SlideShare uma empresa Scribd logo
1 de 21
A Comparative Study on Control of Unstable Processes with Time-delay Qing-Guo Wang, Han-Qin Zhou Department of Electrical & Computer Engineering National University of Singapore
Introduction ,[object Object],[object Object],[object Object],[object Object]
Introduction ,[object Object],[object Object],[object Object]
Review of Existing Methods ,[object Object],Visioli (2001)   proposed 3 sets of PID auto-tuning formulas for UFOPDT processes to minimize the ISE, ITSE and ISTE specifications, respectively.  The controller settings are computed by genetic algorithms to obtain a global optimal solution. The control system configuration is of one degree of freedom.
Review of Existing Methods ,[object Object],Park et al. (1998)   proposed an enhanced PID control strategy for UFOPDT and USOPDT processes The control system configuration has double loops to reduce the overshoots and yield reasonable settling time.  The unstable process is stabilized by the inner proportional controller for a optimal gain margin. The main PID is then designed for the stabilized inner closed-loop system.
Review of Existing Methods ,[object Object],Majhi and Atherton (2000a)  proposed another double-loop PI-PD scheme for UFOPTD processes, which is similar to Method B. The inner PD controller is for stabilization and outer PI controller is designed to minimize the ISTE criterion.
Review of Existing Methods ,[object Object],Wang and Cai (2002)  used gain and phase margin specifications for unstable process control, and consider the same double-loop structure as that of Method B in design. They implement the double loop configuration into an equivalent single-loop PID feedback system with a setpoint filter. The controller setting is obtained by assigning gain margin of 3 and phase margin of 60 degree. The second order Taylor series expansion is employed to approximate the time delay.
Review of Existing Methods ,[object Object],[object Object],IMC is not applicable to unstable systems. But an equivalent feedback controller for IMC controller  q  can be derived as follows: This controller G c  can be approximated by a PID controller with the first three terms of its Maclaurin series expansion in  s  ,i.e.,
Review of Existing Methods ,[object Object],Yang et al. (2002)  developed another IMC-based method to design PID and high order feedback controllers for unstable processes. In this design methodology, model reduction is employed to approximate the equivalent IMC feedback controller  G c   by a standard PID controller  G c,PID  . The non-negative least square method is used to obtain the optimal PID settings to minimize the criterion  E , on the desired closed-loop bandwidth. The desired degree of PID approximation to the IMC controller is usually set as 5%. The control system structure is also of 2DOF with the setpoint filter.
Review of Existing Methods ,[object Object],Majhi and Atherton (2000b)  proposed this modified SP controller for UFOPDT processes, in which the denominator of closed-loop setpoint transfer function is  delay-free.  Therefore the design of controller  G c  is facilitated for setpoint tracking.  On the inner loops,  G c1  is to stabilize to delay-free part of the unstable process, while  G c2  is for stabilization and disturbance rejection as well.
Simulation & Comparison 1. Small Normalized Dead-time: 0<L/T<0.693 The plant’s normalized dead-time is 0.5. A unity step setpoint is given at t = 0, and a disturbance of -0.1 is injected at t = 75.
Performance Specifications
Summary of Robustness Analysis
Ranking ( Small Normalized Dead-time ) Setpoint Response Best:  Method G Excellent:  Method E and F Good:  Method C and A Fair:  Method B Poor:  Method D Disturbance Rejection Excellent:  Method E and F Good:  Method C and A Fair:  Method D and G Poor:  Method B
Simulation & Comparison 2. Medium Normalized Dead-time: 0.693<L/T<1 The plant’s normalized dead-time is 0.8,  Method B is no longer applicable. Again, the unity step setpoint is given at t = 0, and a disturbance of -0.1 is injected at t = 75.
Performance Specifications
Ranking ( Median Normalized Dead-time ) Setpoint Response Excellent:  Method G Good:  Method E and F Fair:  Method C and A Poor:  Method D Disturbance Rejection Excellent:  Method A Good:  Method E, F and C Fair:  Method D Poor:  Method G
Simulation & Comparison 3. Large Normalized Dead-time: 1<L/T<2 The plant’s normalized dead-time is 1.5.  Only Method  E and F are workable in this scenario. Again, the unity step setpoint is given at t = 0, and a disturbance of -0.1 is injected at t = 75.
Performance Specifications Ranking ( Large Normalized Dead-time ) Setpoint Response Method E is slightly better Disturbance Rejection Method F is slightly better
Conclusion ,[object Object],[object Object],[object Object]
[object Object]

