SlideShare uma empresa Scribd logo
1 de 78
Baixar para ler offline
Intro	
  To	
  Convolu,onal	
  Neural	
  
Networks	
  
Mark	
  Scully	
  
datapraxis.com	
  
Why	
  CNNs?	
  
h@ps://papers.nips.cc/paper/4824-­‐imagenet-­‐classifica,on-­‐with-­‐deep-­‐convolu,onal-­‐neural-­‐networks	
  
Image	
  Classifica,on	
  
Object	
  Recogni,on	
  
h@ps://research.googleblog.com/2014/09/building-­‐deeper-­‐understanding-­‐of-­‐images.html	
  
h@p://cs.stanford.edu/people/karpathy/deepimagesent/	
  
Automa,c	
  Cap,oning	
  
h@ps://research.googleblog.com/2014/11/a-­‐picture-­‐is-­‐worth-­‐thousand-­‐coherent.html	
  
Facial	
  Recogni,on	
  	
  
Y.	
  Taigman,	
  M.	
  Yang,	
  M.	
  Ranzato,	
  L.	
  Wolf,	
  DeepFace:	
  Closing	
  the	
  Gap	
  to	
  Human-­‐Level	
  Performance	
  in	
  Face	
  Verifica,on,	
  CVPR	
  
2014	
  
Terminator	
  Vision	
  
Colorize	
  Black	
  &	
  White	
  Images	
  
h@p://richzhang.github.io/coloriza,on/	
  
Style	
  Transfer	
  
h@p://genekogan.com/works/style-­‐transfer/	
  
Mona	
  Lisa	
  restyled	
  by	
  Picasso,	
  van	
  Gough,	
  and	
  Monet	
  
Generate	
  An	
  Image	
  From	
  A	
  Sketch	
  
h@ps://affinelayer.com/pixsrv/	
  
ImageNet	
  Challenge	
  
Alexnet	
  
Li	
  Fei-­‐Fei:	
  ImageNet	
  Large	
  Scale	
  Visual	
  Recogni,on	
  Challenge,	
  2014	
  
ImageNet	
  Challenge	
  
ILSVRC+
ImageNet Classification error throughout years and groups
Li	
  Fei-­‐Fei:	
  ImageNet	
  Large	
  Scale	
  Visual	
  Recogni,on	
  Challenge,	
  2014	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
Input	
  
Conv	
  
Relu	
  
Pool	
  
Conv	
  
Relu	
  
Pool	
  
Conv	
  
Relu	
  
Conv	
  
Relu	
  
Conv	
  
Relu	
  
Pool	
  
FC	
  
Dropout	
  
FC	
  
Dropout	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  
1097-­‐1105,	
  2012	
  
FC	
  1000	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  1097-­‐1105,	
  
2012	
  	
  
ImageNet	
  Challenge	
  
Alexnet	
  
Li	
  Fei-­‐Fei:	
  ImageNet	
  Large	
  Scale	
  Visual	
  Recogni,on	
  Challenge,	
  2014	
  
Tradi,onal	
  Approach	
  To	
  Image	
  
Classifica,on	
  
Input	
  Image	
  
Hand	
  
Extracted	
  
Features	
  
Classifier	
   Object	
  Label	
  
Issues	
  
•  Who	
  makes	
  the	
  features?	
  
– Need	
  an	
  expert	
  for	
  each	
  problem	
  domain	
  
•  Which	
  features?	
  
– Are	
  they	
  the	
  same	
  for	
  every	
  problem	
  type?	
  
•  How	
  robust	
  are	
  these	
  features	
  to	
  real	
  images?	
  
– Transla,on,	
  Rota,on,	
  contrast	
  changes,	
  etc.	
  
Are	
  these	
  pictures	
  of	
  the	
  same	
  thing?	
  
Features	
  Are	
  Hierarchical	
  
	
  
•  A	
  squirrel	
  is	
  a	
  combina,on	
  of	
  fur,	
  arms,	
  legs,	
  
&	
  a	
  tail	
  in	
  specific	
  propor,ons.	
  
