SlideShare uma empresa Scribd logo
1 de 35
Optimization for the fabrication of
ternary halide perovskite solar cells via
experimental design
利用實驗設計法進行氯、溴、碘三成分混合型之
鈣鈦礦太陽能電池製程最佳化
龔俊豪 Kung, Chun-Hao
Outline
2
Introduction
 Part I
 Using central composite design methods to find
optimized fabrication process
 Part II
 Using mixture design of experiments on ternary
halide perovskite device
Conclusion
3
Exciton
holes
electronsLUMO
HOMOInterface
Exciton diffusion
Charge separation
Charge extraction
Absorber
Introduction
General Perovskite unit(AMX3)
Iodide (I)
Methylammonium(MA)
Lead (Pb)
Advantages:
• Intense light harvesting
• Small exciton binding energy
• Long charge carrier lifetime
• Cost effective
Disadvantage:
• Humidity-sensitive
• Toxicity
MAPbI3
 Low procedure temperature
 All solution process
Reference: Sun. et.al Energy Environ. Sci., 7, 399 (2014)
4
Solution process
Reference: T.F Guo, Adv. Mater., 25, 3727 (2013)
Evaporation process
Structure-Conventional Planar heterojunction
5
Reference: Yi-Bing Cheng, Angewandte Chemie, 126, 10056 (2014)
ITO
PEDOT:PSS
Perovskite(MAPbI3)
PCBM
Al
Experimental
6
Reference: Michael Grätzel, Advanced Functional Materials, 24, 3250(2014)
Effect of Annealing Temperature on Film Morphology of Organic–Inorganic
Hybrid Pervoskite Solid-State Solar Cells
Temperature [°C] Time Taken [h] PCE[%]
60 20 1.78
80 3 10.64
100 0.75 11.66
150 0.25 9.66
175 0.17 8.52
200 0.17 0.56
Interaction: Temperature & time
Research purpose Part-I
System: FTO/TiO2/MAPbI3-XClx/spiro-MeOTAD/Au
System: ITO/PEDOT/MAPbI3/PCBM/Al
Solvent washing
7
Reference: Alex K.-Y. Jen et.al Adv. Energy Mater,5, 1400960 (2014)
Voc(V) Jsc(mA/cm2
) FF (%) Eg
MAPbI3 0.85 10.6 0.38 3.4 1.55
MAPb(I0.8Br0.2)3 0.88 10.9 0.38 3.6 1.65
MAPb(I0.6Br0.4)3 0.92 10.5 0.38 3.7 1.74
MAPbIXCl3-X 0.89 16 0.74 10.5 1.61
MAPb(I0.8Br0.2)XCl3-X 0.99 14.9 0.68 10 1.70
MAPb(I0.6Br0.4)XCl3-X 1.06 11.5 0.62 7.6 1.83
High-Performance Planar-Heterojunction Solar Cells Based on Ternary Halide Large-
Band-Gap Perovskites
Cl
BrI
Best recipe
Research purpose Part-II
Solvent washing method
SystemITO/PEDOT:PSS/Perovksites/PC61BM/Bis-C60/Ag
90 °C for 2–3 h
8
 Create a fundamental fabricating process
→ Suitable recipe for fabrication
→ What is the main factor
 Extend single component to ternary system
→ To find the best recipe
→ To know the role of every componets
40 wt% Precursor solution/DMF
Spin-coating Solvent washing
Research purpose
Drying
First part:
Annealing time and temp.
Second part:
Ternary halide precursor
9
Central composite design
methods(CCD)
Mixture design
methods
40 wt% Precursor solution/DMFMethodology
DOE: design of experiment
1. Annealing time and temp. 2. Ternary halide precursor
Factorial Points : Estimated main factor & interaction
Axial Points : Estimated pure quadratic form
Center Points : Estimated pure Error
10
→ A tool to build a quadratic response surface for optimization
→ Resolves both main effects and interactions
Central composite design (CCD) Part I
Level Temperature (℃) Annealing time (mins)
𝟐 120 5.0
1 115 6.5
0 100 10.0
-1 85 13.5
- 𝟐 80 15.0
11
Run Temp. Time Temp. Time
1 -1 -1 85 13.5
2 -1 1 85 6.5
3 1 -1 115 13.5
4 1 1 115 6.5
5 0 0 100 10
6 0 0 100 10
7 0 0 100 10
8 0 - 𝟐 100 15
9 0 𝟐 100 5
10 - 𝟐 0 80 10
11 𝟐 0 120 10
Design matrix
Reference: Michael Grätzel, Advanced Functional Materials, 24, 3250(2014)
Effect of Annealing Temperature on Film Morphology of Organic–Inorganic
Hybrid Pervoskite Solid-State Solar Cells
120℃
5 mins
15 mins
8𝟎℃
100℃
Fixed parameters
Solution : 40 wt% CH3NH3PbI3
Speed: 5 k r.p.m., 30 sec,
Drip: Chlorobenzene at 4~6 secs(200ul)
1
1
2
2
3
3
4
4
4
4
5
5
5
5
5.5
5.5
5.5
5.5 5.5
5.5
6
6
6
6
6
6
6.5
6.5
6.5
6.5
6.5
7
7
7
7
7.2
Temperatuer(degree)
Annealingtime(mins)
85 100 115
6.5
10
13.5
-1.5 -1 -0.5 0 0.5 1 1.5
-1.5
-1
-0.5
0
0.5
1
1.5
12
Parameter Coefficient
Xtemp
1.16
Ytime
-0.99
XtempXtemp
-1.21
YtimeYtime
-0.63
XtempYtime
0.99
Main factor:
Interaction: Temp.-Time
90℃ 110℃
PCE=6.78+1.16*x-0.99*y-1.21*x2-0.63*y2+0.98.*x*y
>
Regression of PCE (%)
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-20
-15
-10
-5
0
CurrentDensity(mA/cm
2
)
Voltage(V)
90
o
c, 12 mins
105
o
c, 12 mins
110
o
c, 12 mins
13
Temp. time Jsc Voc FF PCE(%)
90 12 11.37 0.93 0.59 6.18
105 12 14.40 0.93 0.63 8.48
110 12 11.98 0.93 0.62 6.93
PCE contour plot
Main factor: >
Interaction: Temp.-Time
Verification of PCE contour plot
14
It is consistent with UV-vis
spectra result.
Verification by UV-Vis
Temp. time Jsc Voc FF PCE(%)
90 12 11.37±𝟎. 𝟕𝟐 0.93±𝟎. 𝟎𝟎 0.59±𝟎. 𝟎𝟎6.18±𝟎. 𝟏𝟒
105 12 14.40±𝟏. 𝟔𝟔 0.93±𝟎. 𝟎𝟎 0.63±𝟎. 𝟎𝟎8.48±𝟎. 𝟒𝟒
110 12 11.98±0.34 0.93±𝟎. 𝟎𝟎 0.62±𝟎. 𝟎𝟎6.93±𝟏. 𝟎𝟒
400 500 600 700 800
0
1
2
3
Absorbance(a.u.) Wavelength(nm)
90oC,12mins
105oC,12mins
110oC,12mins
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-20
-15
-10
-5
0
CurrentDensity(mA/cm
2
)
Voltage(V)
90
o
c, 12 mins
105
o
c, 12 mins
110
o
c, 12 mins
15
Temp. ↑
Crystal size↑
500nm
𝟗𝟎℃, 12 mins 𝟏𝟏𝟎℃, 12 mins
𝟏𝟎𝟓℃, 5 mins 𝟏𝟎𝟓℃, 12 mins
Main factor is
temperature.
Verification by SEM
It’s effectively to find suitable parameters to
fabricate perovskite device via CCD methods .
The main factor affect the power conversion
efficiency is temperature.
16
Summary Part I
Drying
Voc: 0.93 V
Jsc:14.40 mA/cm2
FF:0.63
PCE:8.48 %
Part II
Using mixture design of experiments on
ternary halide perovskite device to find best
recipe
17
PbI2 18
Cl-
ITO
PEDOT:PSS
Perovskite
PCBM
Al
Experimental section
Br-
I-
Chloride, Bromide, Iodide
Methylammonium(MA)
Lead (Pb)
Enhance morphology
Enhance bandgap &stable phase
+Fixed parameters
Precursor solution : 40 wt%
Speed: 5 k r.p.m., 30 sec,
Drip: Chlorobenzene at 4~6 secs(200ul)
19
 Model is fixed
 Algebra equation
