SlideShare uma empresa Scribd logo
1 de 23
POLITECHNIC UNIVERSITY OF PUERTO RICO
DEPARTMENT OF MECHANICAL ENGINEERING
HATO REY, PUERTO RICO

ME5930: AerospaceStructures
SP-13

Box Structure Design
Final Project

Carlos J. Gutiérrez Román
#54543
Javier A. Colón Toledo #64547

Submitted to:
Dr. Héctor Rodríguez
May 22, 2013
Table of Contents
Executive Summary....................................................................................................................................... 2
Introduction .................................................................................................................................................. 3
Assumptions.................................................................................................................................................. 4
Design Approach- Standards and Considerations......................................................................................... 5
Calculations and Results ............................................................................................................................... 6
Final Selection and Recommendations ......................................................................................................... 9
CAD Drawings.............................................................................................................................................. 19
References .................................................................................................................................................. 21
Appendix ..................................................................................................................................................... 22

Page | 1
Executive Summary
Aircraft wing boxes are a very complex structure because they need to withstand not only the
forces of drag and lift but also its own weight and in most cases the weight of the engines and
the trust these produce. All these forces create a lot of stresses on the wing and each
component job is to withstand a corresponding stress. In this project we are designing a wing
box that has to be able to survive a set of specified constraints. We started by using the
Schrenks span wise load approximations to obtain the shear and bending moments that the
forces produce on each section (rib) across the wing. Then we used these stresses to design the
stringers and the skin of our wing box using the theories and procedures learned in class. Our
design consisted of twelve ribs, two spars and eight stringers.We have to repeat this procedure
for each of the sections we divided the wing span. We used the Von misses and maximum
shear stress theories to calculate the margin of safety associated with each component to
evaluate if our design was successful. In order to facilitate the calculations we used Microsoft
Excel to make the calculations and Solidworks to draw the CAD and obtain values for area and
skin lengths. The result is a very simple but effective wing box that fully complains with the
design specifications.

Page | 2
Introduction
When designing an aircraft many factors contribute to the process. Depending on the type of
aircraft,its shape, mission, performance parameters and weight distribution between others all
the structural requirements change dramatically. Most of the loads that will be acting on the
aircraft produce different stresses that act on different structural elements but all need to be
designed simultaneously. While designing the wing structure the factors are simplified and the
design depends on loads affecting only the wing, which cause shear forces and moments. Using
an industry standard factor of safety we analyzed the acting stresses caused by the loads and
from here on we designed the structure to obtain a positive margin of safety. In this paper the
preliminary design for a wing box structure is explained. The students were given a specific
wing shape with its dimension; also known was the weight of the engines that each wing will
carry and the total weight of the aircraft. With this information we designed the complete wing
box structure and completed a full analysis for each stringer and the skin of the wing.

Page | 3
Assumptions
Weight
Nlimit
F.S.
W. Engine
W. Span
Half Span
Cr
Ct
Ơ
7075
Ơ
7178
0
0

145000
2.25
1.5
5400
1344
672
108
48
73000 psi
78000 psi
0
0

 According to the FAA (Federal Aviation Administration) FAR (Federal
Aviation Regulations) a factor of safety of 1.5 must be applied to the limit
load which has external loads on the structure considered.

 Limit maneuvering load factors.
(a) Except where limited by maximum (static) lift coefficients, the airplane is assumed to be subjected to
symmetrical maneuvers resulting in the limit maneuvering load factors prescribed in this section.
Pitching velocities appropriate to the corresponding pull-up and steady turn maneuvers must be taken
into

account.

(b) The positive limit maneuvering load factor "n" for any speed up to VD may not be less than

Page | 4
Design Approach- Standards and Considerations
Airfoil:
NACA0012 – 12.5% from the leading edge and 25% from the trailing edge where eliminated for the wing
box design.
Ribs:
Twelve ribs were used with the following areas:

Rib
Area

12.00
706.57

11.00
927.49

10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00
1148.17 1369.09 1589.78 1810.70 2031.38 2252.30 2472.99 2693.91 2914.59 3135.52 3356.20

Stringers:
Eight 672 inch long stringers with an area that varies with its length as follows:
Section
Area

12.00
12.00

11.00
11.00

10.00
10.00

9.00
9.00

8.00
8.00

7.00
7.00

6.00
6.00

5.00
5.00

4.00
4.00

3.00
3.00

2.00
2.00

Skin and spars:
Skin and rib length are specified according to the rib area. A common thickness of 0.125 inch was used
for the skin and 0.5 inch for the spars.
Cross section example of root rib:

All the components were verified for its corresponding bending moment stress or shear stress according
to the principles learned in class. Maximum Shear Stress and Von Misses Theories were utilized to
calculate the margin of safety.
Page | 5

1.00
1.00
Calculations and Results
Examples of calculations made by hand:
Schrenks Span Wise Load Approximations
Ultimate Vertical Load

Wing span lift factor

Average local lift coefficient

Strip Area

Force Between the Strips

Distance to Forces

Shear

Moment

Page | 6
Bending Moment stresses
(Station #1, Stringer #3)
Assumptions

Dist. To Yc

Bending Stress

Shear Flows and shear stress
(Station #1, Surface 3,4)

Page | 7
Von-Mises
(Station #1, Stringer #3)

Maximum Shear Stress
(Station #1, Skin section 6,7)

Page | 8
Calculations and results obtained using Microsoft Excel
Schrenks Span Wise Load Approximations
Station
12.00
11.00
10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00

Zi(in)
672.00
616.00
560.00
504.00
448.00
392.00
336.00
280.00
224.00
168.00
112.00
56.00
0.00

Czi(in)
48.00
63.00
78.00
93.00
108.00
123.00
138.00
153.00
168.00
183.00
198.00
213.00
228.00

Cel(in)
0.00
70.22
97.13
116.22
130.96
142.72
152.17
159.73
165.66
170.13
173.25
175.10
175.71

CL1 (z)
0.50
1.06
1.12
1.12
1.11
1.08
1.05
1.02
0.99
0.96
0.94
0.91
0.89

CL1avg
0.78
1.09
1.12
1.12
1.09
1.07
1.04
1.01
0.98
0.95
0.92
0.90

DZi
56.00
56.00
56.00
56.00
56.00
56.00
56.00
56.00
56.00
56.00
56.00
56.00

Ai(in²)
3108.00
3948.00
4788.00
5628.00
6468.00
7308.00
8148.00
8988.00
9828.00
10668.00
11508.00
12348.00

FyaWi (lb)
4109.11
11037.69
14212.68
16739.38
18921.07
20872.57
22650.93
24288.74
25806.20
14814.74
28527.71
29745.58

ZFyawi (in)
644.00
588.00
532.00
476.00
420.00
364.00
308.00
252.00
196.00
140.00
84.00
28.00

Total

231726.40

5.50

=

Shear (lb) Moment (lb-in)
0.00
0.00
-4109.11
115054.98
-15146.80
654220.31
-29359.47
1900395.94
-46098.85
4013229.07
-65019.92
7124554.68
-85892.49
11350102.25
-108543.42
16794307.84
-132832.16
23552824.15
-158638.36
31713998.80
-173453.11
41012559.91
-201980.82
51524709.79
-231726.40
63668511.86

Page | 9
Page | 10
Shear and moment diagrams

Page | 11
Bending Moments Stresses and Margin of Safety per station (Aluminum 7075-T6)

Station 1
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y position (in.)
0.00
0.00
47.45
95.05
142.50
142.50
95.05
47.45

Z position (in.)
11.53
-11.53
-13.63
-11.43
-7.21
7.21
11.43
13.63
Total:

Station 2
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y position (in.)
0.00
0.00
44.33
88.80
133.13
133.13
88.80
44.33

Y position (in.)
10.77
-10.77
-12.73
-10.68
-6.73
6.73
10.68
12.73
Total:

Station 3
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y position (in.)
0.00
0.00
41.21
82.54
123.75
123.75
82.54
41.21

Zc position (in.)
10.01
-10.01
-11.84
-9.93
-6.26
6.26
9.93
11.84
Total:

Station 4
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y positoin (in.)
0.00
0.00
38.09
76.29
114.38
114.38
76.29
38.09

Zc position (in.)
9.25
-9.25
-10.94
-9.17
-5.78
5.78
9.17
10.94
Total:

Area (in².)
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
96.00
Area (in².)
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
88.00

Area (in².)
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
80.00
Area (in².)
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
72.00

Dist. to Yc (in.)
-71.25
-71.25
-23.80
23.80
71.25
71.25
23.80
-23.80

Bending Stress
(psi)
-61019.26
61019.26
72132.92
60490.04
38130.42
-38130.42
-60490.04
-72132.92

Inertia - Y (in^4.) Yc position (in.)
9625.44
66.57
Intertia - Z
(in^4.)
Zc position (in.)
216708.48
0.00
My (lb-in.)
-51524709.79
Shear (lb.)
201980.82

Dist. to Yc
-66.57
-66.57
-22.23
22.23
66.57
66.57
22.23
-22.23

Bending Stress
(psi)
-57661.42
57661.42
68163.50
57161.32
36032.13
-36032.13
-57161.32
-68163.50

Inertia - Y (in^4.) Yc position (in.)
7560.78
61.88
Intertia - Z
(in^4.)
Zc position (in.)
170224.38
0.00
My (lb-in.)
-41012559.91
Shear (lb.)
173453.11

Dist. to Yc
-61.88
-61.88
-20.67
20.67
61.88
61.88
20.67
-20.67

Bending Stress
(psi)
-54313.78
54313.78
64206.14
53842.72
33940.22
-33940.22
-53842.72
-64206.14

Inertia - Y (in^4.) Yc position (in.)
5813.25
57.19
Intertia - Z
(in^4.)
Zc position (in.)
130880.23
0.00
My (lb-in.)
-31713998.80
Shear (lb.)
158638.36

Dist. to Yc
-57.19
-57.19
-19.10
19.10
57.19
57.19
19.10
-19.10

Bending Stress
(psi)
-50489.00
50489.00
59684.74
50051.11
31550.15
-31550.15
-50051.11
-59684.74

Inertia - Y (in^4.)