•  A	
  tail	
  is	
  made	
  of	
  texture,	
  color,	
  and	
  spa,al	
  
rela,onships	
  
•  A	
  texture	
  is	
  made	
  of	
  oriented	
  edges,	
  
gradients,	
  and	
  colors	
  
Image	
  Features	
  
•  A	
  feature	
  is	
  something	
  in	
  the	
  image	
  or	
  derived	
  
from	
  it	
  that’s	
  relevant	
  to	
  the	
  task	
  
•  Edges	
  
•  Lines	
  at	
  different	
  angles,	
  curves,	
  etc.	
  
•  Colors,	
  or	
  pa@erns	
  of	
  colors	
  
•  SIFT,	
  SURF,	
  HOG,	
  GIST,	
  ORB,	
  etc	
  
Edges	
  
Ideally	
  We’d	
  Learn	
  Features	
  
Input	
  
Image	
  
Output	
  
Label	
  
Ideally	
  We’d	
  Learn	
  Features	
  
Input	
  
Image	
  
Output	
  
Label	
  
CNNs	
  
What	
  is	
  a	
  Neural	
  Network?	
  
•  Perceptron	
  is	
  biologically	
  inspired	
  
•  A	
  mental	
  model	
  for	
  interpre,ng	
  the	
  math	
  
h@p://cs231n.stanford.edu/index.html	
  	
  
Perceptron	
  
1	
  
x1	
  
x2	
  
x3	
  
xm	
  
Σ	
   Output	
  
Ac,va,on	
  
Func,on	
  
Sum	
  
w0	
  
w1	
  
w2	
  
w3	
  
wm	
  
Weights	
  
Inputs	
  
Perceptron	
  
1	
  
x1	
  
x2	
  
x3	
  
xm	
  
Σ	
   Output	
  
Ac,va,on	
  
Func,on	
  
Sum	
  
w0	
  
w1	
  
w2	
  
w3	
  
wm	
  
Weights	
  
Inputs	
  
wi xi
i=0
m
∑ = w0 x0 + w1x1 + w2 x2 +...+ wm xm
Ac,va,on	
  Func,ons	
  
Training:	
  Upda,ng	
  Weights	
  
1	
  
x1	
  
x2	
  
x3	
  
x4	
  
Σ	
   Output	
  
Ac,va,on	
  
Func,on	
  
Sum	
  
w0	
  
w1	
  
w2	
  
w3	
  
w4	
  
Weights	
  
Inputs	
  
Error	
  =	
  Output	
  -­‐	
  Target	
  
Perceptron	
  Decision	
  Boundary	
  
Deep	
  (Mul,-­‐Layer)	
  Neural	
  Network	
  
Backpropaga,on	
  
•  Error	
  propagates	
  backward	
  and	
  it	
  all	
  works	
  via	
  
(normally	
  stochas,c)	
  gradient	
  descent.	
  
•  (wave	
  hands)	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  1097-­‐1105,	
  
2012	
  	
  
CNN	
  Layer	
  Architecture	
  
Input	
  
Convolu,on	
  
Nonlinearity	
  
Pooling	
  (op,onal)	
  
Dropout	
  (op,onal)	
  
CNN	
  Layer	
  Architecture	
  
Input	
  
Convolu,on	
  
Nonlinearity	
  
Pooling	
  (op,onal)	
  
Dropout	
  (op,onal)	
  
Input:	
  Pixels	
  Are	
  Just	
  Numbers	
  
h@ps://medium.com/@ageitgey/machine-­‐learning-­‐is-­‐fun-­‐part-­‐3-­‐deep-­‐learning-­‐and-­‐convolu,onal-­‐neural-­‐networks-­‐
f40359318721	
  
CNN	
  Layer	
  Architecture	
  
Input	
  
Convolu,on	
  
Nonlinearity	
  
Pooling	
  (op,onal)	
  
Dropout	
  (op,onal)	
  
Goals	
  
•  Need	
  to	
  detect	
  the	
  same	
  feature	
  anywhere	
  in	
  
an	
  image	
  
•  Reuse	
  the	
  same	
  weights	
  over	
  and	
  over	
  
•  What	
  we	
  really	
  want	
  is	
  one	
  neuron	
  that	
  
detects	
  a	
  feature	
  that	
  we	
  slide	
  over	
  the	
  image	
  
Neuron	
  =	
  Filter	
  
•  Act	
  as	
  detectors	
  for	
  some	
  specific	
  image	
  
feature	
  
•  Take	
  images	
  as	
  inputs	
  and	
  produce	
  image	
  like	
  
feature	
  maps	
  as	
  outputs	
  
Convolu,on	
  
•  Like	
  sliding	
  a	
  matrix	
  over	
  the	
  input	
  and	
  
performing	
  dot	
  products	
  
•  It’s	
  all	
  just	
  matrix	
  mul,plica,on	
  
Convolu,on	
  
Convolu,on	
  
Filters	
  (or	
  Kernels)	
  