 Time-consuming
 Model reduction
 SAS regression
 Interaction effect
 Save time
0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00
0.00
0.25
0.50
0.75
1.00
IBr
Cl
Binary Design (A) Ternary Design (B)
Modified mixture design methods
Reference: Scheffe (1958, 1963) introduced the simplex
lattice designs and simplex-centroid designs.
20
Research methodology
RegressionExperimental data Contour plot1. 2. 3.
SAS 9.3 MATLAB R2013a
0.00 0.25 0.50 0.75 1.00
0.00
0.25
0.50
0.75
1.00
0.00
0.25
0.50
0.75
1.00
IBr
Cl
0
20
40
60
80
Cl Br I Pb
Atomic%
Real Measured
0
20
40
60
80
Cl Br I Pb
Atomic%
Real Measured
0
20
40
60
80
Cl Br I Pb
Atomic%
Real Measured
21
The real mixing ratio is equal to the measured result.
EDS analysis
Cl:Br:I=0.67:0.17:0.17 Cl:Br:I=0.33:0.33:0.33 Cl:Br:I=0.00:0.00:1.00
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-15
-10
-5
0
0.00:0.00:1.00
0.00:1.00:0.00
1.00:0.00:0.00
0.00:0.75:0.25
0.17:0.67:0.17
CurrentDensity(mA/cm2)
Bias (V)
22
J-V curve characteristic Part II
℃ rpm80 6000
MACl
MABr
MAI
in DMF
Spin-coating
Ternary halide precursor
Br
I
Cl
Cl : Br : I
23
Jsc (mA/cm2) Voc (v)
Bromide : Enhance
Voc
Cl
Br I
Cl
Br I
Jsc: Chloride & Iodide
interaction
Mixture Design contour plot
0.55
0.55
0.6
0.6
0.6
0.6
0.65
0.65
0.65
0.65
0.68
0.68
0.68
0.68
0.7 0.7
0.7
0.7
0.7
0.75
0.75
0.75
0.8
0.8
0.85
0.85
0.9
0.9
0
0.25
0.5
0.75
0
0.25
0.5
0.75
1
0 0.25 0.5 0.75 1
24
FF
Cl
Br I
Chloride : Enhance FF
Cl
I
5
5
6
6
7
7
8
8
8
9
9
9
9
9
10
10
10
10
10
1111
11
11
12
12
12
12.5
12.5
12.7
0
0.25
0.5
0.75
0
0.25
0.5
0.75
1
0 0.25 0.5 0.75 1
Jsc (mA/cm2)
Cl
Mixture Design contour plot
Jsc: Chloride & Iodide
interaction
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-15
-10
-5
0
Currentdensity(mA/cm2)
Voltage (V)
0.30: 0.15 : 0.55
0.30: 0.35 : 0.35
Cl : Br : I
0.30: 0.55 : 0.15
1
2
3
3
4
4
5
5
5
5
6
6
6
6
6
6.5
6.5
6.5
6.5
6.5
7
7
7
7.2
7.2
0
0.25
0.5
0.75
0
0.25
0.5
0.75
1
I
0 0.25 0.5 0.75 1
25
PCE Contour plot run Cl Br I Voc Jsc FF PCE
0.30 0.55 0.15 0.97 9.94 0.70 6.77
0.30 0.35 0.35 0.92 14.07 0.73 9.47
0.30 0.15 0.55 0.75 12.67 0.68 6.52
Cl
IBr
Verification by J-V curve
26
7
8
10
9
11
12
12.5
12.7
12
11
10
8
11
10
0
0.25
0.5
0.75
1 0
0.25
0.5
0.75
1
Cl
Br I
0 0.2 0.4 0.6 0.8 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
5
6
7
8
9
10
11
12
1
0.98
0.94
0.9
0.85
0.8
0.75
0.85
0.8
0
0.25
0.5
0.75
1 0
0.25
0.5
0.75
1
Cl
Br I
0 0.2 0.4 0.6 0.8 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.7
0.75
0.8
0.85
0.9
0.95
1
0.6
0.65
0.68
0.7
0.75
0.8
0.850.9
0.55
0.7
0.7
0
0.25
0.5
0.75
1 0
0.25
0.5
0.75
1
Cl
Br I
0 0.2 0.4 0.6 0.8 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.6
0.6
0.65
0.65
0.68
0.68
0.7
0.75
0.8
0.85
0.9
0.75
0.7
0.55
0
0.25
0.5
0.75
1 0
0.25
0.5
0.75
1
IBr
Cl
5
6
6.5
7
7.2
7.2
7
6.5
6
5
6
6.5
0 0.2 0.4 0.6 0.8 1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
JscVoc FF PCE
Bromide → Enhance Voc Chloride → Enhance FF
Cl
BrI
Best recipe
Role of halides
400 500 600 700 800
0.0
0.2
0.4
0.6
0.8
1.0
Normalizedabsorbance(a.u.)
Wavelength(nm)
Cl Br I
0.30:0.15:0.35
0.30:0.35:0.35
0.30:0.55:0.15
400 500 600 700 800
0.0
0.2
0.4
0.6
0.8
1.0
Normalizedabsorbance(a.u.)
Wavelength(nm)
Cl Br I
1.00 0.00 0.00
0.00:1.00:0.00
0.00:0.00:1.00
27
Single component Ternary component
Onset value
Cl:800 nm
Br:700 nm
I:800 nm
Bromide enhance Jsc ?
Verification by UV-Vis spectra
Bromide → Enhance
bandgap → Enhance Voc
28
0 0.5 0.50.5 0 0.5
MACl MABr MAIMACl MABr MAI
0.17 0.67 0.170 0 1
More bromide,
more pin holes
10𝜇m
Verification by SEM
Voc↑ FF↓Br
29
Cl Br I
0.30 0.55 0.15
Cl Br I
0.30 0.35 0.35
run Cl Br I Voc Jsc FF PCE
0.30 0.55 0.15 0.97 9.94 0.70 6.77
0.30 0.35 0.35 0.92 14.07 0.73 9.47
0.30 0.15 0.55 0.75 12.67 0.68 6.52
Cl Br I
0.30 0.15 0.55
500nm
Verification by SEM
10 15 20 25 30 35 40 45
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
Pure MAI
Pure MABr
Pure MACl
2Theta (degree) Intensity(a.u.)
10 20 30 40 50
0.30: 0.15 : 0.55
0.30: 0.35 : 0.35
Intensity(a.u.) 2Theta (degree)
Cl : Br : I
0.30: 0.55 : 0.15
30
(110)
(220)
14.1°
28.4°
*
• Diffraction peak:
MAPbI3 : 14.1°, 28.4°, 43.3°
MAPbCl3 : 15.88°
MACl: 17.6°, 35.3°
MABr: 20.2°, 30.3°
PbI2 : 12.67°, 25.34°, 38.01°
Verification by XRD
MAClMABr PbI2
♦
♦ ♦
10 20 30 40 50
0.30: 0.15 : 0.55
0.30: 0.35 : 0.35
Intensity(a.u.) 2Theta (degree)
Cl : Br : I
0.30: 0.55 : 0.15
31
(110)
(220)
14.1°
28.4°
*
• Diffraction peak:
MAPbI3 : 14.1°, 28.4°, 43.3°
MAPbCl3 : 15.88°
MACl: 17.6°, 35.3°
MABr: 20.2°, 30.3°
PbI2 : 12.67°, 25.34°, 38.01°
Verification by XRD
Reference: Yang Yang et.al Science,345, 6196 (2014)
MAClMABr PbI2
♦
♦ ♦
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
1E-5
1E-4
1E-3
0.01
0.1
1
10
CurrentDensity(mA/cm2)
Voltage(V)
32
Cl : Br : I=0.30 : 0.35 : 0.35
Rs=78.23 Ω/cm2
Rp=358.51 kΩ/cm2
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-20
-15
-10
-5
0
P:100mW/cm
2
Voc:0.92 V
Jsc:14.07 mA/cm
2
FF:0.73
PCE:9.47%
Dark
Light
CurrentDensity(mA/cm2)
Voltage(V)
Best recipe
Fixed parameters
Solution : 40 wt% (MACl+MABr+MAI)+PbI2
Speed: 5 k r.p.m., 30 sec,
Drip: Chlorobenzene at 4~6 secs(200ul)
33
It has been known the role of halide in ternary
perovskite solar cells via design of experiment.
It is obtained the best recipe with proper
mixing ratio via design of experiment.
Summary Part II
Ternary halide precursor
Voc: 0.92 V
Jsc:14.07 mA/cm2
FF:0.73
PCE:9.47 %
Cl : Br : I=0.30 : 0.35 : 0.35
• It is successfully to employ CCD and mixture
design methods to find optimized recipe on
ternary perovskite solar cells.
34
Know
situation
Design of
experiment
Optimized
process
Conclusion
Voc: 0.93 V
Jsc:14.40 mA/cm2
FF:0.63
PCE:8.48 %
Voc: 0.92 V
Jsc:14.07 mA/cm2
FF:0.73
PCE:9.47 %
Thank you for your listening.
35

