SlideShare uma empresa Scribd logo
1 de 10
Baixar para ler offline
ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  ZOOPLANKTON	
  
COMMUNITIES	
  
	
  
1	
  
Running	
  Head:	
  ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  
ZOOPLANKTON	
  COMMUNITIES	
  
	
  
Acidification	
  of	
  Inland	
  Lakes	
  and	
  its	
  effect	
  on	
  Zooplankton	
  Communities.	
  
	
  
Jorge	
  Jamie	
  Gomez	
  
	
  
University	
  of	
  North	
  Florida	
  Biology	
  Department	
  
ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  ZOOPLANKTON	
  
COMMUNITIES	
  
	
  
2	
  
Abstract	
  
This	
  paper	
  details	
  and	
  explores	
  some	
  of	
  the	
  negative	
  effects	
  of	
  inland	
  lake	
  
acidification	
  on	
  zooplankton	
  populations.	
  	
  Many	
  studies	
  have	
  been	
  done	
  to	
  
emphasize	
  the	
  importance	
  of	
  reducing	
  sulfur	
  dioxide	
  emission	
  in	
  the	
  United	
  States	
  
and	
  in	
  Europe	
  to	
  attempt	
  to	
  curtail	
  the	
  effects	
  of	
  acidification.	
  One	
  of	
  the	
  most	
  
pressing	
  issues	
  regarding	
  acidification	
  is	
  its	
  effect	
  on	
  zooplankton	
  communities.	
  	
  
Some	
  zooplankton	
  communities	
  show	
  compensatory	
  effects	
  within	
  functional	
  
groups.	
  	
  Others	
  show	
  a	
  historical	
  resistance	
  to	
  acidified	
  waters	
  whereas	
  others	
  have	
  
no	
  history	
  and	
  are	
  highly	
  disturbed	
  by	
  acidification.	
  	
  Global	
  warming,	
  which	
  is	
  
changing	
  drought	
  patterns	
  and	
  forest	
  fire	
  occurrence,	
  is	
  adding	
  a	
  new	
  obstacle	
  to	
  
the	
  recovery	
  of	
  acidified	
  lakes	
  to	
  previous	
  and	
  tolerable	
  levels.	
  	
  New	
  drought	
  
patterns	
  are	
  causing	
  a	
  re-­‐acidification	
  of	
  lakes	
  well	
  before	
  a	
  recovery	
  is	
  complete	
  
and	
  setting	
  the	
  recovery	
  process	
  back	
  years.	
  	
  Another	
  problem	
  with	
  droughts	
  and	
  
the	
  resulting	
  re-­‐acidification	
  is	
  the	
  emergence	
  of	
  resting	
  zooplankton	
  eggs.	
  	
  This	
  in	
  
itself	
  is	
  not	
  of	
  much	
  concern	
  but	
  when	
  this	
  occurs	
  before	
  a	
  lake	
  has	
  reached	
  pre	
  
acidification	
  pH	
  levels	
  it	
  reduces	
  or	
  eliminates	
  the	
  survival	
  of	
  zooplankton	
  and	
  
depletes	
  the	
  amount	
  of	
  resting	
  viable	
  eggs.	
  	
  Although	
  lakes	
  are	
  chemically	
  
recovering,	
  biological	
  recovery	
  lags	
  for	
  1-­‐6	
  years,	
  therefore	
  strong	
  efforts	
  must	
  be	
  
implemented	
  to	
  prevent	
  future	
  re-­‐acidification	
  events.	
  
Keywords:	
  acidification,	
  zooplankton,	
  recovery,	
  pH,	
  lakes,	
  anthropogenic
ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  ZOOPLANKTON	
  
COMMUNITIES	
  
	
  
3	
  
Acidification	
  of	
  Inland	
  Lakes	
  and	
  its	
  effect	
  on	
  Zooplankton	
  Communities.	
  
	
   Sulfur	
  Dioxide	
  emissions	
  have	
  greatly	
  affected	
  a	
  large	
  amount	
  of	
  inland	
  lakes	
  
by	
  acidification,	
  which	
  is	
  a	
  form	
  of	
  environmental	
  contamination	
  that	
  affects	
  the	
  
biota	
  of	
  a	
  lake	
  ecosystem	
  by	
  lowering	
  the	
  pH	
  (Gonzalez	
  &	
  Frost,	
  1994);	
  therefore	
  
much	
  was	
  done	
  in	
  the	
  1980s	
  and	
  1990s	
  to	
  reduce	
  its	
  emission.	
  	
  A	
  big	
  concern	
  from	
  
acidification	
  is	
  its	
  effect	
  on	
  geochemistry	
  and	
  the	
  bioavailability	
  of	
  heavy	
  metals.	
  	
  
Fish	
  become	
  much	
  more	
  susceptible	
  to	
  mercury	
  with	
  lowered	
  alkalinity	
  (Burger,	
  
1997).	
  	
  Another	
  concern	
  is	
  the	
  effect	
  of	
  acidification	
  on	
  primary	
  producers	
  and	
  
zooplankton,	
  which	
  will	
  be	
  the	
  focus	
  of	
  this	
  paper.	
  	
  Although	
  there	
  are	
  reports	
  of	
  
recovery	
  in	
  acidified	
  lakes	
  in	
  North	
  America,	
  Scandinavia	
  and	
  Eastern	
  Europe,	
  there	
  
are	
  still	
  areas	
  that	
  have	
  not	
  shown	
  any	
  recovery	
  such	
  as	
  Germany,	
  the	
  United	
  
Kingdom,	
  southeastern	
  Canada	
  and	
  the	
  Adirondacks	
  of	
  North	
  America	
  (Frost,	
  
Fischer,	
  Klug,	
  Arnott	
  &	
  Montz	
  et	
  al,	
  2006).	
  	
  	
  Causes	
  of	
  acidification	
  are	
  numerous	
  and	
  
include	
  natural	
  sources	
  such	
  as	
  the	
  gradual	
  changing	
  of	
  a	
  forest	
  from	
  deciduous	
  to	
  
coniferous	
  (Korsman	
  &	
  Segeström,	
  1998).	
  A	
  large	
  part	
  of	
  acidification	
  events	
  are	
  
due	
  to	
  anthropogenic	
  sources	
  such	
  as	
  sulfur	
  dioxide	
  emissions	
  from	
  diesel	
  fuels	
  
(Frost	
  et	
  al.,	
  2006),	
  and	
  industrial	
  waste	
  (Cairns,	
  Heath	
  &	
  Parker,	
  1975).	
  	
  
Acidification	
  of	
  lakes	
  has	
  detrimental	
  effects	
  on	
  zooplankton	
  populations	
  and	
  
overall	
  food	
  web	
  ecology	
  (Locke	
  &	
  Sprules,	
  1994).	
  	
  Some	
  of	
  the	
  effects	
  of	
  
acidification	
  may	
  be	
  offset	
  by	
  compensatory	
  dynamics	
  of	
  functional	
  groups	
  (Fischer,	
  
Frost	
  &	
  Ives,	
  2001)	
  and	
  some	
  may	
  be	
  exacerbated	
  by	
  re-­‐acidification	
  events	
  that	
  can	
  
be	
  the	
  results	
  of	
  drought,	
  forest	
  fires	
  and	
  global	
  warming	
  (Arnott	
  &	
  Yan,	
  2006).	
  	