Sharpen	
  
Filters	
  (or	
  Kernels)	
  
Box	
  Blur	
  
Filters	
  (or	
  Kernels)	
  
Edge	
  Detec,on	
  
Feature	
  Map	
  
Alexnet	
  Architecture	
  
Convolu,ons	
  
CNN	
  Layer	
  Architecture	
  
Input	
  
Convolu,on	
  
Nonlinearity	
  
Pooling	
  (op,onal)	
  
Dropout	
  (op,onal)	
  
Nonlinearity	
  
CNN	
  Layer	
  Architecture	
  
Input	
  
Convolu,on	
  
Nonlinearity	
  
Pooling	
  (op,onal)	
  
Dropout	
  (op,onal)	
  
Max	
  Pooling	
  Example	
  
Alexnet	
  Architecture	
  
3x3	
  stride	
  2	
  Max	
  Pooling	
  
Pooling	
  
•  Allows	
  us	
  to	
  look	
  at	
  more	
  of	
  the	
  image	
  
•  Max,	
  sum,	
  and	
  L2	
  pooling	
  
•  A	
  type	
  of	
  downsampling	
  
CNN	
  Layer	
  Architecture	
  
Input	
  
Convolu,on	
  
Nonlinearity	
  
Pooling	
  (op,onal)	
  
Dropout	
  (op,onal)	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
Input	
  
Conv	
  
Relu	
  
Pool	
  
Conv	
  
Relu	
  
Pool	
  
Conv	
  
Relu	
  
Conv	
  
Relu	
  
Conv	
  
Relu	
  
Pool	
  
FC	
  
Dropout	
  
FC	
  
Dropout	
  
FC	
  1000	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  
1097-­‐1105,	
  2012	
  
Dropout	
  
Dropout	
  
h@p://cs231n.github.io/neural-­‐networks-­‐2/	
  
•  Randomly	
  disable	
  some	
  neurons	
  on	
  the	
  
forward	
  pass	
  
•  Prevents	
  overfiong	
  
	
  
Let’s	
  Predict	
  Something!	
  
•  We	
  have	
  all	
  these	
  features,	
  how	
  do	
  we	
  learn	
  
to	
  label	
  something	
  based	
  on	
  them?	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
Input	
  
Conv	
  
Relu	
  
Pool	
  
Conv	
  
Relu	
  
Pool	
  
Conv	
  
Relu	
  
Conv	
  
Relu	
  
Conv	
  
Relu	
  
Pool	
  
FC	
  
Dropout	
  
FC	
  
Dropout	
  
FC	
  1000	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  
1097-­‐1105,	
  2012	
  
Fully	
  Connected	
  
Fully	
  Connected	
  Layers	
  
•  Each	
  neuron	
  is	
  connected	
  to	
  all	
  inputs	
  
•  Standard	
  mul,layer	
  neural	
  net	
  
•  Learns	
  non-­‐linear	
  combina,ons	
  of	
  the	
  feature	
  
maps	
  to	
  make	
  predic,ons	
  
Alexnet	
  Architecture	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
Input	
  
Conv	
  
Relu	
  
Pool	
  
Conv	
  
Relu	
  
Pool	
  
Conv	
  
Relu	
  
Conv	
  
Relu	
  
Conv	
  
Relu	
  
Pool	
  
FC	
  
Dropout	
  
FC	
  
Dropout	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  
1097-­‐1105,	
  2012	
  
FC	
  1000	
  
Which	
  Class	
  Is	
  It	
  Again?	
  
•  FC-­‐1000	
  gives	
  us	
  1000	
  numbers,	
  one	
  per	
  class,	
  
how	
  do	
  we	
  compare	
  them?	
  
