SlideShare uma empresa Scribd logo
1 de 17
Baixar para ler offline
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 1 of 17
Industrial Instrumentation
Flow Measurement
Sl. No.
1.
Newtonโ€™s Law of Viscosity: Shear stress is directly proportional to the velocity
gradient.
๐‰ = ๐
๐’…๐’–
๐’…๐’š
๐‘‘๐‘ข
๐‘‘๐‘ฆ
= ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘‘๐‘’๐‘“๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก๐‘–๐‘œ๐‘› (๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘”๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘’๐‘›๐‘ก),
๐œ‡ = ๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐œ = ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  = ๐น ๐ด
โ„
Flow
๐‘ญ = โˆ†๐‘ธ =
๐‘ธ๐’–๐’‚๐’๐’•๐’Š๐’•๐’š
๐‘ป๐’Š๐’Ž๐’†
Volume Flow Rate
๐‘ธ =
๐‘ฝ๐’๐’๐’–๐’Ž๐’†
๐‘ป๐’Š๐’Ž๐’†
Flow Velocity
๐‘ฝ =
๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† (๐‘ธ)
๐‘จ๐’“๐’†๐’‚ (๐‘จ)
Mass or Weight Flow Rate
๐‘พ = ๐†๐‘ธ
Hagen Poiseuille Equation
For a Newtonian incompressible fluid, there is a pressure drop in the fluid flow
which is proportional to the fluid viscosity.
(Assumptions: Incompressible Newtonian fluid, laminar flow through pipe of
constant circular cross-section, no acceleration in fluid velocity)
โˆ†๐‘ƒ =
8๐œ‡๐‘™๐‘„
๐œ‹(๐ท 2
โ„ )4
๐‘ธ =
๐…โˆ†๐‘ท๐‘ซ๐Ÿ’
๐Ÿ๐Ÿ๐Ÿ–๐๐’
๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’, ๐ท = ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ,
๐œ‡ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘™ = ๐‘๐‘–๐‘๐‘’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž
Reynolds Number
A dimensionless number used in fluid mechanics to indicate whether fluid flow
past a body or in a duct is steady or turbulent.
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 2 of 17
๐‘น๐’† =
๐’—๐’…๐†
๐
๐‘ฃ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ; ๐‘‘ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’; ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ; ๐œ‡ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ,
๐‘…๐‘’ < 2000 (๐‘™๐‘Ž๐‘š๐‘–๐‘›๐‘Ž๐‘Ÿ)
๐‘…๐‘’ > 4000 (๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก)
๐‘…๐‘’2000 <> 4000 ๐‘‡๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐น๐‘™๐‘œ๐‘ค
Kingโ€™s Law
The greater the velocity of the gas across the probes, the greater the cooling effect.
The actual mass flow rate is calculated by measuring the variable power required to
maintain this constant temperature difference as the gas flows across the sensor.
๐‘พ =
๐‘ฏ
โˆ†๐‘ป๐‘ช๐‘ท
๐ถ๐‘ƒ = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘ฆ, ๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค, ๐ป = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘–๐‘›๐‘๐‘–๐‘ก, โˆ†๐‘‡ = ๐‘‡๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’
Bernoulli's Equation
Bernoulli's principle says that a rise (fall) in pressure in a flowing fluid must always
be accompanied by a decrease (increase) in the speed, and conversely, i.e. an
increase (decrease) in the speed of the fluid results in a decrease (increase) in the
pressure.
๐‘ƒ +
1
2
๐œŒ๐‘‰2
+ ๐œŒ๐‘”โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐œ•
๐œ•๐‘ 
(
๐‘ฃ2
2
+
๐‘ƒ
๐œŒ
+ ๐‘”. โ„Ž) = 0
๐‘ฃ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ ๐‘๐‘’๐‘’๐‘‘, ๐‘ƒ = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘” = ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ, โ„Ž = โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก
๐œŒ๐‘”โ„Ž = ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› โ„Ž๐‘’๐‘Ž๐‘‘,
1
2
๐œŒ๐‘‰2
= ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ โ„Ž๐‘’๐‘Ž๐‘‘ (๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐‘ฃ2
2
+
๐‘ƒ
๐œŒ
+ ๐‘”. โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐‘ฃ2
2๐‘”
+
๐‘ƒ
๐›พ
+ โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐›พ = ๐œŒ. ๐‘”
๐œŒ๐‘ฃ2
2
+ ๐‘ƒ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
(๐‘”, โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก)
๐†๐’—๐Ÿ
๐Ÿ
๐Ÿ
+ ๐‘ท๐Ÿ =
๐†๐’—๐Ÿ
๐Ÿ
๐Ÿ
+ ๐‘ท๐Ÿ = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’•
๐‘ƒ1
๐œŒ
โˆ’
๐‘ƒ2
๐œŒ
=
1
2
(๐‘ฃ2
2
โˆ’ ๐‘ฃ1
2)
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 3 of 17
(๐‘ฃ2
2
โˆ’ ๐‘ฃ1
2) = 2
(๐‘ƒ1 โˆ’ ๐‘ƒ2)
๐œŒ
๐‘„ = ๐ด1๐‘ฃ1 = ๐ด2๐‘ฃ2
๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐‘ƒ1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘ƒ2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’,
๐‘ฃ1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘ฃ2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ,
๐ด1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โˆ’ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐ด2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โˆ’ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž,
๐‘ธ =
๐‘จ๐Ÿ
โˆš๐Ÿ โˆ’ (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
๐Ÿ
โˆš
๐Ÿ(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
๐†
2.
Variable Head or Differential Pressure Flow Meter
๐‘ญ๐’๐’–๐’Š๐’… ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐‘ฝ = ๐‘ฌโˆš๐Ÿ๐’ˆ๐’‰
๐†
โ„
๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ = ๐‘ฌ๐‘จโˆš๐Ÿ๐’ˆ๐’‰
๐†
โ„
๐‘ด๐’‚๐’”๐’” ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘พ = ๐† โˆ— ๐‘ฌ๐‘จโˆš๐Ÿ๐’ˆ๐’‰
๐†
โ„
๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐‘จ๐’‘๐’‘๐’“๐’๐’‚๐’„๐’‰ (๐‘ฌ) =
๐Ÿ
โˆš๐Ÿ โˆ’ (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
๐Ÿ
๐‘‰ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’; ๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’
๐ด = ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โ€“ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘ข๐‘”โ„Ž ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘–๐‘  ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘”
โ„Ž = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ โ„Ž๐‘’๐‘Ž๐‘‘ (๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’) ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก
๐‘” = ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘‘๐‘ข๐‘’ ๐‘ก๐‘œ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ; ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘–๐‘‘
๐พ =
๐ถ๐‘‘
โˆš1 โˆ’ ๐›พ4
๐›พ = ๐‘…๐‘Ž๐‘ก๐‘–๐‘œ ๐น๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘’๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ/๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘’ = ๐‘‘/๐ท
Coefficient of Discharge (๐‘ช๐’…)
It is the ration of the actual discharge to the theoretical discharge.
๐‘ช๐’๐’†๐’‡๐’‡๐’Š๐’„๐’Š๐’†๐’๐’• ๐’๐’‡ ๐‘ซ๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† ๐‘ช๐’… =
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’
๐‘ธ๐’Š๐’…๐’†๐’‚๐’
Vena Contracta (ฮฒ)
The Vena Contracta is the downstream point in a fluid stream where the pressure is
the lowest, and the fluid velocity is the highest, and the stream diameter is the least.
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 4 of 17
๐œท = ๐‘ช๐‘ช. ๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’†
Contraction Factor/Coefficient (๐‘ช๐‘ช)
The Contraction Coefficient is the ration of the area of the jet at the vena contacta
to the area of the orifice.
๐‘ช๐‘ช =
๐‘จ๐’“๐’†๐’‚ ๐’‚๐’• ๐‘ฝ๐’†๐’๐’‚ ๐‘ช๐’๐’๐’•๐’“๐’‚๐’„๐’•๐’‚
๐‘จ๐’“๐’†๐’‚ ๐’๐’‡ ๐‘ถ๐’“๐’Š๐’‡๐’Š๐’„๐’†
=
๐œท
๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’†
โ‰… 0.6 โˆ’ 0.75
Flow Coefficient (๐‘ช๐‘ฝ)
The Flow Coefficient of any device is a relative measure of its efficiency at allowing
fluid flow, and it describes the relationship between the pressure drop (โˆ†๐‘ƒ) across
the orifice/obstruction valve and the corresponding flow rate.
๐‘ช๐‘ฝ = ๐‘ธโˆš
๐‘บ๐‘ฎ
โˆ†๐‘ท
โˆ†๐‘ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘†๐บ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ
Rate of Discharge:
๐‘„ = ๐ด1๐‘‰1 = ๐ด2๐‘‰2
Applying Bernoulliโ€™s equation (ideal flow assumption)
๐‘ƒ1 +
๐œŒ๐‘‰1
2
2
= ๐‘ƒ2 +
๐œŒ๐‘‰2
2
2
The differential pressure head โˆ†โ„Ž is given by:
๐‘ƒ1 โˆ’ ๐‘ƒ2
๐œŒ๐‘”
= โˆ†โ„Ž
3.
Venturi Meter
๐‘ƒ1 โˆ’ ๐‘ƒ2 =
๐œŒ
2
(๐‘ฃ2
2
โˆ’ ๐‘ฃ1
2)
๐‘ƒ1
๐‘ค1
+ ๐‘1 +
๐‘ฃ1
2
2๐‘”
=
๐‘ƒ2
๐‘ค2
+ ๐‘2 +
๐‘ฃ2
2
2๐‘”
๐‘ƒ1 & ๐‘ƒ2 = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
๐‘ฃ1 & ๐‘ฃ2 = ๐‘Ž๐‘ฃ. ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
๐‘ค1 & ๐‘ค2 = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
๐ด1 & ๐ด2 = ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
๐‘1 & ๐‘2 = ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
๐œŒ, ๐œŒ1 & ๐œŒ2 = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 5 of 17
Considering the venture meter being held horizontal and fluid at inlet & throat of
same density
๐‘1 = ๐‘2; ๐œŒ1 = ๐œŒ2; ๐‘š = ๐œŒ1๐ด1๐‘ฃ1 = ๐œŒ2๐ด2๐‘ฃ2
๐‘ฃ2
2
โˆ’ ๐‘ฃ1
2
2๐‘”
=
๐‘ƒ1 โˆ’ ๐‘ƒ2
๐‘ค
By equation of continuity
๐ด1๐‘ฃ1 = ๐ด2๐‘ฃ2
๐‘ฃ1 = (
๐ด2
๐ด1
) ๐‘ฃ2
๐‘ฃ2 =
1
โˆš1 โˆ’ (
๐ด2
๐ด1
)
2
โˆ— โˆš
2๐‘”
๐‘ค
(๐‘ƒ1 โˆ’ ๐‘ƒ2) = ๐ธโˆš
2๐‘”
๐‘ค
(๐‘ƒ1 โˆ’ ๐‘ƒ2)
Considering few losses, ๐‘ฃ2 is multiplied with a factor ๐ถ๐‘ฃ called the coefficient of
velocity.
๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™) = ๐ถ๐‘ฃ๐ธโˆš
2๐‘”
๐‘ค
(๐‘ƒ1 โˆ’ ๐‘ƒ2)
Discharge (volume flow rate)
๐‘„ = ๐ด2๐‘ฃ2 = ๐ถ๐‘ฃ๐ด2๐ธโˆš
2๐‘”
๐‘ค
(๐‘ƒ1 โˆ’ ๐‘ƒ2)
Considering contraction factor ๐ถ๐‘
๐‘„๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ = ๐ถ๐‘๐ถ๐‘ฃ๐ด2๐ธโˆš
2๐‘”
๐‘ค
(๐‘1 โˆ’ ๐‘2)
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘จ๐Ÿ๐‘ฌ๐œถโˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) = ๐‘ช๐’…๐‘จ๐Ÿ๐‘ฌ๐œถโˆš
๐Ÿ๐’ˆ
๐’˜
โˆ†๐‘ท
๐ท๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐ถ๐‘‘ = ๐ถ๐‘๐ถ๐‘ฃ; ๐›ผ = ๐‘Ž ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’,
โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’
๐‘ค = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘, ๐ธ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ด๐‘๐‘๐‘Ÿ๐‘œ๐‘Ž๐‘โ„Ž, ๐ด2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘Ž๐‘Ÿ๐‘’๐‘Ž.
4.
Orifice
Vena-contracta is a point where the liquid jet issued from the orifice has the least
diameter, minimum pressure and maximum velocity. It is located at as distance
๐ท1 2
โ„ from the orifice plate approximately.
Actual velocity at vena-contracta is
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 6 of 17
๐’—๐Ÿ(๐’‚๐’„๐’•๐’–๐’‚๐’) =
๐‘ช๐’—
โˆš๐Ÿ โˆ’ (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
๐Ÿ
โˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) = ๐‘ช๐’—๐‘ฌโˆš
๐Ÿ๐’ˆ
๐’˜
โˆ†๐‘ท
The jet of liquid coming out of the orifice plate contracts to a minimum area ๐ด0 at
the vena-contracta.
Area of the vena-contracta is ๐‘จ๐ŸŽ = ๐‘ช๐’„๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’†
โˆด ๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™) =
๐ถ๐‘ฃ
โˆš1 โˆ’ (
๐ถ๐‘๐ด0
๐ด1
)
2
โˆš
2๐‘”
๐‘ค
(๐‘ƒ1 โˆ’ ๐‘ƒ2)
๐ท๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ = ๐ด2๐‘ฃ2 = ๐ถ๐‘๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™)
โˆด ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’—๐‘ช๐’„
๐‘จ๐ŸŽ
โˆš๐Ÿ โˆ’ (
๐‘ช๐’„๐‘จ๐ŸŽ
๐‘จ๐Ÿ
)
๐Ÿ
โˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
Taking into account the effect of temperature (๐›ผ)
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘จ๐ŸŽ๐‘ฌ๐œถโˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
Let ๐พ = ๐ถ๐‘‘๐ธ
โˆด ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ๐œถ๐‘จ๐ŸŽโˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
Mass Flow across an Orifice Plate
๐‘ธ๐’Ž =
๐‘ช๐’…
โˆš๐Ÿ โˆ’ ๐œท๐Ÿ’
๐
๐…
๐Ÿ’
๐’…๐Ÿ
โˆš๐Ÿโˆ†๐‘ท โˆ— ๐†๐Ÿ
๐‘„๐‘š = ๐‘œ๐‘Ÿ๐‘–๐‘“๐‘–๐‘๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ถ๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, ๐›ฝ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ,
๐œ– = ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘๐‘–๐‘™๐‘–๐‘ก๐‘ฆ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐‘‘ = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ,
โˆ†๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ
5.
Flow Nozzle
The discharge through a flow nozzle is
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ๐‘ฌ๐‘จ๐’•๐’‰๐’“๐’๐’‚๐’•โˆš
๐Ÿ
๐†
