SlideShare uma empresa Scribd logo
1 de 55
1
Chapter 29 Waves and Particles:
29.1 Planck’s Quantum Theory
29.2 The Photoelectric Effect
2
29 .1 Planck’s Quantum Theory
SUBTOPIC :
LEARNING OUTCOMES :
a) Distinguish between Planck’s quantum
theory and classical theory of energy.
b) Use Einstein’s formulae for
a photon energy, .
At the end of this lesson, the students should
be able to :
hc
E hf
3
24.1 Planck’s Quantum Theory
• The foundation of the Planck’s quantum theory is a
theory of black body radiation.
• Black body is defined as an ideal system or object
that absorbs and emits all the em radiations that is
incident on it.
• The electromagnetic radiation emitted
by the black body is called black body
radiation.
black body
• In an ideal black body, incident light is
completely absorbed.
• Light that enters the cavity through the
small hole is reflected multiple times
from the interior walls until it is
completely absorbed.
4
Experimental
result
Rayleigh -
Jeans theory
Wien’s theory
Classical
physics
• The spectrum of electromagnetic radiation emitted
by the black body (experimental result) is shown in
figure 1.
Figure 1 : Black Body Spectrum
5
• Rayleigh-Jeans and Wien’s theories (classical
physics) failed to explain the shape of the black
body spectrum or the spectrum of light emitted by
hot objects.
• Classical physics predicts a black body radiation
curve that rises without limit as the f increases.
• The classical ideas are :
 Energy of the e.m. radiation does not
depend on its frequency or wavelength.
 Energy of the e.m. radiation is
continuously.
6
• In 1900, Max Planck proposed his theory that is
fit with the experimental curve in figure 1 at all
wavelengths known as Planck’s quantum
theory.
• The assumptions made by Planck in his theory
are :
 The e.m. radiation emitted by the black body
is a discrete (separate) packets of energy
known as quanta. This means the energy of
e.m. radiation is quantised.
 The energy size of the radiation depends
on its frequency.
7
Comparison between Planck’ quantum theory and classical theory of energy.
Planck’s Quantum
Theory
Classical theory
Energy of the e.m radiation is
quantised. (discrete)
Energy of the e.m radiation is
continously.
Energy of e.m radiation
depends on its frequency or
wavelength
Energy of e.m radiation does
not depend on its frequency
or wavelength (depends on
Intensity)
Photon
2
AIhfE
TkE Bclassical
etemperatur
constantsBoltzman'
T
kB
8
• According to this assumptions, the quantum E of
the energy for radiation of frequency f is given
by
hfE
where constantPlanck:h J s10636 34
.
Planck’s quantum
theory
fc
hc
E
9
Photons
• In 1905, Albert Einstein proposed that light comes in
bundle of energy (light is transmitted as tiny
particles), called photons.
• Photon is defined as a particle with zero mass
consisting of a quantum of electromagnetic
radiation where its energy is concentrated.
Quantum means “fixed amount”
10
• Photons travel at the speed of light in a vacuum.
• Photons are required to explain the photoelectric
effect and other phenomena that require light to
have particle property.
• In equation form, photon energy (energy of photon)
is c
hhfE
• Unit of photon energy is J or eV.
• The electronvolt (eV) is a unit of energy that can
be defined as the kinetic energy gained by an
electron in being accelerated by a potential
difference (voltage) of 1 volt.
• Unit conversion : J10601eV1 19
.
11
Example 24.1
Calculate the energy of a photon of blue light,
.nm450
(Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s
1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
12
Example 24.2
A photon have an energy of 3.2 eV. Calculate
the frequency, vacuum wavelength and energy
in joule of the photon.
(7.72 x 1014 Hz ,389 nm, 5.12 x10-19 J)
(Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s
1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
13
29 .2 The Photoelectric Effect
SUBTOPIC :
LEARNING OUTCOMES :
At the end of this lesson, the students should
be able to :
a) Explain the phenomenon of photoelectric effect.
b) Define and determine threshold frequency, work
function and stopping potential.
c) Describe and sketch diagram of the photoelectric
effect experimental set-up.
d) Explain the failure of wave theory to justify the
photoelectric effect.
14
LEARNING OUTCOMES :
At the end of this lesson, the students should be able to :
e) Explain by using graph and equations the
observations of photoelectric effect experiment in
terms of the dependence of :
i ) kinetic energy of photoelectron on the frequency
of light;
½ mvmax
2 = eVs = hf – hfo
ii ) photoelectric current on intensity of incident light;
iii) work function and threshold frequency on the
types of metal surface; Wo =hfo
f) Use Einstein’s photoelectric effect equation,
Kmax = eVs = hf – Wo
The Photoelectric Effect
15
24 .2 The photoelectric effect
• The photoelectric effect is the emission of electrons
from the metal surface when electromagnetic
radiation of enough frequency falls/strikes/
incidents /shines on it.
• A photoelectron is an electron ejected due to
photoelectric effect (an electron emitted from
the surface of the metal when light strikes its surface).
-em radiation
(light)
photoelectron
- - - - - - - - - -
Metal surface
Free electrons
-
16
• The photoelectric effect can be measured using a
device like that pictured in figure below.
9.2 The photoelectric effect
Anode(collector)
Cathode (emitter
or target metal)
photoelectron
glass
-
-
-
rheostat
power supply
e.m. radiation (incoming light)
vacuum A
V
The photoelectric effect’s experiment
A
17
9.2 The photoelectric effect
• A negative electrode (cathode or target metal or
emitter) and a positive electrode (anode or
collector) are placed inside an evacuated glass
tube.
• The monochromatic light (UV- incoming light) of
known frequency is incident on the target metal.
• The incoming light ejects photoelectrons from a
target metal.
• The photoelectrons are then attracted to the
collector.
• The result is a photoelectric current flows in
the circuit that can be measured with an ammeter.
18
• When the positive voltage (potential difference)
is increased, more photoelectrons reach the
collector , hence the photoelectric current also
increases.
• As positive voltage becomes sufficiently large, the
photoelectric current reaches a maximum
constant value Im, called saturation current.
9.1 The photoelectric effect
Saturation current is defined as the maximum
constant value of photocurrent in which when
all the photoelectrons have reached the
anode.
19
9.2 The photoelectric effect
• When the voltage is made negative by reversing
the power supply terminal as shown in figure
below, the photoelectric current decreases since
most photoelectrons are repelled by the collector
which is now negative electric potential.
Anode(collector)
Cathode (emitter
or target metal)
photoelectron
glass
-
-
-
rheostat
power supply
e.m. radiation (incoming light)
