ficheros morosos
 
Ensayo
EnsayoEnsayo
Ensayo
 
Plan Fee Levelization - Going "Back to the Future"
Plan Fee Levelization - Going "Back to the Future"Plan Fee Levelization - Going "Back to the Future"
Plan Fee Levelization - Going "Back to the Future"
 
Campaña Publicitaria. Por una lectura eficaz.Grupo A 4. power
Campaña Publicitaria. Por una lectura eficaz.Grupo A 4. powerCampaña Publicitaria. Por una lectura eficaz.Grupo A 4. power
Campaña Publicitaria. Por una lectura eficaz.Grupo A 4. power
 
lab12_NathanWendt
lab12_NathanWendtlab12_NathanWendt
lab12_NathanWendt
 
Final_Report_NathanWendt_11401887
Final_Report_NathanWendt_11401887Final_Report_NathanWendt_11401887
Final_Report_NathanWendt_11401887
 

Semelhante a FinalReport

Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05
Charlton Inao
 

Semelhante a FinalReport (20)

Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Online Signals and Systems Assignment Help
Online Signals and Systems Assignment HelpOnline Signals and Systems Assignment Help
Online Signals and Systems Assignment Help
 
wep153
wep153wep153
wep153
 
Control assignment#2
Control assignment#2Control assignment#2
Control assignment#2
 
Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05
 
Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05
 
Dynamics
DynamicsDynamics
Dynamics
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutions
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
 
Chaotic Communication for mobile applica
Chaotic Communication for mobile applicaChaotic Communication for mobile applica
Chaotic Communication for mobile applica
 
Stability and pole location
Stability and pole locationStability and pole location
Stability and pole location
 
Practical Active Filter Design
Practical Active Filter Design Practical Active Filter Design
Practical Active Filter Design
 
transformer
transformertransformer
transformer
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Basic potential step and sweep methods
Basic potential step and sweep methodsBasic potential step and sweep methods
Basic potential step and sweep methods
 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutions
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
powerflowproblem.ppt
powerflowproblem.pptpowerflowproblem.ppt
powerflowproblem.ppt
 