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 7 of 17
๐พ =
๐ถ๐‘‘
โˆš1 โˆ’ (
๐ด2
๐ด1
)
2
=
๐ถ๐‘‘
โˆš1 โˆ’ (
๐‘‘2
๐‘‘1
)
2
, ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ.
6.
Dall Tube
๐‘ฝ = ๐‘ฒ โˆ— โˆš๐‘ซ๐‘ท
๐‘‰ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’;
๐พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘๐‘Ž๐‘™ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘ 
7.
Pitot Tube
Using Bernoulliโ€™s theorem, we have
๐‘ƒ
๐‘ค
=
๐‘ฃ2
2๐‘”
+
๐‘ƒ0
๐‘ค
๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก; ๐‘ƒ0 = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ (๐‘ฃ) = โˆš
2๐‘”
๐‘ค
(๐‘ƒ โˆ’ ๐‘ƒ0) = โˆš
2๐‘”
๐œŒ
(๐‘ƒ โˆ’ ๐‘ƒ0)
๐’—๐’Ž๐’†๐’‚๐’ = ๐‘ช๐’—โˆš
๐Ÿ๐’ˆ
๐’˜
(๐‘ƒ โˆ’ ๐‘ƒ0) = ๐‘ช๐’—โˆš
๐Ÿ๐’ˆ
๐†
(๐‘ƒ โˆ’ ๐‘ƒ0)
๐ถ๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ
Stagnation Pressure:
๐‘†๐‘ก๐‘Ž๐‘”๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐‘†๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ + ๐ท๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐‘ƒ๐‘ ๐‘ก๐‘Ž๐‘” = ๐‘ƒ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ + (
๐œŒ๐‘ฃ2
2
)
โˆด ๐‘ญ๐’๐’๐’˜ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’— = โˆš
๐Ÿ(๐‘ท๐’”๐’•๐’‚๐’ˆ โˆ’ ๐‘ท๐’”๐’•๐’‚๐’•๐’Š๐’„)
๐†
8.
Annubar
๐‘ธ โˆ ๐‘ฒโˆš๐‘ซ๐‘ท
๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’
๐พ = ๐‘Ž๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก.
๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐ป๐‘–๐‘”โ„Ž ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ (๐ป๐‘ƒ) โˆ’ ๐ฟ๐‘œ๐‘ค ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ (๐ฟ๐‘ƒ)
Annubar Flow Measurement:
๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ณ๐’Š๐’’๐’–๐’Š๐’…) ๐‘ธ๐‘ฝ = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ
๐‘ญ๐’‚๐’‚โˆš
๐‘ซ๐‘ท
๐‘ฎ๐‘ญ
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 8 of 17
๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ฎ๐’‚๐’”) ๐‘ธ๐‘ด๐’‚๐’”๐’” = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ
๐‘ญ๐’‚๐’‚โˆš
๐‘ซ๐‘ท
๐†๐‘ญ
๐‘ด๐’‚๐’”๐’” ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ฎ๐’‚๐’” &๐‘บ๐’•๐’†๐’‚๐’Ž) ๐‘ธ๐‘ด๐’‚๐’”๐’” = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ
๐’€๐’‚๐‘ญ๐’‚๐’‚โˆš
๐‘ท โˆ— ๐‘ซ๐‘ท
๐‘ป
๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐พ = ๐ด๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก,
๐ท = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐‘ƒ = ๐‘†๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘‡ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’,
๐‘ = ๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐บ๐น = ๐‘†๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ,
๐‘Œ๐‘Ž = ๐ด๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐ธ๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐น๐‘Ž๐‘Ž = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ
9.
Elbow Tap
๐ถ๐‘˜
๐‘ฃ2
2๐‘”
=
๐‘ƒ0
๐œŒ๐‘”
+ ๐‘0 โˆ’
๐‘ƒ๐‘–
๐œŒ๐‘”
โˆ’ ๐‘๐‘–
๐‘๐‘– ๐‘Ž๐‘›๐‘‘ ๐‘๐‘œ = ๐‘™๐‘œ๐‘ค๐‘’๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ โ„Ž๐‘–๐‘”โ„Ž๐‘’๐‘ ๐‘ก ๐‘ก๐‘Ž๐‘๐‘๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘–๐‘›๐‘ก๐‘  ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ.
The flow rate is measured by the following equation.
๐‘ธ = ๐‘จ โˆ— ๐’— =
๐‘จ
โˆš๐‘ช๐’Œ
โˆš๐Ÿ๐’ˆ(
๐‘ท๐’
๐†๐’ˆ
+ ๐’๐ŸŽ โˆ’
๐‘ท๐’Š
๐†๐’ˆ
โˆ’ ๐’๐’Š) = ๐‘ช. ๐‘จโˆš๐Ÿ๐’ˆ(
๐‘ท๐’
๐†๐’ˆ
+ ๐’๐ŸŽ โˆ’
๐‘ท๐’Š
๐†๐’ˆ
โˆ’ ๐’๐’Š)
10
Segmental Wedge Flow Meter
๐‘ธ๐‘ฝ โˆ ๐‘ฒโˆš๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ
11.
Weir
Applying Bernoulliโ€™s equation at undisturbed region of upstream flow and at the
crest of the weir, we get
๐ป +
๐‘‰1
2
2๐‘”
= (๐ป โˆ’ ๐‘ฆ) +
๐‘‰2
2
2๐‘”
๐‘‰1, ๐‘‰2 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค, ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ž๐‘ก ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ.
๐‘‰2 = โˆš2๐‘”(โ„Ž +
๐‘‰1
2
2๐‘”
)
If ๐‘‰1 is small compared to ๐‘‰2, then
๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘™๐‘Ž๐‘ฆ๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ = โˆš2๐‘”๐‘ฆ,
๐‘ฆ = depth from the top surface of water level.
For a Weir, the general Elemental Discharge is given as
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 9 of 17
๐‘ฌ๐’๐’†๐’Ž๐’†๐’๐’•๐’‚๐’ ๐’…๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† = โˆš๐Ÿ๐’ˆ๐’š๐‘ณ๐‘พ๐’…๐’š
๐‘ฌ๐’๐’†๐’Ž๐’†๐’๐’•๐’‚๐’ ๐’…๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† ๐’๐’‡ ๐’•๐’‰๐’Š๐’ ๐’๐’‚๐’š๐’†๐’“ ๐‘ธ = ๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐’š ๐‘ณ๐‘พ ๐’…๐’š
๐ถ๐‘‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’, ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› 0.57 ๐‘Ž๐‘›๐‘‘ 0.64; ๐ฟ๐‘Š ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž.
Weir Flow Rate ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘ณ๐‘พโˆš๐Ÿ๐’ˆ๐’š โˆซ โˆš๐’š๐’…๐’š
๐‘ฏ
๐ŸŽ
=
๐Ÿ
๐Ÿ‘
๐‘ช๐’…๐‘ณ๐‘พโˆš๐Ÿ๐’ˆ(๐‘ฏ)
๐Ÿ‘
๐Ÿ
โ„
Flow Discharge through Rectangular Weir
๐‘ธ =
๐Ÿ
๐Ÿ‘
๐‘ช๐’…๐‘ณโˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“
=
๐Ÿ
๐Ÿ‘
๐‘ช๐’…(๐‘ณ๐‘พ โˆ’ ๐ŸŽ. ๐Ÿ๐‘ฏ)โˆš๐Ÿ๐’ˆ(๐‘ฏ)
๐Ÿ‘
๐Ÿ
โ„
= ๐Ÿ‘. ๐Ÿ‘๐Ÿ‘(๐‘ณ โˆ’ ๐ŸŽ. ๐Ÿ๐‘ฏ)๐‘ฏ๐Ÿ.๐Ÿ“
๐ถ๐‘‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’; ๐ป = ๐‘™๐‘–๐‘ž๐‘ข๐‘–๐‘‘ โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘–๐‘› ๐‘›๐‘œ๐‘ก๐‘โ„Ž; ๐ฟ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘›๐‘œ๐‘ก๐‘โ„Ž;
Flow Discharge through V-notch
๐‘ธ =
๐Ÿ–
๐Ÿ๐Ÿ“
๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“
๐ญ๐š๐ง
๐œฝ
๐Ÿ
= ๐Ÿ. ๐Ÿ’๐Ÿ– (๐’•๐’‚๐’
๐œฝ
๐Ÿ
) ๐‘ฏ๐Ÿ.๐Ÿ“
๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘Ž๐‘ก ๐‘ฃ โˆ’ ๐‘›๐‘œ๐‘ก๐‘โ„Ž
Flow Discharge through trapezoidal notch (summation rectangular and v-notch)
๐‘ธ =
๐Ÿ
๐Ÿ‘
๐‘ช๐’…๐‘ณโˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“
+
๐Ÿ–
๐Ÿ๐Ÿ“
๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“
๐ญ๐š๐ง
๐œฝ
๐Ÿ
= ๐Ÿ‘. ๐Ÿ‘๐Ÿ”๐Ÿ• โˆ— ๐‘ณ โˆ— ๐‘ฏ๐Ÿ.๐Ÿ“
12.
Flume
Actual discharge through a flume
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ =
๐‘ช๐‘จ๐Ÿ
โˆš๐Ÿ + (
๐‘จ๐Ÿ
๐‘จ๐Ÿ
)
๐Ÿ
โˆš๐Ÿ๐’ˆ๐’‰ = ๐‘ช๐‘จ๐Ÿ๐‘ฌโˆš๐Ÿ๐’ˆ๐’‰
The free-flow rate (Q) for a Palmer-Bowlus Flume is given as
๐‘ธ = ๐‘ช๐‘ฏ๐’‚
๐’
โˆ’ ๐‘ธ๐‘ฌ
๐ถ = ๐‘ฃ๐‘’๐‘›๐‘ก๐‘ข๐‘Ÿ๐‘– ๐‘“๐‘™๐‘ข๐‘š๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก (0.95 ๐‘ก๐‘œ 1); โ„Ž = โ„Ž1 โˆ’ โ„Ž2,
๐‘„๐ธ = ๐‘ ๐‘ข๐‘๐‘š๐‘’๐‘Ÿ๐‘”๐‘’๐‘›๐‘๐‘’ ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›
Maximum discharge through venture flume is given as
๐‘ธ๐’Ž๐’‚๐’™ = ๐Ÿ. ๐Ÿ•๐’ƒ๐Ÿ๐‘ฏ๐Ÿ.๐Ÿ“
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 10 of 17
๐‘2 = ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ฃ๐‘’๐‘›๐‘ก๐‘ข๐‘Ÿ๐‘– ๐‘“๐‘™๐‘ข๐‘š๐‘’
The maximum value of flow in a venture flume occurs when โ„Ž2 = (
2
3
) โ„Ž
Accuracy of flumes are higher that of weirs.
The free-flow discharge rate (Q) in a Parshall flume is given as
๐‘ธ = ๐ŸŽ. ๐Ÿ—๐Ÿ—๐Ÿ๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ’๐Ÿ•
๐Ÿ‘ โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’•
๐‘ธ = ๐Ÿ. ๐ŸŽ๐Ÿ”๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ–
๐Ÿ” โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’•
๐‘ธ = ๐Ÿ‘. ๐ŸŽ๐Ÿ•๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ‘
๐Ÿ— โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’•
๐‘ธ = (๐Ÿ‘. ๐Ÿ”๐Ÿ–๐Ÿ•๐Ÿ“๐‘ณ = ๐Ÿ. ๐Ÿ“)๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ‘
๐Ÿ๐ŸŽ โˆ’ ๐Ÿ“๐ŸŽ ๐’‡๐’†๐’†๐’• ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’•
๐‘„ = ๐น๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ฟ = ๐‘ค๐‘–๐‘‘๐‘กโ„Ž ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘š๐‘’ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก, ๐ป = ๐ป๐‘’๐‘Ž๐‘‘ (๐‘“๐‘’๐‘’๐‘ก)
13.
Variable-Area Flow Meter
Drag Force
The Drag Force ๐‘ญ๐’…๐’“๐’‚๐’ˆ is a force acting opposite to the relative motion of the objects
which is a function of the fluid velocity. Drag force is proportional to velocity for a
laminar flow and proportional to the velocity squared for a turbulent flow.
The numerical expression for ๐‘ญ๐’…๐’“๐’‚๐’ˆ
๐‘ญ๐’…๐’“๐’‚๐’ˆ =
โˆ†๐‘ท
โˆ†๐‘ธ
= ๐๐‘จ
๐๐’—
๐๐’›
The Drag Force ๐‘ญ๐’…๐’“๐’‚๐’ˆ is also expressed as,
๐‘ญ๐’…๐’“๐’‚๐’ˆ =
๐Ÿ
๐Ÿ
๐†๐’—๐Ÿ
๐‘ช๐‘ซ๐‘จ
๐œ‡ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐ด = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐‘ช๐‘ซ = ๐ท๐‘Ÿ๐‘Ž๐‘” ๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก,
โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’, โˆ†๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘Ÿ๐‘œ๐‘“๐‘–๐‘™๐‘’, ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ,
Force Balance Equation of Variable Area Flow Meter
๐‘ญ๐’…๐’“๐’‚๐’ˆ + ๐‘ญ๐’ƒ๐’–๐’๐’š๐’‚๐’๐’„๐’š = ๐‘ญ๐’˜๐’†๐’Š๐’ˆ๐’‰๐’•
๐‘จ๐’‡(๐‘ท๐’… โˆ’ ๐‘ท๐’–) + ๐†๐’‡๐’‡๐’ˆ๐‘ฝ๐’‡ = ๐†๐’‡๐’ˆ๐‘ฝ๐’‡
(๐‘ท๐’… โˆ’ ๐‘ท๐’–) =
๐‘ฝ๐’‡
๐‘จ๐’‡
๐’ˆ(๐†๐’‡ โˆ’ ๐†๐’‡๐’‡)
๐œŒ๐‘“, ๐œŒ๐‘“๐‘“ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก & ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ; ๐‘‰๐‘“ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก.
๐‘ƒ๐‘‘, ๐‘ƒ๐‘ข = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘‘๐‘œ๐‘ค๐‘›๐‘ค๐‘Ž๐‘Ÿ๐‘‘ & ๐‘ข๐‘๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ.
Flow rate ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ is given as
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 11 of 17
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ(๐‘จ๐’• โˆ’ ๐‘จ๐’‡)
๐พ = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐ถ๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก,
๐ด๐‘ก = ๐‘ก๐‘ข๐‘๐‘’ โˆ’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘Ž๐‘ก ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘™๐‘’๐‘ฃ๐‘’๐‘™, ๐ด๐‘“ = ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ž๐‘Ÿ๐‘’๐‘Ž,
(๐ด๐‘ก โˆ’ ๐ด๐‘“) = ๐‘š๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘Ž๐‘›๐‘›๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘ข๐‘๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก,
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…
๐‘จ๐Ÿ๐‘จ๐Ÿ
โˆš๐‘จ๐Ÿ
๐Ÿ
โˆ’ ๐‘จ๐Ÿ
๐Ÿ
โˆš๐Ÿ๐’ˆโˆšโˆ†๐’‰ =
๐‘ช๐’…(๐‘จ๐’• โˆ’ ๐‘จ๐’‡)
โˆš๐Ÿ โˆ’ (๐‘จ๐’• โˆ’ ๐‘จ๐’‡)
๐Ÿ
/๐‘จ๐’•
๐Ÿ
โˆš๐Ÿ๐’ˆโˆš
๐‘ฝ๐’‡
๐‘จ๐’‡
(๐†๐’‡ โˆ’ ๐†๐’‡๐’‡)
๐†๐’‡๐’‡
If the angle of taper is ฮธ (which is very small), then
๐‘จ๐’• =
๐…
๐Ÿ’
(๐‘ซ๐’Š + ๐’š๐’•๐’‚๐’๐œฝ)๐Ÿ
=
๐…
๐Ÿ’
๐‘ซ๐’Š
๐Ÿ
+
๐…
๐Ÿ
๐’š๐‘ซ๐’Š๐’•๐’‚๐’๐œฝ
๐‘ฆ = ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ค. ๐‘Ÿ. ๐‘ก. ๐‘–๐‘›๐‘™๐‘’๐‘ก; ๐ท๐‘– = ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ
๐…
๐Ÿ
๐‘ซ๐’Š๐’š๐’•๐’‚๐’๐œฝ + ๐‘ฒ (
๐…
๐Ÿ’
๐‘ซ๐’Š
๐Ÿ
โˆ’ ๐‘จ๐’‡) = ๐‘ฒ๐Ÿ๐’š + ๐‘ฒ๐Ÿ
14.
Rotameter
By Bernoulliโ€™s theorem and assuming the rotameter to be perfectly vertically
aligned, the energy equation is written as
๐‘2
๐‘ค
+
๐‘ฃ๐‘š2
2
2๐‘”
=
๐‘1
๐‘ค
+
๐‘ฃ๐‘š1
2
2๐‘”
๐‘œ๐‘Ÿ ๐‘ฃ๐‘š2
2
โˆ’ ๐‘ฃ๐‘š1
2
=
2๐‘”
๐‘ค
(๐‘1 โˆ’ ๐‘2)
๐‘ = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’; ๐‘ฃ๐‘š = ๐‘š๐‘’๐‘Ž๐‘› ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ; ๐‘ค = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก
For static equilibrium of the float at any position
๐ด๐‘“ (๐‘1 +
๐‘ฃ๐‘š1
2
2๐‘”
๐‘ค) + ๐‘ฃ๐‘“๐‘ค = ๐ด๐‘“๐‘2 + ๐‘ฃ๐‘“๐‘ค๐‘“
๐‘‰๐‘“ & ๐‘ค๐‘“ ๐‘Ž๐‘Ÿ๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
By the continuity equation, we have
๐‘„ = ๐‘‰
๐‘š๐ด1 = ๐ถ๐‘๐‘ฃ๐‘š2
๐ด2
๐ด1 = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘œ๐‘“ ๐‘ก๐‘Ž๐‘๐‘’๐‘Ÿ๐‘’๐‘‘ ๐‘ก๐‘ข๐‘๐‘’; ๐ด2 = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก & ๐‘ก๐‘ข๐‘๐‘’;
๐ถ๐‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘›
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 12 of 17
Thus we have,
๐‘ธ = ๐‘ช๐’„๐‘จ๐Ÿโˆš
๐Ÿ๐’ˆ๐’—๐’‡
๐‘จ๐’‡
(
๐’˜๐’‡
๐’˜
โˆ’ ๐Ÿ) = ๐‘ช๐’„๐‘จ๐Ÿโˆš
๐Ÿ๐’ˆ๐’—๐’‡
๐‘จ๐’‡
(
๐†๐’‡
๐†
โˆ’ ๐Ÿ)
๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐œŒ๐‘“ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก
๐‘ธ โˆ ๐’™; ๐‘ฅ = (๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก)
Rotameter Flow Rate is also obtained using the equation,
๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ
๐…
๐Ÿ
๐‘ซ๐’Š๐’š๐’•๐’‚๐’๐œฝ + ๐‘ฒ (
๐…
๐Ÿ’
๐‘ซ๐’Š
๐Ÿ
โˆ’ ๐‘จ๐’‡) = ๐‘ฒ๐Ÿ๐’š + ๐‘ฒ๐Ÿ