  The	
  
historical	
  acidic	
  profile	
  of	
  a	
  lake	
  may	
  also	
  help	
  to	
  determine	
  the	
  possible	
  effects	
  on	
  
ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  ZOOPLANKTON	
  
COMMUNITIES	
  
	
  
4	
  
zooplankton	
  and	
  food	
  webs	
  (Fischer,	
  Klug,	
  Ives	
  &	
  Frost,	
  2001).	
  	
  There	
  are	
  many	
  
causes	
  of	
  acidification	
  including	
  natural	
  and	
  anthropogenic	
  and	
  the	
  effects	
  on	
  
zooplankton	
  vary	
  from	
  severe	
  to	
  moderate	
  and	
  recovery	
  is	
  a	
  process	
  that	
  can	
  take	
  
up	
  to	
  ten	
  years	
  if	
  there	
  are	
  no	
  re-­‐acidification	
  events.	
  
	
   The	
  stability	
  of	
  zooplankton	
  populations	
  is	
  dependent	
  upon	
  a	
  variety	
  of	
  
factors.	
  	
  Some	
  of	
  the	
  factors	
  include	
  the	
  taxa’s	
  resistance	
  stability	
  or/and	
  a	
  systems	
  
ability	
  to	
  stay	
  at	
  equilibrium	
  after	
  the	
  onset	
  of	
  a	
  perturbation	
  such	
  as	
  acidification.	
  	
  
The	
  majority	
  of	
  zooplankton	
  taxa	
  typically	
  begin	
  to	
  experience	
  the	
  negative	
  effects	
  
and	
  the	
  stress	
  of	
  acidification	
  when	
  the	
  pH	
  of	
  a	
  system	
  becomes	
  <6	
  and	
  become	
  
completely	
  overwhelmed	
  at	
  pH	
  levels	
  <5.	
  	
  (Locke	
  &	
  Sprules,	
  1994).	
  	
  The	
  ecological	
  
history	
  of	
  a	
  freshwater	
  lake	
  is	
  also	
  a	
  factor	
  in	
  a	
  zooplankton	
  taxa’s	
  ability	
  to	
  respond	
  
to	
  a	
  perturbation.	
  	
  Zooplankton	
  in	
  lakes	
  with	
  a	
  history	
  of	
  natural	
  acidification	
  events	
  
or	
  yearly	
  fluctuations	
  in	
  pH	
  levels	
  tend	
  to	
  respond	
  better	
  and	
  absorb	
  much	
  of	
  the	
  
impact	
  of	
  anthropogenic	
  stressors	
  in	
  comparison	
  to	
  zooplankton	
  that	
  experience	
  a	
  
novel	
  perturbation	
  in	
  pH	
  levels	
  (Fisher	
  et	
  al.,	
  2001).	
  	
  
	
   Some	
  of	
  the	
  effects	
  that	
  can	
  increase	
  the	
  rate	
  of	
  population	
  decline	
  and	
  loss	
  of	
  
zooplankton	
  taxa	
  are	
  not	
  always	
  directly	
  related	
  to	
  the	
  actual	
  pH	
  drop	
  in	
  a	
  lake.	
  	
  
Many	
  times	
  the	
  effect	
  can	
  be	
  a	
  byproduct	
  such	
  as	
  the	
  elimination	
  of	
  prey	
  items	
  or	
  
the	
  elimination	
  of	
  higher	
  trophic	
  level	
  organisms	
  that	
  would	
  reduce	
  the	
  amount	
  of	
  
zooplankton	
  predators.	
  	
  	
  Another	
  factor	
  that	
  affects	
  zooplankton	
  survival	
  is	
  the	
  
reproductive	
  rate	
  of	
  prey	
  species	
  in	
  acidified	
  conditions,	
  which	
  is	
  directly	
  related	
  to	
  
food	
  availability.	
  	
  Many	
  species	
  of	
  zooplankton	
  respond	
  differently	
  to	
  acidification,	
  
one	
  example	
  is	
  Keratella	
  chochlearis,	
  whose	
  response	
  to	
  acidification	
  depends	
  on	
  the	
  
ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  ZOOPLANKTON	
  
COMMUNITIES	
  
	
  
5	
  
availability	
  of	
  food.	
  	
  K.	
  cochlearis	
  is	
  adversely	
  affected	
  by	
  pH	
  level	
  drop	
  only	
  if	
  food	
  is	
  
scarce	
  and	
  is	
  not	
  affected	
  by	
  pH	
  fluctuations	
  if	
  food	
  is	
  highly	
  available	
  (Gonzáles	
  &	
  
Frost,	
  1994).	
  
	
   Declining	
  population	
  in	
  different	
  zooplankton	
  taxa	
  has	
  detrimental	
  effects	
  on	
  
the	
  well	
  being	
  of	
  freshwater	
  lake	
  ecosystems.	
  	
  Compensatory	
  effects	
  of	
  functional	
  
groups	
  may	
  offset	
  some	
  of	
  the	
  negative	
  consequences	
  of	
  lake	
  acidification.	
  	
  When	
  
taxa	
  of	
  a	
  functional	
  group,	
  such	
  as	
  herbivorous	
  cladocerans	
  or	
  herbivorous	
  
copepods,	
  were	
  diminished	
  or	
  completely	
  eliminated	
  by	
  an	
  acidification	
  event,	
  other	
  
taxa	
  that	
  performed	
  similar	
  functions	
  often	
  experienced	
  population	
  growth	
  during	
  
the	
  same	
  event.	
  	
  This	
  compensatory	
  effect	
  helps	
  to	
  offset	
  some	
  of	
  the	
  food	
  web	
  
disruptions	
  that	
  would	
  other	
  wise	
  take	
  place	
  (Fischer,	
  Frost	
  &	
  Ives,	
  2001).	
  	
  	
  	
  
	
   Other	
  perturbations	
  that	
  increase	
  acidification	
  in	
  lakes	
  are	
  forest	
  fires,	
  and	
  
with	
  the	
  onslaught	
  of	
  global	
  warming,	
  temperature	
  increases	
  and	
  uncharacteristic	
  
droughts	
  also	
  play	
  a	
  role	
  (Kormans	
  &	
  Segerström,	
  1998,	
  Arnott	
  &	
  Yan,	
  2002	
  and	
  
Cairns	
  et	
  al.,	
  1975).	
  	
  With	
  global	
  warming	
  predicted	
  to	
  change	
  global	
  rainfall	
  
patterns,	
  temperatures	
  and	
  increase	
  the	
  occurrence	
  of	
  large	
  forest	
  fires,	
  the	
  
acidification	
  of	
  lakes	
  may	
  drastically	
  increase	
  in	
  frequency	
  and	
  severity	
  (Angeler	
  &	
  
Moreno,	
  2007)	
  while	
  the	
  recovery	
  process	
  may	
  be	
  severely	
  impeded	
  due	
  to	
  re-­‐
acidification	
  events	
  (Arnott	
  &	
  Yan,	
  2002).	
  
	
   A	
  common	
  misconception	
  about	
  lake	
  acidification	
  is	
  that	
  all	
  events	
  are	
  due	
  to	
  
anthropogenic	
  causes	
  when	
  in	
  reality	
  there	
  are	
  many	
  natural	
  factors	
  that	
  cause	
  or	
  
contribute	
  to	
  acidification	
  events.	
  	
