SlideShare uma empresa Scribd logo
Course: Quantum Electronics
Arpan Deyasi
Calculation of
Transmission Coefficient using Transfer
Matrix Technique
1
Arpan Deyasi,RCCIIT
1/17/2021
1/17/2021 Arpan Deyasi,RCCIIT 2
Single Quantum Well
1/17/2021 Arpan Deyasi,RCCIIT 3
Properties to be evaluated:
Electronic Properties
1. Transmission Coefficient
2. Eigen Energy
3. Density of States
Optical Properties
1. Absorption Coefficient
2. Oscillator Strength
Numerical Techniques may be
considered for Calculation
Transfer Matrix Technique (TMT)
Propagation Matrix Method (PMM)
Perturbation Method
WKB Approximation
Finite Element Method (FEM)
Finite Difference Time Domain Method (FDTD)
1/17/2021 4Arpan Deyasi,RCCIIT
1/17/2021 Arpan Deyasi,RCCIIT 5
Q. Which have better accuracy?
Q. Which are faster for calculation?
We have to optimize between them
1/17/2021 Arpan Deyasi,RCCIIT 6
FDTD and FEM are most accurate as per the literatures
TMT & PMM are faster which incorporate fast principle
1/17/2021 Arpan Deyasi,RCCIIT 7
Today we will start the calculation of
Electronic Properties
using Transfer Matrix Technique
We will consider
Double Quantum Well structure
for our theoretical work
1/17/2021 Arpan Deyasi,RCCIIT 8
Z
Z=0
Z=a
Z=a+b
Z=2a+b
a ab
DQWTB structure
A1 A2 A3 A4 A5
B1 B2 B3 B4
B5
I II III IV V
1/17/2021 Arpan Deyasi,RCCIIT 9
Schrödinger Equation for well region
for V=0
2
2
22
( )
( ) ( ) 0
d z
z z
dz
ψ
κ ψ+ =
*
2 2
2 ( )wm z E
κ =

Schrödinger Equation for barrier region
2
2
22
( )
( ) ( ) 0
d z
z z
dz
ψ
κ ψ+ =
for V=V0
( )*
0
1 2
2 ( )bm z E V
κ
−
=

1/17/2021 Arpan Deyasi,RCCIIT 10
Solution of Schrödinger Equation in different regions
1 1 1 1exp( ) exp( )I A i z B i zψ κ κ= + −
3 1 3 1exp( ) exp( )III A i z B i zψ κ κ= + −
5 1 5 1exp( ) exp( )V A i z B i zψ κ κ= + −
2 2 2 2exp( ) exp( )II A i z B i zψ κ κ= + −
4 2 4 2exp( ) exp( )IV A i z B i zψ κ κ= + −
1/17/2021 Arpan Deyasi,RCCIIT 11
Ben-Daniel Duke Boundary Conditions
I IIΨ =Ψ
* *
1 1I II
I II
d d
dz dzm m
Ψ Ψ
=
A little modification is required in second boundary condition. Why?
1/17/2021 Arpan Deyasi,RCCIIT 12
Both κ1 and κ2 are functions of m*
I IId d
dz dz
Ψ Ψ
=
So to avoid dual effect of m*, we will modify the 2nd condition as
1/17/2021 Arpan Deyasi,RCCIIT 13
at Z = 0 (1st interface)
I IIψ ψ=
1 1 1 1
2 2 2 2
exp( ) exp( )
exp( ) exp( )
A i z B i z
A i z B i z
κ κ
κ κ
+ −
= + −
1 1 2 2A B A B+ = +
1/17/2021 Arpan Deyasi,RCCIIT 14
at Z = 0 (1st interface)
' 'I IIψ ψ=
1 1 1 1 1 1
2 2 2 2 2 2
exp( ) exp( )
exp( ) exp( )
i A i z i B i z
i A i z i B i z
κ κ κ κ
κ κ κ κ
− −
= − −
1 1 1 1 2 2 2 2A B A Bκ κ κ κ− = −
1/17/2021 Arpan Deyasi,RCCIIT 15
at Z = 0 (1st interface)
1 1 2 2A B A B+ = +
1 1 1 1 2 2 2 2A B A Bκ κ κ κ− = −
In matrix
notation
1 2
1 1 1 2 2 2
1 1 1 1A A
B Bκ κ κ κ
     
=      − −     
1/17/2021 Arpan Deyasi,RCCIIT 16
at Z = 0 (1st interface)
1 2
1 1 1 2 2 2
1 1 1 1A A
B Bκ κ κ κ
     