๐‘น๐’๐’•๐’‚๐’Ž๐’†๐’•๐’†๐’“ ๐’ˆ๐’Š๐’—๐’†๐’” ๐’๐’Š๐’๐’†๐’‚๐’“ ๐’๐’–๐’•๐’‘๐’–๐’•
15.
Electromagnetic Flow Meter
๐‘ฌ = ๐‘ฉ. ๐’. ๐’—
๐ธ = ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘; ๐ต = ๐‘“๐‘™๐‘ข๐‘ฅ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ; ๐‘™ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ;
๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ
The volume flow rate for a circular pipe of diameter (D) is given as,
๐‘ธ = ๐‘จ โˆ— ๐’— = ๐… โˆ— (
๐‘ซ
๐Ÿ
)
๐Ÿ
โˆ— ๐’— =
๐…๐‘ซ๐Ÿ
๐’—
๐Ÿ’
=
๐…๐‘ซ๐Ÿ
๐Ÿ’
๐‘ฌ
๐‘ฉ. ๐‘ซ
=
๐…๐‘ซ๐‘ฌ
๐Ÿ’๐‘ฉ
16.
Turbine Flow Meter
๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ = ๐’Œ โˆ— ๐’
โ€œKโ€ factor of the turbine element (e.g. pulses per gallon); = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘™๐‘Ž๐‘‘๐‘’
๐‘ฌ = โˆ’
๐’…๐‹
๐’…๐’•
๐ธ = ๐ด๐ถ ๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘˜ ๐‘ข๐‘ ๐‘๐‘œ๐‘–๐‘™; ๐œ‘ = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘“๐‘–๐‘’๐‘™๐‘‘;
17.
Target Flow Meter
๐‘ญ๐’… =
๐Ÿ
๐Ÿ
๐‘ช๐’…๐†๐’ˆ๐‘ฝ๐Ÿ
๐‘จ
๐น๐‘‘ = ๐ท๐‘Ÿ๐‘Ž๐‘” ๐น๐‘œ๐‘Ÿ๐‘๐‘’, ๐ถ๐‘‘=overall drag coefficient; ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ,
๐ด = ๐‘ก๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘ก ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐‘‰ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
18.
Thermal Flow Meter
For Hot Wire Thermal Flow Meter
๐’’๐’• = โˆ†๐‘ป [๐‘ฒ + ๐Ÿ(๐’Œ๐‘ช๐’—๐†๐…๐’…๐‘ฝ๐’‚๐’—๐’ˆ)
๐Ÿ
๐Ÿ
โ„
]
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 13 of 17
๐‘ž๐‘ก = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘™๐‘œ๐‘ ๐‘  ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘๐‘’๐‘Ÿ ๐‘ข๐‘›๐‘–๐‘ก ๐‘ก๐‘–๐‘š๐‘’, โˆ†๐‘‡ = ๐‘š๐‘’๐‘Ž๐‘› ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ค๐‘–๐‘Ÿ๐‘’,
๐‘‘ = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐‘˜ = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ, ๐ถ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘โ€ฒ
๐‘  ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก,
๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘‰
๐‘Ž๐‘ฃ๐‘” = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
For Heat Transfer Thermal Flow Meter
๐‘พ =
๐‘ฏ
โˆ†๐‘ป๐‘ช๐’‘
๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค, ๐ป = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘–๐‘›๐‘๐‘ข๐‘ก, โˆ†๐‘‡ = ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘–๐‘› ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’,
๐ถ๐‘ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก;
Kingโ€™s Law for Hot Wire Anemometer:
๐’‰๐‘ซ
๐’Œ
= ๐ŸŽ. ๐Ÿ‘๐ŸŽ + ๐ŸŽ. ๐Ÿ“โˆš(
๐†๐‘ฝ๐‘ซ
๐
)
โ„Ž = ๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘–๐‘™๐‘š ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ โ„Ž๐‘’๐‘Ž๐‘ก ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ;
๐‘˜ = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ โ„Ž๐‘œ๐‘ก ๐‘ค๐‘–๐‘Ÿ๐‘’; ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘;
๐‘‰ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š; ๐œ‡ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘;
๐ท = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ โ„Ž๐‘œ๐‘ก ๐‘ค๐‘–๐‘Ÿ๐‘’; ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘…๐‘’ = ๐œŒ๐‘‰๐ท ๐œ‡
โ„
๐ผ2
๐‘…๐‘ค = โ„Ž. ๐ด(๐‘‡๐‘ค โˆ’ ๐‘‡๐‘“)
โ„Ž = ๐›ผ + ๐›ฝโˆš๐‘ฃ
๐‘ฐ๐Ÿ
=
๐‘จ(๐œถ + ๐œทโˆš๐’—)(๐‘ป๐’˜ โˆ’ ๐‘ป๐’‡)
๐‘น๐’˜
= ๐‘ช๐Ÿ + ๐‘ช๐Ÿโˆš๐’—
๐ผ = ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก, ๐‘…๐‘ค = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’,
๐‘‡๐‘ค = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, ๐‘‡๐‘“ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’,
๐ด = โ„Ž๐‘’๐‘Ž๐‘‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, โ„Ž = ๐‘“๐‘ข๐‘›๐‘. ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ,
๐›ผ, ๐›ฝ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐ถ1, ๐ถ2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ
19.
Vortex Flow Meter
๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐‘ญ๐’๐’–๐’Š๐’… = ๐‘ฝ๐’๐’“๐’•๐’†๐’™ ๐’‡๐’“๐’†๐’’๐’–๐’†๐’๐’„๐’š / ๐’Œ โˆ’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“
๐‘˜ โˆ’ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘ฆ๐‘–๐‘›๐‘” ๐‘ค๐‘–๐‘กโ„Ž ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ
๐‘บ๐’•๐’“๐’๐’–๐’‰๐’‚๐’ ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ ๐‘บ =
๐’‡๐’”๐’…
๐‘ฝ
๐‘“๐‘† = ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘ โ„Ž๐‘’๐‘‘๐‘‘๐‘–๐‘›๐‘” ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ;
๐‘‘ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘™๐‘ข๐‘“๐‘“ ๐‘๐‘œ๐‘‘๐‘ฆ; ๐‘‰ = ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘œ๐‘ค;
๐‘ฝ๐’๐’“๐’•๐’†๐’™ ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ =
๐…
๐Ÿ’
๐’…๐Ÿ
๐‘ฝ๐’– = (
๐…
๐Ÿ’
๐’…๐Ÿ
โˆ’ ๐’‰ โˆ— ๐’…) ๐‘ฝ๐’…
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 14 of 17
๐‘‰
๐‘ข = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘‰๐‘‘ = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, โ„Ž = ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ
Vortex Shedding Meter
๐’‡ =
๐‘ต๐’”๐’•๐’—
๐‘ซ
๐‘“ = ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘ โ„Ž๐‘’๐‘‘๐‘‘๐‘–๐‘›๐‘” ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ;
๐ท = ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘™๐‘ข๐‘“๐‘“ ๐‘๐‘œ๐‘‘๐‘ฆ; ๐‘๐‘ ๐‘ก = ๐‘†๐‘ก๐‘Ÿ๐‘œ๐‘ขโ„Ž๐‘Ž๐‘™ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ;
20.
Ultrasonic Flow Meter
โˆ†๐’‡ =
๐Ÿ๐’—๐’‡๐’„๐’๐’”๐œฝ
๐’„
ฮ”๐‘“ = ๐ท๐‘œ๐‘๐‘๐‘™๐‘’๐‘Ÿ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘ โ„Ž๐‘–๐‘“๐‘ก;
๐‘ฃ = ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ (๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™๐‘™๐‘ฆ, ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘Ÿ๐‘’๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’)
๐‘“ = ๐น๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘œ๐‘“ ๐‘–๐‘›๐‘๐‘–๐‘‘๐‘’๐‘›๐‘ก ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’;
๐œƒ = ๐ด๐‘›๐‘”๐‘™๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘‘๐‘ข๐‘๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘๐‘–๐‘๐‘’ ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ๐‘™๐‘–๐‘›๐‘’๐‘ ;
๐‘ = ๐‘†๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘ ๐‘  ๐‘“๐‘™๐‘ข๐‘–๐‘‘
Fluid Flow Rate ๐‘ธ in a pipe of cross-section area ๐‘จ is given as
๐‘ธ = ๐‘จ โˆ— ๐’— =
๐‘จ โˆ— ๐’„ โˆ— โˆ†๐’‡
๐Ÿ๐’‡ โˆ— ๐’„๐’๐’”๐œฝ
US Flow Meter Transit Time (t):
โˆ†๐’• = (๐’•๐Ÿ โˆ’ ๐’•๐Ÿ) =
๐‘™
๐‘‰
๐‘  + ๐‘‰๐‘๐‘œ๐‘ ๐œƒ
โˆ’
๐‘™
๐‘‰
๐‘  โˆ’ ๐‘‰๐‘๐‘œ๐‘ ๐œƒ
=
2๐‘™๐‘‰๐‘๐‘œ๐‘ ๐œƒ
๐‘‰
๐‘ 
2 โˆ’ ๐‘‰๐‘๐‘œ๐‘ ๐œƒ2
โˆ†๐’• = (๐’•๐Ÿ โˆ’ ๐’•๐Ÿ) =
๐’
๐‘ฝ๐’” โˆ’ ๐‘ฝ๐‘๐‘œ๐‘ ๐œƒ
โˆ’
๐’
๐‘ฝ๐’” + ๐‘ฝ๐‘๐‘œ๐‘ ๐œƒ
=
๐Ÿ๐’๐‘ฝ
๐‘ฝ๐’”
๐Ÿ
(โˆต ๐‘ฝ โ‰ช ๐‘ฝ๐’”)
๐‘‰
๐‘  = ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘Ž๐‘›๐‘‘ ๐‘‰ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ,
๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘’๐‘‘ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘Ÿ ๐‘Ž๐‘“๐‘ก๐‘’๐‘Ÿ ๐‘Ÿ๐‘’๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘ ๐‘–๐‘‘๐‘’
US Flow Meter Doppler Shift:
๐ฏ =
โˆ†๐’‡๐’„
๐Ÿ๐’‡๐ŸŽ๐’„๐’๐’”๐œฝ
= โˆ†๐’‡๐‘ฒ
ฮธ
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 15 of 17
โˆ†๐‘“ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘‘ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ, ๐พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘, ๐‘ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘‘๐‘ข๐‘๐‘’๐‘Ÿ,
๐‘“๐‘œ = ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ ๐‘ ๐‘–๐‘œ๐‘›,
๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘Ÿ ๐‘๐‘Ÿ๐‘ฆ๐‘ ๐‘ก๐‘Ž๐‘™ ๐‘ค. ๐‘Ÿ. ๐‘ก ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘’๐‘Ÿ ๐‘Ž๐‘ฅ๐‘–๐‘ 
I. Crystal placed inside the tube
โˆ†๐‘ก1 =
๐‘‘
๐ถ + ๐‘ฃ
; โˆ†๐‘ก2 =
๐‘‘
๐ถ โˆ’ ๐‘ฃ
โˆ†๐’• = โˆ†๐’•๐Ÿ โˆ’ โˆ†๐’•๐Ÿ =
๐Ÿ๐’…๐’—
๐‘ช๐Ÿ โˆ’ ๐’—๐Ÿ
โˆ†๐’• =
๐Ÿ๐’…๐’—
๐‘ช๐Ÿ
(๐’‚๐’”๐’”๐’–๐’Ž๐’Š๐’๐’ˆ ๐‘ช โ‰ซ ๐’—)
๐ถ = ๐‘ ๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘š๐‘’๐‘‘๐‘–๐‘ข๐‘š; ๐‘ฃ = ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘;
๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘‡ & ๐‘…
It is linearly proportional to flow velocity (v).
When sinusoidal signal frequency of ๐‘“ Hz travels along the fluid flow, it has a
phase shift of
โˆ†๐œ‘1 =
2๐œ‹๐‘“๐‘‘
๐ถ + ๐‘ฃ
๐‘Ÿ๐‘Ž๐‘‘
When sinusoidal signal frequency of ๐‘“ Hz travels against the fluid flow, it has a
phase shift of
โˆ†๐œ‘2 =
2๐œ‹๐‘“๐‘‘
๐ถ โˆ’ ๐‘ฃ
๐‘Ÿ๐‘Ž๐‘‘
Velocity of fluid can be measured by either measuring the transient time or the
phase shift.
II. Crystals (T & R) placed outside the tube
โˆ†๐‘ก =
2๐‘‘ cos ๐œƒ
๐ถ2
๐‘ฃ
๐’— =
โˆ†๐’•๐‘ช๐Ÿ
๐Ÿ๐’… ๐œ๐จ๐ฌ ๐œฝ
๐œƒ = ๐‘–๐‘›๐‘๐‘™๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘‡ & ๐‘…
III. US method using feedback
Pulse repetition frequency in forward loop
1
โˆ†๐‘ก1
= ๐‘“1
Pulse repetition frequency in backward loop
1
โˆ†๐‘ก2
= ๐‘“2
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 16 of 17
โˆ†๐‘ก1 =
๐‘‘
๐ถ + ๐‘ฃ cos ๐œƒ
; โˆ†๐‘“1 =
๐ถ + ๐‘ฃ cos ๐œƒ
๐‘‘
โˆ†๐‘ก2 =
๐‘‘
๐ถ โˆ’ ๐‘ฃ cos ๐œƒ
; โˆ†๐‘“2 =
๐ถ โˆ’ ๐‘ฃ cos ๐œƒ
๐‘‘
โˆ†๐’‡ = ๐’‡๐Ÿ โˆ’ ๐’‡๐Ÿ =
๐Ÿ๐’— ๐œ๐จ๐ฌ ๐œฝ
๐’…
IV. US Doppler Flowmeter
โˆ†๐’‡ = ๐’‡๐’• โˆ’ ๐’‡๐’“ =
๐Ÿ ๐’‡๐’•๐œ๐จ๐ฌ ๐œฝ๐’—
๐‘ช
V. Laser Doppler Anemometer
๐’‡ =
๐Ÿ๐’— ๐ฌ๐ข๐ง ๐œฝ ๐Ÿ
โ„
๐€
๐‘“ = ๐ท๐‘œ๐‘๐‘๐‘™๐‘’๐‘Ÿ ๐‘†โ„Ž๐‘–๐‘“๐‘ก ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ, ๐œ† = ๐‘ค๐‘Ž๐‘ฃ๐‘’๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘™๐‘Ž๐‘ ๐‘’๐‘Ÿ ๐‘๐‘’๐‘Ž๐‘š,
๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ (๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘  โˆ’ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’)
21.
Coriolis Effect
๐‘ญ๐’„ = โˆ’๐Ÿ๐’Ž๐Ž โˆ— ๐’—
๐ถ๐‘œ๐‘Ÿ๐‘–๐‘œ๐‘™๐‘–๐‘  ๐น๐‘œ๐‘Ÿ๐‘๐‘’
= โˆ’2 โˆ— (๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก) โˆ— (๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ)
โˆ— (๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘” ๐‘“๐‘Ÿ๐‘Ž๐‘š๐‘’)
22.
Variable Reluctance Tachogenerator
๐‘น๐’†๐’๐’–๐’„๐’•๐’‚๐’๐’„๐’† ๐‘น =
๐‘ด๐‘ด๐‘ญ
โˆ…
โˆด ๐‘ด๐‘ด๐‘ญ = ๐‘น โˆ— โˆ…
๐ธ๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘œ๐‘š๐‘œ๐‘ก๐‘–๐‘ฃ๐‘’ ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ๐ธ๐‘€๐น = โˆ’
๐‘‘โˆ…
๐‘‘๐‘ก
= โˆ’
๐‘‘โˆ…
๐‘‘๐œƒ
.
๐‘‘๐œƒ
๐‘‘๐‘ก
โˆ…๐‘‡ = ๐‘›โˆ… = ๐‘›
๐‘€๐‘€๐น
๐‘…
โˆ…๐‘‡(๐œƒ) = ๐›ผ + ๐›ฝcos(๐‘›๐œƒ)
๐ธ๐‘€๐น = โˆ’
๐‘‘โˆ…๐‘‡
๐‘‘๐‘ก
= โˆ’
๐‘‘โˆ…๐‘‡
๐‘‘๐œƒ
๐‘‘๐œƒ
๐‘‘๐‘ก
๐‘‘โˆ…๐‘‡
๐‘‘๐œƒ
= โˆ’๐›ฝ๐‘›๐‘ ๐‘–๐‘›(๐‘›๐œƒ), ๐‘Ž๐‘›๐‘‘ ๐œƒ = ๐œ”๐‘ก, ๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘๐‘œ๐‘–๐‘™ ๐‘ก๐‘ข๐‘Ÿ๐‘›๐‘ 
๐‘‘๐œƒ
๐‘‘๐‘ก
= ๐œ”
โˆด ๐‘ฌ๐‘ด๐‘ญ = ๐œท๐’๐Ž๐ฌ๐ข๐ง(๐’๐Ž๐’•)
๐‘€๐‘€๐น = ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘œ๐‘š๐‘œ๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’, โˆ… = ๐‘“๐‘™๐‘ข๐‘ฅ; โˆ…๐‘‡ = ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘™๐‘ข๐‘ฅ, ๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘๐‘œ๐‘–๐‘™ ๐‘ก๐‘ข๐‘Ÿ๐‘›๐‘ ,
๐œƒ = ๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘›, ๐›ผ = ๐‘š๐‘’๐‘Ž๐‘› ๐‘“๐‘™๐‘ข๐‘ฅ, ๐›ฝ = ๐‘ก๐‘–๐‘š๐‘’ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘ฆ๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘ฅ ๐‘Ž๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’,
FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 17 of 17
๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘คโ„Ž๐‘’๐‘’๐‘™ ๐‘ก๐‘’๐‘’๐‘กโ„Ž, ๐œ” = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘คโ„Ž๐‘’๐‘’๐‘™
23.
Linear Resistance Element Flow Meter
Hagen โ€“ Poiseulle Equation (๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ โˆ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ)
โˆ†๐‘ =
8๐œ‡๐ฟ๐‘„
๐œ‹๐‘…4
๐‘ธ =
๐…๐‘ซ๐Ÿ’
๐Ÿ๐Ÿ๐Ÿ–๐๐‘ณ
(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘ค๐‘œ ๐‘’๐‘›๐‘‘๐‘ , ๐ฟ = ๐‘๐‘–๐‘๐‘’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž,
๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐‘… = ๐‘๐‘–๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘ , ๐œ‡ = ๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก,
(๐‘ƒ1 โˆ’ ๐‘ƒ2) = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ก๐‘ข๐‘๐‘’, ๐ท = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ,