  Although	
  forest	
  fires	
  usually	
  cause	
  a	
  decrease	
  in	
  
pH	
  by	
  the	
  burning	
  of	
  the	
  humus	
  layer	
  on	
  the	
  watershed,	
  they	
  may	
  actually	
  help	
  to	
  
ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  ZOOPLANKTON	
  
COMMUNITIES	
  
	
  
6	
  
reduce	
  adverse	
  zooplankton	
  responses	
  to	
  anthropogenic	
  lake	
  acidification	
  by	
  
natural	
  selection	
  (Koorsman	
  &	
  Segerström,	
  1998).	
  	
  Lakes	
  with	
  regular	
  pH	
  
fluctuations	
  caused	
  by	
  forest	
  fires	
  develop,	
  through	
  evolution,	
  zooplankton	
  species	
  
that	
  are	
  less	
  susceptible	
  to	
  anthropogenic	
  acidification	
  events	
  (Fischer	
  et	
  al.,	
  2001).	
  	
  
Although	
  forest	
  fires	
  seem	
  to	
  help	
  zooplankton	
  responses	
  through	
  selective	
  
pressures,	
  lakes	
  that	
  are	
  in	
  chemical	
  and	
  biological	
  recovery	
  from	
  acidification	
  and	
  
experience	
  a	
  re-­‐acidification	
  event	
  due	
  to	
  fire	
  will	
  experience	
  set	
  backs	
  in	
  the	
  overall	
  
recovery	
  (Korsman	
  &	
  Segerström,	
  1998).	
  	
  	
  
	
   Droughts	
  that	
  are	
  a	
  result	
  of	
  El	
  Niño	
  meteorological	
  events	
  are	
  having	
  a	
  
compounding	
  effect	
  on	
  zooplankton	
  populations	
  in	
  acidified	
  lakes.	
  	
  The	
  problem	
  
being	
  that	
  reduced	
  sulfur	
  compounds	
  that	
  have	
  been	
  safely	
  trapped	
  in	
  the	
  
catchment	
  become	
  oxidized	
  when	
  they	
  come	
  into	
  contact	
  with	
  the	
  atmosphere	
  due	
  
to	
  dropping	
  water	
  levels.	
  	
  When	
  the	
  rains	
  return	
  and	
  the	
  water	
  levels	
  rise,	
  the	
  
oxidized	
  sulfur	
  compounds	
  are	
  then	
  added	
  back	
  into	
  the	
  water	
  column	
  and	
  the	
  lake	
  
experiences	
  a	
  re-­‐acidification	
  event	
  (Arnott	
  &	
  Yan,	
  2002).	
  	
  	
  Although	
  González	
  and	
  
Frost	
  (1994)	
  state	
  that	
  rotifer	
  diversity,	
  in	
  acidified	
  lakes,	
  is	
  sometimes	
  higher	
  for	
  
certain	
  taxa,	
  Arnott	
  and	
  Yan	
  (2002)	
  argue	
  that	
  this	
  is	
  due	
  to	
  the	
  drought	
  re-­‐
acidification	
  phenomena	
  and	
  may	
  eventually	
  cause	
  populations	
  of	
  taxa	
  to	
  disappear.	
  	
  
According	
  to	
  Frost	
  et	
  al.	
  (2006),	
  zooplankton	
  recovery	
  in	
  acidified	
  lakes	
  may	
  take	
  up	
  
to	
  ten	
  years.	
  	
  	
  The	
  problem	
  is	
  that	
  after	
  a	
  drought,	
  zooplankton	
  are	
  cued	
  to	
  come	
  out	
  
of	
  diapause	
  and	
  viable	
  eggs	
  hatch	
  when	
  the	
  rains	
  return.	
  	
  This	
  presents	
  an	
  issue	
  
because	
  the	
  limited	
  quantity	
  of	
  viable	
  eggs	
  have	
  been	
  deposited	
  and	
  stored	
  in	
  the	
  
sediments	
  prior	
  to	
  acidification.	
  	
  During	
  re-­‐acidification	
  events,	
  the	
  newly	
  hatched	
  
ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  ZOOPLANKTON	
  
COMMUNITIES	
  
	
  
7	
  
eggs	
  and	
  zooplankton	
  that	
  come	
  out	
  of	
  diapause	
  are	
  in	
  an	
  inhospitable	
  environment	
  
and	
  do	
  not	
  survive.	
  	
  If	
  the	
  zooplankton	
  do	
  not	
  survive	
  to	
  reproduce,	
  the	
  eggs	
  stored	
  
in	
  the	
  sediment	
  will	
  eventually	
  run	
  out	
  causing	
  a	
  disappearance	
  of	
  the	
  taxa	
  (Arnott	
  
&	
  Yan,	
  2002).	
  
	
   Global	
  warming	
  and	
  related	
  temperature	
  increases	
  can	
  have	
  several	
  negative	
  
effects	
  in	
  freshwater	
  lakes	
  including	
  the	
  intensification	
  of	
  acidification	
  events.	
  	
  
Potassium	
  cyanide	
  is	
  a	
  salt	
  that	
  is	
  present	
  in	
  large	
  quantities	
  in	
  lakes	
  that	
  receive	
  
wastes	
  from	
  industrial	
  plants.	
  	
  In	
  high	
  temperatures	
  and	
  low	
  pH,	
  potassium	
  salts	
  
hydrolyze	
  into	
  Hydrogen	
  Cyanide	
  (HCN),	
  which	
  is	
  highly	
  toxic	
  to	
  aquatic	
  organisms	
  
(Cairns	
  et	
  al.,	
  1975).	
  	
  Temperature	
  increases	
  play	
  a	
  significant	
  role	
  in	
  hatching	
  cues	
  
for	
  zooplankton	
  (Angeler	
  &	
  Moreno,	
  2007),	
  which	
  as	
  mentioned	
  before	
  could	
  
significantly	
  decrease	
  zooplankton	
  diversity	
  and	
  decrease	
  the	
  rate	
  of	
  lake	
  recovery	
  
(Arnott	
  &	
  Yan,	
  2002).	
  
	
   Acidification	
  of	
  lakes	
  is	
  highly	
  detrimental	
  to	
  zooplankton	
  communities	
  in	
  
fresh	
  water	
  lakes.	
  	
  There	
  are	
  many	
  factors	
  that	
  affect	
  the	
  severity	
  of	
  the	
  acidification	
  
event.	
  	
  Sulfur	
  emission	
  is	
  one	
  of	
  the	
  most	
  prevalent	
  causes	
  of	
  acidification.	
  	
  Once	
  a	
  
freshwater	
  lake	
  reaches	
  a	
  pH	
  <6	
  adverse	
  affects	
  begin	
  to	
  take	
  place	
  for	
  most	
  
zooplankton	
  taxa	
  except	
  acidophilic	
  species.	
  	
  At	
  pH<5	
  most	
  of	
  the	
  zooplankton	
  are	
  
in	
  unable	
  to	
  survive	
  the	
  acidity	
  of	
  the	
  water.	
  	
  Once	
  a	
  recovery	
  takes	
  place	
  there	
  is	
  a	
  
three	
  to	
  ten	
  year	
  lag	
  in	
  biological	
  recovery	
  compared	
  to	
  chemical	
  (pH)	
  recovery.	
  	