Mais conteúdo relacionado

Mais procurados

A fuzzy model based adaptive pid controller design for nonlinear and uncertai...
A fuzzy model based adaptive pid controller design for nonlinear and uncertai...A fuzzy model based adaptive pid controller design for nonlinear and uncertai...
A fuzzy model based adaptive pid controller design for nonlinear and uncertai...
ISA Interchange
 
PID Controller Tuning
PID Controller TuningPID Controller Tuning
PID Controller Tuning
Ahmad Taan
 
Distributed Control System Applied in Temperatur Control by Coordinating Mult...
Distributed Control System Applied in Temperatur Control by Coordinating Mult...Distributed Control System Applied in Temperatur Control by Coordinating Mult...
Distributed Control System Applied in Temperatur Control by Coordinating Mult...
TELKOMNIKA JOURNAL
 
Optimal tuning of pid power system stabilizer in simulink environment
Optimal tuning of pid power system stabilizer in simulink environmentOptimal tuning of pid power system stabilizer in simulink environment
Optimal tuning of pid power system stabilizer in simulink environment
IAEME Publication
 

Mais procurados (18)

Design of a model reference adaptive PID control algorithm for a tank system
Design of a model reference adaptive PID control algorithm  for a tank system Design of a model reference adaptive PID control algorithm  for a tank system
Design of a model reference adaptive PID control algorithm for a tank system
 
Fractional order-pid-controller design
Fractional order-pid-controller designFractional order-pid-controller design
Fractional order-pid-controller design
 
Speed control of dc motor using fuzzy pid controller-mid term progress report
Speed control of dc motor using fuzzy pid controller-mid term progress reportSpeed control of dc motor using fuzzy pid controller-mid term progress report
Speed control of dc motor using fuzzy pid controller-mid term progress report
 
30120140505012
3012014050501230120140505012
30120140505012
 
PID controller for microsatellite yaw-axis attitude control system using ITAE...
PID controller for microsatellite yaw-axis attitude control system using ITAE...PID controller for microsatellite yaw-axis attitude control system using ITAE...
PID controller for microsatellite yaw-axis attitude control system using ITAE...
 
Enhanced self-regulation nonlinear PID for industrial pneumatic actuator
Enhanced self-regulation nonlinear PID for industrial pneumatic actuatorEnhanced self-regulation nonlinear PID for industrial pneumatic actuator
Enhanced self-regulation nonlinear PID for industrial pneumatic actuator
 
A fuzzy model based adaptive pid controller design for nonlinear and uncertai...
A fuzzy model based adaptive pid controller design for nonlinear and uncertai...A fuzzy model based adaptive pid controller design for nonlinear and uncertai...
A fuzzy model based adaptive pid controller design for nonlinear and uncertai...
 
Speed Control of PMDCM Based GA and DS Techniques
Speed Control of PMDCM Based GA and DS TechniquesSpeed Control of PMDCM Based GA and DS Techniques
Speed Control of PMDCM Based GA and DS Techniques
 
Fractional order PID controller adaptation for PMSM drive using hybrid grey w...
Fractional order PID controller adaptation for PMSM drive using hybrid grey w...Fractional order PID controller adaptation for PMSM drive using hybrid grey w...
Fractional order PID controller adaptation for PMSM drive using hybrid grey w...
 