FinalReport

  • 1. EE321 Final Project THIRD ORDER FILTER DESIGN FOR FREQUENCY NATHAN WENDT 11401887 11/18/2015
  • 2. Wendt 1 INTRODUCTION This report documents the process and results of designing various passive, third-order, frequency-selective circuits. All of the circuits designed and analyzed in this report have the same structure (as seen on the cover or figure1) while the behavior is manipulated by changing the components and their configuration. Sections I and II focus on a low-pass configuration while section III covers a high-pass configuration. SECTION I: General Transfer Function and Low-Pass Behavior A) S-domain transfer function In the frequency domain, the circuit elements can be represented by their complex impedances. This enables us to use basic circuit analysis techniques to determine the s-domain transfer function, H(s). To determine the output value, V0(s), in terms of input value, Vi(s), and complex impedances Z1, Z2, Z3, and Z4 we utilize Kirchhoff’s voltage law around the loops shown in figure 1. Figure 1: Complex impedance representation of circuit. Loop 1 on left, loop 2 on right. KVL loop 1: 𝑉𝑖(𝑠) − 𝑍1 𝐼1 − 𝑍2(𝐼1 − 𝐼2) = 0 KVL loop 2: 𝐼1 𝑍2 − 𝐼2(𝑍2 + 𝑍3 + 𝑍4) = 0 𝐼1 = 𝑍2 + 𝑍3 + 𝑍4 𝑍2 𝐼2 1 2
  • 3. Wendt 2 Combine: 𝑉𝑖(𝑠) = 𝐼2(𝑍1 𝑍2 + 𝑍3 + 𝑍4 𝑍2 − 𝑍2 + 𝑍2 𝑍2 + 𝑍3 + 𝑍4 𝑍2 ) 𝐼2 = 𝑉𝑜(𝑠) 𝑍4 Substituting and rearranging yields: 𝐻(𝑠) = 𝑉𝑜(𝑠) 𝑉𝑖(𝑠) = 𝑍4 𝑍2 𝑍1(𝑍2 + 𝑍3 + 𝑍4) − 𝑍2 2 + 𝑍2(𝑍2 + 𝑍3 + 𝑍4) B) Low-pass implementation Figure 2: Low-pass configuration KVL 1: 𝑉𝑖(𝑡) = 𝐿 𝑑𝑖1 𝑑𝑡 + 1 𝐶2 (∫ 𝑖1 𝑑𝑡 − ∫ 𝑖2 𝑑𝑡) KVL 2: 𝑖2 𝑅 + 1 𝐶4 ∫ 𝑖2 𝑑𝑡 + 1 𝐶2 ∫ 𝑖2 𝑑𝑡 − 1 𝐶2 ∫ 𝑖1 𝑑𝑡 = 0 Differentiate twice and solve for di1/dt: 𝑑𝑖1 𝑑𝑡 = 𝑅𝐶2 𝑑2 𝑖2 𝑑𝑡2 + ( 𝐶2 𝐶4 + 1) 𝑑𝑖2 𝑑𝑡
  • 4. Wendt 3 Also noting: 𝑖2 𝑅 + 1 𝐶4 ∫ 𝑖2 𝑑𝑡 = − 1 𝐶2 ∫ 𝑖2 𝑑𝑡 + 1 𝐶2 ∫ 𝑖1 𝑑𝑡 Substitute the above two equations into KVL 1 and substitute: 1 𝐶4 ∫ 𝑖2 𝑑𝑡 = 𝑣0(𝑡) End up with 𝑣𝑖(𝑡) = 𝐿𝑅𝐶2 𝑑2 𝑖2 𝑑𝑡2 + ( 𝐿𝐶2 𝐶4 + 𝐿) 𝑑𝑖2 𝑑𝑡 + 𝑅𝑖2 + 𝑣𝑜(𝑡) Transfer to the s domain, noting that initial conditions = 0: 𝑉𝑖(𝑠) = 𝐿𝑅𝐶2 𝐼2 𝑠2 + ( 𝐿𝐶2 𝐶4 + 𝐿) 𝐼2 𝑠 + 𝑅𝐼2 + 𝑉𝑜(𝑠) Substituting: 𝑉𝑜(𝑠) = 𝐼2 𝑠𝐶4 𝑉𝑖(𝑠) = 𝐿𝑅𝐶2 𝐶4 𝑉𝑜(𝑠)𝑠3 + (𝐿𝐶2 + 𝐿𝐶4)𝑉𝑜(𝑠)𝑠2 + 𝑅𝐶4 𝑉𝑜(𝑠)𝑠 + 𝑉𝑜(𝑠) Translating back to the time domain gives the third order differential equation: 𝑣𝑖(𝑡) = 𝐿𝑅𝐶2 𝐶4 𝑑3 𝑣𝑜(𝑡) 𝑑𝑡3 + (𝐿𝐶2 + 𝐿𝐶4) 𝑑2 𝑣𝑜(𝑡) 𝑑𝑡2 + 𝑅𝐶4 𝑑𝑣𝑜(𝑡) 𝑑𝑡 + 𝑣𝑜(𝑡) From this equation the state equation matrices are: 𝐴 = 0 1 0 0 0 1 −1 𝐿𝑅𝐶4 𝐶2 −1 𝐿𝐶2 −(𝐶1 + 𝐶2) (𝑅𝐶1 𝐶2) 𝐵 = 0 0 1 𝐿𝑅𝐶4 𝐶2 𝐶 = 1 0 0 −1 −(𝑅𝐶2) 0 0 0 0 𝐷 = 0 1 0 with 𝑦 = 𝑣𝑜 𝑣 𝐿
  • 5. Wendt 4 Using MATLAB’s lsim function and the state matrices listed above, the step responses of vo and vL were determined and plotted shown in Figure 2: Figure 3: Step response of vo and inductor voltage. vo → 1 and vL → 0 as ω → ∞ The lsiminfo function produced data on 100% rise time, peak, and 2% settling time: Figure 4: Step response data (left) and annotated plot (right)