Yc position (in.)
71.25

12030.59
Intertia - Z
(in^4.)
Zc position (in.)
270858.41
0.00
My (lb-in.)
-63668511.86
Shear (lb.)
231726.40

MS
0.20
0.20
0.01
0.21
0.91
0.91
0.21
0.01

MS
0.27
0.27
0.07
0.28
1.03
1.03
0.28
0.07

MS
0.34
0.34
0.14
0.36
1.15
1.15
0.36
0.14

MS
0.45
0.45
0.22
0.46
1.31
1.31
0.46
0.22

Page | 12
Station 5
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y positoin (in.)
0.00
0.00
34.97
70.04
105.00
105.00
70.04
34.97

Zc position (in.)
8.50
-8.50
-10.04
-8.42
-5.31
5.31
8.42
10.04
Total:

Area (in².)
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
64.00

Inertia - Y (in^4.) Yc position (in.)
4354.56
52.50
Intertia - Z
(in^4.)
Zc position (in.)
98039.24
0.00
My (lb-in.)
-23552824.15
Shear (lb.)
132832.16

Dist. to Yc
-52.50
-52.50
-17.54
17.54
52.50
52.50
17.54
-17.54

Bending Stress
(psi)
-45951.75
45951.75
54321.11
45553.21
28714.86
-28714.86
-45553.21
-54321.11

Station 6
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y positoin (in.)
0.00
0.00
31.84
63.79
95.63
95.63
63.79
31.84

Zc position (in.)
7.74
-7.74
-9.15
-7.67
-4.84
4.84
7.67
9.15
Total:

Area (in².)
7.00
7.00
7.00
7.00
7.00
7.00
7.00
7.00
56.00

Inertia - Y (in^4.) Yc position (in.)
3160.55
47.82
Intertia - Z
(in^4.)
Zc position (in.)
71157.01
0.00
My (lb-in.)
-16794307.84
Shear (lb.)
108543.42

Dist. to Yc
-47.82
-47.82
-15.97
15.97
47.82
47.82
15.97
-15.97

Bending Stress
(psi)
-41115.76
41115.76
48604.32
40759.16
25692.89
-25692.89
-40759.16
-48604.32

Station 7
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y position (in.)
0.00
0.00
28.72
57.53
86.25
86.25
57.53
28.72

Zc position (in.)
6.98
-6.98
-8.25
-6.92
-4.36
4.36
6.92
8.25
Total:

Area (in².)
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
48.00

Inertia - Y (in^4.) Yc position (in.)
2203.66
43.13
Intertia - Z
(in^4.)
Zc position (in.)
49613.61
0.00
My (lb-in.)
-11350102.25
Shear (lb.)
85892.49

Dist. to Yc
-43.13
-43.13
-14.40
14.40
43.13
43.13
14.40
-14.40

Bending Stress
(psi)
-35944.11
35944.11
42490.74
35632.37
22461.17
-22461.17
-35632.37
-42490.74

Station 8
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y position (in.)
0.00
0.00
25.60
51.28
76.88
76.88
51.28
25.60

Zc position (in.)
6.22
-6.22
-7.35
-6.17
-3.89
3.89
6.17
7.35
Total:

Area (in².)
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
40.00

Inertia - Y (in^4.) Yc position (in.)
1459.06
38.44
Intertia - Z
(in^4.)
Zc position (in.)
32849.45
0.00
My (lb-in.)
-7124554.68
Shear (lb.)
65019.92

Dist. to Yc
-38.44
-38.44
-12.84
12.84
38.44
38.44
12.84
-12.84

Bending Stress
(psi)
-30374.75
30374.75
35907.01
30111.31
18980.93
-18980.93
-30111.31
-35907.01

MS
0.59
0.59
0.34
0.60
1.54
1.54
0.60
0.34

MS
0.78
0.78
0.50
0.79
1.84
1.84
0.79
0.50

MS
1.03
1.03
0.72
1.05
2.25
2.25
1.05
0.72

MS
1.40
1.40
1.03
1.42
2.85
2.85
1.42
1.03

Page | 13
Station 9
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y position (in.)
0.00
0.00
22.48
45.02
67.50
67.50
45.02
22.48

Zc position (in.)
5.46
-5.46
-6.46
-5.41
-3.41
3.41
5.41
6.46
Total:

Area (in².)
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00
32.00

Inertia - Y (in^4.) Yc position (in.)
899.80
33.75
Intertia - Z
(in^4.)
Zc position (in.)
20258.11
0.00
My (lb-in.)
-4013229.07
Shear (lb.)
46098.85

Dist. to Yc
-33.75
-33.75
-11.27
11.27
33.75
33.75
11.27
-11.27

Bending Stress
(psi)
-24359.51
24359.51
28796.19
24148.24
15222.05
-15222.05
-24148.24
-28796.19

Station 10
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y positoin (in.)
0.00
0.00
19.36
38.77
58.13
58.13
38.77
19.36

Zc position (in.)
4.70
-4.70
-5.56
-4.66
-2.94
2.94
4.66
5.56
Total:

Area (in².)
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
24.00

Inertia - Y (in^4.) Yc position (in.)
500.49
29.07
Intertia - Z
(in^4.)
Zc position (in.)
11268.17
0.00
My (lb-in.)
-1900395.94
Shear (lb.)
29359.47

Dist. to Yc
-29.07
-29.07
-9.71
9.71
29.07
29.07
9.71
-9.71

Bending Stress
(psi)
-17859.15
17859.15
21111.91
17704.26
11160.04
-11160.04
-17704.26
-21111.91

Station 11
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y positoin (in.)
0.00
0.00
16.23
32.52
48.75
48.75
32.52
16.23

Zc position (in.)
3.94
-3.94
-4.66
-3.91
-2.46
2.46
3.91
4.66
Total:

Area (in².)
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
16.00

Inertia - Y (in^4.) Yc position (in.)
234.67
24.38
Intertia - Z
(in^4.)
Zc position (in.)
5283.36
0.00
My (lb-in.)
-654220.31
Shear (lb.)
15146.80

Dist. to Yc
-24.38
-24.38
-8.14
8.14
24.38
24.38
8.14
-8.14

Bending Stress
(psi)
-10996.58
10996.58
12999.43
10901.21
6871.67
-6871.67
-10901.21
-12999.43

Station 12
Stringer
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

Y positoin (in.)
0.00
0.00
13.11
26.27
39.38
39.38
26.27
13.11

Zc position (in.)
3.19
-3.19
-3.77
-3.16
-1.99
1.99
3.16
3.77
Total:

Area (in².)
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
8.00

Inertia - Y (in^4.) Yc position (in.)
76.56
19.69
Intertia - Z
(in^4.)
Zc position (in.)
1723.78
0.00
My (lb-in.)
-115054.98
Shear (lb.)
4109.11

Dist. to Yc
-19.69
-19.69
-6.58
6.58
19.69
19.69
6.58
-6.58

Bending Stress
(psi)
-4788.15
4788.15
5660.24
4746.63
2992.08
-2992.08
-4746.63
-5660.24

MS
2.00
2.00
1.54
2.02
3.80
3.80
2.02
1.54

MS
3.09
3.09
2.46
3.12
5.54
5.54
3.12
2.46

MS
5.64
5.64
4.62
5.70
9.62
9.62
5.70
4.62

MS
14.25
14.25
11.90
14.38
23.40
23.40
14.38
11.90

Page | 14
Shear Flows, Shear stresses and Margin of Safety per station(Aluminum 7050-T73511)
Station 1
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-2665.01
0.00
3150.40
5792.30
7457.64
5792.30
3150.40