=      − −     
1 2
1 2
1 2
A A
M M
B B
   
=   
   
1/17/2021 Arpan Deyasi,RCCIIT 17
at Z = a (2nd interface)
II IIIψ ψ=
2 2 2 2
3 1 3 1
exp( ) exp( )
exp( ) exp( )
A i z B i z
A i z B i z
κ κ
κ κ
+ −
= + −
2 2 2 2
3 1 3 1
exp( ) exp( )
exp( ) exp( )
A i a B i a
A i a B i a
κ κ
κ κ
+ −
= + −
1/17/2021 Arpan Deyasi,RCCIIT 18
at Z = a (2nd interface)
' 'II IIIψ ψ=
2 2 2 2 2 2
1 3 1 1 3 1
exp( ) exp( )
exp( ) exp( )
i A i z i B i z
i A i z i B i z
κ κ κ κ
κ κ κ κ
− −
= − −
2 2 2 2 2 2
1 3 1 1 3 1
exp( ) exp( )
exp( ) exp( )
A i a B i a
A i a B i a
κ κ κ κ
κ κ κ κ
− −
= − −
1/17/2021 Arpan Deyasi,RCCIIT 19
at Z = a (2nd interface)
2 2 2 2 3 1 3 1exp( ) exp( ) exp( ) exp( )A i a B i a A i a B i aκ κ κ κ+ −= + −
2 2 2 2 2 2
1 3 1 1 3 1
exp( ) exp( )
exp( ) exp( )
A i a B i a
A i a B i a
κ κ κ κ
κ κ κ κ
− −
= − −
In matrix
notation
2 2 2
2 2 2 2 2
31 1
31 1 1 1
exp( ) exp( )
exp( ) exp( )
exp( ) exp( )
exp( ) exp( )
i a i a A
i a i a B
Ai a i a
Bi a i a
κ κ
κ κ κ κ
κ κ
κ κ κ κ
−  
  − −  
− −   
=   − − −  
1/17/2021 Arpan Deyasi,RCCIIT 20
at Z = a (2nd interface)
2 2 2
2 2 2 2 2
31 1
31 1 1 1
exp( ) exp( )
exp( ) exp( )
exp( ) exp( )
exp( ) exp( )
i a i a A
i a i a B
Ai a i a
Bi a i a
κ κ
κ κ κ κ
κ κ
κ κ κ κ
−  
  − −  
− −   
=   − − −  
32
3 4
32
AA
M M
BB
  
=   
   
1/17/2021 Arpan Deyasi,RCCIIT 21
at Z = (a+b) (3rd interface)
III IVψ ψ=
3 1 3 1
4 2 4 2
exp( ) exp( )
exp( ) exp( )
A i z B i z
A i z B i z
κ κ
κ κ
+ −
= + −
3 1 3 1
4 2 4 2
exp( ( ) exp( ( ))
exp( ( )) exp( ( ))
A i a b B i a b
A i a b B i a b
κ κ
κ κ
+ + − +
+ + − +
1/17/2021 Arpan Deyasi,RCCIIT 22
' 'III IVψ ψ=
1 3 1 1 3 1
2 4 2 2 4 2
exp( ) exp( )
exp( ) exp( )
i A i z i B i z
i A i z i B i z
κ κ κ κ
κ κ κ κ
− −
= − −
1 3 1 1 3 1
2 4 2 2 4 2
exp( ( )) exp( ( ))
exp( ( )) exp( ( ))
A i a b B i a b
A i a b B i a b
κ κ κ κ
κ κ κ κ
+ − − +
+ − − +
at Z = (a+b) (3rd interface)
1/17/2021 Arpan Deyasi,RCCIIT 23
In
matrix
notation
at Z = (a+b) (3rd interface)
31 1
31 1 1 1
2 2 4
2 2 2 2 4
exp( ( )) exp( ( ))
exp( ( )) exp( ( ))
exp( ( )) exp( ( ))
exp( ( )) exp( ( ))
Ai a b i a b
Bi a b i a b
i a b i a b A
i a b i a b B
κ κ
κ κ κ κ
κ κ
κ κ κ κ
+ − +   
  + − − +  
+ − +  
=   + − − +  
3 1 3 1
4 2 4 2
exp( ( )) exp( ( ))
exp( ( )) exp( ( ))
A i a b B i a b
A i a b B i a b
κ κ
κ κ
+ + − +
= + + − +
1 3 1 1 3 1
2 4 2 2 4 2
exp( ( )) exp( ( ))
exp( ( )) exp( ( ))
A i a b B i a b
A i a b B i a b
κ κ κ κ
κ κ κ κ
+ − − +
+ − − +
1/17/2021 Arpan Deyasi,RCCIIT 24
at Z = (a+b) (3rd interface)
3 4
5 6
3 4
A A
M M
B B
   