Soqmax	
  
•  Mul,-­‐class	
  version	
  of	
  logis,c	
  func,on	
  
•  Outputs	
  normalized	
  class	
  “probabili,es”	
  
•  Takes	
  m	
  inputs	
  and	
  produces	
  m	
  outputs	
  
between	
  zero	
  and	
  one,	
  that	
  sum	
  to	
  one	
  
•  Cross-­‐entropy	
  loss	
  
•  Differen,able	
  
h@ps://papers.nips.cc/paper/4824-­‐imagenet-­‐classifica,on-­‐with-­‐deep-­‐convolu,onal-­‐neural-­‐networks	
  
Image	
  Classifica,on	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  1097-­‐1105,	
  
2012	
  	
  
Layer	
  1	
  
Learned	
  Filters	
  –	
  Layer1	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  1097-­‐1105,	
  
2012	
  	
  
Layer	
  2	
  
Learned	
  Filters	
  –	
  Layer2	
  
Visualizing	
  and	
  Understanding	
  Convolu,onal	
  Networks	
  -­‐	
  Zeiler	
  &	
  Fergus,	
  ECCV	
  2014	
  	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  1097-­‐1105,	
  
2012	
  	
  
Layer	
  3	
  
Learned	
  Filters	
  -­‐	
  Layer3	
  
Visualizing	
  and	
  Understanding	
  Convolu,onal	
  Networks	
  -­‐	
  Zeiler	
  &	
  Fergus,	
  ECCV	
  2014	
  	
  	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  1097-­‐1105,	
  
2012	
  	
  
Layer	
  4	
   Layer	
  5	
  
Learned	
  Features	
  –	
  Layers	
  4	
  &	
  5	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  1097-­‐1105,	
  
2012	
  	
  
Alexnet	
  Architecture	
  -­‐	
  2012	
  
Input	
  
Conv	
  
Relu	
  
Pool	
  
Conv	
  
Relu	
  
Pool	
  
Conv	
  
Relu	
  
Conv	
  
Relu	
  
Conv	
  
Relu	
  
Pool	
  
FC	
  
Dropout	
  
FC	
  
Dropout	
  
ImageNet	
  Classifica,on	
  with	
  Deep	
  Convolu,onal	
  Neural	
  Networks	
  Alex	
  Krizhevsky,	
  Ilya	
  Sutskever	
  and	
  Geoffrey	
  E.	
  Hinton	
  
Advances	
  in	
  Neural	
  Informa,on	
  Processing	
  Systems	
  25	
  eds.F.	
  Pereira,	
  C.J.C.	
  Burges,	
  L.	
  Bo@ou	
  and	
  K.Q.	
  Weinberger	
  pp.	
  
1097-­‐1105,	
  2012	
  
FC	
  1000	
  
VGG16	
  
h@ps://blog.heuritech.com/2016/02/29/a-­‐brief-­‐report-­‐of-­‐the-­‐heuritech-­‐deep-­‐learning-­‐meetup-­‐5/	
  
Google’s	
  Incep,on	
  Module	
  
To	
  Learn	
  More	
  
•  h@p://colah.github.io/posts/2014-­‐07-­‐
Understanding-­‐Convolu,ons/	
  
•  h@ps://adeshpande3.github.io/
adeshpande3.github.io/The-­‐9-­‐Deep-­‐Learning-­‐
Papers-­‐You-­‐Need-­‐To-­‐Know-­‐About.html	
  
•  h@p://cs231n.github.io/	
  
•  h@p://course.fast.ai/	
  
Ques,ons?	
  

Mais conteúdo relacionado

Mais procurados

Transfer Learning and Fine-tuning Deep Neural Networks
 Transfer Learning and Fine-tuning Deep Neural Networks Transfer Learning and Fine-tuning Deep Neural Networks
Transfer Learning and Fine-tuning Deep Neural Networks
PyData
 

Mais procurados (20)

Convolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep LearningConvolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep Learning
 
Neural networks and deep learning
Neural networks and deep learningNeural networks and deep learning
Neural networks and deep learning
 
Batch normalization presentation
Batch normalization presentationBatch normalization presentation
Batch normalization presentation
 
Rnn & Lstm
Rnn & LstmRnn & Lstm
Rnn & Lstm
 
Introduction to CNN
Introduction to CNNIntroduction to CNN
Introduction to CNN
 
Deep learning
Deep learningDeep learning
Deep learning
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...
 