Mais conteúdo relacionado

Mais procurados

Perovskite Crystals: A Bright Future in Solar Technology
Perovskite Crystals: A Bright Future in Solar TechnologyPerovskite Crystals: A Bright Future in Solar Technology
Perovskite Crystals: A Bright Future in Solar Technology
Reid Barton
 
KDMiller_presentationFinal
KDMiller_presentationFinalKDMiller_presentationFinal
KDMiller_presentationFinal
Kyle Miller
 
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of  la1 x srxmno3 perovskite nanoparticlesSynthesis and charaterization of  la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Mai Trần
 

Mais procurados (20)

Perovskite Crystals: A Bright Future in Solar Technology
Perovskite Crystals: A Bright Future in Solar TechnologyPerovskite Crystals: A Bright Future in Solar Technology
Perovskite Crystals: A Bright Future in Solar Technology
 
KDMiller_presentationFinal
KDMiller_presentationFinalKDMiller_presentationFinal
KDMiller_presentationFinal
 
Energia r.p.h.chang
Energia r.p.h.changEnergia r.p.h.chang
Energia r.p.h.chang
 
Ultra high efficiency solar cell
Ultra high efficiency solar cellUltra high efficiency solar cell
Ultra high efficiency solar cell
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
 
Perovskite Solar Cell
Perovskite Solar CellPerovskite Solar Cell
Perovskite Solar Cell
 
Abhishek presentation
Abhishek presentationAbhishek presentation
Abhishek presentation
 
Perovskite solar cells
Perovskite solar cellsPerovskite solar cells
Perovskite solar cells
 
Perovskite solar cells the birth of new era in photovoltaics.
Perovskite solar cells  the birth of new era in photovoltaics.Perovskite solar cells  the birth of new era in photovoltaics.
Perovskite solar cells the birth of new era in photovoltaics.
 
Perovskite solar cells - An Introduction, By Dawn John Mullassery
Perovskite solar cells - An Introduction, By Dawn John MullasseryPerovskite solar cells - An Introduction, By Dawn John Mullassery
Perovskite solar cells - An Introduction, By Dawn John Mullassery
 
Fabrication of perovskite solar cell
Fabrication of perovskite solar cellFabrication of perovskite solar cell
Fabrication of perovskite solar cell
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar Cell
 
Perovskite Solar Cells - an Introduction
Perovskite Solar Cells - an IntroductionPerovskite Solar Cells - an Introduction
Perovskite Solar Cells - an Introduction
 
Remarkable self-organization and unusual conductivity behavior in cellulose n...
Remarkable self-organization and unusual conductivity behavior in cellulose n...Remarkable self-organization and unusual conductivity behavior in cellulose n...
Remarkable self-organization and unusual conductivity behavior in cellulose n...
 
New Material:Perovskites presentation
New Material:Perovskites presentationNew Material:Perovskites presentation
New Material:Perovskites presentation
 
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
 
Organometal halide perovskite solar cells: Degradation and stability
Organometal halide perovskite solar cells: Degradation and stabilityOrganometal halide perovskite solar cells: Degradation and stability
Organometal halide perovskite solar cells: Degradation and stability
 
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of  la1 x srxmno3 perovskite nanoparticlesSynthesis and charaterization of  la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
 
Perovskite PV: Updating Our Views on Progress and Commercialization Timelines
Perovskite PV: Updating Our Views on Progress and Commercialization TimelinesPerovskite PV: Updating Our Views on Progress and Commercialization Timelines
Perovskite PV: Updating Our Views on Progress and Commercialization Timelines
 
Fabrication of Organic bulk Heterojunction Solar Cell
Fabrication of Organic bulk Heterojunction Solar CellFabrication of Organic bulk Heterojunction Solar Cell
Fabrication of Organic bulk Heterojunction Solar Cell
 

Semelhante a Optimization for the fabrication of ternary halide perovskite solar cells via experimental design

IRES_ Final_Presenation
IRES_ Final_PresenationIRES_ Final_Presenation
IRES_ Final_Presenation
Holden Ranz
 
screen for expl prop in high pressure vessel_Whitmore Knorr_2007
screen for expl  prop  in high pressure vessel_Whitmore Knorr_2007screen for expl  prop  in high pressure vessel_Whitmore Knorr_2007
screen for expl prop in high pressure vessel_Whitmore Knorr_2007
Sara Kotnik
 
fc35paperskf.ppt [Compatibility Mode] [Repaired]
fc35paperskf.ppt [Compatibility Mode] [Repaired]fc35paperskf.ppt [Compatibility Mode] [Repaired]
fc35paperskf.ppt [Compatibility Mode] [Repaired]
Pratap Ghorpade
 