  • 6. Wendt 5 SECTION II: Low-Pass Frequency Response, Sinusoidal Steady State, and Butterworth A) Zeros, Poles, Frequency Response, and Sinusoidal Steady State The poles and zeros of a function represent the values of s that result in a zero denominator or numerator respectively. In the case of the low-pass filter, the numerator is a constant and thus there are no zeros. To find the poles, the denominator must first be factored. MATLAB was used in this step to factor and determine the poles. Being a third-order filter, there were 3 poles: 𝑃 = −639.9 −330.3 + 𝑗3005.9 −330.3 − 𝑗3005.9 One real pole and one complex conjugate pair for a total of three poles. Below is a plot of the poles on the real vs imaginary plane: Figure 5: Three poles of third-order low-pass filter
  • 7. Wendt 6 The Bode plot of the transfer function shows the relations between the logarithmic magnitude of gain and phase with respect to input frequency. Using MATLAB’s bode() function, the frequency response to of the systems transfer function is plotted shown below: Figure 6: Bode Diagram for third-order low-pass filter A frequency of 0 correlates to a DC or unit-step input. Being that the y-axis depicts 20log10|H(jw)|, a value of 0 actually corresponds to a gain of 1, which is exactly as to be expected from this filter. Introducing a sinusoidal forcing function changes the time domain response to a sinusoid. Using vi(t) = 10sin(2500t) u(t) and the state space model determined in section I, we can plot the transient response with MATLAB: Figure 7: vo(t) due to sinusoidal input
  • 8. Wendt 7 It is convenient to use the phasor to determine the response of a sinusoidal function. H(j2500) = -.1803 – j0.6559. The magnitude of H(j2500) = 0.68 while the 3rd quadrant phase angle comes out to -106*. So the phasor of H(j2500) is 0.68⁄-106. Tracing from the Bode plot at angular frequency 2500 rads/s verifies the 0.68 gain and -106 phase. Also, the sinusoidal steady state output shows an amplitude of 6.8 which corresponds to the multiplication of the amplitudes of the input and the frequency response (10 * 0.68). B) Third-Order Butterworth Low-Pass The Butterworth filters follow a simple rubric. For a third-order Butterworth low-pass filter, the transfer function must be as follows: 𝐻(𝑠) = 𝜔𝑐 3 𝑠3 + 2𝜔𝑐 𝑠2 + 2𝑠𝜔𝑐 2 + 𝜔𝑐 3 Using a known value of L and 𝜔𝑐, it is easy to determine the other component values by relating the coefficients in front of s between the transfer functions. The transfer function for the low-pass filter with RLC variables is shown below: 𝐻(𝑠) = 1 𝐿𝑅𝐶4 𝐶2 𝑠3 + (𝐶1 + 𝐶2) (𝑅𝐶1 𝐶2) 𝑠2 + 1 𝐿𝐶2 𝑠 + 1 𝐿𝑅𝐶4 𝐶2 By substituting the various combinations of R,L, and C variables the 3 equation, 3 unknown system can be solved for R, C2, and C4. ωc = 40,000π rads/s L = 0.4548 H R = 53865 Ω C2 = 6.962*10-11 F C4 = 2.785*10-10 F a) The pole locations of the transfer function with its new values is found in the same manner as in part A: 𝑃 = −237700 −47800 + 𝑗8106 −47800 − 𝑗8106 The s-plane plot of the poles is shown in figure 8 on the next page:
  • 9. Wendt 8 Figure 8: S-plane pole locations for 3rd order Butterworth low-pass Calculating the pole angles of the two complex poles yields: θ1 = 126.11* θ2 = 233.89* The expected complex pole angles for a 3rd order Butterworth low-pass are at 120* and 240*. That shows that this circuit is a reasonable representation of a 3rd order Buttwerworth low-pass.
  • 10. Wendt 9 b) The step response for the Butterworth low-pass was found using a state space model and the lsim() function in MATLAB. Again, lsiminfo() produces the rise, settle, and peak: Figure 9: Unit step response (left) corresponding data (right) c) The frequency response is found using the same method as in section II)A: Figure 10: Frequency response (Bode plot) of 3rd O low-pass Butterworth Tracing the above plots confirms the -3dB cutoff frequency to be ~125krads/s.
  • 11. Wendt 10 d) The impulse response of the system can be determined by hand using inverse Laplace. The s-domain representation of the impulse, δ(s), is constant at 1. Therefore, the impulse response of the filter is equal to the inverse Laplace of the transfer function. To determine this by hand, the function must be factored to the form with one real and two complex roots: 𝐻(𝑠) = 𝜔𝑐 3 (𝑠 + 𝜔𝑐)(𝑠2 + 𝑠𝜔𝑐 + 𝜔𝑐 2) = 𝐴 (𝑠 + 40𝜋 ∗ 103) + 𝐵 (𝑠 − 62.8 ∗ 103 + 𝑗108.8 ∗ 103) + 𝐶 (𝑠 − 62.8 ∗ 103 − 𝑗108.8 ∗ 103) ℎ(𝑡) = ʆ−1{𝐻(𝑠)} = 2.65 ∗ 10−6 𝑒−40000𝜋𝑡 + (41.9 + 𝑗72.6)103 𝑒(62.8−𝑗108.8)103 𝑡 + (−20.9 + 𝑗36.3)103 𝑒(62.8+𝑗108.8)103 𝑡 e) The step response is found in the same manner as the impulse response, however, u(s) = 1/s. f) The steady-state sinusoidal response is found using the frequency response of the transfer function at the applied frequency. Finding the phasor of H(jω) and using phasor multiplication with the phasor of the input [|H(jω)|*|Ainput| < (θjw + θinput)] yields the theoretical steady state response. Figure 11: Input, response, and theoretical SSS response due to sinusoidal input By 0.1ms, the response has reached the theoretical settling amplitude. This indicates that the peak time is < 1*10-4 s. Step response data indicates a rise time of 0.44*10-4.
  • 12. Wendt 11 SECTION III: High-Pass Butterworth To create a high-pass filter we set Z1 to be a capacitor, Z2 and Z4 to be inductors, and Z3 is a resistor. Plugging in the corresponding complex impedances to the generic transfer function from Section I)A yields: 𝐻(𝑠) = 𝑠3 𝑠3 + 𝑅 𝐿4 𝑠2 + 𝐿4 + 𝐿2 𝐶𝐿2 𝐿4 𝑠 + 𝑅 𝐶𝐿2 𝐿4 Also, the Butterworth high-pass is of the form: 𝐻(𝑠) = 𝑠3 𝑠3 + 2𝜔𝑐 𝑠2 + 2𝑠𝜔𝑐 2 + 𝜔𝑐 3 a) Using R = 188.7 and ωc = 400π rads/s, the other component values can be found by the same method as in section II)B: ωc = 400π rads/s L2 = 0.225 H L4 = 0.0751 H R = 188.7 Ω C = 5.62*10-6 F b) Using MATLAB, the Bode plot is shown below: Figure 12: Bode of High-Pass Butterworth It can be seen that the high-pass Bode has the correct -3dB frequency.