Deep Learning - Overview of my work II
Deep Learning - Overview of my work IIDeep Learning - Overview of my work II
Deep Learning - Overview of my work II
 
Resnet
ResnetResnet
Resnet
 
GoogLeNet Insights
GoogLeNet InsightsGoogLeNet Insights
GoogLeNet Insights
 
Google net
Google netGoogle net
Google net
 
Training Neural Networks
Training Neural NetworksTraining Neural Networks
Training Neural Networks
 
Modern Convolutional Neural Network techniques for image segmentation
Modern Convolutional Neural Network techniques for image segmentationModern Convolutional Neural Network techniques for image segmentation
Modern Convolutional Neural Network techniques for image segmentation
 
CVPR 2018 Paper Reading MobileNet V2
CVPR 2018 Paper Reading MobileNet V2CVPR 2018 Paper Reading MobileNet V2
CVPR 2018 Paper Reading MobileNet V2
 
Transfer Learning and Fine-tuning Deep Neural Networks
 Transfer Learning and Fine-tuning Deep Neural Networks Transfer Learning and Fine-tuning Deep Neural Networks
Transfer Learning and Fine-tuning Deep Neural Networks
 
An introduction to Deep Learning
An introduction to Deep LearningAn introduction to Deep Learning
An introduction to Deep Learning
 
Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN)Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN)
 
Dcgan
DcganDcgan
Dcgan
 
Image segmentation with deep learning
Image segmentation with deep learningImage segmentation with deep learning
Image segmentation with deep learning
 
Machine learning with graph
Machine learning with graphMachine learning with graph
Machine learning with graph
 

Semelhante a Intro To Convolutional Neural Networks

Teaching machines to see the process of designing (datasets) with ai
Teaching machines to see  the process of designing (datasets) with aiTeaching machines to see  the process of designing (datasets) with ai
Teaching machines to see the process of designing (datasets) with ai
DevFest DC
 
20141003.journal club
20141003.journal club20141003.journal club
20141003.journal club
Hayaru SHOUNO
 
Yann le cun
Yann le cunYann le cun
Yann le cun
Yandex
 
Fcv learn yu
Fcv learn yuFcv learn yu
Fcv learn yu
zukun
 
Modeling perceptual similarity and shift invariance in deep networks
Modeling perceptual similarity and shift invariance in deep networksModeling perceptual similarity and shift invariance in deep networks
Modeling perceptual similarity and shift invariance in deep networks
NAVER Engineering
 
Mit6870 orsu lecture11
Mit6870 orsu lecture11Mit6870 orsu lecture11
Mit6870 orsu lecture11
zukun
 

Semelhante a Intro To Convolutional Neural Networks (20)

Teaching machines to see the process of designing (datasets) with ai
Teaching machines to see  the process of designing (datasets) with aiTeaching machines to see  the process of designing (datasets) with ai
Teaching machines to see the process of designing (datasets) with ai
 
Evolution of Deep Learning and new advancements
Evolution of Deep Learning and new advancementsEvolution of Deep Learning and new advancements
Evolution of Deep Learning and new advancements
 
Deep Learning with Python (PyData Seattle 2015)
Deep Learning with Python (PyData Seattle 2015)Deep Learning with Python (PyData Seattle 2015)
Deep Learning with Python (PyData Seattle 2015)
 
Image Translation with GAN
Image Translation with GANImage Translation with GAN
Image Translation with GAN
 
20141003.journal club
20141003.journal club20141003.journal club
20141003.journal club
 
Yann le cun
Yann le cunYann le cun
Yann le cun
 
[Mmlab seminar 2016] deep learning for human pose estimation
[Mmlab seminar 2016] deep learning for human pose estimation[Mmlab seminar 2016] deep learning for human pose estimation
[Mmlab seminar 2016] deep learning for human pose estimation
 
Fcv learn yu
Fcv learn yuFcv learn yu
Fcv learn yu
 
Scalable image recognition model with deep embedding
Scalable image recognition model with deep embeddingScalable image recognition model with deep embedding
Scalable image recognition model with deep embedding
 
Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)
 
CNN Algorithm
CNN AlgorithmCNN Algorithm
CNN Algorithm
 
Talk from NVidia Developer Connect
Talk from NVidia Developer ConnectTalk from NVidia Developer Connect
Talk from NVidia Developer Connect
 
Artificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep LearningArtificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep Learning
 