Mais conteรบdo relacionado

Mais procurados

Fundamentals of Microprocessor Based Relays
Fundamentals of Microprocessor Based RelaysFundamentals of Microprocessor Based Relays
Fundamentals of Microprocessor Based Relays
michaeljmack
ย 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converter
Sathiya kumar
ย 

Mais procurados (20)

RGPV NOTES ON FACTS EX8303 unit I & II
RGPV NOTES ON FACTS EX8303 unit I & IIRGPV NOTES ON FACTS EX8303 unit I & II
RGPV NOTES ON FACTS EX8303 unit I & II
ย 
Flow Sensors
Flow SensorsFlow Sensors
Flow Sensors
ย 
Transformer Harmonics
Transformer HarmonicsTransformer Harmonics
Transformer Harmonics
ย 
ROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANT
ROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANTROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANT
ROLE OF CONTROL AND INSTRUMENTATION IN THERMAL POWER PLANT
ย 
Principle of mass flow meter
Principle of mass flow meterPrinciple of mass flow meter
Principle of mass flow meter
ย 
P, PI AND PID CONTROLLER
P, PI AND PID CONTROLLERP, PI AND PID CONTROLLER
P, PI AND PID CONTROLLER
ย 
Instrument transformer CT & PT
Instrument transformer CT & PTInstrument transformer CT & PT
Instrument transformer CT & PT
ย 
PLC programming example - Paint Spray
PLC programming example - Paint SprayPLC programming example - Paint Spray
PLC programming example - Paint Spray
ย 
Fundamentals of Microprocessor Based Relays
Fundamentals of Microprocessor Based RelaysFundamentals of Microprocessor Based Relays
Fundamentals of Microprocessor Based Relays
ย 
Transformer protection
Transformer protectionTransformer protection
Transformer protection
ย 
Unit 2 choppers
Unit 2 choppersUnit 2 choppers
Unit 2 choppers
ย 
Basics Of Instrumentation
Basics Of InstrumentationBasics Of Instrumentation
Basics Of Instrumentation
ย 
Valve characteristics
Valve characteristicsValve characteristics
Valve characteristics
ย 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converter
ย 
Flow measurement part III
Flow measurement   part IIIFlow measurement   part III
Flow measurement part III
ย 
Class 38 self tuning controllers and imc
Class 38   self tuning controllers and imcClass 38   self tuning controllers and imc
Class 38 self tuning controllers and imc
ย 
BREAKDOWN IN LIQUIDS_NDS
BREAKDOWN IN LIQUIDS_NDSBREAKDOWN IN LIQUIDS_NDS
BREAKDOWN IN LIQUIDS_NDS
ย 
Plasma Cutters Supplier | Manufacturer and Suppliers of Plasma Cutter in India
Plasma Cutters Supplier | Manufacturer and Suppliers of Plasma Cutter in IndiaPlasma Cutters Supplier | Manufacturer and Suppliers of Plasma Cutter in India
Plasma Cutters Supplier | Manufacturer and Suppliers of Plasma Cutter in India
ย 
Vortex flow meter project
Vortex flow meter projectVortex flow meter project
Vortex flow meter project
ย 
Differential protection of power transformer
Differential protection of power transformerDifferential protection of power transformer
Differential protection of power transformer
ย 

Semelhante a Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations.pdf

Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks
9866560321sv
ย 
Fluid Mechanics (2).pdf
Fluid Mechanics (2).pdfFluid Mechanics (2).pdf
Fluid Mechanics (2).pdf
AnonymousQm0zbNk
ย 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves Poster
Christopher Wai
ย 

Semelhante a Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations.pdf (20)

Industrial instrumentation flow measurement important equations
Industrial instrumentation   flow measurement important equationsIndustrial instrumentation   flow measurement important equations
Industrial instrumentation flow measurement important equations
ย 
Industrial Instrumentation-Mathematical Expressions.pdf
Industrial Instrumentation-Mathematical Expressions.pdfIndustrial Instrumentation-Mathematical Expressions.pdf
Industrial Instrumentation-Mathematical Expressions.pdf
ย 
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
ย 
Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake mis
ย 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
ย 
Laminar Flow.pptx
Laminar Flow.pptxLaminar Flow.pptx
Laminar Flow.pptx
ย 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gate
ย 
Flow in Pipes
Flow in PipesFlow in Pipes
Flow in Pipes
ย 
Electronic Measurement Flow Measurement
Electronic Measurement Flow MeasurementElectronic Measurement Flow Measurement
Electronic Measurement Flow Measurement
ย 
FM CHAPTER 4.pptx
FM CHAPTER 4.pptxFM CHAPTER 4.pptx
FM CHAPTER 4.pptx
ย 
Applications of Bernoullis eq. (venturi & Nozzle) 2
 Applications of Bernoullis eq. (venturi & Nozzle) 2 Applications of Bernoullis eq. (venturi & Nozzle) 2
Applications of Bernoullis eq. (venturi & Nozzle) 2
ย 
Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks
ย 
Fluid Mechanics (2).pdf
Fluid Mechanics (2).pdfFluid Mechanics (2).pdf
Fluid Mechanics (2).pdf
ย 
FUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfFUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdf
ย 
FLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfFLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdf
ย 
Applications of Bernoullis eq. (venturi & Nozzle)
 Applications of Bernoullis eq. (venturi & Nozzle) Applications of Bernoullis eq. (venturi & Nozzle)
Applications of Bernoullis eq. (venturi & Nozzle)
ย 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
ย 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
ย 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
ย 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves Poster
ย 

Mais de Burdwan University

Mais de Burdwan University (20)