  • 13. Wendt 12 c) The steady state sinusoidal output is found using an input of sin(400πt)u(t) and MATLAB. The phasor magnitude of the filter at 400π should be 0.707. The plots of the response and the theoretical SSS are shown below: Figure 13: Input (grey) response (blue) of HP Butterworth with sinusoidal input Figure 14: Theoretical SSS response of HPBW to sin input The phase of the theoretical and response plots match and the magnitude is 0.707. Both parts are verified.
  • 14. Wendt 13 APPENDIX A: Matlab code t = [0:0.00001:0.02]; xyz = 0.887; L=0.1;C2=(1.4-xyz*0.4)*10^-6;C1=(1+xyz*0.2)*10^- 6;R=1300+xyz*100; A = [0 1 0; 0 0 1; -1/(L*R*C1*C2) -1/(L*C2) - (C1+C2)/(R*C1*C2)] B = [0;0;1/(L*R*C1*C2)] C = [1 0 0; -1 -(R*C2) 0; 0 0 0] D = [0;1;0] x0 = [0;0;0]; vi = ones(1,length(t)); %Step input [y,x] = lsim(A,B,C,D,vi,t,x0); figure(1) subplot(2,1,1) plot(t,y(:,1)) xlabel('Time (t) sec') ylabel('Voltage v(t) V') title('Output (v(t)) voltage, Inductor (v_L(t)) voltage Third Order Low-Pass') subplot(2,1,2) plot(t,y(:,2)) xlabel('Time (t) sec') ylabel('Voltage v_L(t) V') s = lsiminfo(y(:,1),t,1) %rise/settle/% overshoot/undershoot H = tf([1/(R*L*C2*C1)],[1 (C1+C2)/(R*C1*C2) 1/(L*C2) 1/(R*L*C2*C1)]); figure(2) bode(H) z = zero(H); p = pole(H) figure(3) zplane(z,p) xlabel('Real Axis')
  • 15. Wendt 14 ylabel('Imaginary Axis') title('Poles (x) and Zeroes (o)') t2 = [0:0.00001:0.045]; vi2 = 10*sin(2500*t2); %sinuiodal input [y1,x1] = lsim(A,B,C,D,vi2,t2,x0); figure(4) plot(t2,y1(:,1)) xlabel('Time (t) sec') ylabel('Voltage v(t) V') title('Output Voltage (v(t)) Sinusoidal Steady State') R2 = 53865; L2 = 0.4548; C3 = 6.962*10^-11; C4 = 2.785*10^-10; H2 = tf([1/(R2*L2*C3*C4)],[1 (C4+C3)/(R2*C4*C3) 1/(L2*C3) 1/(R2*L2*C3*C4)]); z2 = zero(H2); p2 = pole(H2) figure (5) zplane(z2,p2) xlabel('Real Axis') ylabel('Imaginary Axis') title('Poles (x) and Zeroes (o)') figure(6) step(H2) RT = [0 1]; S = stepinfo(H2,'RiseTimeLimits', RT) figure(7) bode(H2) t4 = [0:0.000001:0.001]; vi4 = cos(40000*pi*t4); v0theoretical = 0.569*cos(40000*pi*t4-141); [y4,x4] = lsim(Am2,Bm2,Cm2,Dm2,vi4,t4,x0);
  • 16. Wendt 15 figure(8) plot(t4,y4(:,1),'-*r',t4,vi4,'-.b',t4,v0theoretical,'- g','MarkerSize',1) legend('response','input','theoretical SSS') xlabel('Time (t) sec') ylabel('Voltage v(t) V') title('SSS Output Voltage (v(t)) to cos(40000*pi*t)') R3 = 188.7; Am2 = [0 1 0; 0 0 1; -1/(L2*R2*C4*C3) -1/(L2*C3) - (C4+C3)/(R2*C4*C3)]; Bm2 = [0;0;1/(L2*R2*C4*C3)]; Cm2 = [1 0 0; 0 0 0; 0 0 0]; Dm2 = [0;0;0]; t3 = [0:0.000001:0.0005]; vi3 = ones(1,length(t3)); [y3,x3] = lsim(Am2,Bm2,Cm2,Dm2,vi3,t3,x0); figure(9) plot(t3,y3) xlabel('Time (t) sec') ylabel('Voltage v(t) V') title('Output Voltage (v(t)) Sinusoidal Steady State') s3 = lsiminfo(y3(:,1),t3,1) L4 = 0.0751; L3 = 0.225; C5 = 5.62*10^-6; H3 = tf([1 0 0 0],[1 (R3/L4) (L4+L3)/(C5*L4*L3) R3/(C5*L3*L4)]); vi5 = sin(400*pi*t); VI = tf([400*pi],[1 0 (400*pi)^2]); figure(10) bode(H3) figure(11) hplot = lsimplot(H3, vi5, t); figure(12)
  • 17. Wendt 16 plot(t, 0.707*cos(400*pi*t+45)) xlabel('Time (t) sec') ylabel('Voltage v_o(t) V') title('SSS Output Voltage (v(t)) to sin(400*pi*t)')