=   
  
31 1
31 1 1 1
2 2 4
2 2 2 2 4
exp( ( )) exp( ( ))
exp( ( )) exp( ( ))
exp( ( )) exp( ( ))
exp( ( )) exp( ( ))
Ai a b i a b
Bi a b i a b
i a b i a b A
i a b i a b B
κ κ
κ κ κ κ
κ κ
κ κ κ κ
+ − +   
  + − − +  
+ − +  
=   + − − +  
1/17/2021 Arpan Deyasi,RCCIIT 25
at Z = (2a+b) (4th interface)
IV Vψ ψ=
4 2 4 2
5 1 5 1
exp( ) exp( )
exp( ) exp( )
A i z B i z
A i z B i z
κ κ
κ κ
+ −
= + −
4 2 4 2
5 1 5 1
exp( (2 )) exp( (2 ))
exp( (2 )) exp( (2 ))
A i a b B i a b
A i a b B i a b
κ κ
κ κ
+ − − +
+ + − +
1/17/2021 Arpan Deyasi,RCCIIT 26
at Z = (2a+b) (3rd interface)
' 'IV Vψ ψ=
2 4 2 2 4 2
1 5 1 1 5 1
exp( ) exp( )
exp( ) exp( )
i A i z i B i z
i A i z i B i z
κ κ κ κ
κ κ κ κ
− −
= − −
2 4 2 2 4 2
1 5 1 1 5 1
exp( (2 )) exp( (2 ))
exp( (2 )) exp( (2 ))
A i a b B i a b
A i a b B i a b
κ κ κ κ
κ κ κ κ
+ − − +
+ − − +
1/17/2021 Arpan Deyasi,RCCIIT 27
at Z = (2a+b) (3rd interface)
( ) ( )
( ) ( )
4 2 4 2
5 1 5 1
exp (2 ) exp (2 )
exp (2 ) exp (2 )
A i a b B i a b
A i a b B i a b
κ κ
κ κ
+ − − +
+ + − +
2 4 2 2 4 2
1 5 1 1 5 1
exp( (2 )) exp( (2 ))
exp( (2 )) exp( (2 ))
A i a b B i a b
A i a b B i a b
κ κ κ κ
κ κ κ κ
+ − − +
+ − − +
In
matrix
notation
2 2 4
2 2 2 2 4
51 1
51 1 1 1
exp( (2 )) exp( (2 ))
exp( (2 )) exp( (2 ))
exp( (2 )) exp( (2 ))
exp( (2 )) exp( (2 ))
i a b i a b A
i a b i a b B
Ai a b i a b
Bi a b i a b
κ κ
κ κ κ κ
κ κ
κ κ κ κ
+ − +  
  + − − +  
+ − +   
=   + − − +  
1/17/2021 Arpan Deyasi,RCCIIT 28
at Z = (2a+b) (3rd interface)
54
7 8
54
AA
M M
BB
  
=   
   
2 2 4
2 2 2 2 4
51 1
51 1 1 1
exp( (2 )) exp( (2 ))
exp( (2 )) exp( (2 ))
exp( (2 )) exp( (2 ))
exp( (2 )) exp( (2 ))
i a b i a b A
i a b i a b B
Ai a b i a b
Bi a b i a b
κ κ
κ κ κ κ
κ κ
κ κ κ κ
+ − +  
  + − − +  
+ − +   
=   + − − +  
1/17/2021 Arpan Deyasi,RCCIIT 29
54
7 8
54
AA
M M
BB
  
=   
   
1 54
7 8
54
AA
M M
BB
−   
=   
   
1/17/2021 Arpan Deyasi,RCCIIT 30
3 4
5 6
3 4
A A
M M
B B
   
=   
  
13 4
5 6
3 4
A A
M M
B B
−   
=   
  
1 13 5
5 6 7 8
3 5
A A
M M M M
B B
− −   
=   
   
1/17/2021 Arpan Deyasi,RCCIIT 31
32
3 4
32
AA
M M
BB
  
=   
   
1 32
3 4
32
AA
M M
BB
−   
=   
   
1 1 1 52
3 4 5 6 7 8
52
AA
M M M M M M
BB
− − −   
=   
   
1/17/2021 Arpan Deyasi,RCCIIT 32
1 2
1 2
1 2
A A
M M
B B
   
=   
   
11 2
1 2
1 2
A A
M M
B B
−   
=   
   
1 1 1 1 51
1 2 3 4 5 6 7 8
51
AA
M M M M M M M M
BB
− − − −   
=   
   
1/17/2021 Arpan Deyasi,RCCIIT 33
51
51
AA
M
BB
  
=   
   
51 11 12
51 21 22
AA M M
BB M M
    
=     
    
1 1 1 1 51
1 2 3 4 5 6 7 8
51
AA
M M M M M M M M
BB
− − − −   
=   
   
1/17/2021 Arpan Deyasi,RCCIIT 34
1 11 5 12 5A M A M B= +
1 21 5 22 5B M A M B= +
51 11 12
51 21 22
AA M M
BB M M
    
=     
    
1/17/2021 Arpan Deyasi,RCCIIT 35
M11 M12
M21 M22
A1
B1
A5
B5
M12 is the transmission coefficient
when the wave is traversing from port 2 to port 1
and port 1 is terminated by matched load
1/17/2021 Arpan Deyasi,RCCIIT 36
M12 = 0 for practical device
1 11 5 12 5A M A M B= +
1
11
5
A
M
A
=
( )
2
5
*
1 11 11
1A
T E
A M M
 
= = 
 
1/17/2021 Arpan Deyasi,RCCIIT 37
Graphical representation of Transmission Coefficient
E0
E
T(E)
E1 E2 E3

Mais conteúdo relacionado

Mais procurados

DoS of bulk and quantum structures
DoS of bulk and quantum structuresDoS of bulk and quantum structures
DoS of bulk and quantum structures
RCC Institute of Information Technology
 
Capacitor
CapacitorCapacitor
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
Simen Li
 