2_MEMS - Sensors, Transducers & Actuators.pdf
2_MEMS - Sensors, Transducers & Actuators.pdf2_MEMS - Sensors, Transducers & Actuators.pdf
2_MEMS - Sensors, Transducers & Actuators.pdf
ย 
1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf1_MEMS - Introduction.pdf
1_MEMS - Introduction.pdf
ย 
Temperature Unit Conversions.pdf
Temperature Unit Conversions.pdfTemperature Unit Conversions.pdf
Temperature Unit Conversions.pdf
ย 
Pressure Unit Conversions.pdf
Pressure Unit Conversions.pdfPressure Unit Conversions.pdf
Pressure Unit Conversions.pdf
ย 
Medical specializations
Medical specializationsMedical specializations
Medical specializations
ย 
Electronic Measurement - Q Factor and Q Meter
Electronic Measurement - Q Factor and Q MeterElectronic Measurement - Q Factor and Q Meter
Electronic Measurement - Q Factor and Q Meter
ย 
Electronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor MeterElectronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor Meter
ย 
Electronic Measurement - Insulation Resistance Measurement - Megger
Electronic Measurement - Insulation Resistance Measurement - MeggerElectronic Measurement - Insulation Resistance Measurement - Megger
Electronic Measurement - Insulation Resistance Measurement - Megger
ย 
pH and Conductivity Measurement
pH and Conductivity MeasurementpH and Conductivity Measurement
pH and Conductivity Measurement
ย 
Relative Humidity Measurement
Relative Humidity MeasurementRelative Humidity Measurement
Relative Humidity Measurement
ย 
Viscosity Measurement
Viscosity MeasurementViscosity Measurement
Viscosity Measurement
ย 
Electronic Measurement - Pressure Measurement
Electronic Measurement - Pressure MeasurementElectronic Measurement - Pressure Measurement
Electronic Measurement - Pressure Measurement
ย 
Electronic Measurement - Level Measurement
Electronic Measurement - Level MeasurementElectronic Measurement - Level Measurement
Electronic Measurement - Level Measurement
ย 
Electronic Measurement - Temperature Measurement
Electronic Measurement - Temperature MeasurementElectronic Measurement - Temperature Measurement
Electronic Measurement - Temperature Measurement
ย 
5 Commonly Used Transducers
5 Commonly Used Transducers5 Commonly Used Transducers
5 Commonly Used Transducers
ย 
Optical Instrumentation 12. Optical Fibre Losses
Optical Instrumentation   12. Optical Fibre LossesOptical Instrumentation   12. Optical Fibre Losses
Optical Instrumentation 12. Optical Fibre Losses
ย 
Basics of Sensors & Transducers
Basics of Sensors & TransducersBasics of Sensors & Transducers
Basics of Sensors & Transducers
ย 
Optical Instrumentation 3. Basics of Photometry
Optical Instrumentation   3. Basics of Photometry Optical Instrumentation   3. Basics of Photometry
Optical Instrumentation 3. Basics of Photometry
ย 
Measurement System
Measurement SystemMeasurement System
Measurement System
ย 
Workshop on Gandhian Philosophy
Workshop on Gandhian PhilosophyWorkshop on Gandhian Philosophy
Workshop on Gandhian Philosophy
ย 

รšltimo

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
ย 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
ย 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
ย 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
ย 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
rknatarajan
ย 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
ย 

รšltimo (20)

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
ย 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
ย 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
ย 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
ย 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ย 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
ย 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
ย 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
ย 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
ย 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
ย 
Top Rated Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
ย 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
ย 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
ย 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
ย 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
ย 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
ย 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
ย 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
ย 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
ย 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
ย 

Eqautions_1_Industrial Instrumentation - Flow Measurement Important Equations.pdf