Length
47.55
23.05
47.55
47.55
47.69
14.41
47.69
47.55

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
2.10
25.16
27.26
25.06
20.84
6.43
2.20
Total:

q' Moments
0.00
-128999.86
0.00
4083588.19
6922439.45
2239024.60
1774807.40
329563.24
-15220423.02

qi = qi ' + qo

τ

-3743.33
-6408.34
-3743.33
-592.93
2048.97
3714.31
2048.97
-592.93

-29946.64
-12816.68
-29946.64
-4743.45
16391.73
7428.62
16391.73
-4743.45

Station 2
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-2486.41
0.00
2939.27
5404.11
6957.85
5404.11
2939.27

Length
44.42
21.53
44.42
44.42
44.55
13.46
44.55
44.42

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
1.96
23.51
25.47
23.41
19.47
6.00
2.06
Total:

q' Moments
0.00
-105047.31
0.00
3325351.96
5637088.41
1823284.94
1445263.09
268370.30
-12394311.40

qi = qi ' + qo

τ

-3262.82
-5749.23
-3262.82
-323.55
2141.29
3695.03
2141.29
-323.55

-26102.53
-11498.45
-26102.53
-2588.39
17130.36
7390.06
17130.36
-2588.39

Station 3
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-2297.08
0.00
2715.45
4992.60
6428.03
4992.60
2715.45

Length
41.29
20.02
41.29
41.29
41.42
12.51
41.42
41.29

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
1.82
21.85
23.67
21.76
18.09
5.58
1.91
Total:

q' Moments
0.00
-83854.46
0.00
2654476.29
4499829.71
1455444.93
1153687.38
214227.73
-9893811.59

qi = qi ' + qo

τ

-2801.98
-5099.05
-2801.98
-86.53
2190.63
3626.05
2190.63
-86.53

-22415.82
-10198.11
-22415.82
-692.22
17525.00
7252.10
17525.00
-692.22

Station 4
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-2272.98
0.00
2686.97
4940.24
6360.61
4940.24
2686.97

Length
38.17
18.50
38.17
38.17
38.28
11.57
38.28
38.17

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
1.69
20.20
21.88
20.11
16.72
5.16
1.77
Total:

q' Moments
0.00
-70885.46
0.00
2243932.92
3803882.53
1230344.68
975257.19
181095.10
-8363626.96

qi = qi ' + qo

τ

-2562.66
-4835.64
-2562.66
124.31
2377.58
3797.95
2377.58
124.31

MS
2.21
3.84
2.21
8.66
1.22
3.89
1.22
8.66

MS
2.39
4.16
2.39
15.04
1.12
3.92
1.12
15.04

MS
2.62
4.56
2.62
53.51
1.07
4.01
1.07
53.51

MS
-20501.27
2.77
-9671.29
4.76
-20501.27
2.77
994.50
35.55
19020.67
0.91
7595.90
3.79
Page | 15
19020.67
0.91
994.50
35.55
Station 5
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-2073.25
0.00
2450.86
4506.13
5801.69
4506.13
2450.86

Length
35.04
16.98
35.04
35.04
35.14
10.62
35.14
35.04

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
1.55
18.54
20.09
18.47
15.35
4.73
1.62
Total:

q' Moments
0.00
-54486.81
0.00
1724821.27
2923892.00
945716.63
749641.11
139200.54
-6428784.74

qi = qi ' + qo

τ

-2145.78
-4219.04
-2145.78
305.08
2360.35
3655.91
2360.35
305.08

-17166.26
-8438.07
-17166.26
2440.63
18882.80
7311.82
18882.80
2440.63

Station 6
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-1860.15
0.00
2198.94
4042.96
5205.35
4042.96
2198.94

Length
31.91
15.47
31.91
31.91
32.00
9.67
32.00
31.91

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
1.41
16.88
18.29
16.82
13.98
4.31
1.48
Total:

q' Moments
0.00
-40550.53
0.00
1283657.68
2176037.87
703827.37
557902.77
103596.73
-4784471.89

qi = qi ' + qo

τ

-1753.42
-3613.57
-1753.42
445.52
2289.54
3451.93
2289.54
445.52

-14027.36
-7227.14
-14027.36
3564.19
18316.32
6903.86
18316.32
3564.19

Station 7
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-1632.05
0.00
1929.31
3547.20
4567.06
3547.20
1929.31

Length
28.78
13.95
28.78
28.78
28.87
8.72
28.87
28.78

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
1.27
15.23
16.50
15.17
12.61
3.89
1.33
Total:

q' Moments
0.00
-28940.98
0.00
916148.49
1553041.63
502322.69
398176.08
73937.15
-3414685.07

qi = qi ' + qo

τ

-1387.52
-3019.57
-1387.52
541.79
2159.69
3179.55
2159.69
541.79

-11100.12
-6039.14
-11100.12
4334.32
17277.51
6359.09
17277.51
4334.32

Station 8
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-1386.03
0.00
1638.47
3012.47
3878.59
3012.47
1638.47

Length
25.65
12.44
25.65
25.65
25.73
7.77
25.73
25.65

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
1.13
13.57
14.71
13.52
11.24
3.47
1.19
Total:

q' Moments
0.00
-19528.04
0.00
618174.91
1047921.13
338944.27
268670.92
49889.39
-2304072.58

qi = qi ' + qo

τ

-1050.34
-2436.36
-1050.34
588.13
1962.14
2828.25
1962.14
588.13

MS
3.12
5.31
3.12
13.89
0.93
3.97
0.93
13.89

MS
3.59
6.03
3.59
9.20
0.98
4.27
0.98
9.20

MS
4.27
7.02
4.27
7.39
1.10
4.72
1.10
7.39

MS
-8402.70
5.33
-4872.73
8.46
-8402.70
5.33
4705.04
6.73
15697.08
1.32
5656.50
5.43
15697.08 | 16
1.32
Page
4705.04
6.73
Station 9
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-1119.24
0.00
1323.10
2432.63
3132.04
2432.63
1323.10

Length
22.52
10.92
22.52
22.52
22.59
6.83
22.59
22.52

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
0.99
11.92
12.91
11.87
9.87
3.04
1.04
Total:

q' Moments
0.00
-12156.06
0.00
384809.19
652322.96
210990.24
167245.61
31055.77
-1434267.70

qi = qi ' + qo

τ

-744.69
-1863.93
-744.69
578.41
1687.95
2387.35
1687.95
578.41

-5957.48
-3727.86
-5957.48
4627.28
13503.58
4774.71
13503.58
4627.28

Station 10
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-827.73
0.00
978.48
1799.03
2316.27
1799.03
978.48

Length
19.40
9.40
19.40
19.40
19.45
5.88
19.45
19.40

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
0.86
10.26
11.12
10.22
8.50
2.62
0.90
Total:

q' Moments
0.00
-6667.26
0.00
211057.20
357781.10
115722.31
91729.59
17033.23
-786656.17

qi = qi ' + qo

τ

-474.28
-1302.00
-474.28
504.21
1324.75
1841.99
1324.75
504.21

-3794.21
-2604.00
-3794.21
4033.65
10598.02
3683.98
10598.02
4033.65

Station 11
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-509.20
0.00
601.94
1106.72
1424.91
1106.72
601.94

Length
16.27
7.89
16.27
16.27
16.32
4.93
16.32
16.27

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
0.72
8.61
9.33
8.57
7.13
2.20
0.75
Total:

q' Moments
0.00
-2884.66
0.00
91316.03
154797.60
50068.43
39687.73
7369.60
-340354.73

qi = qi ' + qo

τ

-302.90
-812.10
-302.90
299.04
803.81
1122.01
803.81
299.04

-2423.22
-1624.20
-2423.22
2392.28
6430.51
2244.01
6430.51
2392.28

Station 12
S
8,1
1,2
2,3
3,4
4,5
5,6
6,7
7,8

q'
0.00
-171.01
0.00
202.15
371.67
478.53
371.67
202.15

Length
13.14
6.37
13.14
13.14
13.18
3.98
13.18
13.14

Thickness
0.13
0.50
0.13
0.13
0.13
0.50
0.13
0.13

q' distance w/r 8
0.00
0.58
6.95
7.53
6.93
5.76
1.78
0.61
Total:

q' Moments
0.00
-632.15
0.00
20011.27
33922.82
10972.15
8697.29
1615.00
-74586.37

qi = qi ' + qo

τ

-87.13
-258.14
-87.13
115.02
284.54
391.40
284.54
115.02

-697.07
-516.28
-697.07
920.14
2276.32
782.80
2276.32
920.14

MS
7.10
10.75
7.10
6.86
1.69
6.61
1.69
6.86

MS
10.58
14.96
10.58
8.01
2.43
8.87
2.43
8.01

MS
16.00
23.38
16.00
14.20
4.65
15.20
4.65
14.20

MS
53.15
71.41
53.15
38.51
14.97
45.44
14.97
38.51

Page | 17
Final Selection and Recommendations
Material for stringers:

Material for skin:

Page | 18
All the stringers and skin sections meet the desired requirements and obtain a Margin of safety greater
than 0.
Our design consists of 12 rib sections with 8 stringers running across the wing. To minimize overdesign
we choose a variable area stringer design.All the sections consist of the same layout reduced in size by a
factor given on the following table. All the corresponding dimensions and coordinates for all the 12 ribs,
spars and stringers are also found in the table.