傳輸線理論
傳輸線理論傳輸線理論
傳輸線理論
祁 周
 
Folded cascode1
Folded cascode1Folded cascode1
Folded cascode1
md Zuber khan
 
Ece 126
Ece 126Ece 126
Ece 126
Rx H
 
"Iedzimta laringomalācija"
"Iedzimta laringomalācija""Iedzimta laringomalācija"
"Iedzimta laringomalācija"
Linda Veidere
 
Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC
Chenming Hu
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copy
KitTrnTun5
 
Diodes and Special Diodes Unit - II by S S Kiran Sir
Diodes and Special Diodes Unit - II by S S Kiran SirDiodes and Special Diodes Unit - II by S S Kiran Sir
Diodes and Special Diodes Unit - II by S S Kiran Sir
sskiran88k
 
Економічні коливання
Економічні коливанняЕкономічні коливання
Економічні коливання
Саша Данильченко
 
Singular Value Decompostion (SVD): Worked example 3
Singular Value Decompostion (SVD): Worked example 3Singular Value Decompostion (SVD): Worked example 3
Singular Value Decompostion (SVD): Worked example 3
Isaac Yowetu
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
Sohar Carr
 

Mais procurados (13)

DoS of bulk and quantum structures
DoS of bulk and quantum structuresDoS of bulk and quantum structures
DoS of bulk and quantum structures
 
Capacitor
CapacitorCapacitor
Capacitor
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
傳輸線理論
傳輸線理論傳輸線理論
傳輸線理論
 
Folded cascode1
Folded cascode1Folded cascode1
Folded cascode1
 
Ece 126
Ece 126Ece 126
Ece 126
 
"Iedzimta laringomalācija"
"Iedzimta laringomalācija""Iedzimta laringomalācija"
"Iedzimta laringomalācija"
 
Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC Ch1 lecture slides Chenming Hu Device for IC
Ch1 lecture slides Chenming Hu Device for IC
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copy
 
Diodes and Special Diodes Unit - II by S S Kiran Sir
Diodes and Special Diodes Unit - II by S S Kiran SirDiodes and Special Diodes Unit - II by S S Kiran Sir
Diodes and Special Diodes Unit - II by S S Kiran Sir
 
Економічні коливання
Економічні коливанняЕкономічні коливання
Економічні коливання
 
Singular Value Decompostion (SVD): Worked example 3
Singular Value Decompostion (SVD): Worked example 3Singular Value Decompostion (SVD): Worked example 3
Singular Value Decompostion (SVD): Worked example 3
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
 

Mais de RCC Institute of Information Technology

Scaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltageScaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltage
RCC Institute of Information Technology
 
Carrier scattering and ballistic transport
Carrier scattering and ballistic transportCarrier scattering and ballistic transport
Carrier scattering and ballistic transport
RCC Institute of Information Technology
 
Electromagnetic Wave Propagations
Electromagnetic Wave PropagationsElectromagnetic Wave Propagations
Electromagnetic Wave Propagations
RCC Institute of Information Technology
 
Biot-Savart law
Biot-Savart lawBiot-Savart law
Ampere's circuital law
Ampere's circuital lawAmpere's circuital law
Magnetic Potentials
Magnetic PotentialsMagnetic Potentials
Reflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission lineReflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission line
RCC Institute of Information Technology
 
Impedance in transmission line
Impedance in transmission lineImpedance in transmission line
Impedance in transmission line
RCC Institute of Information Technology
 
Distortionless Transmission Line
Distortionless Transmission LineDistortionless Transmission Line
Distortionless Transmission Line
RCC Institute of Information Technology
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Dielectrics
DielectricsDielectrics
Electrical Properties of Dipole
Electrical Properties of DipoleElectrical Properties of Dipole
Electrical Properties of Dipole
RCC Institute of Information Technology
 
Application of Gauss' Law
Application of Gauss' LawApplication of Gauss' Law
Application of Gauss' Law
RCC Institute of Information Technology
 
Fundamentals of Gauss' Law
Fundamentals of Gauss' LawFundamentals of Gauss' Law
Fundamentals of Gauss' Law
RCC Institute of Information Technology
 
Fundamentals of Coulomb's Law
Fundamentals of Coulomb's LawFundamentals of Coulomb's Law
Fundamentals of Coulomb's Law
RCC Institute of Information Technology
 
Vector Integration
Vector IntegrationVector Integration
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
RCC Institute of Information Technology
 
Coordinate transformation
Coordinate transformationCoordinate transformation
Coordinate transformation
RCC Institute of Information Technology
 
Moletronics
MoletronicsMoletronics

Mais de RCC Institute of Information Technology (20)

Scaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltageScaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltage
 
Carrier scattering and ballistic transport
Carrier scattering and ballistic transportCarrier scattering and ballistic transport
Carrier scattering and ballistic transport
 
Electromagnetic Wave Propagations
Electromagnetic Wave PropagationsElectromagnetic Wave Propagations
Electromagnetic Wave Propagations
 
Biot-Savart law
Biot-Savart lawBiot-Savart law
Biot-Savart law
 
Ampere's circuital law
Ampere's circuital lawAmpere's circuital law
Ampere's circuital law
 