vacuum A
V
B
Reversing power
supply terminal
(to determine the
stopping potential)
20
• If this reverse voltage is small enough, the fastest
electrons will still reach the collector and there will
be the photoelectric current in the circuit.
• If the reverse voltage is increased, a point is
reached where the photoelectric current reaches
zero – no photoelectrons have sufficient kinetic
energy to reach the collector.
• This reverse voltage is called the stopping
potential , Vs.
Vs is defined as the minimum reverse potential (voltage)
needed for electrons from reaching the collector.
• By using conservation of energy :
(loss of KE of photoelectron = gain in PE) ;
K.Emax = eVs 2
s mv
2
1
eV
21
According to Einstein’s theory, an electron is
ejected/emitted from the target metal by a
collision with a single photon.
In this process, all the photon energy is
transferred to the electron on the surface of metal
target.
Since electrons are held in the metal by attractive
forces, some minimum energy,Wo (work function,
which is on the order of a few electron volts for
most metal) is required just enough to get an
electron out through the surface.
Einstein’s theory of Photoelectric Effect
22
If the frequency f of the incoming light is so low
that is hf < Wo , then the photon will not have
enough energy to eject any electron at all.
If hf > Wo , then electron will be ejected and
energy will be conserved (the excess energy
appears as kinetic energy of the ejected electron).
This is summed up by Einstein’s photoelectric
equation ,
Einstein’s theory of Photoelectric Effect
2
max0
2
1
mvWhf
max.EKWE o
2
s mv
2
1
eV
seVWhf 0
but
23
= photon energy
2
maxmax
2
1
. mvEK
Einstein’s theory of Photoelectric Effect
= maximum kinetic energy of
ejected electron.
f = frequency of em radiation /incoming light
vmax = maximum speed of the photoelectron
Einstein’s
photoelectric
equation
c
hhfE
2
max0
2
1
mvWhf
max.EKWE o
24
fo = threshold frequency.
= minimum frequency of e.m. radiation
required to eject an electron from the
surface of the metal.
o
Wo = the work function of a metal.
= the minimum energy required (needed) to
eject an electron from the surface of
target metal.
Einstein’s theory of Photoelectric Effect
= threshold wavelength.
= maximum wavelength of e.m. radiation
required to eject an electron from the
surface of the target metal.
o
o
c
f
max.EKWE o
2
max0
2
1
mvWhf
o
oo
hc
hfW
25
-hf
vmax
-Metal
W0
-
hf
v=0
-Metal
W0
hf
-Metal
W0
oWhf2
max0
2
1
mvWhf
hf < Wo
hf > Wo
Electron is
emitted
Electron is
ejected.
No electron is ejected.
Einstein’s theory of Photoelectric Effect
26
Example 24 .3
The work function for a silver surface is Wo = 4.74 eV.
Calculate the
a) minimum frequency that light must have to eject
electrons from the surface.
b) maximum wavelength that light must have to eject
electrons from the surface.
nmb)
Hz1.14x10
a)
15
263o
o
oo
f
hfW
(Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s
1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
27
Example 24.4
What is the maximum kinetic energy of electrons
ejected from calcium by 420 nm violet light, given
the work function for calcium metal is 2.71 eV?
K.Emax = E – Wo
(Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s
1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
28
Example 24.5
Sodium has a work function of 2.30 eV. Calculate
a. its threshold frequency,
b. the maximum speed of the photoelectrons
produced when the sodium is illuminated by
light of wavelength 500 nm,
c. the stopping potential with light of this
wavelength.
00 hfWa.
(Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s
1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
Solution 24.5
29
Solution 24.5
b. 2
0
2
1
mvW
hc
2
2
1
mveVs
c.
(Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s
1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
30
In an experiment of photoelectric effect, no current
flows through the circuit when the voltage across
the anode and cathode is -1.70 V. Calculate
a. the work function, and
b. the threshold wavelength of the metal (cathode)
if it is illuminated by ultraviolet radiation of
frequency 1.70 x 1015 Hz.
(Given : c = 3.00 x 108 m s-1,
h = 6.63 x 10-34 J s , 1 eV=1.60 x 10-19 J,
me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
Example 24.6
31
Solution 24.6
JWa 19
0 1055.8)
mb 7
0 1033.2)
32
Example 24.7
The energy of a photon from an electromagnetic
wave is 2.25 eV
a. Calculate its wavelength.
b. If this electromagnetic wave shines on a
metal, photoelectrons are emitted with a
maximum kinetic energy of 1.10 eV. Calculate the
work function of this metal in joules.
(Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s ,
1 eV=1.60 x 10-19 J, mass of electron m = 9.11 x
10-31 kg, e = 1.60 x 10-19 C)
33
Solution 24.7
Ans. : 553 nm, 1.84 x 10-19 J
34
Graphs in Photoelectric Effect
Generally, Einstein’s photoelectric equation;
max.EKWE o
cmxy
WhfEK
WEEK
o
o
max
max
.
.
f ↑ K.Emax ↑
K.Emax
f
of
oW
0
35
Graphs in Photoelectric Effect
f,frequency
sV,voltageStopping
e
W0
0
cmxy
e
W
f
e
h
V
WhfeV
WhfEK
o
s
os
omax.
f ↑ Vs ↑
of
36
Graphs in Photoelectric Effect
Variation of stopping voltage Vs with frequency f of
the radiation for different metals but the intensity
is fixed.
f,frequency
sV,voltageStopping
0
01f
W01
02f
W02
cmxy
e
W
f
e
h
V
WhfeV
WhfEK
o
s
os
omax.
00 fW
W02 > W01
f02 > f01
37
Graphs in Photoelectric Effect
Intensity 2x
Intensity 1x
I,currentricPhotoelect
V,Voltage
0
Variation of photoelectric current I with voltage V for
the radiation of different intensities but its
frequency and metal are fixed.
Vs
38
Notes:
Classical physics
Light intensity ,
areatime
energy
I
Quantum physics
Light intensity ,
areatime
photonsofnumber
I
photonsofnumberintensityLight
Light intensity ↑ ,
number of photons ↑ ,
number of electrons ↑ ,
current ↑ .
(If light intensity ↑, photoelectric current ↑).
39
Graphs in Photoelectric Effect
Variation of photoelectric current I with voltage V
for the radiation of different frequencies but its
intensity and metal are fixed.
f2
mI
1sV
I,currentricPhotoelect
V,Voltage0
f1
f2 > f1
2sV
e
W
f
e
h
V
WhfeV
WhfEK
o
s
os
omax.
f ↑ Vs ↑
Vs2 > Vs1
40
Graphs in Photoelectric Effect
Variation of photoelectric current I with voltage V
for the different metals but the intensity and
frequency of the radiation are fixed.
W01
1sV
mI
I,currentricPhotoelect
V,Voltage02sV
W02
W02 > W01
e
W
f
e
h
V
WhfeV
WhfEK
o
s
os
omax.
so VW ,
Vs1 > Vs2
41
Example 24.8
K.Emax (x 10-19 J)
f(x 1014 )Hz
8.4
0
Use the graph above to find the value of
i) work function and
ii) the threshold wavelength.
42
Solution 24.8
K.Emax (x 10-19 J)
f(x 1014 )Hz
8.4
0
cmxy
WhfEK
WEEK
o
o
max
max
.
.
m10x6.25
h,wavelengtThreshold
10x3.18
x104.8
whengraphtheFrom
7-
19-
14
o
o
ooo
f
c
J
HzfhfW
EK ,0. max
43
OBSERVATIONS
of the photoelectric effects experiment
1.Electrons are emitted immediately
2.Stopping potential does not depend on the