POWER POINT PRESENTATION-MSC PROJECT
POWER POINT PRESENTATION-MSC PROJECTPOWER POINT PRESENTATION-MSC PROJECT
POWER POINT PRESENTATION-MSC PROJECT
Wasiu Oseni
 

Semelhante a Optimization for the fabrication of ternary halide perovskite solar cells via experimental design (20)

A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
 
IRES_ Final_Presenation
IRES_ Final_PresenationIRES_ Final_Presenation
IRES_ Final_Presenation
 
Thermoplastic composites for Wind Energy
Thermoplastic composites for Wind EnergyThermoplastic composites for Wind Energy
Thermoplastic composites for Wind Energy
 
shagufta-final review
shagufta-final reviewshagufta-final review
shagufta-final review
 
In-situ tomographic imaging of glasses and melts
In-situ tomographic imaging of glasses and meltsIn-situ tomographic imaging of glasses and melts
In-situ tomographic imaging of glasses and melts
 
Eee498 assignment
Eee498 assignmentEee498 assignment
Eee498 assignment
 
NaI:Tl-based radiation detector with improved light output and energy resolution
NaI:Tl-based radiation detector with improved light output and energy resolutionNaI:Tl-based radiation detector with improved light output and energy resolution
NaI:Tl-based radiation detector with improved light output and energy resolution
 
screen for expl prop in high pressure vessel_Whitmore Knorr_2007
screen for expl  prop  in high pressure vessel_Whitmore Knorr_2007screen for expl  prop  in high pressure vessel_Whitmore Knorr_2007
screen for expl prop in high pressure vessel_Whitmore Knorr_2007
 
MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統
 
fc35paperskf.ppt [Compatibility Mode] [Repaired]
fc35paperskf.ppt [Compatibility Mode] [Repaired]fc35paperskf.ppt [Compatibility Mode] [Repaired]
fc35paperskf.ppt [Compatibility Mode] [Repaired]
 
PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016
 
Laboratory_Manual_ARE EXP 5.pdf
Laboratory_Manual_ARE EXP 5.pdfLaboratory_Manual_ARE EXP 5.pdf
Laboratory_Manual_ARE EXP 5.pdf
 
SPS Heat Shrink Terminations / Joints 7.2 to 33kV Technical Data
SPS Heat Shrink Terminations / Joints 7.2 to 33kV Technical DataSPS Heat Shrink Terminations / Joints 7.2 to 33kV Technical Data
SPS Heat Shrink Terminations / Joints 7.2 to 33kV Technical Data
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxides
 
Microbial Fuel Cell
Microbial Fuel CellMicrobial Fuel Cell
Microbial Fuel Cell
 
Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...
Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...
Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...
 
POWER POINT PRESENTATION-MSC PROJECT
POWER POINT PRESENTATION-MSC PROJECTPOWER POINT PRESENTATION-MSC PROJECT
POWER POINT PRESENTATION-MSC PROJECT
 
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas AnalysisALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
 
SPS Heat Shrink Cable Joints & Terminations 11kV-33kV - Testing & Technical ...
SPS Heat Shrink Cable Joints & Terminations 11kV-33kV  - Testing & Technical ...SPS Heat Shrink Cable Joints & Terminations 11kV-33kV  - Testing & Technical ...
SPS Heat Shrink Cable Joints & Terminations 11kV-33kV - Testing & Technical ...
 
Thesis ppt.pptx
Thesis ppt.pptxThesis ppt.pptx
Thesis ppt.pptx
 

Mais de CHUN-HAO KUNG (6)

職涯分享與建議 台積電 得來速的日子
職涯分享與建議  台積電 得來速的日子職涯分享與建議  台積電 得來速的日子
職涯分享與建議 台積電 得來速的日子
 
不平凡的生活,先有獨特的思維
不平凡的生活,先有獨特的思維不平凡的生活,先有獨特的思維
不平凡的生活,先有獨特的思維
 
Gratitude●Believe ●Vision
Gratitude●Believe ●VisionGratitude●Believe ●Vision
Gratitude●Believe ●Vision
 
Design of experiment methodology
Design of experiment methodologyDesign of experiment methodology
Design of experiment methodology
 
Tip for presentations general advice research paper
Tip for presentations general advice research paperTip for presentations general advice research paper
Tip for presentations general advice research paper
 
Guide to travel
Guide to travelGuide to travel
Guide to travel
 

Último

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Último (20)

Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 

Optimization for the fabrication of ternary halide perovskite solar cells via experimental design