Magnetic Potentials
Magnetic PotentialsMagnetic Potentials
Magnetic Potentials
 
Reflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission lineReflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission line
 
Impedance in transmission line
Impedance in transmission lineImpedance in transmission line
Impedance in transmission line
 
Distortionless Transmission Line
Distortionless Transmission LineDistortionless Transmission Line
Distortionless Transmission Line
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Quantum Hall Effect
 
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Telegrapher's Equation
 
Dielectrics
DielectricsDielectrics
Dielectrics
 
Electrical Properties of Dipole
Electrical Properties of DipoleElectrical Properties of Dipole
Electrical Properties of Dipole
 
Application of Gauss' Law
Application of Gauss' LawApplication of Gauss' Law
Application of Gauss' Law
 
Fundamentals of Gauss' Law
Fundamentals of Gauss' LawFundamentals of Gauss' Law
Fundamentals of Gauss' Law
 
Fundamentals of Coulomb's Law
Fundamentals of Coulomb's LawFundamentals of Coulomb's Law
Fundamentals of Coulomb's Law
 
Vector Integration
Vector IntegrationVector Integration
Vector Integration
 
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
 
Coordinate transformation
Coordinate transformationCoordinate transformation
Coordinate transformation
 
Moletronics
MoletronicsMoletronics
Moletronics
 

Último

Introdução ao GNSS Sistema Global de Posicionamento
Introdução ao GNSS Sistema Global de PosicionamentoIntrodução ao GNSS Sistema Global de Posicionamento
Introdução ao GNSS Sistema Global de Posicionamento
GeraldoGouveia2
 
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptxMAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
Vilson Stollmeier
 
Dimensionamento de eixo. estudo de caso.pdf
Dimensionamento de eixo. estudo de caso.pdfDimensionamento de eixo. estudo de caso.pdf
Dimensionamento de eixo. estudo de caso.pdf
RodrigoQuintilianode1
 
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL INDÚSTRIA E TRANSFORMAÇÃO DIGITAL ...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL  INDÚSTRIA E TRANSFORMAÇÃO DIGITAL ...AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL  INDÚSTRIA E TRANSFORMAÇÃO DIGITAL ...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL INDÚSTRIA E TRANSFORMAÇÃO DIGITAL ...
Consultoria Acadêmica
 
Workshop Gerdau 2023 - Soluções em Aço - Resumo.pptx
Workshop Gerdau 2023 - Soluções em Aço - Resumo.pptxWorkshop Gerdau 2023 - Soluções em Aço - Resumo.pptx
Workshop Gerdau 2023 - Soluções em Aço - Resumo.pptx
marcosmpereira
 
AE02 - FORMAÇÃO SOCIOCULTURAL E ÉTICA II UNICESUMAR 52/2024
AE02 - FORMAÇÃO SOCIOCULTURAL E ÉTICA II UNICESUMAR 52/2024AE02 - FORMAÇÃO SOCIOCULTURAL E ÉTICA II UNICESUMAR 52/2024
AE02 - FORMAÇÃO SOCIOCULTURAL E ÉTICA II UNICESUMAR 52/2024
Consultoria Acadêmica
 
AE03 - MATERIAIS DA CONSTRUÇÃO MECÂNICA UNICESUMAR 52/2024
AE03 - MATERIAIS DA CONSTRUÇÃO MECÂNICA UNICESUMAR 52/2024AE03 - MATERIAIS DA CONSTRUÇÃO MECÂNICA UNICESUMAR 52/2024
AE03 - MATERIAIS DA CONSTRUÇÃO MECÂNICA UNICESUMAR 52/2024
Consultoria Acadêmica
 
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL ENGENHARIA DA SUSTENTABILIDADE UNIC...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL ENGENHARIA DA SUSTENTABILIDADE UNIC...AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL ENGENHARIA DA SUSTENTABILIDADE UNIC...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL ENGENHARIA DA SUSTENTABILIDADE UNIC...
Consultoria Acadêmica
 

Último (8)

Introdução ao GNSS Sistema Global de Posicionamento
Introdução ao GNSS Sistema Global de PosicionamentoIntrodução ao GNSS Sistema Global de Posicionamento
Introdução ao GNSS Sistema Global de Posicionamento
 
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptxMAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
 
Dimensionamento de eixo. estudo de caso.pdf
Dimensionamento de eixo. estudo de caso.pdfDimensionamento de eixo. estudo de caso.pdf
Dimensionamento de eixo. estudo de caso.pdf
 
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL INDÚSTRIA E TRANSFORMAÇÃO DIGITAL ...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL  INDÚSTRIA E TRANSFORMAÇÃO DIGITAL ...AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL  INDÚSTRIA E TRANSFORMAÇÃO DIGITAL ...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL INDÚSTRIA E TRANSFORMAÇÃO DIGITAL ...
 