% from 12
0.21
0.28
0.34
0.41
0.47
0.54
0.61
0.67
0.74
0.80
0.87
0.93
1.00

Station
12.00
11.00
10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00

Length
30.00
39.38
48.75
58.13
67.50
76.88
86.25
95.63
105.00
114.38
123.75
133.13
142.50

Spar 0 Y
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Spar 1 Y
9.99
13.11
16.23
19.36
22.48
25.60
28.72
31.84
34.97
38.09
41.21
44.33
47.45

Spar 2 Y
20.01
26.27
32.52
38.77
45.02
51.28
57.53
63.79
70.04
76.29
82.54
88.80
95.05

Spar 4 Y
30.00
39.38
48.75
58.13
67.50
76.88
86.25
95.63
105.00
114.38
123.75
133.13
142.50

Upper Arc
30.07
39.47
48.86
58.26
67.66
77.05
86.45
95.85
105.25
114.64
124.04
133.44
142.83

Lower Arc
30.07
39.47
48.86
58.26
67.66
77.05
86.45
95.85
105.25
114.64
124.04
133.44
142.83

Page | 19
CAD Drawings

Page | 20
References
 Shigley’s Mechanical Engineering Design 9th Ed. (Budynas, Nisbett, 2010)
 Aluminum (“Aerospace Materials”, 2013)
 Preparation of Stress Analysis Report (David McMahon, 2009)
 Mechanics of Aircrafts Structures (Sun, 2006)
 Aircraft Structures (Peery, 2011)

Page | 21
Appendix
Solidworks Model

Page | 22

Mais conteúdo relacionado

Mais procurados

A comparative flow analysis of naca 6409 and naca 4412 aerofoil
A comparative flow analysis of naca 6409 and naca 4412 aerofoilA comparative flow analysis of naca 6409 and naca 4412 aerofoil
A comparative flow analysis of naca 6409 and naca 4412 aerofoil
eSAT Publishing House
 
NACA 4412 Lab Report Final
NACA 4412 Lab Report FinalNACA 4412 Lab Report Final
NACA 4412 Lab Report Final
Gregory Day
 
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
eSAT Journals
 
Design and analysis of drive shaft for heavy duty truck
Design and analysis of drive shaft for heavy duty truckDesign and analysis of drive shaft for heavy duty truck
Design and analysis of drive shaft for heavy duty truck
eSAT Journals
 

Mais procurados (20)

A comparative flow analysis of naca 6409 and naca 4412 aerofoil
A comparative flow analysis of naca 6409 and naca 4412 aerofoilA comparative flow analysis of naca 6409 and naca 4412 aerofoil
A comparative flow analysis of naca 6409 and naca 4412 aerofoil
 
CFD analysis of an Airfoil
CFD analysis of an AirfoilCFD analysis of an Airfoil
CFD analysis of an Airfoil
 
Design and Analysis of Solar Powered RC Aircraft
Design and Analysis of Solar Powered RC AircraftDesign and Analysis of Solar Powered RC Aircraft
Design and Analysis of Solar Powered RC Aircraft
 
NACA 4412 Lab Report Final
NACA 4412 Lab Report FinalNACA 4412 Lab Report Final
NACA 4412 Lab Report Final
 
Zivko edge 540 t stability analysis
Zivko edge 540 t stability analysisZivko edge 540 t stability analysis
Zivko edge 540 t stability analysis
 
Goman, Khramtsovsky, Shapiro (2001) – Aerodynamics Modeling and Dynamics Simu...
Goman, Khramtsovsky, Shapiro (2001) – Aerodynamics Modeling and Dynamics Simu...Goman, Khramtsovsky, Shapiro (2001) – Aerodynamics Modeling and Dynamics Simu...
Goman, Khramtsovsky, Shapiro (2001) – Aerodynamics Modeling and Dynamics Simu...
 
A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...
A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...
A Review of Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehi...
 
Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehicle (UAV)
Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehicle (UAV)Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehicle (UAV)
Flight Dynamics and Numerical Analysis of an Unmanned Aerial Vehicle (UAV)
 
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
 
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...Damage tolerance evaluation of wing in presence of large landing gear cutout ...
Damage tolerance evaluation of wing in presence of large landing gear cutout ...
 
Experimental Analysis of a Low Cost Lift and Drag Force Measurement System fo...
Experimental Analysis of a Low Cost Lift and Drag Force Measurement System fo...Experimental Analysis of a Low Cost Lift and Drag Force Measurement System fo...
Experimental Analysis of a Low Cost Lift and Drag Force Measurement System fo...
 
Report-10th Dec,2015
Report-10th Dec,2015Report-10th Dec,2015
Report-10th Dec,2015
 
Computer Aided Design and Stress Analysis of Nose Landing Gear Barrel (NLGB)
Computer Aided Design and Stress Analysis of Nose Landing Gear Barrel (NLGB)Computer Aided Design and Stress Analysis of Nose Landing Gear Barrel (NLGB)
Computer Aided Design and Stress Analysis of Nose Landing Gear Barrel (NLGB)
 
Control servo motors
Control servo motors  Control servo motors
Control servo motors
 
Flow analysis
Flow analysisFlow analysis
Flow analysis
 
IRJET- Design, Testing and Analysis of Spherical and Aerodynamic Helmet in Op...
IRJET- Design, Testing and Analysis of Spherical and Aerodynamic Helmet in Op...IRJET- Design, Testing and Analysis of Spherical and Aerodynamic Helmet in Op...
IRJET- Design, Testing and Analysis of Spherical and Aerodynamic Helmet in Op...
 
FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...
FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...
FATIGUE ASSESSMENT OF DATA ACQUISITION SYSTEM UNDER RANDOM VIBRATION LOAD FOR...
 
Analysis of wings using Airfoil NACA 4412 at different angle of attack
Analysis of wings using Airfoil NACA 4412 at different angle of attackAnalysis of wings using Airfoil NACA 4412 at different angle of attack
Analysis of wings using Airfoil NACA 4412 at different angle of attack
 
VORTEX DYNAMIC INVESTIGATION OF WING SLOTTED GAP OF SAAB JAS GRIPEN C-LIKE FI...
VORTEX DYNAMIC INVESTIGATION OF WING SLOTTED GAP OF SAAB JAS GRIPEN C-LIKE FI...VORTEX DYNAMIC INVESTIGATION OF WING SLOTTED GAP OF SAAB JAS GRIPEN C-LIKE FI...
VORTEX DYNAMIC INVESTIGATION OF WING SLOTTED GAP OF SAAB JAS GRIPEN C-LIKE FI...
 
Design and analysis of drive shaft for heavy duty truck
Design and analysis of drive shaft for heavy duty truckDesign and analysis of drive shaft for heavy duty truck
Design and analysis of drive shaft for heavy duty truck
 

Destaque

Ingeinnova aeronautics mar2013-en
Ingeinnova aeronautics mar2013-enIngeinnova aeronautics mar2013-en
Ingeinnova aeronautics mar2013-en
Ingeinnova
 
A Methodology for Parametric Production Planning in Preliminary Aircraft Desi...
A Methodology for Parametric Production Planning in Preliminary Aircraft Desi...A Methodology for Parametric Production Planning in Preliminary Aircraft Desi...
A Methodology for Parametric Production Planning in Preliminary Aircraft Desi...
Chandrashekar Sundaresan
 
Lesson22 -optimization_problems_slides
Lesson22  -optimization_problems_slidesLesson22  -optimization_problems_slides
Lesson22 -optimization_problems_slides
Matthew Leingang
 
Lightweight Design (Composites) - Americas ATC 2015 Workshop
Lightweight Design (Composites) - Americas ATC 2015 WorkshopLightweight Design (Composites) - Americas ATC 2015 Workshop
Lightweight Design (Composites) - Americas ATC 2015 Workshop
Altair
 

Destaque (20)

Finite element analysis of static wing box test rig
Finite element analysis of static wing box test rigFinite element analysis of static wing box test rig
Finite element analysis of static wing box test rig
 
Ingeinnova aeronautics mar2013-en
Ingeinnova aeronautics mar2013-enIngeinnova aeronautics mar2013-en
Ingeinnova aeronautics mar2013-en
 
Design optimization of airplanes
Design optimization of airplanesDesign optimization of airplanes
Design optimization of airplanes
 
External Flow Example by Optimal Solutions
External Flow Example by Optimal SolutionsExternal Flow Example by Optimal Solutions
External Flow Example by Optimal Solutions
 
A Methodology for Parametric Production Planning in Preliminary Aircraft Desi...
A Methodology for Parametric Production Planning in Preliminary Aircraft Desi...A Methodology for Parametric Production Planning in Preliminary Aircraft Desi...
A Methodology for Parametric Production Planning in Preliminary Aircraft Desi...
 