Design of PI controllers for achieving time and frequency domain specificatio...
Design of PI controllers for achieving time and frequency domain specificatio...Design of PI controllers for achieving time and frequency domain specificatio...
Design of PI controllers for achieving time and frequency domain specificatio...
 
PID Controller Tuning
PID Controller TuningPID Controller Tuning
PID Controller Tuning
 
[IJET-V1I4P6] Authors :Galal Ali Hassaan
[IJET-V1I4P6] Authors :Galal Ali Hassaan[IJET-V1I4P6] Authors :Galal Ali Hassaan
[IJET-V1I4P6] Authors :Galal Ali Hassaan
 
Distributed Control System Applied in Temperatur Control by Coordinating Mult...
Distributed Control System Applied in Temperatur Control by Coordinating Mult...Distributed Control System Applied in Temperatur Control by Coordinating Mult...
Distributed Control System Applied in Temperatur Control by Coordinating Mult...
 
Tuning of pid controller
Tuning of pid controllerTuning of pid controller
Tuning of pid controller
 
Optimal tuning of pid power system stabilizer in simulink environment
Optimal tuning of pid power system stabilizer in simulink environmentOptimal tuning of pid power system stabilizer in simulink environment
Optimal tuning of pid power system stabilizer in simulink environment
 
Fuzzy controlled mine drainage system based on embedded system
Fuzzy controlled mine drainage system based on embedded systemFuzzy controlled mine drainage system based on embedded system
Fuzzy controlled mine drainage system based on embedded system
 
Tuning PID Controller Parameters for Load Frequency Control Considering Syste...
Tuning PID Controller Parameters for Load Frequency Control Considering Syste...Tuning PID Controller Parameters for Load Frequency Control Considering Syste...
Tuning PID Controller Parameters for Load Frequency Control Considering Syste...
 
Heat Ventilation & Air- Conditioning System with Self-Tuning Fuzzy PI Controller
Heat Ventilation & Air- Conditioning System with Self-Tuning Fuzzy PI ControllerHeat Ventilation & Air- Conditioning System with Self-Tuning Fuzzy PI Controller
Heat Ventilation & Air- Conditioning System with Self-Tuning Fuzzy PI Controller
 

Destaque

Modified Smith predictor design for periodic disturbance rejection
Modified Smith predictor design for periodic disturbance rejectionModified Smith predictor design for periodic disturbance rejection
Modified Smith predictor design for periodic disturbance rejection
ISA Interchange
 
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEMOPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
Yousef Sardahi
 
Design of decoupled pid controllers for mimo system copy
Design of decoupled pid controllers for mimo system   copyDesign of decoupled pid controllers for mimo system   copy
Design of decoupled pid controllers for mimo system copy
Rahul Dey
 
Chapter 9 Design Via Root Locus
Chapter 9 Design Via Root LocusChapter 9 Design Via Root Locus
Chapter 9 Design Via Root Locus
guesta0c38c3
 

Destaque (20)

Modified Smith predictor design for periodic disturbance rejection
Modified Smith predictor design for periodic disturbance rejectionModified Smith predictor design for periodic disturbance rejection
Modified Smith predictor design for periodic disturbance rejection
 
PID Controller Design for a Real Time Ball and Beam System – A Double Integra...
PID Controller Design for a Real Time Ball and Beam System – A Double Integra...PID Controller Design for a Real Time Ball and Beam System – A Double Integra...
PID Controller Design for a Real Time Ball and Beam System – A Double Integra...
 