Modeling perceptual similarity and shift invariance in deep networks
Modeling perceptual similarity and shift invariance in deep networksModeling perceptual similarity and shift invariance in deep networks
Modeling perceptual similarity and shift invariance in deep networks
 
Intro to Neural Networks
Intro to Neural NetworksIntro to Neural Networks
Intro to Neural Networks
 
Big Data Intelligence: from Correlation Discovery to Causal Reasoning
Big Data Intelligence: from Correlation Discovery to Causal Reasoning Big Data Intelligence: from Correlation Discovery to Causal Reasoning
Big Data Intelligence: from Correlation Discovery to Causal Reasoning
 
MLIP - Chapter 3 - Introduction to deep learning
MLIP - Chapter 3 - Introduction to deep learningMLIP - Chapter 3 - Introduction to deep learning
MLIP - Chapter 3 - Introduction to deep learning
 
Mit6870 orsu lecture11
Mit6870 orsu lecture11Mit6870 orsu lecture11
Mit6870 orsu lecture11
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networks
 
A brief introduction to recent segmentation methods
A brief introduction to recent segmentation methodsA brief introduction to recent segmentation methods
A brief introduction to recent segmentation methods
 

Último

CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
amitlee9823
 
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
shivangimorya083
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
Lars Albertsson
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...
shambhavirathore45
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
AroojKhan71
 

Último (20)

CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptx
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptx
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
 
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
 
Smarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptxSmarteg dropshipping via API with DroFx.pptx
Smarteg dropshipping via API with DroFx.pptx
 
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
 
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptx
 
Discover Why Less is More in B2B Research
Discover Why Less is More in B2B ResearchDiscover Why Less is More in B2B Research
Discover Why Less is More in B2B Research
 
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightCheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
 
Edukaciniai dropshipping via API with DroFx
Edukaciniai dropshipping via API with DroFxEdukaciniai dropshipping via API with DroFx
Edukaciniai dropshipping via API with DroFx
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...
 
Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interaction
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
 
Sampling (random) method and Non random.ppt
Sampling (random) method and Non random.pptSampling (random) method and Non random.ppt
Sampling (random) method and Non random.ppt
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptx
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptx
 