Lecture 17 optimization - section 4.6
Lecture 17   optimization - section 4.6Lecture 17   optimization - section 4.6
Lecture 17 optimization - section 4.6
 
Wing and fuselage structural optimization considering alternative material
Wing and fuselage structural optimization considering alternative materialWing and fuselage structural optimization considering alternative material
Wing and fuselage structural optimization considering alternative material
 
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
14/01/20 "Engineering Optimization in Aircraft Design" Aerodynamic Design at ...
 
Lesson22 -optimization_problems_slides
Lesson22  -optimization_problems_slidesLesson22  -optimization_problems_slides
Lesson22 -optimization_problems_slides
 
Lesson 20: Optimization (slides)
Lesson 20: Optimization (slides)Lesson 20: Optimization (slides)
Lesson 20: Optimization (slides)
 
HAAPS Report
HAAPS ReportHAAPS Report
HAAPS Report
 
Gliders
GlidersGliders
Gliders
 
Lightweight Design (Composites) - Americas ATC 2015 Workshop
Lightweight Design (Composites) - Americas ATC 2015 WorkshopLightweight Design (Composites) - Americas ATC 2015 Workshop
Lightweight Design (Composites) - Americas ATC 2015 Workshop
 
Mscp - aerodynamic shape optimization
Mscp - aerodynamic shape optimizationMscp - aerodynamic shape optimization
Mscp - aerodynamic shape optimization
 
SSA 2012—Electric Gliders
SSA 2012—Electric GlidersSSA 2012—Electric Gliders
SSA 2012—Electric Gliders
 
Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”Aerodynamic design of Aircraft”
Aerodynamic design of Aircraft”
 
Airbus - Topology Optimization Methods for Optimal Aircraft Components
Airbus - Topology Optimization Methods for Optimal Aircraft ComponentsAirbus - Topology Optimization Methods for Optimal Aircraft Components
Airbus - Topology Optimization Methods for Optimal Aircraft Components
 
B787 Lessons learnt
B787 Lessons learntB787 Lessons learnt
B787 Lessons learnt
 
HAAPS Technology
HAAPS TechnologyHAAPS Technology
HAAPS Technology
 
Airborne internet by V.DINESH KUMAR KSRCT
Airborne internet by V.DINESH KUMAR KSRCTAirborne internet by V.DINESH KUMAR KSRCT
Airborne internet by V.DINESH KUMAR KSRCT
 

Semelhante a Structures proyect

Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...
Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...
Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...
SonuKumar1049
 
104 AAE - Introduction to CAD (submission C) (1)
104 AAE - Introduction to CAD (submission C) (1)104 AAE - Introduction to CAD (submission C) (1)
104 AAE - Introduction to CAD (submission C) (1)
Kruti Joshi AMIMechE
 
Fatigue life estimation of rear fuselage structure of an aircraft
Fatigue life estimation of rear fuselage structure of an aircraftFatigue life estimation of rear fuselage structure of an aircraft
Fatigue life estimation of rear fuselage structure of an aircraft
eSAT Journals
 
AME-441-Group-47-Proposal-Approved
AME-441-Group-47-Proposal-ApprovedAME-441-Group-47-Proposal-Approved
AME-441-Group-47-Proposal-Approved
Aaron VanLandingham
 
2016DBF_GEORGIA_INSTITUTE_OF_TECHNOLOGY_DESIGN_REPORT
2016DBF_GEORGIA_INSTITUTE_OF_TECHNOLOGY_DESIGN_REPORT2016DBF_GEORGIA_INSTITUTE_OF_TECHNOLOGY_DESIGN_REPORT
2016DBF_GEORGIA_INSTITUTE_OF_TECHNOLOGY_DESIGN_REPORT
Lansing Wei
 

Semelhante a Structures proyect (20)

Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...
Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...
Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...
 
Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...
Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...
Design and Fatigue Analysis of a Typical Aircraft Wing fuselage Lug attachmen...
 
104 AAE - Introduction to CAD (submission C) (1)
104 AAE - Introduction to CAD (submission C) (1)104 AAE - Introduction to CAD (submission C) (1)
104 AAE - Introduction to CAD (submission C) (1)
 
Boeing 777X Wingtip Analysis - FEM Final Project
Boeing 777X Wingtip Analysis - FEM Final ProjectBoeing 777X Wingtip Analysis - FEM Final Project
Boeing 777X Wingtip Analysis - FEM Final Project
 
Fatigue life estimation of rear fuselage structure of an aircraft
Fatigue life estimation of rear fuselage structure of an aircraftFatigue life estimation of rear fuselage structure of an aircraft
Fatigue life estimation of rear fuselage structure of an aircraft
 
CFD Analysis of conceptual Aircraft body
CFD Analysis of conceptual Aircraft bodyCFD Analysis of conceptual Aircraft body
CFD Analysis of conceptual Aircraft body
 
IRJET-CFD Analysis of conceptual Aircraft body
IRJET-CFD Analysis of conceptual Aircraft bodyIRJET-CFD Analysis of conceptual Aircraft body
IRJET-CFD Analysis of conceptual Aircraft body
 
TesiFin
TesiFinTesiFin
TesiFin
 
Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...
Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...
Modal, Fatigue and Fracture Analysis of Wing Fuselage Lug Joint Bracket for a...
 
Static and Fatigue Stress Analysis of Pylon Interface “ADAPTOR” for Store Int...
Static and Fatigue Stress Analysis of Pylon Interface “ADAPTOR” for Store Int...Static and Fatigue Stress Analysis of Pylon Interface “ADAPTOR” for Store Int...
Static and Fatigue Stress Analysis of Pylon Interface “ADAPTOR” for Store Int...
 
IRJET- Aerodynamic Analysis of Aircraft Wings using CFD
IRJET- Aerodynamic Analysis of Aircraft Wings using CFDIRJET- Aerodynamic Analysis of Aircraft Wings using CFD
IRJET- Aerodynamic Analysis of Aircraft Wings using CFD
 
AME-441-Group-47-Proposal-Approved
AME-441-Group-47-Proposal-ApprovedAME-441-Group-47-Proposal-Approved
AME-441-Group-47-Proposal-Approved
 
2016DBF_GEORGIA_INSTITUTE_OF_TECHNOLOGY_DESIGN_REPORT
2016DBF_GEORGIA_INSTITUTE_OF_TECHNOLOGY_DESIGN_REPORT2016DBF_GEORGIA_INSTITUTE_OF_TECHNOLOGY_DESIGN_REPORT
2016DBF_GEORGIA_INSTITUTE_OF_TECHNOLOGY_DESIGN_REPORT
 
Rashmi subrahmanya project
Rashmi subrahmanya projectRashmi subrahmanya project
Rashmi subrahmanya project
 
Stress analysis of splice joint in an aircraft fuselage with prediction of fa...
Stress analysis of splice joint in an aircraft fuselage with prediction of fa...Stress analysis of splice joint in an aircraft fuselage with prediction of fa...
Stress analysis of splice joint in an aircraft fuselage with prediction of fa...
 
Ardent CATIA Project - Boeing 787.docx
Ardent CATIA Project - Boeing 787.docxArdent CATIA Project - Boeing 787.docx
Ardent CATIA Project - Boeing 787.docx
 
IRJET- Unmanned Aerial Surveillance Vehicle
IRJET-  	  Unmanned Aerial Surveillance VehicleIRJET-  	  Unmanned Aerial Surveillance Vehicle
IRJET- Unmanned Aerial Surveillance Vehicle
 
IRJET- Simulation of Flow over Airfoil
IRJET- Simulation of Flow over AirfoilIRJET- Simulation of Flow over Airfoil
IRJET- Simulation of Flow over Airfoil
 
Apprioprate Boundary Condition for FEA of member isolated from global model
Apprioprate Boundary Condition for FEA of member isolated from global modelApprioprate Boundary Condition for FEA of member isolated from global model
Apprioprate Boundary Condition for FEA of member isolated from global model
 
Crane Hook Design and Analysis
Crane Hook Design and AnalysisCrane Hook Design and Analysis
Crane Hook Design and Analysis
 

Último

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Último (20)