  • 1. Optimization for the fabrication of ternary halide perovskite solar cells via experimental design 利用實驗設計法進行氯、溴、碘三成分混合型之 鈣鈦礦太陽能電池製程最佳化 龔俊豪 Kung, Chun-Hao
  • 2. Outline 2 Introduction  Part I  Using central composite design methods to find optimized fabrication process  Part II  Using mixture design of experiments on ternary halide perovskite device Conclusion
  • 3. 3 Exciton holes electronsLUMO HOMOInterface Exciton diffusion Charge separation Charge extraction Absorber Introduction General Perovskite unit(AMX3) Iodide (I) Methylammonium(MA) Lead (Pb) Advantages: • Intense light harvesting • Small exciton binding energy • Long charge carrier lifetime • Cost effective Disadvantage: • Humidity-sensitive • Toxicity MAPbI3
  • 4.  Low procedure temperature  All solution process Reference: Sun. et.al Energy Environ. Sci., 7, 399 (2014) 4 Solution process Reference: T.F Guo, Adv. Mater., 25, 3727 (2013) Evaporation process Structure-Conventional Planar heterojunction
  • 5. 5 Reference: Yi-Bing Cheng, Angewandte Chemie, 126, 10056 (2014) ITO PEDOT:PSS Perovskite(MAPbI3) PCBM Al Experimental
  • 6. 6 Reference: Michael Grätzel, Advanced Functional Materials, 24, 3250(2014) Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells Temperature [°C] Time Taken [h] PCE[%] 60 20 1.78 80 3 10.64 100 0.75 11.66 150 0.25 9.66 175 0.17 8.52 200 0.17 0.56 Interaction: Temperature & time Research purpose Part-I System: FTO/TiO2/MAPbI3-XClx/spiro-MeOTAD/Au System: ITO/PEDOT/MAPbI3/PCBM/Al Solvent washing
  • 7. 7 Reference: Alex K.-Y. Jen et.al Adv. Energy Mater,5, 1400960 (2014) Voc(V) Jsc(mA/cm2 ) FF (%) Eg MAPbI3 0.85 10.6 0.38 3.4 1.55 MAPb(I0.8Br0.2)3 0.88 10.9 0.38 3.6 1.65 MAPb(I0.6Br0.4)3 0.92 10.5 0.38 3.7 1.74 MAPbIXCl3-X 0.89 16 0.74 10.5 1.61 MAPb(I0.8Br0.2)XCl3-X 0.99 14.9 0.68 10 1.70 MAPb(I0.6Br0.4)XCl3-X 1.06 11.5 0.62 7.6 1.83 High-Performance Planar-Heterojunction Solar Cells Based on Ternary Halide Large- Band-Gap Perovskites Cl BrI Best recipe Research purpose Part-II Solvent washing method SystemITO/PEDOT:PSS/Perovksites/PC61BM/Bis-C60/Ag 90 °C for 2–3 h
  • 8. 8  Create a fundamental fabricating process → Suitable recipe for fabrication → What is the main factor  Extend single component to ternary system → To find the best recipe → To know the role of every componets 40 wt% Precursor solution/DMF Spin-coating Solvent washing Research purpose Drying First part: Annealing time and temp. Second part: Ternary halide precursor
  • 9. 9 Central composite design methods(CCD) Mixture design methods 40 wt% Precursor solution/DMFMethodology DOE: design of experiment 1. Annealing time and temp. 2. Ternary halide precursor
  • 10. Factorial Points : Estimated main factor & interaction Axial Points : Estimated pure quadratic form Center Points : Estimated pure Error 10 → A tool to build a quadratic response surface for optimization → Resolves both main effects and interactions Central composite design (CCD) Part I
  • 11. Level Temperature (℃) Annealing time (mins) 𝟐 120 5.0 1 115 6.5 0 100 10.0 -1 85 13.5 - 𝟐 80 15.0 11 Run Temp. Time Temp. Time 1 -1 -1 85 13.5 2 -1 1 85 6.5 3 1 -1 115 13.5 4 1 1 115 6.5 5 0 0 100 10 6 0 0 100 10 7 0 0 100 10 8 0 - 𝟐 100 15 9 0 𝟐 100 5 10 - 𝟐 0 80 10 11 𝟐 0 120 10 Design matrix Reference: Michael Grätzel, Advanced Functional Materials, 24, 3250(2014) Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells 120℃ 5 mins 15 mins 8𝟎℃ 100℃ Fixed parameters Solution : 40 wt% CH3NH3PbI3 Speed: 5 k r.p.m., 30 sec, Drip: Chlorobenzene at 4~6 secs(200ul)
  • 12. 1 1 2 2 3 3 4 4 4 4 5 5 5 5 5.5 5.5 5.5 5.5 5.5 5.5 6 6 6 6 6 6 6.5 6.5 6.5 6.5 6.5 7 7 7 7 7.2 Temperatuer(degree) Annealingtime(mins) 85 100 115 6.5 10 13.5 -1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5 12 Parameter Coefficient Xtemp 1.16 Ytime -0.99 XtempXtemp -1.21 YtimeYtime -0.63 XtempYtime 0.99 Main factor: Interaction: Temp.-Time 90℃ 110℃ PCE=6.78+1.16*x-0.99*y-1.21*x2-0.63*y2+0.98.*x*y > Regression of PCE (%)
  • 13. -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -20 -15 -10 -5 0 CurrentDensity(mA/cm 2 ) Voltage(V) 90 o c, 12 mins 105 o c, 12 mins 110 o c, 12 mins 13 Temp. time Jsc Voc FF PCE(%) 90 12 11.37 0.93 0.59 6.18 105 12 14.40 0.93 0.63 8.48 110 12 11.98 0.93 0.62 6.93 PCE contour plot Main factor: > Interaction: Temp.-Time Verification of PCE contour plot
  • 14. 14 It is consistent with UV-vis spectra result. Verification by UV-Vis Temp. time Jsc Voc FF PCE(%) 90 12 11.37±𝟎. 𝟕𝟐 0.93±𝟎. 𝟎𝟎 0.59±𝟎. 𝟎𝟎6.18±𝟎. 𝟏𝟒 105 12 14.40±𝟏. 𝟔𝟔 0.93±𝟎. 𝟎𝟎 0.63±𝟎. 𝟎𝟎8.48±𝟎. 𝟒𝟒 110 12 11.98±0.34 0.93±𝟎. 𝟎𝟎 0.62±𝟎. 𝟎𝟎6.93±𝟏. 𝟎𝟒 400 500 600 700 800 0 1 2 3 Absorbance(a.u.) Wavelength(nm) 90oC,12mins 105oC,12mins 110oC,12mins -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -20 -15 -10 -5 0 CurrentDensity(mA/cm 2 ) Voltage(V) 90 o c, 12 mins 105 o c, 12 mins 110 o c, 12 mins
  • 15. 15 Temp. ↑ Crystal size↑ 500nm 𝟗𝟎℃, 12 mins 𝟏𝟏𝟎℃, 12 mins 𝟏𝟎𝟓℃, 5 mins 𝟏𝟎𝟓℃, 12 mins Main factor is temperature. Verification by SEM
  • 16. It’s effectively to find suitable parameters to fabricate perovskite device via CCD methods . The main factor affect the power conversion efficiency is temperature. 16 Summary Part I Drying Voc: 0.93 V Jsc:14.40 mA/cm2 FF:0.63 PCE:8.48 %
  • 17. Part II Using mixture design of experiments on ternary halide perovskite device to find best recipe 17
  • 18. PbI2 18 Cl- ITO PEDOT:PSS Perovskite PCBM Al Experimental section Br- I- Chloride, Bromide, Iodide Methylammonium(MA) Lead (Pb) Enhance morphology Enhance bandgap &stable phase +Fixed parameters Precursor solution : 40 wt% Speed: 5 k r.p.m., 30 sec, Drip: Chlorobenzene at 4~6 secs(200ul)