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEMOPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
OPTIMIZATION OF THE FUZZY CONTROLLER FOR AN IMPLANTABLE INSULIN DELIVERY SYSTEM
 
Active vibration control of smart piezo cantilever beam using pid controller
Active vibration control of smart piezo cantilever beam using pid controllerActive vibration control of smart piezo cantilever beam using pid controller
Active vibration control of smart piezo cantilever beam using pid controller
 
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROLMODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
 
air craft Pitch
air craft Pitchair craft Pitch
air craft Pitch
 
FYP 2 SLIDE
FYP 2 SLIDEFYP 2 SLIDE
FYP 2 SLIDE
 
Report pid controller dc motor
Report pid controller dc motorReport pid controller dc motor
Report pid controller dc motor
 
Design of decoupled pid controllers for mimo system copy
Design of decoupled pid controllers for mimo system   copyDesign of decoupled pid controllers for mimo system   copy
Design of decoupled pid controllers for mimo system copy
 
Maglev sys modelling using FLC and PID controller
Maglev sys modelling using FLC and PID controllerMaglev sys modelling using FLC and PID controller
Maglev sys modelling using FLC and PID controller
 
Aifcraft pitch
Aifcraft pitchAifcraft pitch
Aifcraft pitch
 
Chapter 9 Design Via Root Locus
Chapter 9 Design Via Root LocusChapter 9 Design Via Root Locus
Chapter 9 Design Via Root Locus
 
Design and Simulation of Aircraft Autopilot to Control the Pitch Angle
Design and Simulation of Aircraft Autopilot to Control the Pitch AngleDesign and Simulation of Aircraft Autopilot to Control the Pitch Angle
Design and Simulation of Aircraft Autopilot to Control the Pitch Angle
 
controlling the vibration of automobile suspension system using pid controller
controlling the vibration of automobile suspension system using pid controllercontrolling the vibration of automobile suspension system using pid controller
controlling the vibration of automobile suspension system using pid controller
 
Cruise control simulation using matlab
Cruise control simulation using matlabCruise control simulation using matlab
Cruise control simulation using matlab
 
Control Systems Design- PID Tuning
Control Systems Design- PID TuningControl Systems Design- PID Tuning
Control Systems Design- PID Tuning
 
Thesis presentation on inverted pendulum
Thesis presentation on inverted pendulum Thesis presentation on inverted pendulum
Thesis presentation on inverted pendulum
 
Lead-lag controller
Lead-lag controllerLead-lag controller
Lead-lag controller
 
Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...
Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...
Design and Analysis of PID and Fuzzy-PID Controller for Voltage Control of DC...
 
Design of fuzzzy pid controller for bldc motor
Design of fuzzzy pid controller for bldc motorDesign of fuzzzy pid controller for bldc motor
Design of fuzzzy pid controller for bldc motor
 

Semelhante a Ascc04 334 Comparative Study of Unstable Process Control

DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGR...
DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGR...DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGR...
DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGR...
ijcisjournal
 
PID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logicPID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logic
ISA Interchange
 
PID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logicPID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logic
ISA Interchange
 
Design and optimization of pid controller using genetic algorithm
Design and optimization of pid controller using genetic algorithmDesign and optimization of pid controller using genetic algorithm
Design and optimization of pid controller using genetic algorithm
eSAT Journals
 
Speed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned piSpeed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned pi
Alexander Decker
 

Semelhante a Ascc04 334 Comparative Study of Unstable Process Control (20)

Performance Based Comparison Between Various Z-N Tuninng PID And Fuzzy Logic ...
Performance Based Comparison Between Various Z-N Tuninng PID And Fuzzy Logic ...Performance Based Comparison Between Various Z-N Tuninng PID And Fuzzy Logic ...
Performance Based Comparison Between Various Z-N Tuninng PID And Fuzzy Logic ...
 
Performance based Comparison between Various Z-N Tuninng PID and Fuzzy Logic ...
Performance based Comparison between Various Z-N Tuninng PID and Fuzzy Logic ...Performance based Comparison between Various Z-N Tuninng PID and Fuzzy Logic ...
Performance based Comparison between Various Z-N Tuninng PID and Fuzzy Logic ...
 