intensity of light.
3.Threshold frequency of light is different for
different target metal.
4.Number of electrons emitted of the
photoelectron current depend on the intensity of
light.
44
EXPLAIN the failure of classical theory to justify the
photoelectric effect.
Clasiccal prediction Experimental
Result
Modern Theory
The higher the
intensity, the
greater the energy
imparted to the
metal surface for
emission of
photoelectrons.
•The higher the
intensity of light the
greater the kinetic
energy maximum
of photoelectrons.
Very low intensity
but high
frequency
radiation could
emit
photoelectrons.
The maximum
kinetic energy of
photoelectrons is
independent of
light intensity.
Based on Einstein’s
photoelectric equation:
The maximum kinetic
energy of photoelectron
depends only on the
light frequency .
The maximum kinetic
energy of
photoelectrons DOES
NOT depend on light
intensity.
0WhfKmax
1. MAXIMUM KINETIC ENERGY OF PHOTOELECTRON
45
Clasiccal
prediction
Experimental
Result
Modern Theory
Emission of
photoelectro
ns occur for
all
frequencies
of light.
Energy of
light is
independent
of
frequency.
Emission of
photoelectrons
occur only
when
frequency of
the light
exceeds the
certain
frequency
which value is
characteristic
of the material
being
illuminated.
When the light frequency is
greater than threshold
frequency, a higher rate of
photons striking the metal
surface results in a higher
rate of photoelectrons
emitted. If it is less than
threshold frequency no
photoelectrons are
emitted. Hence the
emission of photoelectrons
depend on the light
frequency.
2. EMISSION OF PHOTOELECTRON ( energy )
46
Clasiccal prediction Experimental
Result
Modern Theory
Light energy is spread
over the wavefront, the
amount of energy
incident on any one
electron is small. An
electron must gather
sufficient energy before
emission, hence there is
time interval between
absorption of light
energy and emission.
Time interval increases
if the light intensity is
low.
Photoelectrons
are emitted
from the
surface of the
metal almost
instantaneously
after the
surface is
illuminated,
even at very
low light
intensities.
The transfer of
photon’s energy to
an electron is
instantaneous as its
energy is absorbed
in its entirely, much
like a particle to
particle collision.
The emission of
photoelectron is
immediate and no
time interval
between absorption
of light energy and
emission.
3. EMISSION OF PHOTOELECTRON ( time )
47
Clasiccal
prediction
Experiment
al Result
Modern Theory
Energy of light
depends only
on amplitude
( or intensity)
and not on
frequency.
Energy of
light
depends
on
frequency
According to Planck’s
quantum theory which is
E=hf
Energy of light depends
on its frequency.
4. ENERGY OF LIGHT
48
• Experimental observations deviate from
classical predictions based on Maxwell’s
e.m. theory. Hence the classical physics
cannot explain the phenomenon of
photoelectric effect.
• The modern theory based on Einstein’s
photon theory of light can explain the
phenomenon of photoelectric effect.
• It is because Einstein postulated that light is
quantized and light is emitted, transmitted
and reabsorbed as photons.
49
Feature Classical physics Quantum physics
Threshold
frequency
An incident light of any
frequency can eject
electrons (does not
has threshold
frequency), as long as
the beam has sufficient
intensity.
To eject an electron, the
incident light must have a
frequency greater than a
certain minimum value,
(threshold frequency) , no
matter how intense the
light.
Maximum kinetic
energy
of photoelectrons
Depends on the light
intensity.
Depends only on the light
frequency .
Emission of
photoelectrons
There should be some
delays to emit
electrons from a metal
surface.
Electrons are emitted
spontaneously.
Energy of light Depends on the light
intensity.
Depends only on the light
frequency .
SUMMARY : Comparison between classical physics
and quantum physics about photoelectric effect experiment
50
Exercise
1. Find the energy of the photons in a beam whose
wavelength is 500 nm. ( 3.98 x 10 -19 J)
2. Determine the vacuum wavelength corresponding to a -ray
energy of 1019 eV. (1.24 x10-25 m)
3. A sodium surface is illuminated with light of wavelength
300 nm. The work function for sodium metal is 2.46 eV.
Calculate
a) the kinetic energy of the ejected photoelectrons
b) the cutoff wavelength for sodium
c) maximum speed of the photoelectrons.
(1.68 eV, 505 nm, 7.68 x 105 ms-1)
(Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s
1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
51
4. Radiation of wavelength 600 nm is incidents upon the
surface of a metal. Photoelectrons are emitted from the
surface with maximum speed 4.0 x 105 ms-1. Determine
the threshold wavelength of the radiation. (7.7 x 10-7 m)
5. Determine the maximum kinetic energy, in eV, of
photoelectrons emitted from a surface which has a work
function of 4.65 eV when electromagnetic radiation of
wavelength 200 nm is incident on the surface. (1.57 eV)
6. When light of wavelength 540 nm is incident on the
cathode of photocell, the stopping potential obtained is
0.063 V. When light of wavelength 440 nm is used, the
stopping potential becomes 0.865 V. Determine the ratio
( 6.35 x 10-15 J s C-1)
.
h
e
52
7. In an experiment on the photoelectric effect, the following
data were collected.
a. Calculate the maximum velocity of the photoelectrons
when the wavelength of the incident radiation is 350 nm.
b. Determine the value of the Planck constant from the
above data.
Wavelength of e.m.
radiation, (nm)
Stopping
potential, Vs (V)
350 1.70
450 0.900
(7.73 x 105 m s-1, 6.72 x 10-34 J s)
8. In a photoelectric effect experiment it is observed that
no current flows unless the wavelength is less than 570
nm. Calculate
a. the work function of this material in electronvolts.
b. the stopping voltage required if light of wavelength
400 nm is used.
(2.18 eV, 0.92 V)
54
9. In a photoelectric experiments, a graph of the light frequency f
is plotted against the maximum kinetic energy Kmax of the
photoelectron as shown in figure below.
Based on the graph, for the light frequency of 6.00 x 1014
Hz, calculate
a. the threshold frequency.
b. the maximum kinetic energy of the photoelectron.
c. the maximum velocity of the photoelectron.
Hz10f 14
02.
)(max eVK
,1083.4 14
0 Hzf ,1078.7 20
max JK 1-5
sm10134v .
55
10. A photocell with cathode and anode made of the same metal
connected in a circuit as shown in the figure below.
Monochromatic light of wavelength 365 nm shines on the
cathode and the photocurrent I is measured for various values
of voltage V across the cathode and anode. The result is
shown in the graph.
a. Calculate the maximum kinetic energy of the photoelectron.
b. Deduce the work function of the cathode.
c. If the experiment is repeated with monochromatic light of
wavelength 313 nm, determine the new intercept with the
V-axis for the new graph.
365 nm
V
G
5
1
)(nAI
)(VV0
(1.60 x 10-19 J, 3.85 x 10-19 J, -1.57 V)