Workshop Gerdau 2023 - Soluções em Aço - Resumo.pptx
Workshop Gerdau 2023 - Soluções em Aço - Resumo.pptxWorkshop Gerdau 2023 - Soluções em Aço - Resumo.pptx
Workshop Gerdau 2023 - Soluções em Aço - Resumo.pptx
 
AE02 - FORMAÇÃO SOCIOCULTURAL E ÉTICA II UNICESUMAR 52/2024
AE02 - FORMAÇÃO SOCIOCULTURAL E ÉTICA II UNICESUMAR 52/2024AE02 - FORMAÇÃO SOCIOCULTURAL E ÉTICA II UNICESUMAR 52/2024
AE02 - FORMAÇÃO SOCIOCULTURAL E ÉTICA II UNICESUMAR 52/2024
 
AE03 - MATERIAIS DA CONSTRUÇÃO MECÂNICA UNICESUMAR 52/2024
AE03 - MATERIAIS DA CONSTRUÇÃO MECÂNICA UNICESUMAR 52/2024AE03 - MATERIAIS DA CONSTRUÇÃO MECÂNICA UNICESUMAR 52/2024
AE03 - MATERIAIS DA CONSTRUÇÃO MECÂNICA UNICESUMAR 52/2024
 
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL ENGENHARIA DA SUSTENTABILIDADE UNIC...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL ENGENHARIA DA SUSTENTABILIDADE UNIC...AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL ENGENHARIA DA SUSTENTABILIDADE UNIC...
AE03 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL ENGENHARIA DA SUSTENTABILIDADE UNIC...
 