  • 1. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 1 of 17 Industrial Instrumentation Flow Measurement Sl. No. 1. Newtonโ€™s Law of Viscosity: Shear stress is directly proportional to the velocity gradient. ๐‰ = ๐ ๐’…๐’– ๐’…๐’š ๐‘‘๐‘ข ๐‘‘๐‘ฆ = ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘‘๐‘’๐‘“๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘ก๐‘–๐‘œ๐‘› (๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘”๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘’๐‘›๐‘ก), ๐œ‡ = ๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐œ = ๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘  = ๐น ๐ด โ„ Flow ๐‘ญ = โˆ†๐‘ธ = ๐‘ธ๐’–๐’‚๐’๐’•๐’Š๐’•๐’š ๐‘ป๐’Š๐’Ž๐’† Volume Flow Rate ๐‘ธ = ๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ป๐’Š๐’Ž๐’† Flow Velocity ๐‘ฝ = ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† (๐‘ธ) ๐‘จ๐’“๐’†๐’‚ (๐‘จ) Mass or Weight Flow Rate ๐‘พ = ๐†๐‘ธ Hagen Poiseuille Equation For a Newtonian incompressible fluid, there is a pressure drop in the fluid flow which is proportional to the fluid viscosity. (Assumptions: Incompressible Newtonian fluid, laminar flow through pipe of constant circular cross-section, no acceleration in fluid velocity) โˆ†๐‘ƒ = 8๐œ‡๐‘™๐‘„ ๐œ‹(๐ท 2 โ„ )4 ๐‘ธ = ๐…โˆ†๐‘ท๐‘ซ๐Ÿ’ ๐Ÿ๐Ÿ๐Ÿ–๐๐’ ๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’, ๐ท = ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐œ‡ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘™ = ๐‘๐‘–๐‘๐‘’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž Reynolds Number A dimensionless number used in fluid mechanics to indicate whether fluid flow past a body or in a duct is steady or turbulent.
  • 2. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 2 of 17 ๐‘น๐’† = ๐’—๐’…๐† ๐ ๐‘ฃ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ; ๐‘‘ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’; ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ; ๐œ‡ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘…๐‘’ < 2000 (๐‘™๐‘Ž๐‘š๐‘–๐‘›๐‘Ž๐‘Ÿ) ๐‘…๐‘’ > 4000 (๐‘ก๐‘ข๐‘Ÿ๐‘๐‘ข๐‘™๐‘’๐‘›๐‘ก) ๐‘…๐‘’2000 <> 4000 ๐‘‡๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐น๐‘™๐‘œ๐‘ค Kingโ€™s Law The greater the velocity of the gas across the probes, the greater the cooling effect. The actual mass flow rate is calculated by measuring the variable power required to maintain this constant temperature difference as the gas flows across the sensor. ๐‘พ = ๐‘ฏ โˆ†๐‘ป๐‘ช๐‘ท ๐ถ๐‘ƒ = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก ๐‘๐‘Ž๐‘๐‘Ž๐‘๐‘–๐‘ก๐‘ฆ, ๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค, ๐ป = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘–๐‘›๐‘๐‘–๐‘ก, โˆ†๐‘‡ = ๐‘‡๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ Bernoulli's Equation Bernoulli's principle says that a rise (fall) in pressure in a flowing fluid must always be accompanied by a decrease (increase) in the speed, and conversely, i.e. an increase (decrease) in the speed of the fluid results in a decrease (increase) in the pressure. ๐‘ƒ + 1 2 ๐œŒ๐‘‰2 + ๐œŒ๐‘”โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐œ• ๐œ•๐‘  ( ๐‘ฃ2 2 + ๐‘ƒ ๐œŒ + ๐‘”. โ„Ž) = 0 ๐‘ฃ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ ๐‘๐‘’๐‘’๐‘‘, ๐‘ƒ = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘” = ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ, โ„Ž = โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐œŒ๐‘”โ„Ž = ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› โ„Ž๐‘’๐‘Ž๐‘‘, 1 2 ๐œŒ๐‘‰2 = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ โ„Ž๐‘’๐‘Ž๐‘‘ (๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘ฃ2 2 + ๐‘ƒ ๐œŒ + ๐‘”. โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘ฃ2 2๐‘” + ๐‘ƒ ๐›พ + โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐›พ = ๐œŒ. ๐‘” ๐œŒ๐‘ฃ2 2 + ๐‘ƒ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก (๐‘”, โ„Ž = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก) ๐†๐’—๐Ÿ ๐Ÿ ๐Ÿ + ๐‘ท๐Ÿ = ๐†๐’—๐Ÿ ๐Ÿ ๐Ÿ + ๐‘ท๐Ÿ = ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐‘ƒ1 ๐œŒ โˆ’ ๐‘ƒ2 ๐œŒ = 1 2 (๐‘ฃ2 2 โˆ’ ๐‘ฃ1 2)
  • 3. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 3 of 17 (๐‘ฃ2 2 โˆ’ ๐‘ฃ1 2) = 2 (๐‘ƒ1 โˆ’ ๐‘ƒ2) ๐œŒ ๐‘„ = ๐ด1๐‘ฃ1 = ๐ด2๐‘ฃ2 ๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐‘ƒ1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘ƒ2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘ฃ1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘ฃ2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐ด1 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โˆ’ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐ด2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โˆ’ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐‘ธ = ๐‘จ๐Ÿ โˆš๐Ÿ โˆ’ ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) ๐Ÿ โˆš ๐Ÿ(๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) ๐† 2. Variable Head or Differential Pressure Flow Meter ๐‘ญ๐’๐’–๐’Š๐’… ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐‘ฝ = ๐‘ฌโˆš๐Ÿ๐’ˆ๐’‰ ๐† โ„ ๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ = ๐‘ฌ๐‘จโˆš๐Ÿ๐’ˆ๐’‰ ๐† โ„ ๐‘ด๐’‚๐’”๐’” ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘พ = ๐† โˆ— ๐‘ฌ๐‘จโˆš๐Ÿ๐’ˆ๐’‰ ๐† โ„ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐‘จ๐’‘๐’‘๐’“๐’๐’‚๐’„๐’‰ (๐‘ฌ) = ๐Ÿ โˆš๐Ÿ โˆ’ ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) ๐Ÿ ๐‘‰ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’; ๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐ด = ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  โ€“ ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘๐‘–๐‘๐‘’ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘ข๐‘”โ„Ž ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘–๐‘  ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” โ„Ž = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ โ„Ž๐‘’๐‘Ž๐‘‘ (๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’) ๐‘Ž๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘” = ๐‘Ž๐‘๐‘๐‘’๐‘™๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘‘๐‘ข๐‘’ ๐‘ก๐‘œ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ; ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘œ๐‘ค๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐พ = ๐ถ๐‘‘ โˆš1 โˆ’ ๐›พ4 ๐›พ = ๐‘…๐‘Ž๐‘ก๐‘–๐‘œ ๐น๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘’๐‘‘ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ/๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘’ = ๐‘‘/๐ท Coefficient of Discharge (๐‘ช๐’…) It is the ration of the actual discharge to the theoretical discharge. ๐‘ช๐’๐’†๐’‡๐’‡๐’Š๐’„๐’Š๐’†๐’๐’• ๐’๐’‡ ๐‘ซ๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† ๐‘ช๐’… = ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ ๐‘ธ๐’Š๐’…๐’†๐’‚๐’ Vena Contracta (ฮฒ) The Vena Contracta is the downstream point in a fluid stream where the pressure is the lowest, and the fluid velocity is the highest, and the stream diameter is the least.
  • 4. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 4 of 17 ๐œท = ๐‘ช๐‘ช. ๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’† Contraction Factor/Coefficient (๐‘ช๐‘ช) The Contraction Coefficient is the ration of the area of the jet at the vena contacta to the area of the orifice. ๐‘ช๐‘ช = ๐‘จ๐’“๐’†๐’‚ ๐’‚๐’• ๐‘ฝ๐’†๐’๐’‚ ๐‘ช๐’๐’๐’•๐’“๐’‚๐’„๐’•๐’‚ ๐‘จ๐’“๐’†๐’‚ ๐’๐’‡ ๐‘ถ๐’“๐’Š๐’‡๐’Š๐’„๐’† = ๐œท ๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’† โ‰… 0.6 โˆ’ 0.75 Flow Coefficient (๐‘ช๐‘ฝ) The Flow Coefficient of any device is a relative measure of its efficiency at allowing fluid flow, and it describes the relationship between the pressure drop (โˆ†๐‘ƒ) across the orifice/obstruction valve and the corresponding flow rate. ๐‘ช๐‘ฝ = ๐‘ธโˆš ๐‘บ๐‘ฎ โˆ†๐‘ท โˆ†๐‘ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘†๐บ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ Rate of Discharge: ๐‘„ = ๐ด1๐‘‰1 = ๐ด2๐‘‰2 Applying Bernoulliโ€™s equation (ideal flow assumption) ๐‘ƒ1 + ๐œŒ๐‘‰1 2 2 = ๐‘ƒ2 + ๐œŒ๐‘‰2 2 2 The differential pressure head โˆ†โ„Ž is given by: ๐‘ƒ1 โˆ’ ๐‘ƒ2 ๐œŒ๐‘” = โˆ†โ„Ž 3. Venturi Meter ๐‘ƒ1 โˆ’ ๐‘ƒ2 = ๐œŒ 2 (๐‘ฃ2 2 โˆ’ ๐‘ฃ1 2) ๐‘ƒ1 ๐‘ค1 + ๐‘1 + ๐‘ฃ1 2 2๐‘” = ๐‘ƒ2 ๐‘ค2 + ๐‘2 + ๐‘ฃ2 2 2๐‘” ๐‘ƒ1 & ๐‘ƒ2 = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ ๐‘ฃ1 & ๐‘ฃ2 = ๐‘Ž๐‘ฃ. ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ ๐‘ค1 & ๐‘ค2 = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ ๐ด1 & ๐ด2 = ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ ๐‘1 & ๐‘2 = ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ ๐œŒ, ๐œŒ1 & ๐œŒ2 = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ
  • 5. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 5 of 17 Considering the venture meter being held horizontal and fluid at inlet & throat of same density ๐‘1 = ๐‘2; ๐œŒ1 = ๐œŒ2; ๐‘š = ๐œŒ1๐ด1๐‘ฃ1 = ๐œŒ2๐ด2๐‘ฃ2 ๐‘ฃ2 2 โˆ’ ๐‘ฃ1 2 2๐‘” = ๐‘ƒ1 โˆ’ ๐‘ƒ2 ๐‘ค By equation of continuity ๐ด1๐‘ฃ1 = ๐ด2๐‘ฃ2 ๐‘ฃ1 = ( ๐ด2 ๐ด1 ) ๐‘ฃ2 ๐‘ฃ2 = 1 โˆš1 โˆ’ ( ๐ด2 ๐ด1 ) 2 โˆ— โˆš 2๐‘” ๐‘ค (๐‘ƒ1 โˆ’ ๐‘ƒ2) = ๐ธโˆš 2๐‘” ๐‘ค (๐‘ƒ1 โˆ’ ๐‘ƒ2) Considering few losses, ๐‘ฃ2 is multiplied with a factor ๐ถ๐‘ฃ called the coefficient of velocity. ๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™) = ๐ถ๐‘ฃ๐ธโˆš 2๐‘” ๐‘ค (๐‘ƒ1 โˆ’ ๐‘ƒ2) Discharge (volume flow rate) ๐‘„ = ๐ด2๐‘ฃ2 = ๐ถ๐‘ฃ๐ด2๐ธโˆš 2๐‘” ๐‘ค (๐‘ƒ1 โˆ’ ๐‘ƒ2) Considering contraction factor ๐ถ๐‘ ๐‘„๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ = ๐ถ๐‘๐ถ๐‘ฃ๐ด2๐ธโˆš 2๐‘” ๐‘ค (๐‘1 โˆ’ ๐‘2) ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘จ๐Ÿ๐‘ฌ๐œถโˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) = ๐‘ช๐’…๐‘จ๐Ÿ๐‘ฌ๐œถโˆš ๐Ÿ๐’ˆ ๐’˜ โˆ†๐‘ท ๐ท๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐ถ๐‘‘ = ๐ถ๐‘๐ถ๐‘ฃ; ๐›ผ = ๐‘Ž ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘ค = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘, ๐ธ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐ด๐‘๐‘๐‘Ÿ๐‘œ๐‘Ž๐‘โ„Ž, ๐ด2 = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘Ž๐‘Ÿ๐‘’๐‘Ž. 4. Orifice Vena-contracta is a point where the liquid jet issued from the orifice has the least diameter, minimum pressure and maximum velocity. It is located at as distance ๐ท1 2 โ„ from the orifice plate approximately. Actual velocity at vena-contracta is
  • 6. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 6 of 17 ๐’—๐Ÿ(๐’‚๐’„๐’•๐’–๐’‚๐’) = ๐‘ช๐’— โˆš๐Ÿ โˆ’ ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) ๐Ÿ โˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) = ๐‘ช๐’—๐‘ฌโˆš ๐Ÿ๐’ˆ ๐’˜ โˆ†๐‘ท The jet of liquid coming out of the orifice plate contracts to a minimum area ๐ด0 at the vena-contracta. Area of the vena-contracta is ๐‘จ๐ŸŽ = ๐‘ช๐’„๐‘จ๐’๐’“๐’Š๐’‡๐’Š๐’„๐’† โˆด ๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™) = ๐ถ๐‘ฃ โˆš1 โˆ’ ( ๐ถ๐‘๐ด0 ๐ด1 ) 2 โˆš 2๐‘” ๐‘ค (๐‘ƒ1 โˆ’ ๐‘ƒ2) ๐ท๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘„๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ = ๐ด2๐‘ฃ2 = ๐ถ๐‘๐‘ฃ2(๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™) โˆด ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’—๐‘ช๐’„ ๐‘จ๐ŸŽ โˆš๐Ÿ โˆ’ ( ๐‘ช๐’„๐‘จ๐ŸŽ ๐‘จ๐Ÿ ) ๐Ÿ โˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) Taking into account the effect of temperature (๐›ผ) ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘จ๐ŸŽ๐‘ฌ๐œถโˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) Let ๐พ = ๐ถ๐‘‘๐ธ โˆด ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ๐œถ๐‘จ๐ŸŽโˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) Mass Flow across an Orifice Plate ๐‘ธ๐’Ž = ๐‘ช๐’… โˆš๐Ÿ โˆ’ ๐œท๐Ÿ’ ๐ ๐… ๐Ÿ’ ๐’…๐Ÿ โˆš๐Ÿโˆ†๐‘ท โˆ— ๐†๐Ÿ ๐‘„๐‘š = ๐‘œ๐‘Ÿ๐‘–๐‘“๐‘–๐‘๐‘’ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ถ๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, ๐›ฝ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ, ๐œ– = ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘๐‘–๐‘™๐‘–๐‘ก๐‘ฆ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐‘‘ = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, โˆ†๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ 5. Flow Nozzle The discharge through a flow nozzle is ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ๐‘ฌ๐‘จ๐’•๐’‰๐’“๐’๐’‚๐’•โˆš ๐Ÿ ๐† (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ)