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Quantum theory ppt
Quantum theory ppt Quantum theory ppt
Quantum theory ppt
 
Binding energy
Binding energyBinding energy
Binding energy
 
Chapter 3 photoelectric effect
Chapter 3 photoelectric effectChapter 3 photoelectric effect
Chapter 3 photoelectric effect
 
Quantum Mechanics Presentation
Quantum Mechanics PresentationQuantum Mechanics Presentation
Quantum Mechanics Presentation
 
Photoelectric effect ppt
Photoelectric effect pptPhotoelectric effect ppt
Photoelectric effect ppt
 
Origin of quantum mechanics
Origin of quantum mechanicsOrigin of quantum mechanics
Origin of quantum mechanics
 
Classical Mechanics-MSc
Classical Mechanics-MScClassical Mechanics-MSc
Classical Mechanics-MSc
 
Photo electric effect
Photo electric effectPhoto electric effect
Photo electric effect
 
Quantum Theory
Quantum TheoryQuantum Theory
Quantum Theory
 
Photoelectric effect viva-voce question
Photoelectric effect viva-voce questionPhotoelectric effect viva-voce question
Photoelectric effect viva-voce question
 
Photo electric effect
Photo electric effectPhoto electric effect
Photo electric effect
 
Compton effect
Compton effectCompton effect
Compton effect
 
Photoelectric effect
Photoelectric effect Photoelectric effect
Photoelectric effect
 
Nonlinear optics
Nonlinear opticsNonlinear optics
Nonlinear optics
 
Maxwell's four equations in em theory
Maxwell's four equations in em theoryMaxwell's four equations in em theory
Maxwell's four equations in em theory
 
The black body radiation Junaid khan
The black body radiation Junaid khanThe black body radiation Junaid khan
The black body radiation Junaid khan
 
Total Internal Reflection and Critical Angle
Total Internal Reflection and Critical AngleTotal Internal Reflection and Critical Angle
Total Internal Reflection and Critical Angle
 
Basic and fundamental of quantum mechanics (Theory)
Basic and fundamental of quantum mechanics (Theory)Basic and fundamental of quantum mechanics (Theory)
Basic and fundamental of quantum mechanics (Theory)
 
Ph 101-8
Ph 101-8Ph 101-8
Ph 101-8
 
Physics
PhysicsPhysics
Physics
 

Destaque

Black body radiation,planck's radiation, wien's law, stephen boltzmann law in...
Black body radiation,planck's radiation, wien's law, stephen boltzmann law in...Black body radiation,planck's radiation, wien's law, stephen boltzmann law in...
Black body radiation,planck's radiation, wien's law, stephen boltzmann law in...P.K. Mani
 
B.tech sem i engineering physics u iv chapter 1-atomic physics
B.tech sem i engineering physics u iv chapter 1-atomic physicsB.tech sem i engineering physics u iv chapter 1-atomic physics
B.tech sem i engineering physics u iv chapter 1-atomic physicsRai University
 
Atomic structure – part ii
Atomic structure – part iiAtomic structure – part ii
Atomic structure – part iiMika Gancayco
 
New quantum theory
New   quantum   theoryNew   quantum   theory
New quantum theoryN.s. Agarwal
 
31 earlyatomictheoriesandtheoriginsofquantumtheory
31 earlyatomictheoriesandtheoriginsofquantumtheory31 earlyatomictheoriesandtheoriginsofquantumtheory
31 earlyatomictheoriesandtheoriginsofquantumtheoryclwatson12
 
Chapter 2 early quantum theory
Chapter 2 early quantum theoryChapter 2 early quantum theory
Chapter 2 early quantum theoryMiza Kamaruzzaman
 
Max Planck (student preso)
Max Planck (student preso)Max Planck (student preso)
Max Planck (student preso)Roppon Picha
 
Chapter 1 blackbody radiation
Chapter 1  blackbody radiationChapter 1  blackbody radiation
Chapter 1 blackbody radiationMiza Kamaruzzaman
 
Black body radiation
Black body radiationBlack body radiation
Black body radiationFani Diamanti
 
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12Self-employed
 
General relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.tGeneral relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.trageshthedon
 

Destaque (12)

Chapter 26
Chapter 26Chapter 26
Chapter 26
 
Black body radiation,planck's radiation, wien's law, stephen boltzmann law in...
Black body radiation,planck's radiation, wien's law, stephen boltzmann law in...Black body radiation,planck's radiation, wien's law, stephen boltzmann law in...
Black body radiation,planck's radiation, wien's law, stephen boltzmann law in...
 