Calculation of transmission coefficient using Transfer Matrix Technique

  • 1. Course: Quantum Electronics Arpan Deyasi Calculation of Transmission Coefficient using Transfer Matrix Technique 1 Arpan Deyasi,RCCIIT 1/17/2021
  • 2. 1/17/2021 Arpan Deyasi,RCCIIT 2 Single Quantum Well
  • 3. 1/17/2021 Arpan Deyasi,RCCIIT 3 Properties to be evaluated: Electronic Properties 1. Transmission Coefficient 2. Eigen Energy 3. Density of States Optical Properties 1. Absorption Coefficient 2. Oscillator Strength
  • 4. Numerical Techniques may be considered for Calculation Transfer Matrix Technique (TMT) Propagation Matrix Method (PMM) Perturbation Method WKB Approximation Finite Element Method (FEM) Finite Difference Time Domain Method (FDTD) 1/17/2021 4Arpan Deyasi,RCCIIT
  • 5. 1/17/2021 Arpan Deyasi,RCCIIT 5 Q. Which have better accuracy? Q. Which are faster for calculation? We have to optimize between them
  • 6. 1/17/2021 Arpan Deyasi,RCCIIT 6 FDTD and FEM are most accurate as per the literatures TMT & PMM are faster which incorporate fast principle
  • 7. 1/17/2021 Arpan Deyasi,RCCIIT 7 Today we will start the calculation of Electronic Properties using Transfer Matrix Technique We will consider Double Quantum Well structure for our theoretical work
  • 8. 1/17/2021 Arpan Deyasi,RCCIIT 8 Z Z=0 Z=a Z=a+b Z=2a+b a ab DQWTB structure A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 I II III IV V
  • 9. 1/17/2021 Arpan Deyasi,RCCIIT 9 Schrödinger Equation for well region for V=0 2 2 22 ( ) ( ) ( ) 0 d z z z dz ψ κ ψ+ = * 2 2 2 ( )wm z E κ =  Schrödinger Equation for barrier region 2 2 22 ( ) ( ) ( ) 0 d z z z dz ψ κ ψ+ = for V=V0 ( )* 0 1 2 2 ( )bm z E V κ − = 
  • 10. 1/17/2021 Arpan Deyasi,RCCIIT 10 Solution of Schrödinger Equation in different regions 1 1 1 1exp( ) exp( )I A i z B i zψ κ κ= + − 3 1 3 1exp( ) exp( )III A i z B i zψ κ κ= + − 5 1 5 1exp( ) exp( )V A i z B i zψ κ κ= + − 2 2 2 2exp( ) exp( )II A i z B i zψ κ κ= + − 4 2 4 2exp( ) exp( )IV A i z B i zψ κ κ= + −
  • 11. 1/17/2021 Arpan Deyasi,RCCIIT 11 Ben-Daniel Duke Boundary Conditions I IIΨ =Ψ * * 1 1I II I II d d dz dzm m Ψ Ψ = A little modification is required in second boundary condition. Why?
  • 12. 1/17/2021 Arpan Deyasi,RCCIIT 12 Both κ1 and κ2 are functions of m* I IId d dz dz Ψ Ψ = So to avoid dual effect of m*, we will modify the 2nd condition as
  • 13. 1/17/2021 Arpan Deyasi,RCCIIT 13 at Z = 0 (1st interface) I IIψ ψ= 1 1 1 1 2 2 2 2 exp( ) exp( ) exp( ) exp( ) A i z B i z A i z B i z κ κ κ κ + − = + − 1 1 2 2A B A B+ = +
  • 14. 1/17/2021 Arpan Deyasi,RCCIIT 14 at Z = 0 (1st interface) ' 'I IIψ ψ= 1 1 1 1 1 1 2 2 2 2 2 2 exp( ) exp( ) exp( ) exp( ) i A i z i B i z i A i z i B i z κ κ κ κ κ κ κ κ − − = − − 1 1 1 1 2 2 2 2A B A Bκ κ κ κ− = −
  • 15. 1/17/2021 Arpan Deyasi,RCCIIT 15 at Z = 0 (1st interface) 1 1 2 2A B A B+ = + 1 1 1 1 2 2 2 2A B A Bκ κ κ κ− = − In matrix notation 1 2 1 1 1 2 2 2 1 1 1 1A A B Bκ κ κ κ       =      − −     
  • 16. 1/17/2021 Arpan Deyasi,RCCIIT 16 at Z = 0 (1st interface) 1 2 1 1 1 2 2 2 1 1 1 1A A B Bκ κ κ κ       =      − −      1 2 1 2 1 2 A A M M B B     =       
  • 17. 1/17/2021 Arpan Deyasi,RCCIIT 17 at Z = a (2nd interface) II IIIψ ψ= 2 2 2 2 3 1 3 1 exp( ) exp( ) exp( ) exp( ) A i z B i z A i z B i z κ κ κ κ + − = + − 2 2 2 2 3 1 3 1 exp( ) exp( ) exp( ) exp( ) A i a B i a A i a B i a κ κ κ κ + − = + −
  • 18. 1/17/2021 Arpan Deyasi,RCCIIT 18 at Z = a (2nd interface) ' 'II IIIψ ψ= 2 2 2 2 2 2 1 3 1 1 3 1 exp( ) exp( ) exp( ) exp( ) i A i z i B i z i A i z i B i z κ κ κ κ κ κ κ κ − − = − − 2 2 2 2 2 2 1 3 1 1 3 1 exp( ) exp( ) exp( ) exp( ) A i a B i a A i a B i a κ κ κ κ κ κ κ κ − − = − −
  • 19. 1/17/2021 Arpan Deyasi,RCCIIT 19 at Z = a (2nd interface) 2 2 2 2 3 1 3 1exp( ) exp( ) exp( ) exp( )A i a B i a A i a B i aκ κ κ κ+ −= + − 2 2 2 2 2 2 1 3 1 1 3 1 exp( ) exp( ) exp( ) exp( ) A i a B i a A i a B i a κ κ κ κ κ κ κ κ − − = − − In matrix notation 2 2 2 2 2 2 2 2 31 1 31 1 1 1 exp( ) exp( ) exp( ) exp( ) exp( ) exp( ) exp( ) exp( ) i a i a A i a i a B Ai a i a Bi a i a κ κ κ κ κ κ κ κ κ κ κ κ −     − −   − −    =   − − −  
  • 20. 1/17/2021 Arpan Deyasi,RCCIIT 20 at Z = a (2nd interface) 2 2 2 2 2 2 2 2 31 1 31 1 1 1 exp( ) exp( ) exp( ) exp( ) exp( ) exp( ) exp( ) exp( ) i a i a A i a i a B Ai a i a Bi a i a κ κ κ κ κ κ κ κ κ κ κ κ −     − −   − −    =   − − −   32 3 4 32 AA M M BB    =       