  
Certain	
  condition	
  such	
  as	
  global	
  warming,	
  drought,	
  forest	
  fires	
  and	
  changing	
  climate	
  
patterns	
  exaggerate	
  the	
  effect	
  of	
  acidification	
  and	
  can	
  cause	
  a	
  recovering	
  system	
  to	
  
re-­‐acidify.	
  	
  Future	
  studies	
  can	
  be	
  done	
  and	
  focused	
  on	
  ways	
  in	
  which	
  lakes	
  can	
  be	
  
ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  ZOOPLANKTON	
  
COMMUNITIES	
  
	
  
8	
  
safely	
  alkalinized	
  as	
  well	
  as	
  methods	
  to	
  reestablish	
  zooplankton	
  populations	
  in	
  
order	
  to	
  restore	
  lake	
  chemistry	
  and	
  food	
  web	
  stability.
ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  ZOOPLANKTON	
  
COMMUNITIES	
  
	
  
9	
  
	
  
	
  
Bibliography	
  
	
  
Angeler,	
  D.	
  G.	
  and	
  Moreno,	
  J.	
  M.	
  (2007).	
  Zooplankton	
  Community	
  Resilience	
  after	
  
Press-­‐Type	
  Anthropogenic	
  Stress	
  in	
  Temporary	
  Ponds.	
  Ecological	
  
Applications.	
  17(4),	
  1105-­‐1115.	
  
Arnott,	
  S.	
  E.	
  and	
  Yan,	
  N.	
  D.	
  (2002)	
  The	
  Influence	
  of	
  Drought	
  and	
  Re-­‐Acidification	
  on	
  
Zooplankton	
  Emergence	
  from	
  Resting	
  Stages.	
  Ecological	
  Applications.	
  12(1),	
  
138-­‐153.	
  
Burger,	
  J.	
  (1997).	
  Methods	
  for	
  and	
  Approaches	
  to	
  Evaluating	
  Susceptibility	
  of	
  
Ecological	
  Systems	
  to	
  Hazardous	
  Chemicals.	
  Environmental	
  Heath	
  
Perspectives.	
  105(44),	
  843-­‐848.
Cairns	
  Jr.,	
  J.,	
  Heath,	
  A.	
  G.	
  and	
  Parker,	
  B.	
  C.	
  (1975).	
  Temperature	
  Influence	
  on	
  
Chemical	
  Toxicity	
  to	
  Aquatic	
  Organisms.	
  Journal	
  (Water	
  Pollution	
  Control	
  
Federation).	
  47(2),	
  267-­‐280.	
  
Fischer,	
  J.	
  M.,	
  Frost,	
  T.	
  M.	
  and	
  Ives,	
  A.	
  R.	
  (2001).	
  Compensatory	
  Dynamics	
  in	
  
Zooplankton	
  Community	
  Responses	
  to	
  Acidification:	
  Measurement	
  and	
  
Mechanisms.	
  Ecological	
  Applications.	
  11(4),	
  1060-­‐1072.	
  
Fischer,	
  j.	
  M.,	
  Klug,	
  J.	
  L.,	
  Ives,	
  A.	
  R.	
  and	
  Frost,	
  T.	
  M.	
  (2001)	
  Ecological	
  History	
  Affects	
  
Zooplankton	
  Community	
  Responses	
  to	
  Acidification.	
  Ecology.	
  82(11),	
  2983-­‐
3000.	
  
ACIDIFICATION	
  OF	
  INLAND	
  LAKES	
  AND	
  ITS	
  EFFECT	
  ON	
  ZOOPLANKTON	
  
COMMUNITIES	
  
	
  
10	
  
Frost,	
  T.	
  M.,	
  Fishcer,	
  J.	
  L.,	
  Arnott,	
  S.	
  E.	
  and	
  Montz,	
  P.	
  K.	
  (2006).	
  Trajectories	
  of	
  
Zooplankton	
  Recovery	
  in	
  the	
  Little	
  Rock	
  Lake	
  Whole-­‐Lake	
  Acidification	
  
Experiment.	
  Ecological	
  Applications.	
  16(1),	
  353-­‐367.	
  
Gonzales,	
  M.	
  J.	
  and	
  Frost,	
  T.	
  M.	
  (1994).	
  Comparisons	
  of	
  Laboratory	
  Bioassays	
  and	
  a	
  
Whole-­‐Lake	
  Experiment:	
  Rotifer	
  Responses	
  to	
  Experimental	
  Acidification.	
  
Ecological	
  Applications.	
  4(1),	
  69-­‐80.	
  
Korsman,	
  T.	
  and	
  Segerström,	
  U.	
  (1998).	
  Forest	
  Fire	
  and	
  Lake-­‐Water	
  Acidity	
  in	
  a	
  
Northern	
  Swedish	
  Boreal	
  Area:	
  Holocene	
  Changes	
  in	
  Lake-­‐Water	
  Quality	
  at	
  
Makkassjon.	
  Journal	
  of	
  Ecology.	
  86(1),	
  113-­‐124.	
  
Locke,	
  A.	
  and	
  Sprules,	
  W.	
  G.	
  (1994).	
  Effects	
  of	
  Lake	
  Acidification	
  and	
  Recovery	
  on	
  the	
  
Stability	
  of	
  Zooplankton	
  Food	
  Webs.	
  Ecology.	
  75(2),	
  498-­‐506.	
  
	
  
	
  
	
  

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

limnology notes
limnology noteslimnology notes
limnology notes
 
Limnology 2nd sem (full sylabus)
Limnology 2nd sem (full sylabus)Limnology 2nd sem (full sylabus)
Limnology 2nd sem (full sylabus)
 
Aquatic ecosystem
Aquatic ecosystemAquatic ecosystem
Aquatic ecosystem
 
Aquatic Systems An Overview
Aquatic Systems  An OverviewAquatic Systems  An Overview
Aquatic Systems An Overview
 
Environmental studies-AQUATIC ECOSYSTEM,THEIR TYPES AND THEIR IMPORTANCE.
Environmental studies-AQUATIC ECOSYSTEM,THEIR TYPES AND THEIR IMPORTANCE.Environmental studies-AQUATIC ECOSYSTEM,THEIR TYPES AND THEIR IMPORTANCE.
Environmental studies-AQUATIC ECOSYSTEM,THEIR TYPES AND THEIR IMPORTANCE.
 