B.tech sem i engineering physics u iv chapter 1-atomic physics
B.tech sem i engineering physics u iv chapter 1-atomic physicsB.tech sem i engineering physics u iv chapter 1-atomic physics
B.tech sem i engineering physics u iv chapter 1-atomic physics
 
Atomic structure – part ii
Atomic structure – part iiAtomic structure – part ii
Atomic structure – part ii
 
New quantum theory
New   quantum   theoryNew   quantum   theory
New quantum theory
 
31 earlyatomictheoriesandtheoriginsofquantumtheory
31 earlyatomictheoriesandtheoriginsofquantumtheory31 earlyatomictheoriesandtheoriginsofquantumtheory
31 earlyatomictheoriesandtheoriginsofquantumtheory
 
Chapter 2 early quantum theory
Chapter 2 early quantum theoryChapter 2 early quantum theory
Chapter 2 early quantum theory
 
Max Planck (student preso)
Max Planck (student preso)Max Planck (student preso)
Max Planck (student preso)
 
Chapter 1 blackbody radiation
Chapter 1  blackbody radiationChapter 1  blackbody radiation
Chapter 1 blackbody radiation
 
Black body radiation
Black body radiationBlack body radiation
Black body radiation
 
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12
 
General relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.tGeneral relativity presentation.ragesh,asmitha,m.d.t
General relativity presentation.ragesh,asmitha,m.d.t
 

Semelhante a C24 quantization-of-light

Chapter basic of quantum mechanics
Chapter basic of quantum mechanicsChapter basic of quantum mechanics
Chapter basic of quantum mechanicsShahzada Khan
 
Subhadeep_BSPH101.pptx dsuyfgwf7ywidvweiufwetdfiuqefuhygedfiewgfi
Subhadeep_BSPH101.pptx dsuyfgwf7ywidvweiufwetdfiuqefuhygedfiewgfiSubhadeep_BSPH101.pptx dsuyfgwf7ywidvweiufwetdfiuqefuhygedfiewgfi
Subhadeep_BSPH101.pptx dsuyfgwf7ywidvweiufwetdfiuqefuhygedfiewgfiBirendraNathNandi
 
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptxFatimaAfzal56
 
Photoelectric effect .pptx
Photoelectric effect .pptxPhotoelectric effect .pptx
Photoelectric effect .pptxSibaSahu14
 
Modern_Physics,_Photoelectric_Effect_&_X_rays_BOUNCE_BACK_24_DEC (1).pdf
Modern_Physics,_Photoelectric_Effect_&_X_rays_BOUNCE_BACK_24_DEC (1).pdfModern_Physics,_Photoelectric_Effect_&_X_rays_BOUNCE_BACK_24_DEC (1).pdf
Modern_Physics,_Photoelectric_Effect_&_X_rays_BOUNCE_BACK_24_DEC (1).pdfRahulSahay20
 
Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Chandan Singh
 
Dual nature of radiation and matter class 12
Dual nature of radiation and matter class 12Dual nature of radiation and matter class 12
Dual nature of radiation and matter class 12Lovedeep Singh
 
Photoelectric effect & quantum behavior of light
Photoelectric effect & quantum behavior of lightPhotoelectric effect & quantum behavior of light
Photoelectric effect & quantum behavior of lightGoutam Barik
 
60508_paticle like properties of waves.pptx
60508_paticle like properties of waves.pptx60508_paticle like properties of waves.pptx
60508_paticle like properties of waves.pptxClaireSadicon
 
Chapter-3 - Photoelectricity, X-rays & Lasers (1).pdf
Chapter-3 - Photoelectricity, X-rays & Lasers (1).pdfChapter-3 - Photoelectricity, X-rays & Lasers (1).pdf
Chapter-3 - Photoelectricity, X-rays & Lasers (1).pdfRajiveGamer
 
052516 week11 quantum2
052516 week11 quantum2052516 week11 quantum2
052516 week11 quantum2Subas Nandy
 

Semelhante a C24 quantization-of-light (20)

Chapter basic of quantum mechanics
Chapter basic of quantum mechanicsChapter basic of quantum mechanics
Chapter basic of quantum mechanics
 
Electron and photon
Electron and photonElectron and photon
Electron and photon
 
Photo electric effect and compton
Photo electric effect and comptonPhoto electric effect and compton
Photo electric effect and compton
 
Subhadeep_BSPH101.pptx dsuyfgwf7ywidvweiufwetdfiuqefuhygedfiewgfi
Subhadeep_BSPH101.pptx dsuyfgwf7ywidvweiufwetdfiuqefuhygedfiewgfiSubhadeep_BSPH101.pptx dsuyfgwf7ywidvweiufwetdfiuqefuhygedfiewgfi
Subhadeep_BSPH101.pptx dsuyfgwf7ywidvweiufwetdfiuqefuhygedfiewgfi
 
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
 
Photoelectric effect .pptx
Photoelectric effect .pptxPhotoelectric effect .pptx
Photoelectric effect .pptx
 
Modern_Physics,_Photoelectric_Effect_&_X_rays_BOUNCE_BACK_24_DEC (1).pdf
Modern_Physics,_Photoelectric_Effect_&_X_rays_BOUNCE_BACK_24_DEC (1).pdfModern_Physics,_Photoelectric_Effect_&_X_rays_BOUNCE_BACK_24_DEC (1).pdf
Modern_Physics,_Photoelectric_Effect_&_X_rays_BOUNCE_BACK_24_DEC (1).pdf
 
Quantum chemistry-B SC III-SEM-VI
 Quantum chemistry-B SC III-SEM-VI Quantum chemistry-B SC III-SEM-VI
Quantum chemistry-B SC III-SEM-VI
 
Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES Ph 101-7 WAVE PARTICLES
Ph 101-7 WAVE PARTICLES
 
Hp 21 win
Hp 21 winHp 21 win
Hp 21 win
 
Introduction quantum mechanics (chemistry)
Introduction quantum mechanics (chemistry)Introduction quantum mechanics (chemistry)
Introduction quantum mechanics (chemistry)
 
Dual nature of radiation and matter class 12
Dual nature of radiation and matter class 12Dual nature of radiation and matter class 12
Dual nature of radiation and matter class 12
 
Photoelectric effect & quantum behavior of light
Photoelectric effect & quantum behavior of lightPhotoelectric effect & quantum behavior of light
Photoelectric effect & quantum behavior of light
 
60508_paticle like properties of waves.pptx
60508_paticle like properties of waves.pptx60508_paticle like properties of waves.pptx
60508_paticle like properties of waves.pptx
 
13.1
13.113.1
13.1
 
Quantum mechanics S5
Quantum mechanics S5 Quantum mechanics S5
Quantum mechanics S5
 
Chapter-3 - Photoelectricity, X-rays & Lasers (1).pdf
Chapter-3 - Photoelectricity, X-rays & Lasers (1).pdfChapter-3 - Photoelectricity, X-rays & Lasers (1).pdf
Chapter-3 - Photoelectricity, X-rays & Lasers (1).pdf
 
Photo electric effect
Photo electric effectPhoto electric effect
Photo electric effect
 
052516 week11 quantum2
052516 week11 quantum2052516 week11 quantum2
052516 week11 quantum2
 