How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 

Structures proyect

  • 1. POLITECHNIC UNIVERSITY OF PUERTO RICO DEPARTMENT OF MECHANICAL ENGINEERING HATO REY, PUERTO RICO ME5930: AerospaceStructures SP-13 Box Structure Design Final Project Carlos J. Gutiérrez Román #54543 Javier A. Colón Toledo #64547 Submitted to: Dr. Héctor Rodríguez May 22, 2013
  • 2. Table of Contents Executive Summary....................................................................................................................................... 2 Introduction .................................................................................................................................................. 3 Assumptions.................................................................................................................................................. 4 Design Approach- Standards and Considerations......................................................................................... 5 Calculations and Results ............................................................................................................................... 6 Final Selection and Recommendations ......................................................................................................... 9 CAD Drawings.............................................................................................................................................. 19 References .................................................................................................................................................. 21 Appendix ..................................................................................................................................................... 22 Page | 1
  • 3. Executive Summary Aircraft wing boxes are a very complex structure because they need to withstand not only the forces of drag and lift but also its own weight and in most cases the weight of the engines and the trust these produce. All these forces create a lot of stresses on the wing and each component job is to withstand a corresponding stress. In this project we are designing a wing box that has to be able to survive a set of specified constraints. We started by using the Schrenks span wise load approximations to obtain the shear and bending moments that the forces produce on each section (rib) across the wing. Then we used these stresses to design the stringers and the skin of our wing box using the theories and procedures learned in class. Our design consisted of twelve ribs, two spars and eight stringers.We have to repeat this procedure for each of the sections we divided the wing span. We used the Von misses and maximum shear stress theories to calculate the margin of safety associated with each component to evaluate if our design was successful. In order to facilitate the calculations we used Microsoft Excel to make the calculations and Solidworks to draw the CAD and obtain values for area and skin lengths. The result is a very simple but effective wing box that fully complains with the design specifications. Page | 2
  • 4. Introduction When designing an aircraft many factors contribute to the process. Depending on the type of aircraft,its shape, mission, performance parameters and weight distribution between others all the structural requirements change dramatically. Most of the loads that will be acting on the aircraft produce different stresses that act on different structural elements but all need to be designed simultaneously. While designing the wing structure the factors are simplified and the design depends on loads affecting only the wing, which cause shear forces and moments. Using an industry standard factor of safety we analyzed the acting stresses caused by the loads and from here on we designed the structure to obtain a positive margin of safety. In this paper the preliminary design for a wing box structure is explained. The students were given a specific wing shape with its dimension; also known was the weight of the engines that each wing will carry and the total weight of the aircraft. With this information we designed the complete wing box structure and completed a full analysis for each stringer and the skin of the wing. Page | 3
  • 5. Assumptions Weight Nlimit F.S. W. Engine W. Span Half Span Cr Ct Ơ 7075 Ơ 7178 0 0 145000 2.25 1.5 5400 1344 672 108 48 73000 psi 78000 psi 0 0  According to the FAA (Federal Aviation Administration) FAR (Federal Aviation Regulations) a factor of safety of 1.5 must be applied to the limit load which has external loads on the structure considered.  Limit maneuvering load factors. (a) Except where limited by maximum (static) lift coefficients, the airplane is assumed to be subjected to symmetrical maneuvers resulting in the limit maneuvering load factors prescribed in this section. Pitching velocities appropriate to the corresponding pull-up and steady turn maneuvers must be taken into account. (b) The positive limit maneuvering load factor "n" for any speed up to VD may not be less than Page | 4
  • 6. Design Approach- Standards and Considerations Airfoil: NACA0012 – 12.5% from the leading edge and 25% from the trailing edge where eliminated for the wing box design. Ribs: Twelve ribs were used with the following areas: Rib Area 12.00 706.57 11.00 927.49 10.00 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 1148.17 1369.09 1589.78 1810.70 2031.38 2252.30 2472.99 2693.91 2914.59 3135.52 3356.20 Stringers: Eight 672 inch long stringers with an area that varies with its length as follows: Section Area 12.00 12.00 11.00 11.00 10.00 10.00 9.00 9.00 8.00 8.00 7.00 7.00 6.00 6.00 5.00 5.00 4.00 4.00 3.00 3.00 2.00 2.00 Skin and spars: Skin and rib length are specified according to the rib area. A common thickness of 0.125 inch was used for the skin and 0.5 inch for the spars. Cross section example of root rib: All the components were verified for its corresponding bending moment stress or shear stress according to the principles learned in class. Maximum Shear Stress and Von Misses Theories were utilized to calculate the margin of safety. Page | 5 1.00 1.00
  • 7. Calculations and Results Examples of calculations made by hand: Schrenks Span Wise Load Approximations Ultimate Vertical Load Wing span lift factor Average local lift coefficient Strip Area Force Between the Strips Distance to Forces Shear Moment Page | 6
  • 8. Bending Moment stresses (Station #1, Stringer #3) Assumptions Dist. To Yc Bending Stress Shear Flows and shear stress (Station #1, Surface 3,4) Page | 7
  • 9. Von-Mises (Station #1, Stringer #3) Maximum Shear Stress (Station #1, Skin section 6,7) Page | 8
  • 10. Calculations and results obtained using Microsoft Excel Schrenks Span Wise Load Approximations Station 12.00 11.00 10.00 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 Zi(in) 672.00 616.00 560.00 504.00 448.00 392.00 336.00 280.00 224.00 168.00 112.00 56.00 0.00 Czi(in) 48.00 63.00 78.00 93.00 108.00 123.00 138.00 153.00 168.00 183.00 198.00 213.00 228.00 Cel(in) 0.00 70.22 97.13 116.22 130.96 142.72 152.17 159.73 165.66 170.13 173.25 175.10 175.71 CL1 (z) 0.50 1.06 1.12 1.12 1.11 1.08 1.05 1.02 0.99 0.96 0.94 0.91 0.89 CL1avg 0.78 1.09 1.12 1.12 1.09 1.07 1.04 1.01 0.98 0.95 0.92 0.90 DZi 56.00 56.00 56.00 56.00 56.00 56.00 56.00 56.00 56.00 56.00 56.00 56.00 Ai(in²) 3108.00 3948.00 4788.00 5628.00 6468.00 7308.00 8148.00 8988.00 9828.00 10668.00 11508.00 12348.00 FyaWi (lb) 4109.11 11037.69 14212.68 16739.38 18921.07 20872.57 22650.93 24288.74 25806.20 14814.74 28527.71 29745.58 ZFyawi (in) 644.00 588.00 532.00 476.00 420.00 364.00 308.00 252.00 196.00 140.00 84.00 28.00 Total 231726.40 5.50 = Shear (lb) Moment (lb-in) 0.00 0.00 -4109.11 115054.98 -15146.80 654220.31 -29359.47 1900395.94 -46098.85 4013229.07 -65019.92 7124554.68 -85892.49 11350102.25 -108543.42 16794307.84 -132832.16 23552824.15 -158638.36 31713998.80 -173453.11 41012559.91 -201980.82 51524709.79 -231726.40 63668511.86 Page | 9