  • 19. 19  Model is fixed  Algebra equation  Time-consuming  Model reduction  SAS regression  Interaction effect  Save time 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 IBr Cl Binary Design (A) Ternary Design (B) Modified mixture design methods Reference: Scheffe (1958, 1963) introduced the simplex lattice designs and simplex-centroid designs.
  • 20. 20 Research methodology RegressionExperimental data Contour plot1. 2. 3. SAS 9.3 MATLAB R2013a 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 IBr Cl
  • 21. 0 20 40 60 80 Cl Br I Pb Atomic% Real Measured 0 20 40 60 80 Cl Br I Pb Atomic% Real Measured 0 20 40 60 80 Cl Br I Pb Atomic% Real Measured 21 The real mixing ratio is equal to the measured result. EDS analysis Cl:Br:I=0.67:0.17:0.17 Cl:Br:I=0.33:0.33:0.33 Cl:Br:I=0.00:0.00:1.00
  • 22. -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -15 -10 -5 0 0.00:0.00:1.00 0.00:1.00:0.00 1.00:0.00:0.00 0.00:0.75:0.25 0.17:0.67:0.17 CurrentDensity(mA/cm2) Bias (V) 22 J-V curve characteristic Part II ℃ rpm80 6000 MACl MABr MAI in DMF Spin-coating Ternary halide precursor Br I Cl Cl : Br : I
  • 23. 23 Jsc (mA/cm2) Voc (v) Bromide : Enhance Voc Cl Br I Cl Br I Jsc: Chloride & Iodide interaction Mixture Design contour plot
  • 24. 0.55 0.55 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.68 0.68 0.68 0.68 0.7 0.7 0.7 0.7 0.7 0.75 0.75 0.75 0.8 0.8 0.85 0.85 0.9 0.9 0 0.25 0.5 0.75 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 24 FF Cl Br I Chloride : Enhance FF Cl I 5 5 6 6 7 7 8 8 8 9 9 9 9 9 10 10 10 10 10 1111 11 11 12 12 12 12.5 12.5 12.7 0 0.25 0.5 0.75 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 Jsc (mA/cm2) Cl Mixture Design contour plot Jsc: Chloride & Iodide interaction
  • 25. -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -15 -10 -5 0 Currentdensity(mA/cm2) Voltage (V) 0.30: 0.15 : 0.55 0.30: 0.35 : 0.35 Cl : Br : I 0.30: 0.55 : 0.15 1 2 3 3 4 4 5 5 5 5 6 6 6 6 6 6.5 6.5 6.5 6.5 6.5 7 7 7 7.2 7.2 0 0.25 0.5 0.75 0 0.25 0.5 0.75 1 I 0 0.25 0.5 0.75 1 25 PCE Contour plot run Cl Br I Voc Jsc FF PCE 0.30 0.55 0.15 0.97 9.94 0.70 6.77 0.30 0.35 0.35 0.92 14.07 0.73 9.47 0.30 0.15 0.55 0.75 12.67 0.68 6.52 Cl IBr Verification by J-V curve
  • 26. 26 7 8 10 9 11 12 12.5 12.7 12 11 10 8 11 10 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 Cl Br I 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 6 7 8 9 10 11 12 1 0.98 0.94 0.9 0.85 0.8 0.75 0.85 0.8 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 Cl Br I 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.7 0.75 0.8 0.85 0.9 0.95 1 0.6 0.65 0.68 0.7 0.75 0.8 0.850.9 0.55 0.7 0.7 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 Cl Br I 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.6 0.6 0.65 0.65 0.68 0.68 0.7 0.75 0.8 0.85 0.9 0.75 0.7 0.55 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 IBr Cl 5 6 6.5 7 7.2 7.2 7 6.5 6 5 6 6.5 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 JscVoc FF PCE Bromide → Enhance Voc Chloride → Enhance FF Cl BrI Best recipe Role of halides
  • 27. 400 500 600 700 800 0.0 0.2 0.4 0.6 0.8 1.0 Normalizedabsorbance(a.u.) Wavelength(nm) Cl Br I 0.30:0.15:0.35 0.30:0.35:0.35 0.30:0.55:0.15 400 500 600 700 800 0.0 0.2 0.4 0.6 0.8 1.0 Normalizedabsorbance(a.u.) Wavelength(nm) Cl Br I 1.00 0.00 0.00 0.00:1.00:0.00 0.00:0.00:1.00 27 Single component Ternary component Onset value Cl:800 nm Br:700 nm I:800 nm Bromide enhance Jsc ? Verification by UV-Vis spectra Bromide → Enhance bandgap → Enhance Voc
  • 28. 28 0 0.5 0.50.5 0 0.5 MACl MABr MAIMACl MABr MAI 0.17 0.67 0.170 0 1 More bromide, more pin holes 10𝜇m Verification by SEM Voc↑ FF↓Br
  • 29. 29 Cl Br I 0.30 0.55 0.15 Cl Br I 0.30 0.35 0.35 run Cl Br I Voc Jsc FF PCE 0.30 0.55 0.15 0.97 9.94 0.70 6.77 0.30 0.35 0.35 0.92 14.07 0.73 9.47 0.30 0.15 0.55 0.75 12.67 0.68 6.52 Cl Br I 0.30 0.15 0.55 500nm Verification by SEM
  • 30. 10 15 20 25 30 35 40 45 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Pure MAI Pure MABr Pure MACl 2Theta (degree) Intensity(a.u.) 10 20 30 40 50 0.30: 0.15 : 0.55 0.30: 0.35 : 0.35 Intensity(a.u.) 2Theta (degree) Cl : Br : I 0.30: 0.55 : 0.15 30 (110) (220) 14.1° 28.4° * • Diffraction peak: MAPbI3 : 14.1°, 28.4°, 43.3° MAPbCl3 : 15.88° MACl: 17.6°, 35.3° MABr: 20.2°, 30.3° PbI2 : 12.67°, 25.34°, 38.01° Verification by XRD MAClMABr PbI2 ♦ ♦ ♦
  • 31. 10 20 30 40 50 0.30: 0.15 : 0.55 0.30: 0.35 : 0.35 Intensity(a.u.) 2Theta (degree) Cl : Br : I 0.30: 0.55 : 0.15 31 (110) (220) 14.1° 28.4° * • Diffraction peak: MAPbI3 : 14.1°, 28.4°, 43.3° MAPbCl3 : 15.88° MACl: 17.6°, 35.3° MABr: 20.2°, 30.3° PbI2 : 12.67°, 25.34°, 38.01° Verification by XRD Reference: Yang Yang et.al Science,345, 6196 (2014) MAClMABr PbI2 ♦ ♦ ♦
  • 32. -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1E-5 1E-4 1E-3 0.01 0.1 1 10 CurrentDensity(mA/cm2) Voltage(V) 32 Cl : Br : I=0.30 : 0.35 : 0.35 Rs=78.23 Ω/cm2 Rp=358.51 kΩ/cm2 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -20 -15 -10 -5 0 P:100mW/cm 2 Voc:0.92 V Jsc:14.07 mA/cm 2 FF:0.73 PCE:9.47% Dark Light CurrentDensity(mA/cm2) Voltage(V) Best recipe Fixed parameters Solution : 40 wt% (MACl+MABr+MAI)+PbI2 Speed: 5 k r.p.m., 30 sec, Drip: Chlorobenzene at 4~6 secs(200ul)
  • 33. 33 It has been known the role of halide in ternary perovskite solar cells via design of experiment. It is obtained the best recipe with proper mixing ratio via design of experiment. Summary Part II Ternary halide precursor Voc: 0.92 V Jsc:14.07 mA/cm2 FF:0.73 PCE:9.47 % Cl : Br : I=0.30 : 0.35 : 0.35
  • 34. • It is successfully to employ CCD and mixture design methods to find optimized recipe on ternary perovskite solar cells. 34 Know situation Design of experiment Optimized process Conclusion Voc: 0.93 V Jsc:14.40 mA/cm2 FF:0.63 PCE:8.48 % Voc: 0.92 V Jsc:14.07 mA/cm2 FF:0.73 PCE:9.47 %
  • 35. Thank you for your listening. 35