Closed-loop step response for tuning PID fractional-order filter controllers
Closed-loop step response for tuning PID fractional-order filter controllersClosed-loop step response for tuning PID fractional-order filter controllers
Closed-loop step response for tuning PID fractional-order filter controllers
 
DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGR...
DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGR...DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGR...
DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGR...
 
70
7070
70
 
PID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logicPID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logic
 
PID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logicPID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logic
 
anas.pdf
anas.pdfanas.pdf
anas.pdf
 
Optimised control using Proportional-Integral-Derivative controller tuned usi...
Optimised control using Proportional-Integral-Derivative controller tuned usi...Optimised control using Proportional-Integral-Derivative controller tuned usi...
Optimised control using Proportional-Integral-Derivative controller tuned usi...
 
1011ijaia03
1011ijaia031011ijaia03
1011ijaia03
 
D04954148
D04954148D04954148
D04954148
 
Ge2310721081
Ge2310721081Ge2310721081
Ge2310721081
 
Design and optimization of pid controller using genetic algorithm
Design and optimization of pid controller using genetic algorithmDesign and optimization of pid controller using genetic algorithm
Design and optimization of pid controller using genetic algorithm
 
Somasundarreddy2020
Somasundarreddy2020Somasundarreddy2020
Somasundarreddy2020
 
FRACTIONAL ORDER PID CONTROLLER TUNING BASED ON IMC
FRACTIONAL ORDER PID CONTROLLER TUNING BASED ON IMC FRACTIONAL ORDER PID CONTROLLER TUNING BASED ON IMC
FRACTIONAL ORDER PID CONTROLLER TUNING BASED ON IMC
 
DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers Wit...
DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers Wit...DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers Wit...
DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers Wit...
 
F010133747
F010133747F010133747
F010133747
 
DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers Wit...
DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers Wit...DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers Wit...
DC Motor Position Control Using Fuzzy Proportional-Derivative Controllers Wit...
 
PID Tuning Rules
PID Tuning RulesPID Tuning Rules
PID Tuning Rules
 
Speed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned piSpeed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned pi
 

Último

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Último (20)

This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 

Ascc04 334 Comparative Study of Unstable Process Control

  • 1. A Comparative Study on Control of Unstable Processes with Time-delay Qing-Guo Wang, Han-Qin Zhou Department of Electrical & Computer Engineering National University of Singapore
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11. Simulation & Comparison 1. Small Normalized Dead-time: 0<L/T<0.693 The plant’s normalized dead-time is 0.5. A unity step setpoint is given at t = 0, and a disturbance of -0.1 is injected at t = 75.
  • 14. Ranking ( Small Normalized Dead-time ) Setpoint Response Best: Method G Excellent: Method E and F Good: Method C and A Fair: Method B Poor: Method D Disturbance Rejection Excellent: Method E and F Good: Method C and A Fair: Method D and G Poor: Method B
  • 15. Simulation & Comparison 2. Medium Normalized Dead-time: 0.693<L/T<1 The plant’s normalized dead-time is 0.8, Method B is no longer applicable. Again, the unity step setpoint is given at t = 0, and a disturbance of -0.1 is injected at t = 75.
  • 17. Ranking ( Median Normalized Dead-time ) Setpoint Response Excellent: Method G Good: Method E and F Fair: Method C and A Poor: Method D Disturbance Rejection Excellent: Method A Good: Method E, F and C Fair: Method D Poor: Method G
  • 18. Simulation & Comparison 3. Large Normalized Dead-time: 1<L/T<2 The plant’s normalized dead-time is 1.5. Only Method E and F are workable in this scenario. Again, the unity step setpoint is given at t = 0, and a disturbance of -0.1 is injected at t = 75.
  • 19. Performance Specifications Ranking ( Large Normalized Dead-time ) Setpoint Response Method E is slightly better Disturbance Rejection Method F is slightly better
  • 20.
  • 21.