Intro To Convolutional Neural Networks

  • 1. Intro  To  Convolu,onal  Neural   Networks   Mark  Scully   datapraxis.com  
  • 7. Facial  Recogni,on     Y.  Taigman,  M.  Yang,  M.  Ranzato,  L.  Wolf,  DeepFace:  Closing  the  Gap  to  Human-­‐Level  Performance  in  Face  Verifica,on,  CVPR   2014  
  • 9. Colorize  Black  &  White  Images   h@p://richzhang.github.io/coloriza,on/  
  • 10. Style  Transfer   h@p://genekogan.com/works/style-­‐transfer/   Mona  Lisa  restyled  by  Picasso,  van  Gough,  and  Monet  
  • 11. Generate  An  Image  From  A  Sketch   h@ps://affinelayer.com/pixsrv/  
  • 12. ImageNet  Challenge   Alexnet   Li  Fei-­‐Fei:  ImageNet  Large  Scale  Visual  Recogni,on  Challenge,  2014  
  • 13. ImageNet  Challenge   ILSVRC+ ImageNet Classification error throughout years and groups Li  Fei-­‐Fei:  ImageNet  Large  Scale  Visual  Recogni,on  Challenge,  2014  
  • 14. Alexnet  Architecture  -­‐  2012   Input   Conv   Relu   Pool   Conv   Relu   Pool   Conv   Relu   Conv   Relu   Conv   Relu   Pool   FC   Dropout   FC   Dropout   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.   1097-­‐1105,  2012   FC  1000  
  • 15. Alexnet  Architecture  -­‐  2012   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.  1097-­‐1105,   2012    
  • 16. ImageNet  Challenge   Alexnet   Li  Fei-­‐Fei:  ImageNet  Large  Scale  Visual  Recogni,on  Challenge,  2014  
  • 17. Tradi,onal  Approach  To  Image   Classifica,on   Input  Image   Hand   Extracted   Features   Classifier   Object  Label  
  • 18. Issues   •  Who  makes  the  features?   – Need  an  expert  for  each  problem  domain   •  Which  features?   – Are  they  the  same  for  every  problem  type?   •  How  robust  are  these  features  to  real  images?   – Transla,on,  Rota,on,  contrast  changes,  etc.  
  • 19. Are  these  pictures  of  the  same  thing?  
  • 20. Features  Are  Hierarchical     •  A  squirrel  is  a  combina,on  of  fur,  arms,  legs,   &  a  tail  in  specific  propor,ons.   •  A  tail  is  made  of  texture,  color,  and  spa,al   rela,onships   •  A  texture  is  made  of  oriented  edges,   gradients,  and  colors  
  • 21. Image  Features   •  A  feature  is  something  in  the  image  or  derived   from  it  that’s  relevant  to  the  task   •  Edges   •  Lines  at  different  angles,  curves,  etc.   •  Colors,  or  pa@erns  of  colors   •  SIFT,  SURF,  HOG,  GIST,  ORB,  etc  
  • 23. Ideally  We’d  Learn  Features   Input   Image   Output   Label  
  • 24. Ideally  We’d  Learn  Features   Input   Image   Output   Label   CNNs  
  • 25. What  is  a  Neural  Network?   •  Perceptron  is  biologically  inspired   •  A  mental  model  for  interpre,ng  the  math   h@p://cs231n.stanford.edu/index.html    
  • 26. Perceptron   1   x1   x2   x3   xm   Σ   Output   Ac,va,on   Func,on   Sum   w0   w1   w2   w3   wm   Weights   Inputs  
  • 27. Perceptron   1   x1   x2   x3   xm   Σ   Output   Ac,va,on   Func,on   Sum   w0   w1   w2   w3   wm   Weights   Inputs   wi xi i=0 m ∑ = w0 x0 + w1x1 + w2 x2 +...+ wm xm
  • 29. Training:  Upda,ng  Weights   1   x1   x2   x3   x4   Σ   Output   Ac,va,on   Func,on   Sum   w0   w1   w2   w3   w4   Weights   Inputs   Error  =  Output  -­‐  Target  
  • 32. Backpropaga,on   •  Error  propagates  backward  and  it  all  works  via   (normally  stochas,c)  gradient  descent.   •  (wave  hands)  
  • 33.
  • 34. Alexnet  Architecture  -­‐  2012   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.  1097-­‐1105,   2012    
  • 35. CNN  Layer  Architecture   Input   Convolu,on   Nonlinearity   Pooling  (op,onal)   Dropout  (op,onal)  
  • 36. CNN  Layer  Architecture   Input   Convolu,on   Nonlinearity   Pooling  (op,onal)   Dropout  (op,onal)  
  • 37. Input:  Pixels  Are  Just  Numbers   h@ps://medium.com/@ageitgey/machine-­‐learning-­‐is-­‐fun-­‐part-­‐3-­‐deep-­‐learning-­‐and-­‐convolu,onal-­‐neural-­‐networks-­‐ f40359318721  
  • 38. CNN  Layer  Architecture   Input   Convolu,on   Nonlinearity   Pooling  (op,onal)   Dropout  (op,onal)  
  • 39. Goals   •  Need  to  detect  the  same  feature  anywhere  in   an  image   •  Reuse  the  same  weights  over  and  over   •  What  we  really  want  is  one  neuron  that   detects  a  feature  that  we  slide  over  the  image  
  • 40. Neuron  =  Filter   •  Act  as  detectors  for  some  specific  image   feature   •  Take  images  as  inputs  and  produce  image  like   feature  maps  as  outputs  