Protecting aquatic ecosystems
Protecting aquatic ecosystemsProtecting aquatic ecosystems
Protecting aquatic ecosystems
 
Aquatic ecosystem
Aquatic ecosystemAquatic ecosystem
Aquatic ecosystem
 
Aquatic ecosystem ppt
Aquatic ecosystem pptAquatic ecosystem ppt
Aquatic ecosystem ppt
 
Aquatic ecosystems freshwater
Aquatic ecosystems  freshwaterAquatic ecosystems  freshwater
Aquatic ecosystems freshwater
 
Aquatic microbiology
Aquatic microbiologyAquatic microbiology
Aquatic microbiology
 
Ecology Chapter 25: AQUATIC ENVIRONMENT
Ecology Chapter 25: AQUATIC ENVIRONMENTEcology Chapter 25: AQUATIC ENVIRONMENT
Ecology Chapter 25: AQUATIC ENVIRONMENT
 
Aquatic ecosystem
Aquatic ecosystemAquatic ecosystem
Aquatic ecosystem
 
Microbial Marine Ecology
Microbial Marine EcologyMicrobial Marine Ecology
Microbial Marine Ecology
 
Thesis de asis zubiaga_phytoplankton
Thesis de asis zubiaga_phytoplanktonThesis de asis zubiaga_phytoplankton
Thesis de asis zubiaga_phytoplankton
 
Aquatic Ecosystem
Aquatic EcosystemAquatic Ecosystem
Aquatic Ecosystem
 
Aquatic ecosystems
Aquatic ecosystemsAquatic ecosystems
Aquatic ecosystems
 
Ecosystems
EcosystemsEcosystems
Ecosystems
 
Brackish water
Brackish waterBrackish water
Brackish water
 
Stream Ecology
Stream EcologyStream Ecology
Stream Ecology
 
Energy 2 biosphere
Energy 2 biosphereEnergy 2 biosphere
Energy 2 biosphere
 

Destaque

Tendencias de la descripción bibliográfica
Tendencias de la descripción bibliográfica Tendencias de la descripción bibliográfica
Tendencias de la descripción bibliográfica Andres Olaya
 
Problemas ortográficos del español actual
Problemas ortográficos del español actualProblemas ortográficos del español actual
Problemas ortográficos del español actualAndres Olaya
 
Presentacion recomendaciones para escritura de articulos cientificos
Presentacion recomendaciones para escritura de articulos cientificosPresentacion recomendaciones para escritura de articulos cientificos
Presentacion recomendaciones para escritura de articulos cientificosAndres Olaya
 
Resumen nebrija de la gramatica de ayer a la gramtica de hoy
Resumen nebrija de la gramatica  de ayer  a la gramtica de hoyResumen nebrija de la gramatica  de ayer  a la gramtica de hoy
Resumen nebrija de la gramatica de ayer a la gramtica de hoyAndres Olaya
 
7 tips to manage stress and build resilience
7 tips to manage stress and build resilience7 tips to manage stress and build resilience
7 tips to manage stress and build resilienceGadens
 
La ortografía española
La ortografía españolaLa ortografía española
La ortografía españolaAndres Olaya
 
Проект "очистка замасленной окалины"
Проект "очистка замасленной окалины"Проект "очистка замасленной окалины"
Проект "очистка замасленной окалины"Анна Алёшина
 
Escribir un artículo científico, ser encontrado por los buscadores y ser citado
Escribir un artículo científico, ser encontrado por los buscadores y ser citadoEscribir un artículo científico, ser encontrado por los buscadores y ser citado
Escribir un artículo científico, ser encontrado por los buscadores y ser citadoAndres Olaya
 
Nebrija de la gramática de ayer a la gramática de hoy
Nebrija de la gramática de ayer a la gramática de hoyNebrija de la gramática de ayer a la gramática de hoy
Nebrija de la gramática de ayer a la gramática de hoyAndres Olaya
 
Carlos Garabito Visual Resume Rev_02
Carlos Garabito Visual Resume Rev_02Carlos Garabito Visual Resume Rev_02
Carlos Garabito Visual Resume Rev_02Carlos Garabito
 
Articulo como consultar bases de datos
Articulo como consultar bases de datosArticulo como consultar bases de datos
Articulo como consultar bases de datosAndres Olaya
 
Winq 79 Chealsea Manning
Winq 79 Chealsea ManningWinq 79 Chealsea Manning
Winq 79 Chealsea ManningJudith Smits
 
Predicting Energy Performance of an Educational Building through Artificial N...
Predicting Energy Performance of an Educational Building through Artificial N...Predicting Energy Performance of an Educational Building through Artificial N...
Predicting Energy Performance of an Educational Building through Artificial N...frececco
 
Naslund-Hadley, E., and Bando, R. (2016) All Children Count -- Early Mathemat...
Naslund-Hadley, E., and Bando, R. (2016) All Children Count -- Early Mathemat...Naslund-Hadley, E., and Bando, R. (2016) All Children Count -- Early Mathemat...
Naslund-Hadley, E., and Bando, R. (2016) All Children Count -- Early Mathemat...Johan Luiz Rocha
 

Destaque (16)

Tendencias de la descripción bibliográfica
Tendencias de la descripción bibliográfica Tendencias de la descripción bibliográfica
Tendencias de la descripción bibliográfica
 
Aplicación de las tics en educación
Aplicación de las tics en educaciónAplicación de las tics en educación
Aplicación de las tics en educación
 
Problemas ortográficos del español actual
Problemas ortográficos del español actualProblemas ortográficos del español actual
Problemas ortográficos del español actual
 
Presentacion recomendaciones para escritura de articulos cientificos
Presentacion recomendaciones para escritura de articulos cientificosPresentacion recomendaciones para escritura de articulos cientificos
Presentacion recomendaciones para escritura de articulos cientificos
 
Resumen nebrija de la gramatica de ayer a la gramtica de hoy
Resumen nebrija de la gramatica  de ayer  a la gramtica de hoyResumen nebrija de la gramatica  de ayer  a la gramtica de hoy
Resumen nebrija de la gramatica de ayer a la gramtica de hoy
 
7 tips to manage stress and build resilience
7 tips to manage stress and build resilience7 tips to manage stress and build resilience
7 tips to manage stress and build resilience
 
La ortografía española
La ortografía españolaLa ortografía española
La ortografía española
 
Проект "очистка замасленной окалины"
Проект "очистка замасленной окалины"Проект "очистка замасленной окалины"
Проект "очистка замасленной окалины"
 
Escribir un artículo científico, ser encontrado por los buscadores y ser citado
Escribir un artículo científico, ser encontrado por los buscadores y ser citadoEscribir un artículo científico, ser encontrado por los buscadores y ser citado
Escribir un artículo científico, ser encontrado por los buscadores y ser citado
 
Nebrija de la gramática de ayer a la gramática de hoy
Nebrija de la gramática de ayer a la gramática de hoyNebrija de la gramática de ayer a la gramática de hoy
Nebrija de la gramática de ayer a la gramática de hoy
 
Carlos Garabito Visual Resume Rev_02
Carlos Garabito Visual Resume Rev_02Carlos Garabito Visual Resume Rev_02
Carlos Garabito Visual Resume Rev_02
 
Articulo como consultar bases de datos
Articulo como consultar bases de datosArticulo como consultar bases de datos
Articulo como consultar bases de datos
 
Winq 79 Chealsea Manning
Winq 79 Chealsea ManningWinq 79 Chealsea Manning
Winq 79 Chealsea Manning
 
Butler APC Brochure
Butler APC BrochureButler APC Brochure
Butler APC Brochure
 
Predicting Energy Performance of an Educational Building through Artificial N...
Predicting Energy Performance of an Educational Building through Artificial N...Predicting Energy Performance of an Educational Building through Artificial N...
Predicting Energy Performance of an Educational Building through Artificial N...
 
Naslund-Hadley, E., and Bando, R. (2016) All Children Count -- Early Mathemat...
Naslund-Hadley, E., and Bando, R. (2016) All Children Count -- Early Mathemat...Naslund-Hadley, E., and Bando, R. (2016) All Children Count -- Early Mathemat...
Naslund-Hadley, E., and Bando, R. (2016) All Children Count -- Early Mathemat...
 

