O SlideShare utiliza cookies para otimizar a funcionalidade e o desempenho do site, assim como para apresentar publicidade mais relevante aos nossos usuários. Se você continuar a navegar o site, você aceita o uso de cookies. Leia nosso Contrato do Usuário e nossa Política de Privacidade.
O SlideShare utiliza cookies para otimizar a funcionalidade e o desempenho do site, assim como para apresentar publicidade mais relevante aos nossos usuários. Se você continuar a utilizar o site, você aceita o uso de cookies. Leia nossa Política de Privacidade e nosso Contrato do Usuário para obter mais detalhes.
Publicada em
Homogeneous network is a group of active elements of the same type interacting with each other. The uniform elements behave in a similar way and their optimization can be performed on the basis of a single optimization technique. We propose a new meta-algorithm of large homogeneous network analysis, its decomposition into alternative sets of loosely connected subnets, and parallel optimization of the most independent elements. This algorithm is based on a network-specific correlation function, Simulated Annealing technique, and is adapted to work in the computer cluster. On the example of large wireless network, we show that proposed algorithm essentially increases speed of parallel optimization. The elaborated general approach can be used for analysis and optimization of the wide range of networks, including such specific types as artificial neural networks or organized in networks physiological systems of living organisms.
For citation: Ignatov D.Yu., Filippov A.N., Ignatov A.D., Zhang X. Automatic Analysis, Decomposition and Parallel Optimization of Large Homogeneous Networks // Proceedings of the Institute for System Programming, 2016, vol. 28, issue 6, pp. 141-152. DOI: 10.15514/ISPRAS-2016-28(6)-10
Presentation DOI: 10.13140/RG.2.2.20183.06565/6
Parece que você já adicionou este slide ao painel