  • 41. Convolu,on   •  Like  sliding  a  matrix  over  the  input  and   performing  dot  products   •  It’s  all  just  matrix  mul,plica,on  
  • 44. Filters  (or  Kernels)   Sharpen  
  • 45. Filters  (or  Kernels)   Box  Blur  
  • 46. Filters  (or  Kernels)   Edge  Detec,on   Feature  Map  
  • 48. CNN  Layer  Architecture   Input   Convolu,on   Nonlinearity   Pooling  (op,onal)   Dropout  (op,onal)  
  • 50. CNN  Layer  Architecture   Input   Convolu,on   Nonlinearity   Pooling  (op,onal)   Dropout  (op,onal)  
  • 52. Alexnet  Architecture   3x3  stride  2  Max  Pooling  
  • 53. Pooling   •  Allows  us  to  look  at  more  of  the  image   •  Max,  sum,  and  L2  pooling   •  A  type  of  downsampling  
  • 54. CNN  Layer  Architecture   Input   Convolu,on   Nonlinearity   Pooling  (op,onal)   Dropout  (op,onal)  
  • 55. Alexnet  Architecture  -­‐  2012   Input   Conv   Relu   Pool   Conv   Relu   Pool   Conv   Relu   Conv   Relu   Conv   Relu   Pool   FC   Dropout   FC   Dropout   FC  1000   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.   1097-­‐1105,  2012   Dropout  
  • 56. Dropout   h@p://cs231n.github.io/neural-­‐networks-­‐2/   •  Randomly  disable  some  neurons  on  the   forward  pass   •  Prevents  overfiong    
  • 57. Let’s  Predict  Something!   •  We  have  all  these  features,  how  do  we  learn   to  label  something  based  on  them?  
  • 58. Alexnet  Architecture  -­‐  2012   Input   Conv   Relu   Pool   Conv   Relu   Pool   Conv   Relu   Conv   Relu   Conv   Relu   Pool   FC   Dropout   FC   Dropout   FC  1000   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.   1097-­‐1105,  2012   Fully  Connected  
  • 59. Fully  Connected  Layers   •  Each  neuron  is  connected  to  all  inputs   •  Standard  mul,layer  neural  net   •  Learns  non-­‐linear  combina,ons  of  the  feature   maps  to  make  predic,ons  
  • 61. Alexnet  Architecture  -­‐  2012   Input   Conv   Relu   Pool   Conv   Relu   Pool   Conv   Relu   Conv   Relu   Conv   Relu   Pool   FC   Dropout   FC   Dropout   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.   1097-­‐1105,  2012   FC  1000  
  • 62. Which  Class  Is  It  Again?   •  FC-­‐1000  gives  us  1000  numbers,  one  per  class,   how  do  we  compare  them?  
  • 63. Soqmax   •  Mul,-­‐class  version  of  logis,c  func,on   •  Outputs  normalized  class  “probabili,es”   •  Takes  m  inputs  and  produces  m  outputs   between  zero  and  one,  that  sum  to  one   •  Cross-­‐entropy  loss   •  Differen,able  
  • 65. Alexnet  Architecture  -­‐  2012   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.  1097-­‐1105,   2012     Layer  1  
  • 66. Learned  Filters  –  Layer1  
  • 67. Alexnet  Architecture  -­‐  2012   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.  1097-­‐1105,   2012     Layer  2  
  • 68. Learned  Filters  –  Layer2   Visualizing  and  Understanding  Convolu,onal  Networks  -­‐  Zeiler  &  Fergus,  ECCV  2014    
  • 69. Alexnet  Architecture  -­‐  2012   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.  1097-­‐1105,   2012     Layer  3  
  • 70. Learned  Filters  -­‐  Layer3   Visualizing  and  Understanding  Convolu,onal  Networks  -­‐  Zeiler  &  Fergus,  ECCV  2014      
  • 71. Alexnet  Architecture  -­‐  2012   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.  1097-­‐1105,   2012     Layer  4   Layer  5  
  • 72. Learned  Features  –  Layers  4  &  5  
  • 73. Alexnet  Architecture  -­‐  2012   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.  1097-­‐1105,   2012    
  • 74. Alexnet  Architecture  -­‐  2012   Input   Conv   Relu   Pool   Conv   Relu   Pool   Conv   Relu   Conv   Relu   Conv   Relu   Pool   FC   Dropout   FC   Dropout   ImageNet  Classifica,on  with  Deep  Convolu,onal  Neural  Networks  Alex  Krizhevsky,  Ilya  Sutskever  and  Geoffrey  E.  Hinton   Advances  in  Neural  Informa,on  Processing  Systems  25  eds.F.  Pereira,  C.J.C.  Burges,  L.  Bo@ou  and  K.Q.  Weinberger  pp.   1097-­‐1105,  2012   FC  1000  
  • 77. To  Learn  More   •  h@p://colah.github.io/posts/2014-­‐07-­‐ Understanding-­‐Convolu,ons/   •  h@ps://adeshpande3.github.io/ adeshpande3.github.io/The-­‐9-­‐Deep-­‐Learning-­‐ Papers-­‐You-­‐Need-­‐To-­‐Know-­‐About.html   •  h@p://cs231n.github.io/   •  h@p://course.fast.ai/