Semelhante a Acidification Limnology Lit Review

Planetary boundaries
Planetary boundariesPlanetary boundaries
Planetary boundariesMattHanly
 
Eutrophication presentation2
Eutrophication presentation2Eutrophication presentation2
Eutrophication presentation2eraven
 
TME Paper on Seagrasses & Global Climate Change
TME Paper on Seagrasses & Global Climate ChangeTME Paper on Seagrasses & Global Climate Change
TME Paper on Seagrasses & Global Climate ChangeMatthew Highnam
 
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...Ecological engineering in aquaculture use of seaweeds for removing nutrients ...
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...Ivan Vera Montenegro
 
Project report ammended for PhD application
Project report ammended for PhD applicationProject report ammended for PhD application
Project report ammended for PhD applicationRhiann Mitchell-Holland
 
CLIIMATE CHANGE AND BIODIVERSITY.pptx
CLIIMATE CHANGE AND BIODIVERSITY.pptxCLIIMATE CHANGE AND BIODIVERSITY.pptx
CLIIMATE CHANGE AND BIODIVERSITY.pptxLavanya943804
 
Agriculture and environmental management
Agriculture and environmental managementAgriculture and environmental management
Agriculture and environmental managementKAZEMBETVOnline
 
Eutrophication
EutrophicationEutrophication
EutrophicationBong Tong
 
Climate change ,adaptation and mitigation in fisheries
Climate change ,adaptation and mitigation in fisheriesClimate change ,adaptation and mitigation in fisheries
Climate change ,adaptation and mitigation in fisheriesSWAGATIKA SAHOO
 
Impact of Sewage Discharge on Coral Reefs
Impact of Sewage Discharge on Coral ReefsImpact of Sewage Discharge on Coral Reefs
Impact of Sewage Discharge on Coral Reefstheijes
 
Ecosystem and The Flow of Energy in an Ecosytem
Ecosystem and The Flow of Energy in an EcosytemEcosystem and The Flow of Energy in an Ecosytem
Ecosystem and The Flow of Energy in an EcosytemAmos Watentena
 
ocean role in climate change
ocean role in climate changeocean role in climate change
ocean role in climate changehome
 
Salmon Paper draft 4
Salmon Paper draft 4Salmon Paper draft 4
Salmon Paper draft 4Taylor Luneau
 

Semelhante a Acidification Limnology Lit Review (20)

Planetary boundaries
Planetary boundariesPlanetary boundaries
Planetary boundaries
 
Eutrophication presentation2
Eutrophication presentation2Eutrophication presentation2
Eutrophication presentation2
 
TME Paper on Seagrasses & Global Climate Change
TME Paper on Seagrasses & Global Climate ChangeTME Paper on Seagrasses & Global Climate Change
TME Paper on Seagrasses & Global Climate Change
 
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...Ecological engineering in aquaculture use of seaweeds for removing nutrients ...
Ecological engineering in aquaculture use of seaweeds for removing nutrients ...
 
Eutrophication
EutrophicationEutrophication
Eutrophication
 
Project report ammended for PhD application
Project report ammended for PhD applicationProject report ammended for PhD application
Project report ammended for PhD application
 
Richard Feeley presentation on ocean acidification
Richard Feeley presentation on ocean acidificationRichard Feeley presentation on ocean acidification
Richard Feeley presentation on ocean acidification
 
CLIIMATE CHANGE AND BIODIVERSITY.pptx
CLIIMATE CHANGE AND BIODIVERSITY.pptxCLIIMATE CHANGE AND BIODIVERSITY.pptx
CLIIMATE CHANGE AND BIODIVERSITY.pptx
 
Agriculture and environmental management
Agriculture and environmental managementAgriculture and environmental management
Agriculture and environmental management
 
Eutrophication
EutrophicationEutrophication
Eutrophication
 
Models on climate change.pptx
Models on climate change.pptxModels on climate change.pptx
Models on climate change.pptx
 
Climate change ,adaptation and mitigation in fisheries
Climate change ,adaptation and mitigation in fisheriesClimate change ,adaptation and mitigation in fisheries
Climate change ,adaptation and mitigation in fisheries
 
CHAPTER1.DOC
CHAPTER1.DOCCHAPTER1.DOC
CHAPTER1.DOC
 
Impact of Sewage Discharge on Coral Reefs
Impact of Sewage Discharge on Coral ReefsImpact of Sewage Discharge on Coral Reefs
Impact of Sewage Discharge on Coral Reefs
 
Ecosystem and The Flow of Energy in an Ecosytem
Ecosystem and The Flow of Energy in an EcosytemEcosystem and The Flow of Energy in an Ecosytem
Ecosystem and The Flow of Energy in an Ecosytem
 
ocean role in climate change
ocean role in climate changeocean role in climate change
ocean role in climate change
 
Eutrophication
EutrophicationEutrophication
Eutrophication
 
ENGL Research Paper
ENGL Research PaperENGL Research Paper
ENGL Research Paper
 
Peter Ridd
Peter RiddPeter Ridd
Peter Ridd
 
Salmon Paper draft 4
Salmon Paper draft 4Salmon Paper draft 4
Salmon Paper draft 4
 