  • 12. Shear and moment diagrams Page | 11
  • 13. Bending Moments Stresses and Margin of Safety per station (Aluminum 7075-T6) Station 1 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y position (in.) 0.00 0.00 47.45 95.05 142.50 142.50 95.05 47.45 Z position (in.) 11.53 -11.53 -13.63 -11.43 -7.21 7.21 11.43 13.63 Total: Station 2 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y position (in.) 0.00 0.00 44.33 88.80 133.13 133.13 88.80 44.33 Y position (in.) 10.77 -10.77 -12.73 -10.68 -6.73 6.73 10.68 12.73 Total: Station 3 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y position (in.) 0.00 0.00 41.21 82.54 123.75 123.75 82.54 41.21 Zc position (in.) 10.01 -10.01 -11.84 -9.93 -6.26 6.26 9.93 11.84 Total: Station 4 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y positoin (in.) 0.00 0.00 38.09 76.29 114.38 114.38 76.29 38.09 Zc position (in.) 9.25 -9.25 -10.94 -9.17 -5.78 5.78 9.17 10.94 Total: Area (in².) 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 96.00 Area (in².) 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 88.00 Area (in².) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 80.00 Area (in².) 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 72.00 Dist. to Yc (in.) -71.25 -71.25 -23.80 23.80 71.25 71.25 23.80 -23.80 Bending Stress (psi) -61019.26 61019.26 72132.92 60490.04 38130.42 -38130.42 -60490.04 -72132.92 Inertia - Y (in^4.) Yc position (in.) 9625.44 66.57 Intertia - Z (in^4.) Zc position (in.) 216708.48 0.00 My (lb-in.) -51524709.79 Shear (lb.) 201980.82 Dist. to Yc -66.57 -66.57 -22.23 22.23 66.57 66.57 22.23 -22.23 Bending Stress (psi) -57661.42 57661.42 68163.50 57161.32 36032.13 -36032.13 -57161.32 -68163.50 Inertia - Y (in^4.) Yc position (in.) 7560.78 61.88 Intertia - Z (in^4.) Zc position (in.) 170224.38 0.00 My (lb-in.) -41012559.91 Shear (lb.) 173453.11 Dist. to Yc -61.88 -61.88 -20.67 20.67 61.88 61.88 20.67 -20.67 Bending Stress (psi) -54313.78 54313.78 64206.14 53842.72 33940.22 -33940.22 -53842.72 -64206.14 Inertia - Y (in^4.) Yc position (in.) 5813.25 57.19 Intertia - Z (in^4.) Zc position (in.) 130880.23 0.00 My (lb-in.) -31713998.80 Shear (lb.) 158638.36 Dist. to Yc -57.19 -57.19 -19.10 19.10 57.19 57.19 19.10 -19.10 Bending Stress (psi) -50489.00 50489.00 59684.74 50051.11 31550.15 -31550.15 -50051.11 -59684.74 Inertia - Y (in^4.) Yc position (in.) 71.25 12030.59 Intertia - Z (in^4.) Zc position (in.) 270858.41 0.00 My (lb-in.) -63668511.86 Shear (lb.) 231726.40 MS 0.20 0.20 0.01 0.21 0.91 0.91 0.21 0.01 MS 0.27 0.27 0.07 0.28 1.03 1.03 0.28 0.07 MS 0.34 0.34 0.14 0.36 1.15 1.15 0.36 0.14 MS 0.45 0.45 0.22 0.46 1.31 1.31 0.46 0.22 Page | 12
  • 14. Station 5 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y positoin (in.) 0.00 0.00 34.97 70.04 105.00 105.00 70.04 34.97 Zc position (in.) 8.50 -8.50 -10.04 -8.42 -5.31 5.31 8.42 10.04 Total: Area (in².) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 64.00 Inertia - Y (in^4.) Yc position (in.) 4354.56 52.50 Intertia - Z (in^4.) Zc position (in.) 98039.24 0.00 My (lb-in.) -23552824.15 Shear (lb.) 132832.16 Dist. to Yc -52.50 -52.50 -17.54 17.54 52.50 52.50 17.54 -17.54 Bending Stress (psi) -45951.75 45951.75 54321.11 45553.21 28714.86 -28714.86 -45553.21 -54321.11 Station 6 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y positoin (in.) 0.00 0.00 31.84 63.79 95.63 95.63 63.79 31.84 Zc position (in.) 7.74 -7.74 -9.15 -7.67 -4.84 4.84 7.67 9.15 Total: Area (in².) 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 56.00 Inertia - Y (in^4.) Yc position (in.) 3160.55 47.82 Intertia - Z (in^4.) Zc position (in.) 71157.01 0.00 My (lb-in.) -16794307.84 Shear (lb.) 108543.42 Dist. to Yc -47.82 -47.82 -15.97 15.97 47.82 47.82 15.97 -15.97 Bending Stress (psi) -41115.76 41115.76 48604.32 40759.16 25692.89 -25692.89 -40759.16 -48604.32 Station 7 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y position (in.) 0.00 0.00 28.72 57.53 86.25 86.25 57.53 28.72 Zc position (in.) 6.98 -6.98 -8.25 -6.92 -4.36 4.36 6.92 8.25 Total: Area (in².) 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 48.00 Inertia - Y (in^4.) Yc position (in.) 2203.66 43.13 Intertia - Z (in^4.) Zc position (in.) 49613.61 0.00 My (lb-in.) -11350102.25 Shear (lb.) 85892.49 Dist. to Yc -43.13 -43.13 -14.40 14.40 43.13 43.13 14.40 -14.40 Bending Stress (psi) -35944.11 35944.11 42490.74 35632.37 22461.17 -22461.17 -35632.37 -42490.74 Station 8 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y position (in.) 0.00 0.00 25.60 51.28 76.88 76.88 51.28 25.60 Zc position (in.) 6.22 -6.22 -7.35 -6.17 -3.89 3.89 6.17 7.35 Total: Area (in².) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 40.00 Inertia - Y (in^4.) Yc position (in.) 1459.06 38.44 Intertia - Z (in^4.) Zc position (in.) 32849.45 0.00 My (lb-in.) -7124554.68 Shear (lb.) 65019.92 Dist. to Yc -38.44 -38.44 -12.84 12.84 38.44 38.44 12.84 -12.84 Bending Stress (psi) -30374.75 30374.75 35907.01 30111.31 18980.93 -18980.93 -30111.31 -35907.01 MS 0.59 0.59 0.34 0.60 1.54 1.54 0.60 0.34 MS 0.78 0.78 0.50 0.79 1.84 1.84 0.79 0.50 MS 1.03 1.03 0.72 1.05 2.25 2.25 1.05 0.72 MS 1.40 1.40 1.03 1.42 2.85 2.85 1.42 1.03 Page | 13
  • 15. Station 9 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y position (in.) 0.00 0.00 22.48 45.02 67.50 67.50 45.02 22.48 Zc position (in.) 5.46 -5.46 -6.46 -5.41 -3.41 3.41 5.41 6.46 Total: Area (in².) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 32.00 Inertia - Y (in^4.) Yc position (in.) 899.80 33.75 Intertia - Z (in^4.) Zc position (in.) 20258.11 0.00 My (lb-in.) -4013229.07 Shear (lb.) 46098.85 Dist. to Yc -33.75 -33.75 -11.27 11.27 33.75 33.75 11.27 -11.27 Bending Stress (psi) -24359.51 24359.51 28796.19 24148.24 15222.05 -15222.05 -24148.24 -28796.19 Station 10 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y positoin (in.) 0.00 0.00 19.36 38.77 58.13 58.13 38.77 19.36 Zc position (in.) 4.70 -4.70 -5.56 -4.66 -2.94 2.94 4.66 5.56 Total: Area (in².) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 24.00 Inertia - Y (in^4.) Yc position (in.) 500.49 29.07 Intertia - Z (in^4.) Zc position (in.) 11268.17 0.00 My (lb-in.) -1900395.94 Shear (lb.) 29359.47 Dist. to Yc -29.07 -29.07 -9.71 9.71 29.07 29.07 9.71 -9.71 Bending Stress (psi) -17859.15 17859.15 21111.91 17704.26 11160.04 -11160.04 -17704.26 -21111.91 Station 11 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y positoin (in.) 0.00 0.00 16.23 32.52 48.75 48.75 32.52 16.23 Zc position (in.) 3.94 -3.94 -4.66 -3.91 -2.46 2.46 3.91 4.66 Total: Area (in².) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 16.00 Inertia - Y (in^4.) Yc position (in.) 234.67 24.38 Intertia - Z (in^4.) Zc position (in.) 5283.36 0.00 My (lb-in.) -654220.31 Shear (lb.) 15146.80 Dist. to Yc -24.38 -24.38 -8.14 8.14 24.38 24.38 8.14 -8.14 Bending Stress (psi) -10996.58 10996.58 12999.43 10901.21 6871.67 -6871.67 -10901.21 -12999.43 Station 12 Stringer 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Y positoin (in.) 0.00 0.00 13.11 26.27 39.38 39.38 26.27 13.11 Zc position (in.) 3.19 -3.19 -3.77 -3.16 -1.99 1.99 3.16 3.77 Total: Area (in².) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 Inertia - Y (in^4.) Yc position (in.) 76.56 19.69 Intertia - Z (in^4.) Zc position (in.) 1723.78 0.00 My (lb-in.) -115054.98 Shear (lb.) 4109.11 Dist. to Yc -19.69 -19.69 -6.58 6.58 19.69 19.69 6.58 -6.58 Bending Stress (psi) -4788.15 4788.15 5660.24 4746.63 2992.08 -2992.08 -4746.63 -5660.24 MS 2.00 2.00 1.54 2.02 3.80 3.80 2.02 1.54 MS 3.09 3.09 2.46 3.12 5.54 5.54 3.12 2.46 MS 5.64 5.64 4.62 5.70 9.62 9.62 5.70 4.62 MS 14.25 14.25 11.90 14.38 23.40 23.40 14.38 11.90 Page | 14