  • 7. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 7 of 17 ๐พ = ๐ถ๐‘‘ โˆš1 โˆ’ ( ๐ด2 ๐ด1 ) 2 = ๐ถ๐‘‘ โˆš1 โˆ’ ( ๐‘‘2 ๐‘‘1 ) 2 , ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ. 6. Dall Tube ๐‘ฝ = ๐‘ฒ โˆ— โˆš๐‘ซ๐‘ท ๐‘‰ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’; ๐พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘š๐‘’๐‘โ„Ž๐‘Ž๐‘›๐‘–๐‘๐‘Ž๐‘™ ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘Ÿ๐‘ฆ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  7. Pitot Tube Using Bernoulliโ€™s theorem, we have ๐‘ƒ ๐‘ค = ๐‘ฃ2 2๐‘” + ๐‘ƒ0 ๐‘ค ๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘–๐‘›๐‘™๐‘’๐‘ก; ๐‘ƒ0 = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ (๐‘ฃ) = โˆš 2๐‘” ๐‘ค (๐‘ƒ โˆ’ ๐‘ƒ0) = โˆš 2๐‘” ๐œŒ (๐‘ƒ โˆ’ ๐‘ƒ0) ๐’—๐’Ž๐’†๐’‚๐’ = ๐‘ช๐’—โˆš ๐Ÿ๐’ˆ ๐’˜ (๐‘ƒ โˆ’ ๐‘ƒ0) = ๐‘ช๐’—โˆš ๐Ÿ๐’ˆ ๐† (๐‘ƒ โˆ’ ๐‘ƒ0) ๐ถ๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ Stagnation Pressure: ๐‘†๐‘ก๐‘Ž๐‘”๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐‘†๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ + ๐ท๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘ƒ๐‘ ๐‘ก๐‘Ž๐‘” = ๐‘ƒ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ + ( ๐œŒ๐‘ฃ2 2 ) โˆด ๐‘ญ๐’๐’๐’˜ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’— = โˆš ๐Ÿ(๐‘ท๐’”๐’•๐’‚๐’ˆ โˆ’ ๐‘ท๐’”๐’•๐’‚๐’•๐’Š๐’„) ๐† 8. Annubar ๐‘ธ โˆ ๐‘ฒโˆš๐‘ซ๐‘ท ๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐พ = ๐‘Ž๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก. ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ = ๐ป๐‘–๐‘”โ„Ž ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ (๐ป๐‘ƒ) โˆ’ ๐ฟ๐‘œ๐‘ค ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ (๐ฟ๐‘ƒ) Annubar Flow Measurement: ๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ณ๐’Š๐’’๐’–๐’Š๐’…) ๐‘ธ๐‘ฝ = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ ๐‘ญ๐’‚๐’‚โˆš ๐‘ซ๐‘ท ๐‘ฎ๐‘ญ
  • 8. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 8 of 17 ๐‘ฝ๐’๐’๐’–๐’Ž๐’† ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ฎ๐’‚๐’”) ๐‘ธ๐‘ด๐’‚๐’”๐’” = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ ๐‘ญ๐’‚๐’‚โˆš ๐‘ซ๐‘ท ๐†๐‘ญ ๐‘ด๐’‚๐’”๐’” ๐‘ญ๐’๐’๐’˜ ๐’“๐’‚๐’•๐’† (๐‘ฎ๐’‚๐’” &๐‘บ๐’•๐’†๐’‚๐’Ž) ๐‘ธ๐‘ด๐’‚๐’”๐’” = ๐‘ต๐‘ฒ๐‘ซ๐Ÿ ๐’€๐’‚๐‘ญ๐’‚๐’‚โˆš ๐‘ท โˆ— ๐‘ซ๐‘ท ๐‘ป ๐ท๐‘ƒ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐พ = ๐ด๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, ๐ท = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐‘ƒ = ๐‘†๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’, ๐‘‡ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, ๐‘ = ๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐บ๐น = ๐‘†๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐‘Œ๐‘Ž = ๐ด๐‘›๐‘›๐‘ข๐‘๐‘Ž๐‘Ÿ ๐ธ๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ, ๐น๐‘Ž๐‘Ž = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ 9. Elbow Tap ๐ถ๐‘˜ ๐‘ฃ2 2๐‘” = ๐‘ƒ0 ๐œŒ๐‘” + ๐‘0 โˆ’ ๐‘ƒ๐‘– ๐œŒ๐‘” โˆ’ ๐‘๐‘– ๐‘๐‘– ๐‘Ž๐‘›๐‘‘ ๐‘๐‘œ = ๐‘™๐‘œ๐‘ค๐‘’๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ โ„Ž๐‘–๐‘”โ„Ž๐‘’๐‘ ๐‘ก ๐‘ก๐‘Ž๐‘๐‘๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘–๐‘›๐‘ก๐‘  ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ. The flow rate is measured by the following equation. ๐‘ธ = ๐‘จ โˆ— ๐’— = ๐‘จ โˆš๐‘ช๐’Œ โˆš๐Ÿ๐’ˆ( ๐‘ท๐’ ๐†๐’ˆ + ๐’๐ŸŽ โˆ’ ๐‘ท๐’Š ๐†๐’ˆ โˆ’ ๐’๐’Š) = ๐‘ช. ๐‘จโˆš๐Ÿ๐’ˆ( ๐‘ท๐’ ๐†๐’ˆ + ๐’๐ŸŽ โˆ’ ๐‘ท๐’Š ๐†๐’ˆ โˆ’ ๐’๐’Š) 10 Segmental Wedge Flow Meter ๐‘ธ๐‘ฝ โˆ ๐‘ฒโˆš๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ 11. Weir Applying Bernoulliโ€™s equation at undisturbed region of upstream flow and at the crest of the weir, we get ๐ป + ๐‘‰1 2 2๐‘” = (๐ป โˆ’ ๐‘ฆ) + ๐‘‰2 2 2๐‘” ๐‘‰1, ๐‘‰2 = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค, ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ž๐‘ก ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ. ๐‘‰2 = โˆš2๐‘”(โ„Ž + ๐‘‰1 2 2๐‘” ) If ๐‘‰1 is small compared to ๐‘‰2, then ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘™๐‘Ž๐‘ฆ๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ = โˆš2๐‘”๐‘ฆ, ๐‘ฆ = depth from the top surface of water level. For a Weir, the general Elemental Discharge is given as
  • 9. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 9 of 17 ๐‘ฌ๐’๐’†๐’Ž๐’†๐’๐’•๐’‚๐’ ๐’…๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† = โˆš๐Ÿ๐’ˆ๐’š๐‘ณ๐‘พ๐’…๐’š ๐‘ฌ๐’๐’†๐’Ž๐’†๐’๐’•๐’‚๐’ ๐’…๐’Š๐’”๐’„๐’‰๐’‚๐’“๐’ˆ๐’† ๐’๐’‡ ๐’•๐’‰๐’Š๐’ ๐’๐’‚๐’š๐’†๐’“ ๐‘ธ = ๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐’š ๐‘ณ๐‘พ ๐’…๐’š ๐ถ๐‘‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’, ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› 0.57 ๐‘Ž๐‘›๐‘‘ 0.64; ๐ฟ๐‘Š ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž. Weir Flow Rate ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’…๐‘ณ๐‘พโˆš๐Ÿ๐’ˆ๐’š โˆซ โˆš๐’š๐’…๐’š ๐‘ฏ ๐ŸŽ = ๐Ÿ ๐Ÿ‘ ๐‘ช๐’…๐‘ณ๐‘พโˆš๐Ÿ๐’ˆ(๐‘ฏ) ๐Ÿ‘ ๐Ÿ โ„ Flow Discharge through Rectangular Weir ๐‘ธ = ๐Ÿ ๐Ÿ‘ ๐‘ช๐’…๐‘ณโˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“ = ๐Ÿ ๐Ÿ‘ ๐‘ช๐’…(๐‘ณ๐‘พ โˆ’ ๐ŸŽ. ๐Ÿ๐‘ฏ)โˆš๐Ÿ๐’ˆ(๐‘ฏ) ๐Ÿ‘ ๐Ÿ โ„ = ๐Ÿ‘. ๐Ÿ‘๐Ÿ‘(๐‘ณ โˆ’ ๐ŸŽ. ๐Ÿ๐‘ฏ)๐‘ฏ๐Ÿ.๐Ÿ“ ๐ถ๐‘‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’; ๐ป = ๐‘™๐‘–๐‘ž๐‘ข๐‘–๐‘‘ โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘–๐‘› ๐‘›๐‘œ๐‘ก๐‘โ„Ž; ๐ฟ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘›๐‘œ๐‘ก๐‘โ„Ž; Flow Discharge through V-notch ๐‘ธ = ๐Ÿ– ๐Ÿ๐Ÿ“ ๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“ ๐ญ๐š๐ง ๐œฝ ๐Ÿ = ๐Ÿ. ๐Ÿ’๐Ÿ– (๐’•๐’‚๐’ ๐œฝ ๐Ÿ ) ๐‘ฏ๐Ÿ.๐Ÿ“ ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘Ž๐‘ก ๐‘ฃ โˆ’ ๐‘›๐‘œ๐‘ก๐‘โ„Ž Flow Discharge through trapezoidal notch (summation rectangular and v-notch) ๐‘ธ = ๐Ÿ ๐Ÿ‘ ๐‘ช๐’…๐‘ณโˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“ + ๐Ÿ– ๐Ÿ๐Ÿ“ ๐‘ช๐’…โˆš๐Ÿ๐’ˆ๐‘ฏ๐Ÿ.๐Ÿ“ ๐ญ๐š๐ง ๐œฝ ๐Ÿ = ๐Ÿ‘. ๐Ÿ‘๐Ÿ”๐Ÿ• โˆ— ๐‘ณ โˆ— ๐‘ฏ๐Ÿ.๐Ÿ“ 12. Flume Actual discharge through a flume ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐‘จ๐Ÿ โˆš๐Ÿ + ( ๐‘จ๐Ÿ ๐‘จ๐Ÿ ) ๐Ÿ โˆš๐Ÿ๐’ˆ๐’‰ = ๐‘ช๐‘จ๐Ÿ๐‘ฌโˆš๐Ÿ๐’ˆ๐’‰ The free-flow rate (Q) for a Palmer-Bowlus Flume is given as ๐‘ธ = ๐‘ช๐‘ฏ๐’‚ ๐’ โˆ’ ๐‘ธ๐‘ฌ ๐ถ = ๐‘ฃ๐‘’๐‘›๐‘ก๐‘ข๐‘Ÿ๐‘– ๐‘“๐‘™๐‘ข๐‘š๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก (0.95 ๐‘ก๐‘œ 1); โ„Ž = โ„Ž1 โˆ’ โ„Ž2, ๐‘„๐ธ = ๐‘ ๐‘ข๐‘๐‘š๐‘’๐‘Ÿ๐‘”๐‘’๐‘›๐‘๐‘’ ๐‘๐‘œ๐‘Ÿ๐‘Ÿ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› Maximum discharge through venture flume is given as ๐‘ธ๐’Ž๐’‚๐’™ = ๐Ÿ. ๐Ÿ•๐’ƒ๐Ÿ๐‘ฏ๐Ÿ.๐Ÿ“
  • 10. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 10 of 17 ๐‘2 = ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ฃ๐‘’๐‘›๐‘ก๐‘ข๐‘Ÿ๐‘– ๐‘“๐‘™๐‘ข๐‘š๐‘’ The maximum value of flow in a venture flume occurs when โ„Ž2 = ( 2 3 ) โ„Ž Accuracy of flumes are higher that of weirs. The free-flow discharge rate (Q) in a Parshall flume is given as ๐‘ธ = ๐ŸŽ. ๐Ÿ—๐Ÿ—๐Ÿ๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ’๐Ÿ• ๐Ÿ‘ โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’• ๐‘ธ = ๐Ÿ. ๐ŸŽ๐Ÿ”๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ– ๐Ÿ” โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’• ๐‘ธ = ๐Ÿ‘. ๐ŸŽ๐Ÿ•๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ‘ ๐Ÿ— โˆ’ ๐’Š๐’๐’„๐’‰ ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’• ๐‘ธ = (๐Ÿ‘. ๐Ÿ”๐Ÿ–๐Ÿ•๐Ÿ“๐‘ณ = ๐Ÿ. ๐Ÿ“)๐‘ฏ๐Ÿ.๐Ÿ“๐Ÿ‘ ๐Ÿ๐ŸŽ โˆ’ ๐Ÿ“๐ŸŽ ๐’‡๐’†๐’†๐’• ๐’˜๐’Š๐’…๐’† ๐’•๐’‰๐’“๐’๐’‚๐’• ๐‘„ = ๐น๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐ฟ = ๐‘ค๐‘–๐‘‘๐‘กโ„Ž ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘š๐‘’ ๐‘กโ„Ž๐‘Ÿ๐‘œ๐‘Ž๐‘ก, ๐ป = ๐ป๐‘’๐‘Ž๐‘‘ (๐‘“๐‘’๐‘’๐‘ก) 13. Variable-Area Flow Meter Drag Force The Drag Force ๐‘ญ๐’…๐’“๐’‚๐’ˆ is a force acting opposite to the relative motion of the objects which is a function of the fluid velocity. Drag force is proportional to velocity for a laminar flow and proportional to the velocity squared for a turbulent flow. The numerical expression for ๐‘ญ๐’…๐’“๐’‚๐’ˆ ๐‘ญ๐’…๐’“๐’‚๐’ˆ = โˆ†๐‘ท โˆ†๐‘ธ = ๐๐‘จ ๐๐’— ๐๐’› The Drag Force ๐‘ญ๐’…๐’“๐’‚๐’ˆ is also expressed as, ๐‘ญ๐’…๐’“๐’‚๐’ˆ = ๐Ÿ ๐Ÿ ๐†๐’—๐Ÿ ๐‘ช๐‘ซ๐‘จ ๐œ‡ = ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ, ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐ด = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐‘ช๐‘ซ = ๐ท๐‘Ÿ๐‘Ž๐‘” ๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’, โˆ†๐‘„ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘๐‘Ÿ๐‘œ๐‘“๐‘–๐‘™๐‘’, ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, Force Balance Equation of Variable Area Flow Meter ๐‘ญ๐’…๐’“๐’‚๐’ˆ + ๐‘ญ๐’ƒ๐’–๐’๐’š๐’‚๐’๐’„๐’š = ๐‘ญ๐’˜๐’†๐’Š๐’ˆ๐’‰๐’• ๐‘จ๐’‡(๐‘ท๐’… โˆ’ ๐‘ท๐’–) + ๐†๐’‡๐’‡๐’ˆ๐‘ฝ๐’‡ = ๐†๐’‡๐’ˆ๐‘ฝ๐’‡ (๐‘ท๐’… โˆ’ ๐‘ท๐’–) = ๐‘ฝ๐’‡ ๐‘จ๐’‡ ๐’ˆ(๐†๐’‡ โˆ’ ๐†๐’‡๐’‡) ๐œŒ๐‘“, ๐œŒ๐‘“๐‘“ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก & ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ; ๐‘‰๐‘“ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก. ๐‘ƒ๐‘‘, ๐‘ƒ๐‘ข = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘Ž๐‘ก ๐‘‘๐‘œ๐‘ค๐‘›๐‘ค๐‘Ž๐‘Ÿ๐‘‘ & ๐‘ข๐‘๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ. Flow rate ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ is given as
  • 11. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 11 of 17 ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ(๐‘จ๐’• โˆ’ ๐‘จ๐’‡) ๐พ = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐ถ๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, ๐ด๐‘ก = ๐‘ก๐‘ข๐‘๐‘’ โˆ’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘Ž๐‘ก ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘™๐‘’๐‘ฃ๐‘’๐‘™, ๐ด๐‘“ = ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, (๐ด๐‘ก โˆ’ ๐ด๐‘“) = ๐‘š๐‘–๐‘›๐‘–๐‘š๐‘ข๐‘š ๐‘Ž๐‘›๐‘›๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘ข๐‘๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก, ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ช๐’… ๐‘จ๐Ÿ๐‘จ๐Ÿ โˆš๐‘จ๐Ÿ ๐Ÿ โˆ’ ๐‘จ๐Ÿ ๐Ÿ โˆš๐Ÿ๐’ˆโˆšโˆ†๐’‰ = ๐‘ช๐’…(๐‘จ๐’• โˆ’ ๐‘จ๐’‡) โˆš๐Ÿ โˆ’ (๐‘จ๐’• โˆ’ ๐‘จ๐’‡) ๐Ÿ /๐‘จ๐’• ๐Ÿ โˆš๐Ÿ๐’ˆโˆš ๐‘ฝ๐’‡ ๐‘จ๐’‡ (๐†๐’‡ โˆ’ ๐†๐’‡๐’‡) ๐†๐’‡๐’‡ If the angle of taper is ฮธ (which is very small), then ๐‘จ๐’• = ๐… ๐Ÿ’ (๐‘ซ๐’Š + ๐’š๐’•๐’‚๐’๐œฝ)๐Ÿ = ๐… ๐Ÿ’ ๐‘ซ๐’Š ๐Ÿ + ๐… ๐Ÿ ๐’š๐‘ซ๐’Š๐’•๐’‚๐’๐œฝ ๐‘ฆ = ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘ค. ๐‘Ÿ. ๐‘ก. ๐‘–๐‘›๐‘™๐‘’๐‘ก; ๐ท๐‘– = ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ ๐… ๐Ÿ ๐‘ซ๐’Š๐’š๐’•๐’‚๐’๐œฝ + ๐‘ฒ ( ๐… ๐Ÿ’ ๐‘ซ๐’Š ๐Ÿ โˆ’ ๐‘จ๐’‡) = ๐‘ฒ๐Ÿ๐’š + ๐‘ฒ๐Ÿ 14. Rotameter By Bernoulliโ€™s theorem and assuming the rotameter to be perfectly vertically aligned, the energy equation is written as ๐‘2 ๐‘ค + ๐‘ฃ๐‘š2 2 2๐‘” = ๐‘1 ๐‘ค + ๐‘ฃ๐‘š1 2 2๐‘” ๐‘œ๐‘Ÿ ๐‘ฃ๐‘š2 2 โˆ’ ๐‘ฃ๐‘š1 2 = 2๐‘” ๐‘ค (๐‘1 โˆ’ ๐‘2) ๐‘ = ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’; ๐‘ฃ๐‘š = ๐‘š๐‘’๐‘Ž๐‘› ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ; ๐‘ค = ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก For static equilibrium of the float at any position ๐ด๐‘“ (๐‘1 + ๐‘ฃ๐‘š1 2 2๐‘” ๐‘ค) + ๐‘ฃ๐‘“๐‘ค = ๐ด๐‘“๐‘2 + ๐‘ฃ๐‘“๐‘ค๐‘“ ๐‘‰๐‘“ & ๐‘ค๐‘“ ๐‘Ž๐‘Ÿ๐‘’ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ ๐‘ค๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’๐‘™๐‘ฆ By the continuity equation, we have ๐‘„ = ๐‘‰ ๐‘š๐ด1 = ๐ถ๐‘๐‘ฃ๐‘š2 ๐ด2 ๐ด1 = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘–๐‘›๐‘™๐‘’๐‘ก ๐‘œ๐‘“ ๐‘ก๐‘Ž๐‘๐‘’๐‘Ÿ๐‘’๐‘‘ ๐‘ก๐‘ข๐‘๐‘’; ๐ด2 = ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก & ๐‘ก๐‘ข๐‘๐‘’; ๐ถ๐‘ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘›