Acidification Limnology Lit Review

  • 1. ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON  ZOOPLANKTON   COMMUNITIES     1   Running  Head:  ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON   ZOOPLANKTON  COMMUNITIES     Acidification  of  Inland  Lakes  and  its  effect  on  Zooplankton  Communities.     Jorge  Jamie  Gomez     University  of  North  Florida  Biology  Department  
  • 2. ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON  ZOOPLANKTON   COMMUNITIES     2   Abstract   This  paper  details  and  explores  some  of  the  negative  effects  of  inland  lake   acidification  on  zooplankton  populations.    Many  studies  have  been  done  to   emphasize  the  importance  of  reducing  sulfur  dioxide  emission  in  the  United  States   and  in  Europe  to  attempt  to  curtail  the  effects  of  acidification.  One  of  the  most   pressing  issues  regarding  acidification  is  its  effect  on  zooplankton  communities.     Some  zooplankton  communities  show  compensatory  effects  within  functional   groups.    Others  show  a  historical  resistance  to  acidified  waters  whereas  others  have   no  history  and  are  highly  disturbed  by  acidification.    Global  warming,  which  is   changing  drought  patterns  and  forest  fire  occurrence,  is  adding  a  new  obstacle  to   the  recovery  of  acidified  lakes  to  previous  and  tolerable  levels.    New  drought   patterns  are  causing  a  re-­‐acidification  of  lakes  well  before  a  recovery  is  complete   and  setting  the  recovery  process  back  years.    Another  problem  with  droughts  and   the  resulting  re-­‐acidification  is  the  emergence  of  resting  zooplankton  eggs.    This  in   itself  is  not  of  much  concern  but  when  this  occurs  before  a  lake  has  reached  pre   acidification  pH  levels  it  reduces  or  eliminates  the  survival  of  zooplankton  and   depletes  the  amount  of  resting  viable  eggs.    Although  lakes  are  chemically   recovering,  biological  recovery  lags  for  1-­‐6  years,  therefore  strong  efforts  must  be   implemented  to  prevent  future  re-­‐acidification  events.   Keywords:  acidification,  zooplankton,  recovery,  pH,  lakes,  anthropogenic
  • 3. ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON  ZOOPLANKTON   COMMUNITIES     3   Acidification  of  Inland  Lakes  and  its  effect  on  Zooplankton  Communities.     Sulfur  Dioxide  emissions  have  greatly  affected  a  large  amount  of  inland  lakes   by  acidification,  which  is  a  form  of  environmental  contamination  that  affects  the   biota  of  a  lake  ecosystem  by  lowering  the  pH  (Gonzalez  &  Frost,  1994);  therefore   much  was  done  in  the  1980s  and  1990s  to  reduce  its  emission.    A  big  concern  from   acidification  is  its  effect  on  geochemistry  and  the  bioavailability  of  heavy  metals.     Fish  become  much  more  susceptible  to  mercury  with  lowered  alkalinity  (Burger,   1997).    Another  concern  is  the  effect  of  acidification  on  primary  producers  and   zooplankton,  which  will  be  the  focus  of  this  paper.    Although  there  are  reports  of   recovery  in  acidified  lakes  in  North  America,  Scandinavia  and  Eastern  Europe,  there   are  still  areas  that  have  not  shown  any  recovery  such  as  Germany,  the  United   Kingdom,  southeastern  Canada  and  the  Adirondacks  of  North  America  (Frost,   Fischer,  Klug,  Arnott  &  Montz  et  al,  2006).      Causes  of  acidification  are  numerous  and   include  natural  sources  such  as  the  gradual  changing  of  a  forest  from  deciduous  to   coniferous  (Korsman  &  Segeström,  1998).  A  large  part  of  acidification  events  are   due  to  anthropogenic  sources  such  as  sulfur  dioxide  emissions  from  diesel  fuels   (Frost  et  al.,  2006),  and  industrial  waste  (Cairns,  Heath  &  Parker,  1975).     Acidification  of  lakes  has  detrimental  effects  on  zooplankton  populations  and   overall  food  web  ecology  (Locke  &  Sprules,  1994).    Some  of  the  effects  of   acidification  may  be  offset  by  compensatory  dynamics  of  functional  groups  (Fischer,   Frost  &  Ives,  2001)  and  some  may  be  exacerbated  by  re-­‐acidification  events  that  can   be  the  results  of  drought,  forest  fires  and  global  warming  (Arnott  &  Yan,  2006).    The   historical  acidic  profile  of  a  lake  may  also  help  to  determine  the  possible  effects  on  
  • 4. ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON  ZOOPLANKTON   COMMUNITIES     4   zooplankton  and  food  webs  (Fischer,  Klug,  Ives  &  Frost,  2001).    There  are  many   causes  of  acidification  including  natural  and  anthropogenic  and  the  effects  on   zooplankton  vary  from  severe  to  moderate  and  recovery  is  a  process  that  can  take   up  to  ten  years  if  there  are  no  re-­‐acidification  events.     The  stability  of  zooplankton  populations  is  dependent  upon  a  variety  of   factors.    Some  of  the  factors  include  the  taxa’s  resistance  stability  or/and  a  systems   ability  to  stay  at  equilibrium  after  the  onset  of  a  perturbation  such  as  acidification.     The  majority  of  zooplankton  taxa  typically  begin  to  experience  the  negative  effects   and  the  stress  of  acidification  when  the  pH  of  a  system  becomes  <6  and  become   completely  overwhelmed  at  pH  levels  <5.    (Locke  &  Sprules,  1994).    The  ecological   history  of  a  freshwater  lake  is  also  a  factor  in  a  zooplankton  taxa’s  ability  to  respond   to  a  perturbation.    Zooplankton  in  lakes  with  a  history  of  natural  acidification  events   or  yearly  fluctuations  in  pH  levels  tend  to  respond  better  and  absorb  much  of  the   impact  of  anthropogenic  stressors  in  comparison  to  zooplankton  that  experience  a   novel  perturbation  in  pH  levels  (Fisher  et  al.,  2001).       Some  of  the  effects  that  can  increase  the  rate  of  population  decline  and  loss  of   zooplankton  taxa  are  not  always  directly  related  to  the  actual  pH  drop  in  a  lake.     Many  times  the  effect  can  be  a  byproduct  such  as  the  elimination  of  prey  items  or   the  elimination  of  higher  trophic  level  organisms  that  would  reduce  the  amount  of   zooplankton  predators.      Another  factor  that  affects  zooplankton  survival  is  the   reproductive  rate  of  prey  species  in  acidified  conditions,  which  is  directly  related  to   food  availability.    Many  species  of  zooplankton  respond  differently  to  acidification,   one  example  is  Keratella  chochlearis,  whose  response  to  acidification  depends  on  the  
  • 5. ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON  ZOOPLANKTON   COMMUNITIES     5   availability  of  food.    K.  cochlearis  is  adversely  affected  by  pH  level  drop  only  if  food  is   scarce  and  is  not  affected  by  pH  fluctuations  if  food  is  highly  available  (Gonzáles  &   Frost,  1994).     Declining  population  in  different  zooplankton  taxa  has  detrimental  effects  on   the  well  being  of  freshwater  lake  ecosystems.    Compensatory  effects  of  functional   groups  may  offset  some  of  the  negative  consequences  of  lake  acidification.    When   taxa  of  a  functional  group,  such  as  herbivorous  cladocerans  or  herbivorous   copepods,  were  diminished  or  completely  eliminated  by  an  acidification  event,  other   taxa  that  performed  similar  functions  often  experienced  population  growth  during   the  same  event.    This  compensatory  effect  helps  to  offset  some  of  the  food  web   disruptions  that  would  other  wise  take  place  (Fischer,  Frost  &  Ives,  2001).           Other  perturbations  that  increase  acidification  in  lakes  are  forest  fires,  and   with  the  onslaught  of  global  warming,  temperature  increases  and  uncharacteristic   droughts  also  play  a  role  (Kormans  &  Segerström,  1998,  Arnott  &  Yan,  2002  and   Cairns  et  al.,  1975).    With  global  warming  predicted  to  change  global  rainfall   patterns,  temperatures  and  increase  the  occurrence  of  large  forest  fires,  the   acidification  of  lakes  may  drastically  increase  in  frequency  and  severity  (Angeler  &   Moreno,  2007)  while  the  recovery  process  may  be  severely  impeded  due  to  re-­‐ acidification  events  (Arnott  &  Yan,  2002).     A  common  misconception  about  lake  acidification  is  that  all  events  are  due  to   anthropogenic  causes  when  in  reality  there  are  many  natural  factors  that  cause  or   contribute  to  acidification  events.    Although  forest  fires  usually  cause  a  decrease  in   pH  by  the  burning  of  the  humus  layer  on  the  watershed,  they  may  actually  help  to  