Quantum chemistry
Quantum chemistryQuantum chemistry
Quantum chemistry
 

C24 quantization-of-light

  • 1. 1 Chapter 29 Waves and Particles: 29.1 Planck’s Quantum Theory 29.2 The Photoelectric Effect
  • 2. 2 29 .1 Planck’s Quantum Theory SUBTOPIC : LEARNING OUTCOMES : a) Distinguish between Planck’s quantum theory and classical theory of energy. b) Use Einstein’s formulae for a photon energy, . At the end of this lesson, the students should be able to : hc E hf
  • 3. 3 24.1 Planck’s Quantum Theory • The foundation of the Planck’s quantum theory is a theory of black body radiation. • Black body is defined as an ideal system or object that absorbs and emits all the em radiations that is incident on it. • The electromagnetic radiation emitted by the black body is called black body radiation. black body • In an ideal black body, incident light is completely absorbed. • Light that enters the cavity through the small hole is reflected multiple times from the interior walls until it is completely absorbed.
  • 4. 4 Experimental result Rayleigh - Jeans theory Wien’s theory Classical physics • The spectrum of electromagnetic radiation emitted by the black body (experimental result) is shown in figure 1. Figure 1 : Black Body Spectrum
  • 5. 5 • Rayleigh-Jeans and Wien’s theories (classical physics) failed to explain the shape of the black body spectrum or the spectrum of light emitted by hot objects. • Classical physics predicts a black body radiation curve that rises without limit as the f increases. • The classical ideas are :  Energy of the e.m. radiation does not depend on its frequency or wavelength.  Energy of the e.m. radiation is continuously.
  • 6. 6 • In 1900, Max Planck proposed his theory that is fit with the experimental curve in figure 1 at all wavelengths known as Planck’s quantum theory. • The assumptions made by Planck in his theory are :  The e.m. radiation emitted by the black body is a discrete (separate) packets of energy known as quanta. This means the energy of e.m. radiation is quantised.  The energy size of the radiation depends on its frequency.
  • 7. 7 Comparison between Planck’ quantum theory and classical theory of energy. Planck’s Quantum Theory Classical theory Energy of the e.m radiation is quantised. (discrete) Energy of the e.m radiation is continously. Energy of e.m radiation depends on its frequency or wavelength Energy of e.m radiation does not depend on its frequency or wavelength (depends on Intensity) Photon 2 AIhfE TkE Bclassical etemperatur constantsBoltzman' T kB
  • 8. 8 • According to this assumptions, the quantum E of the energy for radiation of frequency f is given by hfE where constantPlanck:h J s10636 34 . Planck’s quantum theory fc hc E
  • 9. 9 Photons • In 1905, Albert Einstein proposed that light comes in bundle of energy (light is transmitted as tiny particles), called photons. • Photon is defined as a particle with zero mass consisting of a quantum of electromagnetic radiation where its energy is concentrated. Quantum means “fixed amount”
  • 10. 10 • Photons travel at the speed of light in a vacuum. • Photons are required to explain the photoelectric effect and other phenomena that require light to have particle property. • In equation form, photon energy (energy of photon) is c hhfE • Unit of photon energy is J or eV. • The electronvolt (eV) is a unit of energy that can be defined as the kinetic energy gained by an electron in being accelerated by a potential difference (voltage) of 1 volt. • Unit conversion : J10601eV1 19 .
  • 11. 11 Example 24.1 Calculate the energy of a photon of blue light, .nm450 (Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s 1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
  • 12. 12 Example 24.2 A photon have an energy of 3.2 eV. Calculate the frequency, vacuum wavelength and energy in joule of the photon. (7.72 x 1014 Hz ,389 nm, 5.12 x10-19 J) (Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s 1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
  • 13. 13 29 .2 The Photoelectric Effect SUBTOPIC : LEARNING OUTCOMES : At the end of this lesson, the students should be able to : a) Explain the phenomenon of photoelectric effect. b) Define and determine threshold frequency, work function and stopping potential. c) Describe and sketch diagram of the photoelectric effect experimental set-up. d) Explain the failure of wave theory to justify the photoelectric effect.
  • 14. 14 LEARNING OUTCOMES : At the end of this lesson, the students should be able to : e) Explain by using graph and equations the observations of photoelectric effect experiment in terms of the dependence of : i ) kinetic energy of photoelectron on the frequency of light; ½ mvmax 2 = eVs = hf – hfo ii ) photoelectric current on intensity of incident light; iii) work function and threshold frequency on the types of metal surface; Wo =hfo f) Use Einstein’s photoelectric effect equation, Kmax = eVs = hf – Wo The Photoelectric Effect
  • 15. 15 24 .2 The photoelectric effect • The photoelectric effect is the emission of electrons from the metal surface when electromagnetic radiation of enough frequency falls/strikes/ incidents /shines on it. • A photoelectron is an electron ejected due to photoelectric effect (an electron emitted from the surface of the metal when light strikes its surface). -em radiation (light) photoelectron - - - - - - - - - - Metal surface Free electrons -
  • 16. 16 • The photoelectric effect can be measured using a device like that pictured in figure below. 9.2 The photoelectric effect Anode(collector) Cathode (emitter or target metal) photoelectron glass - - - rheostat power supply e.m. radiation (incoming light) vacuum A V The photoelectric effect’s experiment A
  • 17. 17 9.2 The photoelectric effect • A negative electrode (cathode or target metal or emitter) and a positive electrode (anode or collector) are placed inside an evacuated glass tube. • The monochromatic light (UV- incoming light) of known frequency is incident on the target metal. • The incoming light ejects photoelectrons from a target metal. • The photoelectrons are then attracted to the collector. • The result is a photoelectric current flows in the circuit that can be measured with an ammeter.
  • 18. 18 • When the positive voltage (potential difference) is increased, more photoelectrons reach the collector , hence the photoelectric current also increases. • As positive voltage becomes sufficiently large, the photoelectric current reaches a maximum constant value Im, called saturation current. 9.1 The photoelectric effect Saturation current is defined as the maximum constant value of photocurrent in which when all the photoelectrons have reached the anode.
  • 19. 19 9.2 The photoelectric effect • When the voltage is made negative by reversing the power supply terminal as shown in figure below, the photoelectric current decreases since most photoelectrons are repelled by the collector which is now negative electric potential. Anode(collector) Cathode (emitter or target metal) photoelectron glass - - - rheostat power supply e.m. radiation (incoming light) vacuum A V B Reversing power supply terminal (to determine the stopping potential)