Notas do Editor

  1. 各位老師早安,歡迎來參加我的碩士班口試,今天我要分享我碩班兩年來的研究,題目是:利用實驗設計法進行氯、溴、碘三成分混合型之鈣鈦礦太陽能電池製程最佳化,我是今天的報告者-龔俊豪。
  2. 這是我今天的報告大綱,首先做個太陽能電池簡介與研究動機 接著分成兩個部份來探討我的研究成果 第一部分為利用中心組成設計法,最佳化製成參數 第二部分為利用混合實驗設計法,應用在三成份的鈣鈦礦電池上,最後在做一個總結
  3. 首先簡單的介紹太陽能電池的工作原理 太陽光照射到光吸光材料產生了激發子 激發子分離成電子電洞對後移動至材料界面 之後電荷在介面上產生了分離 連接到外部電路將電荷萃取產生電流 所以構成了一個太陽能電池的運作迴路 我以perovskite作為吸光材料來做為探討 雖然這材料最受挑戰的就是,在大氣下很不穩定 但因為材料具有高吸光係數、低束縛能,以及電荷的生存時間場的競爭優勢 所以我用以作為太陽能的電池吸光材料 分子式主要符合AMX3都稱之Perovksite 通常在陽離子Cation的部分,可以被MA、FA來取代 而中心金屬Matal的部分,則可以Sn來取代Pb 最後在鹵素的部分,則是可以以週期表上第17族Cl、Br、I來置換 而我的研究主要是著重在halide的部分
  4. 而在研究上,我選擇了平面異質結構來作探討 而PHJ結構又分為兩類 一種是用蒸鍍的方法,由成大郭老師在2013率先提出將Perovksite應用在這結構上 而另一種是solution process,最先提出的是南洋理工大學的孫教授團隊 因為旋轉塗佈法相對較為簡便 因此我選擇以全溶液製程法來製備我的元件
  5. 我的製程方法參考了韓國化工科技研究院Seok提出的solvent washing製程方法 首先,我將配好的percursor溶液在旋塗的過程中 在4~6秒間,以氯苯wash表面 接著再經過加熱形成perovsktie膜 最後我在覆蓋上PCBM作為電子萃取層 最後所形成的結構如圖 而除了最後的Al蒸鍍外,全部都是溶液製程 而這是最後所形成的能階圖,電洞跟電子分別從ITO與Al電極導出來
  6. 第一部分的研究的動機, 來自於2014年Gratzel團隊曾探討過溫度的效應對於元件特性的影響, 但因為加熱溫度及時間兩者彼此具有交互作用影響 因此從這邊我認為勢必可以找一個最適的製程配方 Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells Amalie Dualeh , Nicolas Tétreault , Thomas Moehl , Peng Gao ,Mohammad Khaja Nazeeruddin , * and Michael Grätzel * PbCl2 and CH3NH3I were dissolved in dimethylformamide in a 1:3 molar ratio. This solution was deposited on the mTiO 2 by spin-coating at 2000 rpm for 30 s and then heat treated at different temperatures as described in the manuscript.
  7. 而第二部分則是將單成份的鈣鈦礦,延伸為混合型系統 三成份這個概念,最早是由Alex團隊在2014年,最早率先發表在AEM期刊上 但他們只提出了兩個混合比例的變化,研究著重在藉由三成份的摻雜方式來調整bandgap大小 因此,我認為是否可以以一個有效率的方式找到三成分最佳的混合比例 然後讓三成份各自發揮最大的功能,進而達到高效率的鈣鈦礦太陽能電池
  8. 因此我的整個研究方向為 一是: 建立一個最robust的製程方法,同時了解主要影響效率的製程關鍵,以及找出適當的製程配方。 二是: 將單成份延伸為三成份,找到最佳的混合比例,同時藉由統計分析,了解氯、溴、碘個別的角色
  9. 因此我利用了兩種方法來達成上述的目標 中心組成設計法以及混合實驗設計法 兩者都簡稱為design of experiment 能有效、準確以及能全因素的探討各個因子的影響 所以我將這兩種方法應用在我的研究上
  10. 首先,為什麼要用CCD方法? 第一:藉由CCD方法,可以回歸,建立出二次反應區面,而這個Response surface 幫助我們用來找尋最佳製程 而且可以同時了解主效應以及因子間交互作用的影響 而設計的方法為如圖 在一個邊長為1的正方形四個頂點用來估計主效應以及交互作用 接著以4個軸點用來計算純二次式 最後重複幾次中心點用來估計誤差值 也就是最後可以藉由一條二次的方程式,繪出一個二次曲線圖
  11. 因此我參考了上述了文獻 設計了一個實驗矩陣 以中心點加熱溫度100℃10分鐘做為零階 接著軸點上的溫度變化從80到120度,加熱時間從5到15分鐘 以這個實驗設計矩陣去做實驗 Michael Grätzel, Advanced Functional Materials Volume 24, pages 3250–3258 (2014)
  12. 藉由上述的數據,帶入迴歸可以得到這張二次回歸曲線圖 從圖上很明顯地可以看到有一個最佳的效率範圍,大約落在90~110度區間, 為了瞭解究竟溫度與時間對於目標值效率的影響 可以從迴歸後得到二次方程式的係數來分析數值 數值的大小以及正負代表對於目標值的貢獻程度 從這個表上來看, 溫度的主效應系數大於時間 也意味著溫度對於效率的影響程度較大 同時溫度與時間的交互作用對於目標值屬於正回饋的貢獻 在此也就意味著溫度與時間的兩者效應,對於效率彼此會有交互作用 所以,從這個統計上的意義,可以得到一個推論 溫度的影響因子比加熱時間還來的重要 同時,兩者具有交互作用 z=6.78+(1.16.*x)-(0.99.*y)-(1.21.*(x.^2))-(0.63.*(y.^2))+(0.98.*x.*y);
  13. 接下來,為了確認我所做出來的二階回歸曲線圖是有意義的 我取了三個不同的條件來做為確認點 然而從剛剛的統計意義來看 主要的影響因子是溫度,於是我固定了加熱時間調變不同的加熱溫度 由表格中的數據我們可以看到,效率的差異主要來自於電流密度的不同,最佳的效率為8.48% 從J-V curve圖上可以更清楚的看到,三個不同的製程條件, 主要的差異來自於電流密度 而造成電流的差異與吸收、傳遞、萃取有關
  14. 而在這邊,我以UV-Vis吸光圖譜作為佐證 在相同的膜厚條件下 可以看到綠色的J-V curve曲線,對應到的吸光程度也是較大的 而且三者的吸收on-set相同,也代表Voc相同 因此由這吸收圖譜的結果,發現到與實驗的數據匹配
  15. 然而除了透過統計上的意義來了解溫度為主效應外 我們也可以由觀察SEM圖譜來了解表面型態 分別考慮兩種情況,首先是加熱時間相同,但溫度不同的條件比較 在加熱時間相同下可以發現到,低溫加熱,結晶顆粒多但小,而溫度較高的情況下,結晶大顆 從文獻上已知,若是結晶顆粒多,會產生較多的grain boundary對於電荷的移動是一種阻礙;而另一種比較是,固定相同加熱溫度,在不同加熱時間下,可以發現對於結晶的顆粒大小並沒有明顯的差異,幾乎是一致的表面型態 因此可以從SEM的分析,間接佐證溫度的影響性比加熱時間還來的大
  16. 第一部份的結論: 利用CCD中心組成設計法,可以有效率且準確地找到最佳的製程配方 而且,也可以藉由這方法了解影響目標值的主要因子
  17. 接著,進入第二部份的研究 將混合物實驗設計法應用在三成份的鈣鈦礦元件上
  18. 在先前的鈣鈦礦材料有介紹到,基本結構為AMX3 而我的研究主要是著重在鹵素的混合 將單成份的halide延伸為三成份Methylammoium chloride, bromide, iodide 的混合作為precursor溶液 但因為三成份的系統較一般純系統複雜,因此必須透過有系統的分析方法來輔助