  • 16. Shear Flows, Shear stresses and Margin of Safety per station(Aluminum 7050-T73511) Station 1 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -2665.01 0.00 3150.40 5792.30 7457.64 5792.30 3150.40 Length 47.55 23.05 47.55 47.55 47.69 14.41 47.69 47.55 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 2.10 25.16 27.26 25.06 20.84 6.43 2.20 Total: q' Moments 0.00 -128999.86 0.00 4083588.19 6922439.45 2239024.60 1774807.40 329563.24 -15220423.02 qi = qi ' + qo τ -3743.33 -6408.34 -3743.33 -592.93 2048.97 3714.31 2048.97 -592.93 -29946.64 -12816.68 -29946.64 -4743.45 16391.73 7428.62 16391.73 -4743.45 Station 2 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -2486.41 0.00 2939.27 5404.11 6957.85 5404.11 2939.27 Length 44.42 21.53 44.42 44.42 44.55 13.46 44.55 44.42 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 1.96 23.51 25.47 23.41 19.47 6.00 2.06 Total: q' Moments 0.00 -105047.31 0.00 3325351.96 5637088.41 1823284.94 1445263.09 268370.30 -12394311.40 qi = qi ' + qo τ -3262.82 -5749.23 -3262.82 -323.55 2141.29 3695.03 2141.29 -323.55 -26102.53 -11498.45 -26102.53 -2588.39 17130.36 7390.06 17130.36 -2588.39 Station 3 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -2297.08 0.00 2715.45 4992.60 6428.03 4992.60 2715.45 Length 41.29 20.02 41.29 41.29 41.42 12.51 41.42 41.29 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 1.82 21.85 23.67 21.76 18.09 5.58 1.91 Total: q' Moments 0.00 -83854.46 0.00 2654476.29 4499829.71 1455444.93 1153687.38 214227.73 -9893811.59 qi = qi ' + qo τ -2801.98 -5099.05 -2801.98 -86.53 2190.63 3626.05 2190.63 -86.53 -22415.82 -10198.11 -22415.82 -692.22 17525.00 7252.10 17525.00 -692.22 Station 4 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -2272.98 0.00 2686.97 4940.24 6360.61 4940.24 2686.97 Length 38.17 18.50 38.17 38.17 38.28 11.57 38.28 38.17 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 1.69 20.20 21.88 20.11 16.72 5.16 1.77 Total: q' Moments 0.00 -70885.46 0.00 2243932.92 3803882.53 1230344.68 975257.19 181095.10 -8363626.96 qi = qi ' + qo τ -2562.66 -4835.64 -2562.66 124.31 2377.58 3797.95 2377.58 124.31 MS 2.21 3.84 2.21 8.66 1.22 3.89 1.22 8.66 MS 2.39 4.16 2.39 15.04 1.12 3.92 1.12 15.04 MS 2.62 4.56 2.62 53.51 1.07 4.01 1.07 53.51 MS -20501.27 2.77 -9671.29 4.76 -20501.27 2.77 994.50 35.55 19020.67 0.91 7595.90 3.79 Page | 15 19020.67 0.91 994.50 35.55
  • 17. Station 5 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -2073.25 0.00 2450.86 4506.13 5801.69 4506.13 2450.86 Length 35.04 16.98 35.04 35.04 35.14 10.62 35.14 35.04 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 1.55 18.54 20.09 18.47 15.35 4.73 1.62 Total: q' Moments 0.00 -54486.81 0.00 1724821.27 2923892.00 945716.63 749641.11 139200.54 -6428784.74 qi = qi ' + qo τ -2145.78 -4219.04 -2145.78 305.08 2360.35 3655.91 2360.35 305.08 -17166.26 -8438.07 -17166.26 2440.63 18882.80 7311.82 18882.80 2440.63 Station 6 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -1860.15 0.00 2198.94 4042.96 5205.35 4042.96 2198.94 Length 31.91 15.47 31.91 31.91 32.00 9.67 32.00 31.91 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 1.41 16.88 18.29 16.82 13.98 4.31 1.48 Total: q' Moments 0.00 -40550.53 0.00 1283657.68 2176037.87 703827.37 557902.77 103596.73 -4784471.89 qi = qi ' + qo τ -1753.42 -3613.57 -1753.42 445.52 2289.54 3451.93 2289.54 445.52 -14027.36 -7227.14 -14027.36 3564.19 18316.32 6903.86 18316.32 3564.19 Station 7 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -1632.05 0.00 1929.31 3547.20 4567.06 3547.20 1929.31 Length 28.78 13.95 28.78 28.78 28.87 8.72 28.87 28.78 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 1.27 15.23 16.50 15.17 12.61 3.89 1.33 Total: q' Moments 0.00 -28940.98 0.00 916148.49 1553041.63 502322.69 398176.08 73937.15 -3414685.07 qi = qi ' + qo τ -1387.52 -3019.57 -1387.52 541.79 2159.69 3179.55 2159.69 541.79 -11100.12 -6039.14 -11100.12 4334.32 17277.51 6359.09 17277.51 4334.32 Station 8 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -1386.03 0.00 1638.47 3012.47 3878.59 3012.47 1638.47 Length 25.65 12.44 25.65 25.65 25.73 7.77 25.73 25.65 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 1.13 13.57 14.71 13.52 11.24 3.47 1.19 Total: q' Moments 0.00 -19528.04 0.00 618174.91 1047921.13 338944.27 268670.92 49889.39 -2304072.58 qi = qi ' + qo τ -1050.34 -2436.36 -1050.34 588.13 1962.14 2828.25 1962.14 588.13 MS 3.12 5.31 3.12 13.89 0.93 3.97 0.93 13.89 MS 3.59 6.03 3.59 9.20 0.98 4.27 0.98 9.20 MS 4.27 7.02 4.27 7.39 1.10 4.72 1.10 7.39 MS -8402.70 5.33 -4872.73 8.46 -8402.70 5.33 4705.04 6.73 15697.08 1.32 5656.50 5.43 15697.08 | 16 1.32 Page 4705.04 6.73
  • 18. Station 9 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -1119.24 0.00 1323.10 2432.63 3132.04 2432.63 1323.10 Length 22.52 10.92 22.52 22.52 22.59 6.83 22.59 22.52 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 0.99 11.92 12.91 11.87 9.87 3.04 1.04 Total: q' Moments 0.00 -12156.06 0.00 384809.19 652322.96 210990.24 167245.61 31055.77 -1434267.70 qi = qi ' + qo τ -744.69 -1863.93 -744.69 578.41 1687.95 2387.35 1687.95 578.41 -5957.48 -3727.86 -5957.48 4627.28 13503.58 4774.71 13503.58 4627.28 Station 10 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -827.73 0.00 978.48 1799.03 2316.27 1799.03 978.48 Length 19.40 9.40 19.40 19.40 19.45 5.88 19.45 19.40 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 0.86 10.26 11.12 10.22 8.50 2.62 0.90 Total: q' Moments 0.00 -6667.26 0.00 211057.20 357781.10 115722.31 91729.59 17033.23 -786656.17 qi = qi ' + qo τ -474.28 -1302.00 -474.28 504.21 1324.75 1841.99 1324.75 504.21 -3794.21 -2604.00 -3794.21 4033.65 10598.02 3683.98 10598.02 4033.65 Station 11 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -509.20 0.00 601.94 1106.72 1424.91 1106.72 601.94 Length 16.27 7.89 16.27 16.27 16.32 4.93 16.32 16.27 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 0.72 8.61 9.33 8.57 7.13 2.20 0.75 Total: q' Moments 0.00 -2884.66 0.00 91316.03 154797.60 50068.43 39687.73 7369.60 -340354.73 qi = qi ' + qo τ -302.90 -812.10 -302.90 299.04 803.81 1122.01 803.81 299.04 -2423.22 -1624.20 -2423.22 2392.28 6430.51 2244.01 6430.51 2392.28 Station 12 S 8,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 q' 0.00 -171.01 0.00 202.15 371.67 478.53 371.67 202.15 Length 13.14 6.37 13.14 13.14 13.18 3.98 13.18 13.14 Thickness 0.13 0.50 0.13 0.13 0.13 0.50 0.13 0.13 q' distance w/r 8 0.00 0.58 6.95 7.53 6.93 5.76 1.78 0.61 Total: q' Moments 0.00 -632.15 0.00 20011.27 33922.82 10972.15 8697.29 1615.00 -74586.37 qi = qi ' + qo τ -87.13 -258.14 -87.13 115.02 284.54 391.40 284.54 115.02 -697.07 -516.28 -697.07 920.14 2276.32 782.80 2276.32 920.14 MS 7.10 10.75 7.10 6.86 1.69 6.61 1.69 6.86 MS 10.58 14.96 10.58 8.01 2.43 8.87 2.43 8.01 MS 16.00 23.38 16.00 14.20 4.65 15.20 4.65 14.20 MS 53.15 71.41 53.15 38.51 14.97 45.44 14.97 38.51 Page | 17
  • 19. Final Selection and Recommendations Material for stringers: Material for skin: Page | 18
  • 20. All the stringers and skin sections meet the desired requirements and obtain a Margin of safety greater than 0. Our design consists of 12 rib sections with 8 stringers running across the wing. To minimize overdesign we choose a variable area stringer design.All the sections consist of the same layout reduced in size by a factor given on the following table. All the corresponding dimensions and coordinates for all the 12 ribs, spars and stringers are also found in the table. % from 12 0.21 0.28 0.34 0.41 0.47 0.54 0.61 0.67 0.74 0.80 0.87 0.93 1.00 Station 12.00 11.00 10.00 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 Length 30.00 39.38 48.75 58.13 67.50 76.88 86.25 95.63 105.00 114.38 123.75 133.13 142.50 Spar 0 Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Spar 1 Y 9.99 13.11 16.23 19.36 22.48 25.60 28.72 31.84 34.97 38.09 41.21 44.33 47.45 Spar 2 Y 20.01 26.27 32.52 38.77 45.02 51.28 57.53 63.79 70.04 76.29 82.54 88.80 95.05 Spar 4 Y 30.00 39.38 48.75 58.13 67.50 76.88 86.25 95.63 105.00 114.38 123.75 133.13 142.50 Upper Arc 30.07 39.47 48.86 58.26 67.66 77.05 86.45 95.85 105.25 114.64 124.04 133.44 142.83 Lower Arc 30.07 39.47 48.86 58.26 67.66 77.05 86.45 95.85 105.25 114.64 124.04 133.44 142.83 Page | 19
  • 22. References  Shigley’s Mechanical Engineering Design 9th Ed. (Budynas, Nisbett, 2010)  Aluminum (“Aerospace Materials”, 2013)  Preparation of Stress Analysis Report (David McMahon, 2009)  Mechanics of Aircrafts Structures (Sun, 2006)  Aircraft Structures (Peery, 2011) Page | 21