  • 20. 20 • If this reverse voltage is small enough, the fastest electrons will still reach the collector and there will be the photoelectric current in the circuit. • If the reverse voltage is increased, a point is reached where the photoelectric current reaches zero – no photoelectrons have sufficient kinetic energy to reach the collector. • This reverse voltage is called the stopping potential , Vs. Vs is defined as the minimum reverse potential (voltage) needed for electrons from reaching the collector. • By using conservation of energy : (loss of KE of photoelectron = gain in PE) ; K.Emax = eVs 2 s mv 2 1 eV
  • 21. 21 According to Einstein’s theory, an electron is ejected/emitted from the target metal by a collision with a single photon. In this process, all the photon energy is transferred to the electron on the surface of metal target. Since electrons are held in the metal by attractive forces, some minimum energy,Wo (work function, which is on the order of a few electron volts for most metal) is required just enough to get an electron out through the surface. Einstein’s theory of Photoelectric Effect
  • 22. 22 If the frequency f of the incoming light is so low that is hf < Wo , then the photon will not have enough energy to eject any electron at all. If hf > Wo , then electron will be ejected and energy will be conserved (the excess energy appears as kinetic energy of the ejected electron). This is summed up by Einstein’s photoelectric equation , Einstein’s theory of Photoelectric Effect 2 max0 2 1 mvWhf max.EKWE o 2 s mv 2 1 eV seVWhf 0 but
  • 23. 23 = photon energy 2 maxmax 2 1 . mvEK Einstein’s theory of Photoelectric Effect = maximum kinetic energy of ejected electron. f = frequency of em radiation /incoming light vmax = maximum speed of the photoelectron Einstein’s photoelectric equation c hhfE 2 max0 2 1 mvWhf max.EKWE o
  • 24. 24 fo = threshold frequency. = minimum frequency of e.m. radiation required to eject an electron from the surface of the metal. o Wo = the work function of a metal. = the minimum energy required (needed) to eject an electron from the surface of target metal. Einstein’s theory of Photoelectric Effect = threshold wavelength. = maximum wavelength of e.m. radiation required to eject an electron from the surface of the target metal. o o c f max.EKWE o 2 max0 2 1 mvWhf o oo hc hfW
  • 25. 25 -hf vmax -Metal W0 - hf v=0 -Metal W0 hf -Metal W0 oWhf2 max0 2 1 mvWhf hf < Wo hf > Wo Electron is emitted Electron is ejected. No electron is ejected. Einstein’s theory of Photoelectric Effect
  • 26. 26 Example 24 .3 The work function for a silver surface is Wo = 4.74 eV. Calculate the a) minimum frequency that light must have to eject electrons from the surface. b) maximum wavelength that light must have to eject electrons from the surface. nmb) Hz1.14x10 a) 15 263o o oo f hfW (Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s 1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
  • 27. 27 Example 24.4 What is the maximum kinetic energy of electrons ejected from calcium by 420 nm violet light, given the work function for calcium metal is 2.71 eV? K.Emax = E – Wo (Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s 1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
  • 28. 28 Example 24.5 Sodium has a work function of 2.30 eV. Calculate a. its threshold frequency, b. the maximum speed of the photoelectrons produced when the sodium is illuminated by light of wavelength 500 nm, c. the stopping potential with light of this wavelength. 00 hfWa. (Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s 1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C) Solution 24.5
  • 29. 29 Solution 24.5 b. 2 0 2 1 mvW hc 2 2 1 mveVs c. (Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s 1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
  • 30. 30 In an experiment of photoelectric effect, no current flows through the circuit when the voltage across the anode and cathode is -1.70 V. Calculate a. the work function, and b. the threshold wavelength of the metal (cathode) if it is illuminated by ultraviolet radiation of frequency 1.70 x 1015 Hz. (Given : c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s , 1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C) Example 24.6
  • 31. 31 Solution 24.6 JWa 19 0 1055.8) mb 7 0 1033.2)
  • 32. 32 Example 24.7 The energy of a photon from an electromagnetic wave is 2.25 eV a. Calculate its wavelength. b. If this electromagnetic wave shines on a metal, photoelectrons are emitted with a maximum kinetic energy of 1.10 eV. Calculate the work function of this metal in joules. (Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s , 1 eV=1.60 x 10-19 J, mass of electron m = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
  • 33. 33 Solution 24.7 Ans. : 553 nm, 1.84 x 10-19 J
  • 34. 34 Graphs in Photoelectric Effect Generally, Einstein’s photoelectric equation; max.EKWE o cmxy WhfEK WEEK o o max max . . f ↑ K.Emax ↑ K.Emax f of oW 0
  • 35. 35 Graphs in Photoelectric Effect f,frequency sV,voltageStopping e W0 0 cmxy e W f e h V WhfeV WhfEK o s os omax. f ↑ Vs ↑ of
  • 36. 36 Graphs in Photoelectric Effect Variation of stopping voltage Vs with frequency f of the radiation for different metals but the intensity is fixed. f,frequency sV,voltageStopping 0 01f W01 02f W02 cmxy e W f e h V WhfeV WhfEK o s os omax. 00 fW W02 > W01 f02 > f01
  • 37. 37 Graphs in Photoelectric Effect Intensity 2x Intensity 1x I,currentricPhotoelect V,Voltage 0 Variation of photoelectric current I with voltage V for the radiation of different intensities but its frequency and metal are fixed. Vs
  • 38. 38 Notes: Classical physics Light intensity , areatime energy I Quantum physics Light intensity , areatime photonsofnumber I photonsofnumberintensityLight Light intensity ↑ , number of photons ↑ , number of electrons ↑ , current ↑ . (If light intensity ↑, photoelectric current ↑).
  • 39. 39 Graphs in Photoelectric Effect Variation of photoelectric current I with voltage V for the radiation of different frequencies but its intensity and metal are fixed. f2 mI 1sV I,currentricPhotoelect V,Voltage0 f1 f2 > f1 2sV e W f e h V WhfeV WhfEK o s os omax. f ↑ Vs ↑ Vs2 > Vs1
  • 40. 40 Graphs in Photoelectric Effect Variation of photoelectric current I with voltage V for the different metals but the intensity and frequency of the radiation are fixed. W01 1sV mI I,currentricPhotoelect V,Voltage02sV W02 W02 > W01 e W f e h V WhfeV WhfEK o s os omax. so VW , Vs1 > Vs2
  • 41. 41 Example 24.8 K.Emax (x 10-19 J) f(x 1014 )Hz 8.4 0 Use the graph above to find the value of i) work function and ii) the threshold wavelength.
  • 42. 42 Solution 24.8 K.Emax (x 10-19 J) f(x 1014 )Hz 8.4 0 cmxy WhfEK WEEK o o max max . . m10x6.25 h,wavelengtThreshold 10x3.18 x104.8 whengraphtheFrom 7- 19- 14 o o ooo f c J HzfhfW EK ,0. max