  19. 而為了能有效率的分析複雜的三成份系統,在此我使用了改良式的混合實驗設計法 這方法是結合了Design A與Design B的特性 Design A主要是探討兩成分效應 而Design B為了解三成份的效應 因為這兩個Model都是固定的,10個數據點10項,無法回歸,必須解代數方程式 所以實驗室提出了改良式混合實驗設計法 結合了Design A 與Design B與特性 變成16個數據點,而係數只有13項 因此可以藉由回歸的方式來獲得較準確的Model 同時藉由統計分析,也可以了解三成分混合系統的交互作用 Scheffe分別提出錐體配置設計(simplex lattice design,design A)及錐體中心點設計(simplex-centroid design,design B)兩種各十點實驗配置的方法。 數據點要多於項數,才得以回歸
  20. 而研究的步驟可大略分為三步 第一步是取得三角圖上16個不同混合比例的元件數據 接下來再利用SAS軟體回歸這些數據並得到回歸方程式 再把回歸式利用繪圖軟體MATLAB畫成三角等高線圖以利分析與觀察。
  21. 然而進行實驗前,為了瞭解是否真的有三種成分 於是用EDS元素分析法,來了解薄膜的元素組成 我任意的挑出了三個不同比例來分析 由結果發現理論含量與實際一樣,因此可以繼續進行實驗 Energy Dispersive Spectrometer analysis (EDS) ITO/PEDOT/40 wt% MAPbI3 thickness 334.2±2.02 nm
  22. 透過了實驗矩陣,得到了16點數據,但因為三成份的系統不易判讀 所以先挑出了五個代表點,比較其J-V 曲線 綠、藍、粉紅分別代表Cl、Br、I個別的單成分系統 黑色與紅色,分別代表了兩成分與三成份系統 從這J-V圖上來看,明顯地看出不同的混合比例會有不同的特性結果 所以,我們將16點的實驗矩陣厚度控制在相近的範圍內進行比較 接著將數據帶入迴歸
  23. 首先,先比較電流密度跟開路電壓的三角圖 可以發現到這兩者的趨勢有明顯的差異 電流的最佳值落在三者交互作用下的中間範圍值 而Voc則是可以發現到溴的含量越多,越能提升Voc 因此很明顯的可以從中判斷出影響Voc的主要影響因素為溴的含量 然而在這裡對於氯跟碘的角色還不是很明顯
  24. 接著,再將FF值與電流的三角圖做比較 這兩者的曲線圖雖然不太一樣,但是趨勢相近 一個較佳的FF值,傾向於氯與碘的混合 然而,當溴的含量提升,在這邊反而會使得成膜性不佳 但究竟氯跟碘是各自發揮了什麼作用? 因為文獻上指出反應完後,氯會與甲胺反應形成氣體揮發 在這邊我推測,氯所扮演的功能,主要是使鈣鈦礦的結晶性更好 而主要影響電流密度的因素,就是由碘的含量來決定 FF: z=0.69926.*A+0.70136.*B+0.70522.*C-0.26447.*A.*B+0.35521.*A.*B.*(A-B)-3.91589.*A.*B.*B.*C+4.90098.*A.*B.*C.*C; PCE: z=5.57799.*A +4.53861.*B+6.53751.*C -5.83005.*A.*B +64.07944.*A.*B.*C+11.75880.*B.*C.*(B-C); Radj2=0.963
  25. 接下來我取了三個確認點來確認效率的三角圖是否具有意義 首先我把氯的比例視為定值0.30,碘與溴的混合比例加起來為0.7 因此可以得到如表格所示的混合比例 從數據上可以看到,隨著溴的比例增高,Voc的確跟著增加 然而,碘的含量提升,卻並未使電流密度有跟著一致上升,反而是產生了一最大值 而效率,再三者特性的加乘效應下,在混合比例為0.3:0.35:0.35可得到一個最佳的效率值為9.47% 而這些效率值,也正好落在我所迴歸出來三角圖,證明其是具有意義的 接著,再從J-V curve上也可以明顯地看到這三個條件的特性有所不同 因此除了統計上的結果外,後續我也做了儀器分析來近一步的佐證
  26. 還記得一開始研究的目的是要最佳化三成份的混合比例 但同時也可以透過上述的統計迴歸來了解三成份所扮演的角色! 從上述的兩張投影片,我歸納出三成分各自的角色 首先,較高的溴含量,可以提高Voc 而氯與碘的混合可以提升morphology 其中,碘扮演吸收光提升電流 而氯,則扮演提升提結晶性的功能
  27. 首先從吸收光譜來佐證三成份中溴的角色 先從單成份的Cl、Br、I效應比較,從圖上可以看到Cl與I的onset值相近 若是有摻雜了Br很明顯地產生了藍移現象 然而在不同的摻雜比例下對於吸收的強度與onset值也有不同效應 這是溴含量較低的兩個條件 可以看到若提升Br的比例,在500~700nm之間的吸收強度有明顯地被enhance 同時吸收的on-set也有產生了藍移現象,所以與我們先前歸納出溴可以發揮提升Voc的功能是一致的 但是,在這邊卻也發現到,溴的含量提升會增加吸收度 與我推論碘扮演提升電流的功能有點背離 因此我再透過SEM來分析薄膜的表面型態
  28. 從SEM圖來看 首先,這兩張圖是沒有混摻溴的表面型態,表面非常的平整 接著混摻溴,表面明顯地產生了許多孔洞 而且晶界也比溴含量低的條件還多 晶界越多代表電荷的傳遞障礙也越多,使得電荷不易移動至表面 因此,即使從剛剛的UV吸光圖,發現溴含量增加也會提升吸光度 但是因為grand boundary增加,反而不易導出電流
  29. 接著比較三個確認點的SEM圖,也可以發現到相同的結果 溴含量多的條件,明顯的grand boundary較多 反觀,其他兩者條件的圖譜 表面型態就顯得比較緊緻
  30. 最後從XRD來了解結晶性 首先先比較氯、溴、碘純系統的峰值 其中14.1° : (110) plane及28.4° : (220) plane代表的是Perovksite的結晶面 從XRD的圖譜來看,以純氯的系統結晶性最佳 接著比較三個確認點的Peak,在這邊比較的是XRD的Shape型態 首先圈出Perovksite結晶波峰 可以發現到,在比例為0.3:0.55:0.15的條件下多了一根15°的Peak 根據與文獻上的比對 這根峰值可能為尚未形成的peroskvie的MAPbCl3的晶面 在這個的情況下對於結晶是不利的,會使得元件特性下降 而且比例為0.3:0.15:0.55的噪訊比0.30:0.35:0.35還來的大 所以藉由迴歸所預期的結果是與實驗吻合的 在0.30:0.35:0.35會有一個最佳的混合比例
  31. 最後從XRD來了解結晶性 首先先比較氯、溴、碘純系統的峰值 其中14.1° : (110) plane及28.4° : (220) plane代表的是Perovksite的結晶面 從XRD的圖譜來看,以純氯的系統結晶性最佳 接著比較三個確認點的Peak,在這邊比較的是XRD的Shape型態 首先圈出Perovksite結晶波峰 可以發現到,在比例為0.3:0.55:0.15的條件下多了一根15°的Peak 根據與文獻上的比對 這根峰值可能為尚未形成的peroskvie的MAPbCl3的晶面 在這個的情況下對於結晶是不利的,會使得元件特性下降 而且比例為0.3:0.15:0.55的噪訊比0.30:0.35:0.35還來的大 所以藉由迴歸所預期的結果是與實驗吻合的 在0.30:0.35:0.35會有一個最佳的混合比例
  32. 透過上述的實驗分析結果 由混合實驗設計法可以找到最佳的混合比例 效率為9.47%,其中他的串聯與並聯電阻為78.23Ω/cm2與Rp=358.51 kΩ/cm2
  33. 最後,第二部分的結論 可以透過實驗設計法,從統計上的意義來了解三成份的角色 同時也可以找到最佳的混合比例
  34. 總結來說: 本研究應用中心組成設計法以及混合物實驗設計法 結合統計迴歸分析及儀器分析方法成功地解釋了氯、溴、碘三成份系統的複雜交互作用