  • 6. ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON  ZOOPLANKTON   COMMUNITIES     6   reduce  adverse  zooplankton  responses  to  anthropogenic  lake  acidification  by   natural  selection  (Koorsman  &  Segerström,  1998).    Lakes  with  regular  pH   fluctuations  caused  by  forest  fires  develop,  through  evolution,  zooplankton  species   that  are  less  susceptible  to  anthropogenic  acidification  events  (Fischer  et  al.,  2001).     Although  forest  fires  seem  to  help  zooplankton  responses  through  selective   pressures,  lakes  that  are  in  chemical  and  biological  recovery  from  acidification  and   experience  a  re-­‐acidification  event  due  to  fire  will  experience  set  backs  in  the  overall   recovery  (Korsman  &  Segerström,  1998).         Droughts  that  are  a  result  of  El  Niño  meteorological  events  are  having  a   compounding  effect  on  zooplankton  populations  in  acidified  lakes.    The  problem   being  that  reduced  sulfur  compounds  that  have  been  safely  trapped  in  the   catchment  become  oxidized  when  they  come  into  contact  with  the  atmosphere  due   to  dropping  water  levels.    When  the  rains  return  and  the  water  levels  rise,  the   oxidized  sulfur  compounds  are  then  added  back  into  the  water  column  and  the  lake   experiences  a  re-­‐acidification  event  (Arnott  &  Yan,  2002).      Although  González  and   Frost  (1994)  state  that  rotifer  diversity,  in  acidified  lakes,  is  sometimes  higher  for   certain  taxa,  Arnott  and  Yan  (2002)  argue  that  this  is  due  to  the  drought  re-­‐ acidification  phenomena  and  may  eventually  cause  populations  of  taxa  to  disappear.     According  to  Frost  et  al.  (2006),  zooplankton  recovery  in  acidified  lakes  may  take  up   to  ten  years.      The  problem  is  that  after  a  drought,  zooplankton  are  cued  to  come  out   of  diapause  and  viable  eggs  hatch  when  the  rains  return.    This  presents  an  issue   because  the  limited  quantity  of  viable  eggs  have  been  deposited  and  stored  in  the   sediments  prior  to  acidification.    During  re-­‐acidification  events,  the  newly  hatched  
  • 7. ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON  ZOOPLANKTON   COMMUNITIES     7   eggs  and  zooplankton  that  come  out  of  diapause  are  in  an  inhospitable  environment   and  do  not  survive.    If  the  zooplankton  do  not  survive  to  reproduce,  the  eggs  stored   in  the  sediment  will  eventually  run  out  causing  a  disappearance  of  the  taxa  (Arnott   &  Yan,  2002).     Global  warming  and  related  temperature  increases  can  have  several  negative   effects  in  freshwater  lakes  including  the  intensification  of  acidification  events.     Potassium  cyanide  is  a  salt  that  is  present  in  large  quantities  in  lakes  that  receive   wastes  from  industrial  plants.    In  high  temperatures  and  low  pH,  potassium  salts   hydrolyze  into  Hydrogen  Cyanide  (HCN),  which  is  highly  toxic  to  aquatic  organisms   (Cairns  et  al.,  1975).    Temperature  increases  play  a  significant  role  in  hatching  cues   for  zooplankton  (Angeler  &  Moreno,  2007),  which  as  mentioned  before  could   significantly  decrease  zooplankton  diversity  and  decrease  the  rate  of  lake  recovery   (Arnott  &  Yan,  2002).     Acidification  of  lakes  is  highly  detrimental  to  zooplankton  communities  in   fresh  water  lakes.    There  are  many  factors  that  affect  the  severity  of  the  acidification   event.    Sulfur  emission  is  one  of  the  most  prevalent  causes  of  acidification.    Once  a   freshwater  lake  reaches  a  pH  <6  adverse  affects  begin  to  take  place  for  most   zooplankton  taxa  except  acidophilic  species.    At  pH<5  most  of  the  zooplankton  are   in  unable  to  survive  the  acidity  of  the  water.    Once  a  recovery  takes  place  there  is  a   three  to  ten  year  lag  in  biological  recovery  compared  to  chemical  (pH)  recovery.     Certain  condition  such  as  global  warming,  drought,  forest  fires  and  changing  climate   patterns  exaggerate  the  effect  of  acidification  and  can  cause  a  recovering  system  to   re-­‐acidify.    Future  studies  can  be  done  and  focused  on  ways  in  which  lakes  can  be  
  • 8. ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON  ZOOPLANKTON   COMMUNITIES     8   safely  alkalinized  as  well  as  methods  to  reestablish  zooplankton  populations  in   order  to  restore  lake  chemistry  and  food  web  stability.
  • 9. ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON  ZOOPLANKTON   COMMUNITIES     9       Bibliography     Angeler,  D.  G.  and  Moreno,  J.  M.  (2007).  Zooplankton  Community  Resilience  after   Press-­‐Type  Anthropogenic  Stress  in  Temporary  Ponds.  Ecological   Applications.  17(4),  1105-­‐1115.   Arnott,  S.  E.  and  Yan,  N.  D.  (2002)  The  Influence  of  Drought  and  Re-­‐Acidification  on   Zooplankton  Emergence  from  Resting  Stages.  Ecological  Applications.  12(1),   138-­‐153.   Burger,  J.  (1997).  Methods  for  and  Approaches  to  Evaluating  Susceptibility  of   Ecological  Systems  to  Hazardous  Chemicals.  Environmental  Heath   Perspectives.  105(44),  843-­‐848. Cairns  Jr.,  J.,  Heath,  A.  G.  and  Parker,  B.  C.  (1975).  Temperature  Influence  on   Chemical  Toxicity  to  Aquatic  Organisms.  Journal  (Water  Pollution  Control   Federation).  47(2),  267-­‐280.   Fischer,  J.  M.,  Frost,  T.  M.  and  Ives,  A.  R.  (2001).  Compensatory  Dynamics  in   Zooplankton  Community  Responses  to  Acidification:  Measurement  and   Mechanisms.  Ecological  Applications.  11(4),  1060-­‐1072.   Fischer,  j.  M.,  Klug,  J.  L.,  Ives,  A.  R.  and  Frost,  T.  M.  (2001)  Ecological  History  Affects   Zooplankton  Community  Responses  to  Acidification.  Ecology.  82(11),  2983-­‐ 3000.  
  • 10. ACIDIFICATION  OF  INLAND  LAKES  AND  ITS  EFFECT  ON  ZOOPLANKTON   COMMUNITIES     10   Frost,  T.  M.,  Fishcer,  J.  L.,  Arnott,  S.  E.  and  Montz,  P.  K.  (2006).  Trajectories  of   Zooplankton  Recovery  in  the  Little  Rock  Lake  Whole-­‐Lake  Acidification   Experiment.  Ecological  Applications.  16(1),  353-­‐367.   Gonzales,  M.  J.  and  Frost,  T.  M.  (1994).  Comparisons  of  Laboratory  Bioassays  and  a   Whole-­‐Lake  Experiment:  Rotifer  Responses  to  Experimental  Acidification.   Ecological  Applications.  4(1),  69-­‐80.   Korsman,  T.  and  Segerström,  U.  (1998).  Forest  Fire  and  Lake-­‐Water  Acidity  in  a   Northern  Swedish  Boreal  Area:  Holocene  Changes  in  Lake-­‐Water  Quality  at   Makkassjon.  Journal  of  Ecology.  86(1),  113-­‐124.   Locke,  A.  and  Sprules,  W.  G.  (1994).  Effects  of  Lake  Acidification  and  Recovery  on  the   Stability  of  Zooplankton  Food  Webs.  Ecology.  75(2),  498-­‐506.