  • 43. 43 OBSERVATIONS of the photoelectric effects experiment 1.Electrons are emitted immediately 2.Stopping potential does not depend on the intensity of light. 3.Threshold frequency of light is different for different target metal. 4.Number of electrons emitted of the photoelectron current depend on the intensity of light.
  • 44. 44 EXPLAIN the failure of classical theory to justify the photoelectric effect. Clasiccal prediction Experimental Result Modern Theory The higher the intensity, the greater the energy imparted to the metal surface for emission of photoelectrons. •The higher the intensity of light the greater the kinetic energy maximum of photoelectrons. Very low intensity but high frequency radiation could emit photoelectrons. The maximum kinetic energy of photoelectrons is independent of light intensity. Based on Einstein’s photoelectric equation: The maximum kinetic energy of photoelectron depends only on the light frequency . The maximum kinetic energy of photoelectrons DOES NOT depend on light intensity. 0WhfKmax 1. MAXIMUM KINETIC ENERGY OF PHOTOELECTRON
  • 45. 45 Clasiccal prediction Experimental Result Modern Theory Emission of photoelectro ns occur for all frequencies of light. Energy of light is independent of frequency. Emission of photoelectrons occur only when frequency of the light exceeds the certain frequency which value is characteristic of the material being illuminated. When the light frequency is greater than threshold frequency, a higher rate of photons striking the metal surface results in a higher rate of photoelectrons emitted. If it is less than threshold frequency no photoelectrons are emitted. Hence the emission of photoelectrons depend on the light frequency. 2. EMISSION OF PHOTOELECTRON ( energy )
  • 46. 46 Clasiccal prediction Experimental Result Modern Theory Light energy is spread over the wavefront, the amount of energy incident on any one electron is small. An electron must gather sufficient energy before emission, hence there is time interval between absorption of light energy and emission. Time interval increases if the light intensity is low. Photoelectrons are emitted from the surface of the metal almost instantaneously after the surface is illuminated, even at very low light intensities. The transfer of photon’s energy to an electron is instantaneous as its energy is absorbed in its entirely, much like a particle to particle collision. The emission of photoelectron is immediate and no time interval between absorption of light energy and emission. 3. EMISSION OF PHOTOELECTRON ( time )
  • 47. 47 Clasiccal prediction Experiment al Result Modern Theory Energy of light depends only on amplitude ( or intensity) and not on frequency. Energy of light depends on frequency According to Planck’s quantum theory which is E=hf Energy of light depends on its frequency. 4. ENERGY OF LIGHT
  • 48. 48 • Experimental observations deviate from classical predictions based on Maxwell’s e.m. theory. Hence the classical physics cannot explain the phenomenon of photoelectric effect. • The modern theory based on Einstein’s photon theory of light can explain the phenomenon of photoelectric effect. • It is because Einstein postulated that light is quantized and light is emitted, transmitted and reabsorbed as photons.
  • 49. 49 Feature Classical physics Quantum physics Threshold frequency An incident light of any frequency can eject electrons (does not has threshold frequency), as long as the beam has sufficient intensity. To eject an electron, the incident light must have a frequency greater than a certain minimum value, (threshold frequency) , no matter how intense the light. Maximum kinetic energy of photoelectrons Depends on the light intensity. Depends only on the light frequency . Emission of photoelectrons There should be some delays to emit electrons from a metal surface. Electrons are emitted spontaneously. Energy of light Depends on the light intensity. Depends only on the light frequency . SUMMARY : Comparison between classical physics and quantum physics about photoelectric effect experiment
  • 50. 50 Exercise 1. Find the energy of the photons in a beam whose wavelength is 500 nm. ( 3.98 x 10 -19 J) 2. Determine the vacuum wavelength corresponding to a -ray energy of 1019 eV. (1.24 x10-25 m) 3. A sodium surface is illuminated with light of wavelength 300 nm. The work function for sodium metal is 2.46 eV. Calculate a) the kinetic energy of the ejected photoelectrons b) the cutoff wavelength for sodium c) maximum speed of the photoelectrons. (1.68 eV, 505 nm, 7.68 x 105 ms-1) (Given c = 3.00 x 108 m s-1, h = 6.63 x 10-34 J s 1 eV=1.60 x 10-19 J, me = 9.11 x 10-31 kg, e = 1.60 x 10-19 C)
  • 51. 51 4. Radiation of wavelength 600 nm is incidents upon the surface of a metal. Photoelectrons are emitted from the surface with maximum speed 4.0 x 105 ms-1. Determine the threshold wavelength of the radiation. (7.7 x 10-7 m) 5. Determine the maximum kinetic energy, in eV, of photoelectrons emitted from a surface which has a work function of 4.65 eV when electromagnetic radiation of wavelength 200 nm is incident on the surface. (1.57 eV) 6. When light of wavelength 540 nm is incident on the cathode of photocell, the stopping potential obtained is 0.063 V. When light of wavelength 440 nm is used, the stopping potential becomes 0.865 V. Determine the ratio ( 6.35 x 10-15 J s C-1) . h e
  • 52. 52 7. In an experiment on the photoelectric effect, the following data were collected. a. Calculate the maximum velocity of the photoelectrons when the wavelength of the incident radiation is 350 nm. b. Determine the value of the Planck constant from the above data. Wavelength of e.m. radiation, (nm) Stopping potential, Vs (V) 350 1.70 450 0.900 (7.73 x 105 m s-1, 6.72 x 10-34 J s)
  • 53. 8. In a photoelectric effect experiment it is observed that no current flows unless the wavelength is less than 570 nm. Calculate a. the work function of this material in electronvolts. b. the stopping voltage required if light of wavelength 400 nm is used. (2.18 eV, 0.92 V)
  • 54. 54 9. In a photoelectric experiments, a graph of the light frequency f is plotted against the maximum kinetic energy Kmax of the photoelectron as shown in figure below. Based on the graph, for the light frequency of 6.00 x 1014 Hz, calculate a. the threshold frequency. b. the maximum kinetic energy of the photoelectron. c. the maximum velocity of the photoelectron. Hz10f 14 02. )(max eVK ,1083.4 14 0 Hzf ,1078.7 20 max JK 1-5 sm10134v .
  • 55. 55 10. A photocell with cathode and anode made of the same metal connected in a circuit as shown in the figure below. Monochromatic light of wavelength 365 nm shines on the cathode and the photocurrent I is measured for various values of voltage V across the cathode and anode. The result is shown in the graph. a. Calculate the maximum kinetic energy of the photoelectron. b. Deduce the work function of the cathode. c. If the experiment is repeated with monochromatic light of wavelength 313 nm, determine the new intercept with the V-axis for the new graph. 365 nm V G 5 1 )(nAI )(VV0 (1.60 x 10-19 J, 3.85 x 10-19 J, -1.57 V)