  • 21. 1/17/2021 Arpan Deyasi,RCCIIT 21 at Z = (a+b) (3rd interface) III IVψ ψ= 3 1 3 1 4 2 4 2 exp( ) exp( ) exp( ) exp( ) A i z B i z A i z B i z κ κ κ κ + − = + − 3 1 3 1 4 2 4 2 exp( ( ) exp( ( )) exp( ( )) exp( ( )) A i a b B i a b A i a b B i a b κ κ κ κ + + − + + + − +
  • 22. 1/17/2021 Arpan Deyasi,RCCIIT 22 ' 'III IVψ ψ= 1 3 1 1 3 1 2 4 2 2 4 2 exp( ) exp( ) exp( ) exp( ) i A i z i B i z i A i z i B i z κ κ κ κ κ κ κ κ − − = − − 1 3 1 1 3 1 2 4 2 2 4 2 exp( ( )) exp( ( )) exp( ( )) exp( ( )) A i a b B i a b A i a b B i a b κ κ κ κ κ κ κ κ + − − + + − − + at Z = (a+b) (3rd interface)
  • 23. 1/17/2021 Arpan Deyasi,RCCIIT 23 In matrix notation at Z = (a+b) (3rd interface) 31 1 31 1 1 1 2 2 4 2 2 2 2 4 exp( ( )) exp( ( )) exp( ( )) exp( ( )) exp( ( )) exp( ( )) exp( ( )) exp( ( )) Ai a b i a b Bi a b i a b i a b i a b A i a b i a b B κ κ κ κ κ κ κ κ κ κ κ κ + − +      + − − +   + − +   =   + − − +   3 1 3 1 4 2 4 2 exp( ( )) exp( ( )) exp( ( )) exp( ( )) A i a b B i a b A i a b B i a b κ κ κ κ + + − + = + + − + 1 3 1 1 3 1 2 4 2 2 4 2 exp( ( )) exp( ( )) exp( ( )) exp( ( )) A i a b B i a b A i a b B i a b κ κ κ κ κ κ κ κ + − − + + − − +
  • 24. 1/17/2021 Arpan Deyasi,RCCIIT 24 at Z = (a+b) (3rd interface) 3 4 5 6 3 4 A A M M B B     =       31 1 31 1 1 1 2 2 4 2 2 2 2 4 exp( ( )) exp( ( )) exp( ( )) exp( ( )) exp( ( )) exp( ( )) exp( ( )) exp( ( )) Ai a b i a b Bi a b i a b i a b i a b A i a b i a b B κ κ κ κ κ κ κ κ κ κ κ κ + − +      + − − +   + − +   =   + − − +  
  • 25. 1/17/2021 Arpan Deyasi,RCCIIT 25 at Z = (2a+b) (4th interface) IV Vψ ψ= 4 2 4 2 5 1 5 1 exp( ) exp( ) exp( ) exp( ) A i z B i z A i z B i z κ κ κ κ + − = + − 4 2 4 2 5 1 5 1 exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) A i a b B i a b A i a b B i a b κ κ κ κ + − − + + + − +
  • 26. 1/17/2021 Arpan Deyasi,RCCIIT 26 at Z = (2a+b) (3rd interface) ' 'IV Vψ ψ= 2 4 2 2 4 2 1 5 1 1 5 1 exp( ) exp( ) exp( ) exp( ) i A i z i B i z i A i z i B i z κ κ κ κ κ κ κ κ − − = − − 2 4 2 2 4 2 1 5 1 1 5 1 exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) A i a b B i a b A i a b B i a b κ κ κ κ κ κ κ κ + − − + + − − +
  • 27. 1/17/2021 Arpan Deyasi,RCCIIT 27 at Z = (2a+b) (3rd interface) ( ) ( ) ( ) ( ) 4 2 4 2 5 1 5 1 exp (2 ) exp (2 ) exp (2 ) exp (2 ) A i a b B i a b A i a b B i a b κ κ κ κ + − − + + + − + 2 4 2 2 4 2 1 5 1 1 5 1 exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) A i a b B i a b A i a b B i a b κ κ κ κ κ κ κ κ + − − + + − − + In matrix notation 2 2 4 2 2 2 2 4 51 1 51 1 1 1 exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) i a b i a b A i a b i a b B Ai a b i a b Bi a b i a b κ κ κ κ κ κ κ κ κ κ κ κ + − +     + − − +   + − +    =   + − − +  
  • 28. 1/17/2021 Arpan Deyasi,RCCIIT 28 at Z = (2a+b) (3rd interface) 54 7 8 54 AA M M BB    =        2 2 4 2 2 2 2 4 51 1 51 1 1 1 exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) exp( (2 )) i a b i a b A i a b i a b B Ai a b i a b Bi a b i a b κ κ κ κ κ κ κ κ κ κ κ κ + − +     + − − +   + − +    =   + − − +  
  • 29. 1/17/2021 Arpan Deyasi,RCCIIT 29 54 7 8 54 AA M M BB    =        1 54 7 8 54 AA M M BB −    =       
  • 30. 1/17/2021 Arpan Deyasi,RCCIIT 30 3 4 5 6 3 4 A A M M B B     =       13 4 5 6 3 4 A A M M B B −    =       1 13 5 5 6 7 8 3 5 A A M M M M B B − −    =       
  • 31. 1/17/2021 Arpan Deyasi,RCCIIT 31 32 3 4 32 AA M M BB    =        1 32 3 4 32 AA M M BB −    =        1 1 1 52 3 4 5 6 7 8 52 AA M M M M M M BB − − −    =       
  • 32. 1/17/2021 Arpan Deyasi,RCCIIT 32 1 2 1 2 1 2 A A M M B B     =        11 2 1 2 1 2 A A M M B B −    =        1 1 1 1 51 1 2 3 4 5 6 7 8 51 AA M M M M M M M M BB − − − −    =       
  • 33. 1/17/2021 Arpan Deyasi,RCCIIT 33 51 51 AA M BB    =        51 11 12 51 21 22 AA M M BB M M      =           1 1 1 1 51 1 2 3 4 5 6 7 8 51 AA M M M M M M M M BB − − − −    =       
  • 34. 1/17/2021 Arpan Deyasi,RCCIIT 34 1 11 5 12 5A M A M B= + 1 21 5 22 5B M A M B= + 51 11 12 51 21 22 AA M M BB M M      =          
  • 35. 1/17/2021 Arpan Deyasi,RCCIIT 35 M11 M12 M21 M22 A1 B1 A5 B5 M12 is the transmission coefficient when the wave is traversing from port 2 to port 1 and port 1 is terminated by matched load
  • 36. 1/17/2021 Arpan Deyasi,RCCIIT 36 M12 = 0 for practical device 1 11 5 12 5A M A M B= + 1 11 5 A M A = ( ) 2 5 * 1 11 11 1A T E A M M   = =   
  • 37. 1/17/2021 Arpan Deyasi,RCCIIT 37 Graphical representation of Transmission Coefficient E0 E T(E) E1 E2 E3