  • 12. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 12 of 17 Thus we have, ๐‘ธ = ๐‘ช๐’„๐‘จ๐Ÿโˆš ๐Ÿ๐’ˆ๐’—๐’‡ ๐‘จ๐’‡ ( ๐’˜๐’‡ ๐’˜ โˆ’ ๐Ÿ) = ๐‘ช๐’„๐‘จ๐Ÿโˆš ๐Ÿ๐’ˆ๐’—๐’‡ ๐‘จ๐’‡ ( ๐†๐’‡ ๐† โˆ’ ๐Ÿ) ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐œŒ๐‘“ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘ธ โˆ ๐’™; ๐‘ฅ = (๐‘“๐‘™๐‘œ๐‘Ž๐‘ก ๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก) Rotameter Flow Rate is also obtained using the equation, ๐‘ธ๐’‚๐’„๐’•๐’–๐’‚๐’ = ๐‘ฒ ๐… ๐Ÿ ๐‘ซ๐’Š๐’š๐’•๐’‚๐’๐œฝ + ๐‘ฒ ( ๐… ๐Ÿ’ ๐‘ซ๐’Š ๐Ÿ โˆ’ ๐‘จ๐’‡) = ๐‘ฒ๐Ÿ๐’š + ๐‘ฒ๐Ÿ ๐‘น๐’๐’•๐’‚๐’Ž๐’†๐’•๐’†๐’“ ๐’ˆ๐’Š๐’—๐’†๐’” ๐’๐’Š๐’๐’†๐’‚๐’“ ๐’๐’–๐’•๐’‘๐’–๐’• 15. Electromagnetic Flow Meter ๐‘ฌ = ๐‘ฉ. ๐’. ๐’— ๐ธ = ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘; ๐ต = ๐‘“๐‘™๐‘ข๐‘ฅ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ; ๐‘™ = ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ; ๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ The volume flow rate for a circular pipe of diameter (D) is given as, ๐‘ธ = ๐‘จ โˆ— ๐’— = ๐… โˆ— ( ๐‘ซ ๐Ÿ ) ๐Ÿ โˆ— ๐’— = ๐…๐‘ซ๐Ÿ ๐’— ๐Ÿ’ = ๐…๐‘ซ๐Ÿ ๐Ÿ’ ๐‘ฌ ๐‘ฉ. ๐‘ซ = ๐…๐‘ซ๐‘ฌ ๐Ÿ’๐‘ฉ 16. Turbine Flow Meter ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ = ๐’Œ โˆ— ๐’ โ€œKโ€ factor of the turbine element (e.g. pulses per gallon); = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘™๐‘Ž๐‘‘๐‘’ ๐‘ฌ = โˆ’ ๐’…๐‹ ๐’…๐’• ๐ธ = ๐ด๐ถ ๐‘‰๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘˜ ๐‘ข๐‘ ๐‘๐‘œ๐‘–๐‘™; ๐œ‘ = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘“๐‘–๐‘’๐‘™๐‘‘; 17. Target Flow Meter ๐‘ญ๐’… = ๐Ÿ ๐Ÿ ๐‘ช๐’…๐†๐’ˆ๐‘ฝ๐Ÿ ๐‘จ ๐น๐‘‘ = ๐ท๐‘Ÿ๐‘Ž๐‘” ๐น๐‘œ๐‘Ÿ๐‘๐‘’, ๐ถ๐‘‘=overall drag coefficient; ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐ด = ๐‘ก๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘ก ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, ๐‘‰ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ 18. Thermal Flow Meter For Hot Wire Thermal Flow Meter ๐’’๐’• = โˆ†๐‘ป [๐‘ฒ + ๐Ÿ(๐’Œ๐‘ช๐’—๐†๐…๐’…๐‘ฝ๐’‚๐’—๐’ˆ) ๐Ÿ ๐Ÿ โ„ ]
  • 13. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 13 of 17 ๐‘ž๐‘ก = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘™๐‘œ๐‘ ๐‘  ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘๐‘’๐‘Ÿ ๐‘ข๐‘›๐‘–๐‘ก ๐‘ก๐‘–๐‘š๐‘’, โˆ†๐‘‡ = ๐‘š๐‘’๐‘Ž๐‘› ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘’๐‘™๐‘’๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ค๐‘–๐‘Ÿ๐‘’, ๐‘‘ = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐‘˜ = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ, ๐ถ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘โ€ฒ ๐‘  ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก, ๐œŒ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ, ๐‘‰ ๐‘Ž๐‘ฃ๐‘” = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ For Heat Transfer Thermal Flow Meter ๐‘พ = ๐‘ฏ โˆ†๐‘ป๐‘ช๐’‘ ๐‘Š = ๐‘š๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค, ๐ป = โ„Ž๐‘’๐‘Ž๐‘ก ๐‘–๐‘›๐‘๐‘ข๐‘ก, โˆ†๐‘‡ = ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘–๐‘› ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, ๐ถ๐‘ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘“๐‘–๐‘ โ„Ž๐‘’๐‘Ž๐‘ก; Kingโ€™s Law for Hot Wire Anemometer: ๐’‰๐‘ซ ๐’Œ = ๐ŸŽ. ๐Ÿ‘๐ŸŽ + ๐ŸŽ. ๐Ÿ“โˆš( ๐†๐‘ฝ๐‘ซ ๐ ) โ„Ž = ๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘–๐‘™๐‘š ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ โ„Ž๐‘’๐‘Ž๐‘ก ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ; ๐‘˜ = ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ โ„Ž๐‘œ๐‘ก ๐‘ค๐‘–๐‘Ÿ๐‘’; ๐œŒ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐‘‰ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š; ๐œ‡ = ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐ท = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ โ„Ž๐‘œ๐‘ก ๐‘ค๐‘–๐‘Ÿ๐‘’; ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘…๐‘’ = ๐œŒ๐‘‰๐ท ๐œ‡ โ„ ๐ผ2 ๐‘…๐‘ค = โ„Ž. ๐ด(๐‘‡๐‘ค โˆ’ ๐‘‡๐‘“) โ„Ž = ๐›ผ + ๐›ฝโˆš๐‘ฃ ๐‘ฐ๐Ÿ = ๐‘จ(๐œถ + ๐œทโˆš๐’—)(๐‘ป๐’˜ โˆ’ ๐‘ป๐’‡) ๐‘น๐’˜ = ๐‘ช๐Ÿ + ๐‘ช๐Ÿโˆš๐’— ๐ผ = ๐‘๐‘–๐‘Ÿ๐‘๐‘ข๐‘–๐‘ก ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก, ๐‘…๐‘ค = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’, ๐‘‡๐‘ค = ๐‘ค๐‘–๐‘Ÿ๐‘’ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, ๐‘‡๐‘“ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ก๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’, ๐ด = โ„Ž๐‘’๐‘Ž๐‘‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž, โ„Ž = ๐‘“๐‘ข๐‘›๐‘. ๐‘œ๐‘“ ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐›ผ, ๐›ฝ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐ถ1, ๐ถ2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก, ๐‘ฃ = ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ 19. Vortex Flow Meter ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐‘ญ๐’๐’–๐’Š๐’… = ๐‘ฝ๐’๐’“๐’•๐’†๐’™ ๐’‡๐’“๐’†๐’’๐’–๐’†๐’๐’„๐’š / ๐’Œ โˆ’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ ๐‘˜ โˆ’ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ = ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘ฆ๐‘–๐‘›๐‘” ๐‘ค๐‘–๐‘กโ„Ž ๐‘…๐‘’๐‘ฆ๐‘›๐‘œ๐‘™๐‘‘๐‘  ๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘บ๐’•๐’“๐’๐’–๐’‰๐’‚๐’ ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ ๐‘บ = ๐’‡๐’”๐’… ๐‘ฝ ๐‘“๐‘† = ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘ โ„Ž๐‘’๐‘‘๐‘‘๐‘–๐‘›๐‘” ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ; ๐‘‘ = ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘™๐‘ข๐‘“๐‘“ ๐‘๐‘œ๐‘‘๐‘ฆ; ๐‘‰ = ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘™๐‘œ๐‘ค; ๐‘ฝ๐’๐’“๐’•๐’†๐’™ ๐‘ญ๐’๐’๐’˜ ๐‘น๐’‚๐’•๐’† ๐‘ธ = ๐… ๐Ÿ’ ๐’…๐Ÿ ๐‘ฝ๐’– = ( ๐… ๐Ÿ’ ๐’…๐Ÿ โˆ’ ๐’‰ โˆ— ๐’…) ๐‘ฝ๐’…
  • 14. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 14 of 17 ๐‘‰ ๐‘ข = ๐‘ข๐‘๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘‰๐‘‘ = ๐‘‘๐‘œ๐‘ค๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘Ž๐‘š ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, โ„Ž = ๐‘๐‘–๐‘๐‘’ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ Vortex Shedding Meter ๐’‡ = ๐‘ต๐’”๐’•๐’— ๐‘ซ ๐‘“ = ๐‘ฃ๐‘œ๐‘Ÿ๐‘ก๐‘’๐‘ฅ ๐‘ โ„Ž๐‘’๐‘‘๐‘‘๐‘–๐‘›๐‘” ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ; ๐ท = ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘™๐‘ข๐‘“๐‘“ ๐‘๐‘œ๐‘‘๐‘ฆ; ๐‘๐‘ ๐‘ก = ๐‘†๐‘ก๐‘Ÿ๐‘œ๐‘ขโ„Ž๐‘Ž๐‘™ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ; 20. Ultrasonic Flow Meter โˆ†๐’‡ = ๐Ÿ๐’—๐’‡๐’„๐’๐’”๐œฝ ๐’„ ฮ”๐‘“ = ๐ท๐‘œ๐‘๐‘๐‘™๐‘’๐‘Ÿ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘ โ„Ž๐‘–๐‘“๐‘ก; ๐‘ฃ = ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ (๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™๐‘™๐‘ฆ, ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘Ÿ๐‘’๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’) ๐‘“ = ๐น๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘œ๐‘“ ๐‘–๐‘›๐‘๐‘–๐‘‘๐‘’๐‘›๐‘ก ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’; ๐œƒ = ๐ด๐‘›๐‘”๐‘™๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘‘๐‘ข๐‘๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘๐‘–๐‘๐‘’ ๐‘๐‘’๐‘›๐‘ก๐‘’๐‘Ÿ๐‘™๐‘–๐‘›๐‘’๐‘ ; ๐‘ = ๐‘†๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘ ๐‘  ๐‘“๐‘™๐‘ข๐‘–๐‘‘ Fluid Flow Rate ๐‘ธ in a pipe of cross-section area ๐‘จ is given as ๐‘ธ = ๐‘จ โˆ— ๐’— = ๐‘จ โˆ— ๐’„ โˆ— โˆ†๐’‡ ๐Ÿ๐’‡ โˆ— ๐’„๐’๐’”๐œฝ US Flow Meter Transit Time (t): โˆ†๐’• = (๐’•๐Ÿ โˆ’ ๐’•๐Ÿ) = ๐‘™ ๐‘‰ ๐‘  + ๐‘‰๐‘๐‘œ๐‘ ๐œƒ โˆ’ ๐‘™ ๐‘‰ ๐‘  โˆ’ ๐‘‰๐‘๐‘œ๐‘ ๐œƒ = 2๐‘™๐‘‰๐‘๐‘œ๐‘ ๐œƒ ๐‘‰ ๐‘  2 โˆ’ ๐‘‰๐‘๐‘œ๐‘ ๐œƒ2 โˆ†๐’• = (๐’•๐Ÿ โˆ’ ๐’•๐Ÿ) = ๐’ ๐‘ฝ๐’” โˆ’ ๐‘ฝ๐‘๐‘œ๐‘ ๐œƒ โˆ’ ๐’ ๐‘ฝ๐’” + ๐‘ฝ๐‘๐‘œ๐‘ ๐œƒ = ๐Ÿ๐’๐‘ฝ ๐‘ฝ๐’” ๐Ÿ (โˆต ๐‘ฝ โ‰ช ๐‘ฝ๐’”) ๐‘‰ ๐‘  = ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐‘Ž๐‘›๐‘‘ ๐‘‰ = ๐‘“๐‘™๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ, ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘’๐‘‘ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘Ÿ ๐‘Ž๐‘“๐‘ก๐‘’๐‘Ÿ ๐‘Ÿ๐‘’๐‘“๐‘™๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘ ๐‘–๐‘‘๐‘’ US Flow Meter Doppler Shift: ๐ฏ = โˆ†๐’‡๐’„ ๐Ÿ๐’‡๐ŸŽ๐’„๐’๐’”๐œฝ = โˆ†๐’‡๐‘ฒ ฮธ
  • 15. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 15 of 17 โˆ†๐‘“ = ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘‘ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ, ๐พ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘ฃ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘, ๐‘ = ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘‘๐‘ข๐‘๐‘’๐‘Ÿ, ๐‘“๐‘œ = ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ ๐‘ ๐‘–๐‘œ๐‘›, ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘š๐‘–๐‘ก๐‘ก๐‘’๐‘Ÿ ๐‘Ž๐‘›๐‘‘ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’๐‘Ÿ ๐‘๐‘Ÿ๐‘ฆ๐‘ ๐‘ก๐‘Ž๐‘™ ๐‘ค. ๐‘Ÿ. ๐‘ก ๐‘กโ„Ž๐‘’ ๐‘๐‘–๐‘๐‘’๐‘Ÿ ๐‘Ž๐‘ฅ๐‘–๐‘  I. Crystal placed inside the tube โˆ†๐‘ก1 = ๐‘‘ ๐ถ + ๐‘ฃ ; โˆ†๐‘ก2 = ๐‘‘ ๐ถ โˆ’ ๐‘ฃ โˆ†๐’• = โˆ†๐’•๐Ÿ โˆ’ โˆ†๐’•๐Ÿ = ๐Ÿ๐’…๐’— ๐‘ช๐Ÿ โˆ’ ๐’—๐Ÿ โˆ†๐’• = ๐Ÿ๐’…๐’— ๐‘ช๐Ÿ (๐’‚๐’”๐’”๐’–๐’Ž๐’Š๐’๐’ˆ ๐‘ช โ‰ซ ๐’—) ๐ถ = ๐‘ ๐‘๐‘’๐‘’๐‘‘ ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘ข๐‘›๐‘‘ ๐‘–๐‘› ๐‘š๐‘’๐‘‘๐‘–๐‘ข๐‘š; ๐‘ฃ = ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘“๐‘™๐‘ข๐‘–๐‘‘; ๐‘‘ = ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘‡ & ๐‘… It is linearly proportional to flow velocity (v). When sinusoidal signal frequency of ๐‘“ Hz travels along the fluid flow, it has a phase shift of โˆ†๐œ‘1 = 2๐œ‹๐‘“๐‘‘ ๐ถ + ๐‘ฃ ๐‘Ÿ๐‘Ž๐‘‘ When sinusoidal signal frequency of ๐‘“ Hz travels against the fluid flow, it has a phase shift of โˆ†๐œ‘2 = 2๐œ‹๐‘“๐‘‘ ๐ถ โˆ’ ๐‘ฃ ๐‘Ÿ๐‘Ž๐‘‘ Velocity of fluid can be measured by either measuring the transient time or the phase shift. II. Crystals (T & R) placed outside the tube โˆ†๐‘ก = 2๐‘‘ cos ๐œƒ ๐ถ2 ๐‘ฃ ๐’— = โˆ†๐’•๐‘ช๐Ÿ ๐Ÿ๐’… ๐œ๐จ๐ฌ ๐œฝ ๐œƒ = ๐‘–๐‘›๐‘๐‘™๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘‡ & ๐‘… III. US method using feedback Pulse repetition frequency in forward loop 1 โˆ†๐‘ก1 = ๐‘“1 Pulse repetition frequency in backward loop 1 โˆ†๐‘ก2 = ๐‘“2
  • 16. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 16 of 17 โˆ†๐‘ก1 = ๐‘‘ ๐ถ + ๐‘ฃ cos ๐œƒ ; โˆ†๐‘“1 = ๐ถ + ๐‘ฃ cos ๐œƒ ๐‘‘ โˆ†๐‘ก2 = ๐‘‘ ๐ถ โˆ’ ๐‘ฃ cos ๐œƒ ; โˆ†๐‘“2 = ๐ถ โˆ’ ๐‘ฃ cos ๐œƒ ๐‘‘ โˆ†๐’‡ = ๐’‡๐Ÿ โˆ’ ๐’‡๐Ÿ = ๐Ÿ๐’— ๐œ๐จ๐ฌ ๐œฝ ๐’… IV. US Doppler Flowmeter โˆ†๐’‡ = ๐’‡๐’• โˆ’ ๐’‡๐’“ = ๐Ÿ ๐’‡๐’•๐œ๐จ๐ฌ ๐œฝ๐’— ๐‘ช V. Laser Doppler Anemometer ๐’‡ = ๐Ÿ๐’— ๐ฌ๐ข๐ง ๐œฝ ๐Ÿ โ„ ๐€ ๐‘“ = ๐ท๐‘œ๐‘๐‘๐‘™๐‘’๐‘Ÿ ๐‘†โ„Ž๐‘–๐‘“๐‘ก ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ, ๐œ† = ๐‘ค๐‘Ž๐‘ฃ๐‘’๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘™๐‘Ž๐‘ ๐‘’๐‘Ÿ ๐‘๐‘’๐‘Ž๐‘š, ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘™๐‘’ (๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘  โˆ’ ๐‘Ÿ๐‘’๐‘๐‘’๐‘–๐‘ฃ๐‘’) 21. Coriolis Effect ๐‘ญ๐’„ = โˆ’๐Ÿ๐’Ž๐Ž โˆ— ๐’— ๐ถ๐‘œ๐‘Ÿ๐‘–๐‘œ๐‘™๐‘–๐‘  ๐น๐‘œ๐‘Ÿ๐‘๐‘’ = โˆ’2 โˆ— (๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก) โˆ— (๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ) โˆ— (๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘” ๐‘“๐‘Ÿ๐‘Ž๐‘š๐‘’) 22. Variable Reluctance Tachogenerator ๐‘น๐’†๐’๐’–๐’„๐’•๐’‚๐’๐’„๐’† ๐‘น = ๐‘ด๐‘ด๐‘ญ โˆ… โˆด ๐‘ด๐‘ด๐‘ญ = ๐‘น โˆ— โˆ… ๐ธ๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘œ๐‘š๐‘œ๐‘ก๐‘–๐‘ฃ๐‘’ ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ๐ธ๐‘€๐น = โˆ’ ๐‘‘โˆ… ๐‘‘๐‘ก = โˆ’ ๐‘‘โˆ… ๐‘‘๐œƒ . ๐‘‘๐œƒ ๐‘‘๐‘ก โˆ…๐‘‡ = ๐‘›โˆ… = ๐‘› ๐‘€๐‘€๐น ๐‘… โˆ…๐‘‡(๐œƒ) = ๐›ผ + ๐›ฝcos(๐‘›๐œƒ) ๐ธ๐‘€๐น = โˆ’ ๐‘‘โˆ…๐‘‡ ๐‘‘๐‘ก = โˆ’ ๐‘‘โˆ…๐‘‡ ๐‘‘๐œƒ ๐‘‘๐œƒ ๐‘‘๐‘ก ๐‘‘โˆ…๐‘‡ ๐‘‘๐œƒ = โˆ’๐›ฝ๐‘›๐‘ ๐‘–๐‘›(๐‘›๐œƒ), ๐‘Ž๐‘›๐‘‘ ๐œƒ = ๐œ”๐‘ก, ๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘๐‘œ๐‘–๐‘™ ๐‘ก๐‘ข๐‘Ÿ๐‘›๐‘  ๐‘‘๐œƒ ๐‘‘๐‘ก = ๐œ” โˆด ๐‘ฌ๐‘ด๐‘ญ = ๐œท๐’๐Ž๐ฌ๐ข๐ง(๐’๐Ž๐’•) ๐‘€๐‘€๐น = ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘œ๐‘š๐‘œ๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’, โˆ… = ๐‘“๐‘™๐‘ข๐‘ฅ; โˆ…๐‘‡ = ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘“๐‘™๐‘ข๐‘ฅ, ๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘๐‘œ๐‘–๐‘™ ๐‘ก๐‘ข๐‘Ÿ๐‘›๐‘ , ๐œƒ = ๐‘Ž๐‘›๐‘”๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘›, ๐›ผ = ๐‘š๐‘’๐‘Ž๐‘› ๐‘“๐‘™๐‘ข๐‘ฅ, ๐›ฝ = ๐‘ก๐‘–๐‘š๐‘’ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘ฆ๐‘–๐‘›๐‘” ๐‘“๐‘™๐‘ข๐‘ฅ ๐‘Ž๐‘š๐‘๐‘™๐‘–๐‘ก๐‘ข๐‘‘๐‘’,
  • 17. FLOW MEASUREMENT โ€“ SUMMARY OF IMPORTANT EQUATIONS Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 17 of 17 ๐‘› = ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘คโ„Ž๐‘’๐‘’๐‘™ ๐‘ก๐‘’๐‘’๐‘กโ„Ž, ๐œ” = ๐‘Ÿ๐‘œ๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘คโ„Ž๐‘’๐‘’๐‘™ 23. Linear Resistance Element Flow Meter Hagen โ€“ Poiseulle Equation (๐‘ƒ๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ โˆ ๐‘“๐‘™๐‘ข๐‘–๐‘‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ) โˆ†๐‘ = 8๐œ‡๐ฟ๐‘„ ๐œ‹๐‘…4 ๐‘ธ = ๐…๐‘ซ๐Ÿ’ ๐Ÿ๐Ÿ๐Ÿ–๐๐‘ณ (๐‘ท๐Ÿ โˆ’ ๐‘ท๐Ÿ) โˆ†๐‘ƒ = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘ก๐‘ค๐‘œ ๐‘’๐‘›๐‘‘๐‘ , ๐ฟ = ๐‘๐‘–๐‘๐‘’ ๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž, ๐‘„ = ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐‘… = ๐‘๐‘–๐‘๐‘’ ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘ข๐‘ , ๐œ‡ = ๐‘‘๐‘ฆ๐‘›๐‘Ž๐‘š๐‘–๐‘ ๐‘ฃ๐‘–๐‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, (๐‘ƒ1 โˆ’ ๐‘ƒ2) = ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘‘๐‘Ÿ๐‘œ๐‘ ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘ก๐‘ข๐‘๐‘’, ๐ท = ๐‘–๐‘›๐‘›๐‘’๐‘Ÿ ๐‘‘๐‘–๐‘Ž๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ,