SlideShare uma empresa Scribd logo
1 de 56
Velammal Engineering College
Department of Computer Science
and Engineering
Welcome…
Ms. R. Amirthavalli,
Asst. Prof,
CSE,
Velammal Engineering College
Slide Sources: Patterson &
Hennessy COD book
website (copyright Morgan
Kaufmann) adapted and
supplemented
Subject Code / Name:
19IT202T /
Computer Architecture
Syllabus – Unit II
UNIT-II ARITHMETIC FOR COMPUTERS
Addition and Subtraction – Multiplication – Division – Floating
Point Representation – Floating Point Addition and Subtraction.
Text Books
• Book 1:
o Name: Computer Organization and Design: The
Hardware/Software Interface
o Authors: David A. Patterson and John L. Hennessy
o Publisher: Morgan Kaufmann / Elsevier
o Edition: Fifth Edition, 2014
• Book 2:
o Name: Computer Organization and Embedded Systems
Interface
o Authors: Carl Hamacher, Zvonko Vranesic, Safwat Zaky and
Naraig Manjikian
o Publisher: Tata McGraw Hill
o Edition: Sixth Edition, 2012
• numbers may be represented in any base
• Computer - base 2 numbers are called binary numbers
• A single digit of a binary number is the “atom” of computing,
since all information is composed of binary digits or bit.
• Alternatives: high or low, on or off , true or false, or 1 or 0
• Least Significant Bit(LSB): The rightmost bit in a MIPS word.
• Most Significant Bit(MSB): The left most bit in a MIPS word.
Numbers
The Binary Number System
• Name
o “binarius” (Latin) => two
• Characteristics
o Two symbols
• 0 1
o Positional
• 1010B ≠ 1100B
• Most (digital) computers use the binary number
system Terminology
• •Bit: a binary digit
• •Byte: (typically) 8 bits
Number Representation
• Three systems:
o Sign-and-magnitude
o 1’s complement
o 2’s complement
• In all three systems, the leftmost bit is 0 for positive
numbers and 1 for negative numbers.
• Positive values have identical representations in all
systems.
• Negative values have different representations.
• Ex: 10112
• Sign Magnitude: One's Complement Two's Complement
000 = 0 000 = 0 000 = 0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = 0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = 0 111 = -1
• Issues:
o balance – equal number of negatives and positives
o ambiguous zero – whether more than one zero representation
o ease of arithmetic operations
• Which representation is best? Can we get both balance and non-ambiguous zero?
Possible Representations
ambiguous
zero
ambiguous
zero
Signed Magnitude
• In this notation, an extra bit is added to the left of the
number to notate its sign.
• 0 indicates +ve and 1 indicates -ve.
• Using 8 bits,
• +13 is 00001101 and +11 is 00001011.
• -13 is 10001101 and -11 is 10001011.
1's Complement
• In this notation positive numbers are represented exactly
as regular binary numbers.
• Negative numbers are represented simply by flipping the
bit, i.e. 0's become 1 and 1's become 0.
• So 13 will be 00001101 and 11 will be 00001011.
• -13 will be 11110010 and -11 will be 11110100.
2's Complement
• In this method a negative number is notated by first
determining the 1's complement of the positive number
and then adding 1 to it.
• So 8-bit -13 will be 11110010
• (1's complement) + 1 = 11110011;
• -11 will be 11110101.
Question
• Find the 2’s-complement of 1011010?
• 0100110
• 32 bit signed numbers:
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten
MIPS – 2’s complement
maxint
minint
Negative integers are exactly those that have leftmost bit 1
• Sign Extension Shortcut: To convert an n-bit integer into an
integer with more than n bits – i.e., to make a narrow integer fill
a wider word – replicate the most significant bit (msb) of the
original number to fill the new bits to its left
o Example: 4-bit 8-bit
0010 = 0000 0010
1010 = 1111 1010
o why is this correct? Prove!
Two's Complement
Operations
Binary Addition
Binary Addition
• 710 + 610
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
Binary Addition
• 710 + 610
0000 0000 0000 0000 0000 0000 0000 011 1 2 = 710
0000 0000 0000 0000 0000 0000 0000 011 0 2 = 610
1 2
Binary Addition
• 710 + 610
1
0000 0000 0000 0000 0000 0000 0000 01 1 12 = 710
0000 0000 0000 0000 0000 0000 0000 01 1 02 = 610
12
0
Binary Addition
• 710 + 610
1
0000 0000 0000 0000 0000 0000 0000 0 1 112 = 710
0000 0000 0000 0000 0000 0000 0000 0 1 102 = 610
012
1
1
Binary Addition
• 710 + 610
1 1
0000 0000 0000 0000 0000 0000 0000 0 1112 = 710
0000 0000 0000 0000 0000 0000 0000 0 1102 = 610
1012
1
Binary Addition
• 710 + 610
11
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
0000 0000 0000 0000 0000 0000 0000 11012
Binary Addition
• 710 + 610
11
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
0000 0000 0000 0000 0000 0000 0000 11012 = 1310
Binary Subtraction
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 011 1 2 = 710
0000 0000 0000 0000 0000 0000 0000 011 0 2 = 610
1
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 01 1 12 = 710
0000 0000 0000 0000 0000 0000 0000 01 1 02 = 610
1
0
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 0 1 112 = 710
0000 0000 0000 0000 0000 0000 0000 0 1 102 = 610
0 01
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
0000 0000 0000 0000 0000 0000 0000 00012
Binary Subtraction
• Direct Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 01112 = 710
0000 0000 0000 0000 0000 0000 0000 01102 = 610
0000 0000 0000 0000 0000 0000 0000 00012 = 110
Binary Subtraction
• 2’s Complement Method
710 - 610
0000 0000 0000 0000 0000 0000 0000 01112 = 710
2’s c of - 610=1111 1111 1111 1111 1111 1111 1111 10102 = 610
0000 0000 0000 0000 0000 0000 0000 00012 = 110
Overflow
• When the actual result of an arithmetic operation is
outside the representable range, an arithmetic
overflow has occurred.
• No overflow when adding a positive and a negative
number
• No overflow when subtracting numbers with the same
sign
• Overflow occurs when adding two positive numbers
produces a negative result, or when adding two
negative numbers produces a positive result.
Overflow
Overflow - Example
• No overflow when adding a positive and a negative
number
• A+B
• A = +3
• B = -2
+3 => 011
-2 => 110
• -----------
+1 => 001
• Result - representable range
n=3 bits => Range: - 4 to +3
+3 011
+2 010
+1 001
0 000
-1 111
-2 110
-3 101
-4 100
Overflow - Example
• No overflow when subtracting numbers with the same
sign
• A - B
• A = - 3
• B = - 2
• (-3) – (-2) => -3 + 2
-3 => 101
+2 => 010
• -----------
-1 => 111
• Result - representable range
n=3 bits => Range: - 4 to +3
+3 011
+2 010
+1 001
0 000
-1 111
-2 110
-3 101
-4 100
Overflow - Example
• Overflow occurs when adding two positive numbers
produces a negative result, or when adding two
negative numbers produces a positive result.
• A + B
• A = + 3
• B = + 3
+3 => 011
+3 => 011
• -----------
-2 => 110
n=3 bits => Range: - 4 to +3
+3 011
+2 010
+1 001
0 000
-1 111
-2 110
-3 101
-4 100
• No overflow when adding a positive and a negative number
• No overflow when subtracting numbers with the same sign
• Overflow occurs when the result has “wrong” sign (verify!):
Operation Operand A Operand B Result
Indicating Overflow
A + B  0  0  0
A + B  0  0  0
A – B  0  0  0
A – B  0  0  0
• Consider the operations A + B, and A – B
o can overflow occur if B is 0 ?
o can overflow occur if A is 0 ?
Detecting Overflow
Multiply
• Grade school shift-add method:
Multiplicand 1000
Multiplier 1001
x 1000
0000
0000
1000
Product 01001000
• m bits x n bits = m+n bit product
• Binary makes it easy:
o multiplier bit 1 => copy multiplicand (1 x multiplicand)
o multiplier bit 0 => place 0 (0 x multiplicand)
x
Shift-add Multiplier
64-bit ALU
Control test
Multiplier
Shift right
Product
Write
Multiplicand
Shift left
64 bits
64 bits
32 bits
Done
1. Test
Multiplier0
1a. Add multiplicand to product and
place the result in Product register
2. Shift the Multiplicand register left 1 bit
3. Shift the Multiplier register right 1 bit
32nd repetition?
Start
Multiplier0 = 0
Multiplier0 = 1
No: < 32 repetitions
Yes: 32 repetitions
Multiplicand register, product register, ALU are
64-bit wide; multiplier register is 32-bit wide
Algorithm
32-bit multiplicand starts at right half of multiplicand register
Product register is initialized at 0
Shift-add Multiplier
Itera Step Multiplier Multiplicand Product
-tion
0 init 0011 0000 0010 0000 0000
values
1 1a 0011 0000 0010 0000 0010
2 0011 0000 0100 0000 0010
3 0001 0000 0100 0000 0010
2 1a 0001 0000 0100 0000 0110
2 0001 0000 1000 0000 0110
3 0000 0000 1000 0000 0110
3 1 0000 0000 1000 0000 0110
2 0000 0001 0000 0000 0110
3 0000 0001 0000 0000 0110
4 1 0000 0001 0000 0000 0110
2 0000 0010 0000 0000 0110
3 0000 0010 0000 0000 0110
Example: 0010 * 0011:
Algorithm
Done
1. Test
Multiplier0
1a. Add multiplicand to product and
place the result in Product register
2. Shift the Multiplicand register left 1 bit
3. Shift the Multiplier register right 1 bit
32nd repetition?
Start
Multiplier0 = 0
Multiplier0 = 1
No: < 32 repetitions
Yes: 32 repetitions
Final Product
Signed Multiplication
Booth Algorithm
The Booth Algorithm:
• The Booth algorithm generates a 2n-bit product
and treats both positive and
• negative 2’scomplement n-bit operands
uniformly.
• The Booth algorithm has two attractive features.
First, it handles both positive and negative multipliers
uniformly.
Second, it achieves some efficiency in the number of
additions required when the multiplier has a few large blocks of
1s.
Signed Multiplication
Booth Algorithm
Booth multiplier recoding table
Booth Algorithm
Booth Recoded Multipliers
Ex:
-6 in 2’s complement is 11010
11010 0
Peform recoding
1 1 0 1 0 0
Add a zero to
the RHS of the
multiplier
0
-1
+1
-1
So this is the
recoded multiplier
0
Booth Multiplication
• Let us perform +13 * -6
Steps:
• Recode the multiplier
-6 when recoded is 0 -1 +1 -1 0
+13 = 0 1 1 0 1
- 6 = 0-1+1-10
Note:
Multiplier bit is :
0 All 0s
+1 multiplicand
-1 2’s c of multiplicand
0 1 1 0 1
X 0-1+1-10
0 0 0 0 0
1 0 0 1 1
0 1 1 0 1
1 0 0 1 1
0 0 0 0 0
1 1 1 1 0 1 1 0 0 1 0
0 0 0 0 0
1 1 1 1
0 0 0
1 1
0
Final Product = 11101100102 = -7810
Carry is ignored
1001 Quotient
Divisor 1000 1001010 Dividend
–1000
10
101
1010
-1000
10 Remainder
• Junior school method: see how big a multiple of the divisor can be
subtracted, creating quotient digit at each step
• Binary makes it easy  first, try 1 * divisor; if too big, 0 * divisor
• Dividend = (Quotient * Divisor) + Remainder
Division
Restoring Division
64-bit ALU
Control
test
Quotient
Shift left
Remainder
Write
Divisor
Shift right
64 bits
64 bits
32 bits
Done
Test Remainder
2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1
3. Shift the Divisor register right 1 bit
33rd repetition?
Start
Remainder < 0
No: < 33 repetitions
Yes: 33 repetitions
2b. Restore the original value by adding
the Divisor register to the Remainder
register and place the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0
1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register
Remainder > 0
–
Divisor register, remainder register, ALU are
64-bit wide; quotient register is 32-bit wide
Algorithm
32-bit divisor starts at left half of divisor register
Remainder register is initialized with the dividend at right
Why 33? We shall see later…
Quotient register is
initialized to be 0
Division
Done
Test Remainder
2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1
3. Shift the Divisor register right 1 bit
33rd repetition?
Start
Remainder < 0
No: < 33 repetitions
Yes: 33 repetitions
2b. Restore the original value by adding
the Divisor register to the Remainder
register and place the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0
1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register
Remainder > 0
–
Itera- Step Quotient Divisor Remainder
tion
0 init 0000 0010 0000 0000 0111
1 1 0000 0010 0000 1110 0111
2b 0000 0010 0000 0000 0111
3 0000 0001 0000 0000 0111
2 1 0000 0001 0000 1111 0111
2b 0000 0001 0000 0000 0111
3 0000 0000 1000 0000 0111
3 1 0000 0000 1000 1111 1111
2b 0000 0000 1000 0000 0111
3 0000 0000 0100 0000 0111
4 1 0000 0000 0100 0000 0011
2a 0001 0000 0100 0000 0011
3 0001 0000 0010 0000 0011
5 1 0001 0000 0010 0000 0001
2a 0011 0000 0010 0000 0001
3 0011 0000 0001 0000 0001
Example: 0111 / 0010:
Algorithm
R = Reminder – Divisor
R = 0000 0111 – 0010 0000
R = 1110 0111
Restore,
R = R + D
R = Reminder – Divisor
R = 0000 0111 – 0001 0000
R = 1111 0111
Restore,
R = R + D
R = Reminder – Divisor
R = 0000 0111 – 0000 1000
R = 1111 1111
Restore,
R = R + D
R = Reminder – Divisor
R = 0000 0111 – 0000 0100
R = 0000 0011
R = Reminder – Divisor
R = 0000 0011 – 0000 0010
R = 0000 0001
Floating Point
• We need a way to represent
o numbers with fractions, e.g., 3.1416
o very small numbers (in absolute value), e.g.,
.00000000023
o very large numbers (in absolute value) , e.g., –
3.15576 * 1046
Floating Point
• Still use a fixed number of bits
o Sign bit S, exponent E, significand F
o Value: (-1)S x (1+F) x 2E
• IEEE 754 standard
4
8
Size Exponent Significand Range
Single precision 32b 8b 23b 2x10+/-38
Double precision 64b 11b 52b 2x10+/-308
S E F
IEEE 754 Floating-point
Standard
• IEEE 754 floating point standard:
o single precision: one word
o double precision: two words
31
sign
bits 30 to 23
8-bit exponent
bits 22 to 0
23-bit significand
31
sign
bits 30 to 20
11-bit exponent
bits 19 to 0
upper 20 bits of 52-bit significand
bits 31 to 0
lower 32 bits of 52-bit significand
Floating Point Exponent
• Exponent specified in biased or excess
notation
• Why?
o To simplify sorting
o Sign bit is MSB to ease sorting
o 2’s complement exponent:
• Large numbers have positive exponent
• Small numbers have negative exponent
o Sorting does not follow naturally
5
0
Excess or Biased
Exponent
• Value: (-1)S x (1 + F) x 2(E-bias)
o SP: bias is 127
o DP: bias is 1023
5
1
Exponent 2’s Compl Excess-127
-127 1000 0001 0000 0000
-126 1000 0010 0000 0001
… … …
+127 0111 1111 1111 1110
Floating Point
Normalization
• S,E,F representation allows more than one
representation for a particular value, e.g.
1.0 x 105 = 0.1 x 106 = 10.0 x 104
o This makes comparison operations difficult
o Prefer to have a single representation
• Hence, normalize by convention:
o Only one digit to the left of the floating point
o In binary, that digit must be a 1
• Since leading ‘1’ is implicit, no need to store it
• Hence, obtain one extra bit of precision for free
5
2
FP Overflow/Underflow
• FP Overflow
o Analogous to integer overflow
o Result is too big to represent
o Means exponent is too big
• FP Underflow
o Result is too small to represent
o Means exponent is too small (too negative)
• Both can raise an exception under IEEE754
5
3
IEEE754 Special Cases
5
4
Single Precision Double Precision Value
Exponent Significand Exponent Significand
0 0 0 0 0
0 nonzero 0 nonzero denormalized
1-254 anything 1-2046 anything fp number
255 0 2047 0 infinity
255 nonzero 2047 nonzero
NaN (Not a
Number)
Show the IEEE 754 binary
representation of the number -0.75ten in
single and double precision
Converting -0.75ten to binary
0.75 x 2 = 1.50 (take only integral part, ie 1)
0.50 x 2 = 1.00
0.11 x 2 -0
After Normalizing the above value is 1.1 x 2 -1
The general representation for a single precision no is
(-1)S x (1 + F) x 2(E-127)
Subtracting the bias 127 from the exponent of
-1.1two x 2-1 yields
(-1)1 x (1+.1000 0000 0000 0000 0000 000two) x 2(126-127)
(Contd…)
(Contd…)
The single precision binary representation of -0.75ten is
then
The double precision representation is
Show the IEEE 754 binary
representation of the number -0.75ten in
single and double precision

Mais conteúdo relacionado

Mais procurados

Mais procurados (19)

Signed Binary Numbers
Signed Binary NumbersSigned Binary Numbers
Signed Binary Numbers
 
Counit2
Counit2Counit2
Counit2
 
Number systems tutorial
Number systems tutorialNumber systems tutorial
Number systems tutorial
 
Binary arithmetic
Binary arithmeticBinary arithmetic
Binary arithmetic
 
Number system
Number systemNumber system
Number system
 
Number system arithmetic
Number system arithmetic Number system arithmetic
Number system arithmetic
 
Mba ebooks
Mba ebooksMba ebooks
Mba ebooks
 
Number system
Number systemNumber system
Number system
 
Number system
Number systemNumber system
Number system
 
Data representation
Data representationData representation
Data representation
 
09 arithmetic
09 arithmetic09 arithmetic
09 arithmetic
 
Number system
Number systemNumber system
Number system
 
Number System
Number SystemNumber System
Number System
 
digital logic circuits, digital component floting and fixed point
digital logic circuits, digital component floting and fixed pointdigital logic circuits, digital component floting and fixed point
digital logic circuits, digital component floting and fixed point
 
Class03
Class03Class03
Class03
 
B sc ii sem unit 2(a) ns
B sc ii sem  unit 2(a) nsB sc ii sem  unit 2(a) ns
B sc ii sem unit 2(a) ns
 
BINARY NUMBER SYSTEM
BINARY NUMBER SYSTEMBINARY NUMBER SYSTEM
BINARY NUMBER SYSTEM
 
Binary coded decimal r004
Binary coded decimal   r004Binary coded decimal   r004
Binary coded decimal r004
 
Numbersystemcont
NumbersystemcontNumbersystemcont
Numbersystemcont
 

Semelhante a ARITHMETIC FOR COMPUTERS

Computer Architecture
Computer ArchitectureComputer Architecture
Computer ArchitectureRavi Kumar
 
UNIT - I.pptx
UNIT - I.pptxUNIT - I.pptx
UNIT - I.pptxamudhak10
 
UNIT - I.pptx
UNIT - I.pptxUNIT - I.pptx
UNIT - I.pptxamudhak10
 
Unit-1 Digital Design and Binary Numbers:
Unit-1 Digital Design and Binary Numbers:Unit-1 Digital Design and Binary Numbers:
Unit-1 Digital Design and Binary Numbers:Asif Iqbal
 
Decimal arithematic operation
Decimal arithematic operationDecimal arithematic operation
Decimal arithematic operationPadmapriyaG
 
Pertemuan 2 - Sistem Bilangan
Pertemuan 2 - Sistem BilanganPertemuan 2 - Sistem Bilangan
Pertemuan 2 - Sistem Bilanganahmad haidaroh
 
L3 ARITHMETIC OPERATIONS.pptx
L3 ARITHMETIC OPERATIONS.pptxL3 ARITHMETIC OPERATIONS.pptx
L3 ARITHMETIC OPERATIONS.pptxHarish257692
 
Digital Logic Design.pptx
Digital Logic Design.pptxDigital Logic Design.pptx
Digital Logic Design.pptxAminaZahid16
 
digital-electronics.pptx
digital-electronics.pptxdigital-electronics.pptx
digital-electronics.pptxsulekhasaxena2
 
Lesson plan on data representation
Lesson plan on data representationLesson plan on data representation
Lesson plan on data representationPooja Tripathi
 
Binary Mathematics Classwork and Hw
Binary Mathematics Classwork and HwBinary Mathematics Classwork and Hw
Binary Mathematics Classwork and HwJoji Thompson
 
Binary Arithmetic
Binary ArithmeticBinary Arithmetic
Binary Arithmeticgavhays
 
Binaty Arithmetic and Binary coding schemes
Binaty Arithmetic and Binary coding schemesBinaty Arithmetic and Binary coding schemes
Binaty Arithmetic and Binary coding schemesDr. Anita Goel
 

Semelhante a ARITHMETIC FOR COMPUTERS (20)

Computer Architecture
Computer ArchitectureComputer Architecture
Computer Architecture
 
UNIT - I.pptx
UNIT - I.pptxUNIT - I.pptx
UNIT - I.pptx
 
UNIT - I.pptx
UNIT - I.pptxUNIT - I.pptx
UNIT - I.pptx
 
CA UNIT II.pptx
CA UNIT II.pptxCA UNIT II.pptx
CA UNIT II.pptx
 
Unit-1 Digital Design and Binary Numbers:
Unit-1 Digital Design and Binary Numbers:Unit-1 Digital Design and Binary Numbers:
Unit-1 Digital Design and Binary Numbers:
 
3810-08.ppt
3810-08.ppt3810-08.ppt
3810-08.ppt
 
Binary Arithmetic
Binary ArithmeticBinary Arithmetic
Binary Arithmetic
 
Decimal arithematic operation
Decimal arithematic operationDecimal arithematic operation
Decimal arithematic operation
 
Pertemuan 2 - Sistem Bilangan
Pertemuan 2 - Sistem BilanganPertemuan 2 - Sistem Bilangan
Pertemuan 2 - Sistem Bilangan
 
L3 ARITHMETIC OPERATIONS.pptx
L3 ARITHMETIC OPERATIONS.pptxL3 ARITHMETIC OPERATIONS.pptx
L3 ARITHMETIC OPERATIONS.pptx
 
DIGITAL ELECTRONICS.pptx
DIGITAL ELECTRONICS.pptxDIGITAL ELECTRONICS.pptx
DIGITAL ELECTRONICS.pptx
 
Arithmetic unit.ppt
Arithmetic unit.pptArithmetic unit.ppt
Arithmetic unit.ppt
 
number system.ppt
number system.pptnumber system.ppt
number system.ppt
 
Digital Logic Design.pptx
Digital Logic Design.pptxDigital Logic Design.pptx
Digital Logic Design.pptx
 
digital-electronics.pptx
digital-electronics.pptxdigital-electronics.pptx
digital-electronics.pptx
 
Lesson plan on data representation
Lesson plan on data representationLesson plan on data representation
Lesson plan on data representation
 
Dpsd lecture-notes
Dpsd lecture-notesDpsd lecture-notes
Dpsd lecture-notes
 
Binary Mathematics Classwork and Hw
Binary Mathematics Classwork and HwBinary Mathematics Classwork and Hw
Binary Mathematics Classwork and Hw
 
Binary Arithmetic
Binary ArithmeticBinary Arithmetic
Binary Arithmetic
 
Binaty Arithmetic and Binary coding schemes
Binaty Arithmetic and Binary coding schemesBinaty Arithmetic and Binary coding schemes
Binaty Arithmetic and Binary coding schemes
 

Último

Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfEr. Suman Jyoti
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfrs7054576148
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfRagavanV2
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 

Último (20)

Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 

ARITHMETIC FOR COMPUTERS

  • 1. Velammal Engineering College Department of Computer Science and Engineering Welcome… Ms. R. Amirthavalli, Asst. Prof, CSE, Velammal Engineering College Slide Sources: Patterson & Hennessy COD book website (copyright Morgan Kaufmann) adapted and supplemented
  • 2. Subject Code / Name: 19IT202T / Computer Architecture
  • 3. Syllabus – Unit II UNIT-II ARITHMETIC FOR COMPUTERS Addition and Subtraction – Multiplication – Division – Floating Point Representation – Floating Point Addition and Subtraction.
  • 4. Text Books • Book 1: o Name: Computer Organization and Design: The Hardware/Software Interface o Authors: David A. Patterson and John L. Hennessy o Publisher: Morgan Kaufmann / Elsevier o Edition: Fifth Edition, 2014 • Book 2: o Name: Computer Organization and Embedded Systems Interface o Authors: Carl Hamacher, Zvonko Vranesic, Safwat Zaky and Naraig Manjikian o Publisher: Tata McGraw Hill o Edition: Sixth Edition, 2012
  • 5. • numbers may be represented in any base • Computer - base 2 numbers are called binary numbers • A single digit of a binary number is the “atom” of computing, since all information is composed of binary digits or bit. • Alternatives: high or low, on or off , true or false, or 1 or 0 • Least Significant Bit(LSB): The rightmost bit in a MIPS word. • Most Significant Bit(MSB): The left most bit in a MIPS word. Numbers
  • 6. The Binary Number System • Name o “binarius” (Latin) => two • Characteristics o Two symbols • 0 1 o Positional • 1010B ≠ 1100B • Most (digital) computers use the binary number system Terminology • •Bit: a binary digit • •Byte: (typically) 8 bits
  • 7. Number Representation • Three systems: o Sign-and-magnitude o 1’s complement o 2’s complement • In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative numbers. • Positive values have identical representations in all systems. • Negative values have different representations. • Ex: 10112
  • 8. • Sign Magnitude: One's Complement Two's Complement 000 = 0 000 = 0 000 = 0 001 = +1 001 = +1 001 = +1 010 = +2 010 = +2 010 = +2 011 = +3 011 = +3 011 = +3 100 = 0 100 = -3 100 = -4 101 = -1 101 = -2 101 = -3 110 = -2 110 = -1 110 = -2 111 = -3 111 = 0 111 = -1 • Issues: o balance – equal number of negatives and positives o ambiguous zero – whether more than one zero representation o ease of arithmetic operations • Which representation is best? Can we get both balance and non-ambiguous zero? Possible Representations ambiguous zero ambiguous zero
  • 9. Signed Magnitude • In this notation, an extra bit is added to the left of the number to notate its sign. • 0 indicates +ve and 1 indicates -ve. • Using 8 bits, • +13 is 00001101 and +11 is 00001011. • -13 is 10001101 and -11 is 10001011.
  • 10. 1's Complement • In this notation positive numbers are represented exactly as regular binary numbers. • Negative numbers are represented simply by flipping the bit, i.e. 0's become 1 and 1's become 0. • So 13 will be 00001101 and 11 will be 00001011. • -13 will be 11110010 and -11 will be 11110100.
  • 11. 2's Complement • In this method a negative number is notated by first determining the 1's complement of the positive number and then adding 1 to it. • So 8-bit -13 will be 11110010 • (1's complement) + 1 = 11110011; • -11 will be 11110101.
  • 12. Question • Find the 2’s-complement of 1011010? • 0100110
  • 13. • 32 bit signed numbers: 0000 0000 0000 0000 0000 0000 0000 0000two = 0ten 0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten 0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten ... 0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten 0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten 1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten 1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten 1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten ... 1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten 1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten 1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten MIPS – 2’s complement maxint minint Negative integers are exactly those that have leftmost bit 1
  • 14. • Sign Extension Shortcut: To convert an n-bit integer into an integer with more than n bits – i.e., to make a narrow integer fill a wider word – replicate the most significant bit (msb) of the original number to fill the new bits to its left o Example: 4-bit 8-bit 0010 = 0000 0010 1010 = 1111 1010 o why is this correct? Prove! Two's Complement Operations
  • 16. Binary Addition • 710 + 610 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610
  • 17. Binary Addition • 710 + 610 0000 0000 0000 0000 0000 0000 0000 011 1 2 = 710 0000 0000 0000 0000 0000 0000 0000 011 0 2 = 610 1 2
  • 18. Binary Addition • 710 + 610 1 0000 0000 0000 0000 0000 0000 0000 01 1 12 = 710 0000 0000 0000 0000 0000 0000 0000 01 1 02 = 610 12 0
  • 19. Binary Addition • 710 + 610 1 0000 0000 0000 0000 0000 0000 0000 0 1 112 = 710 0000 0000 0000 0000 0000 0000 0000 0 1 102 = 610 012 1 1
  • 20. Binary Addition • 710 + 610 1 1 0000 0000 0000 0000 0000 0000 0000 0 1112 = 710 0000 0000 0000 0000 0000 0000 0000 0 1102 = 610 1012 1
  • 21. Binary Addition • 710 + 610 11 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610 0000 0000 0000 0000 0000 0000 0000 11012
  • 22. Binary Addition • 710 + 610 11 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610 0000 0000 0000 0000 0000 0000 0000 11012 = 1310
  • 24. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610
  • 25. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 011 1 2 = 710 0000 0000 0000 0000 0000 0000 0000 011 0 2 = 610 1
  • 26. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 01 1 12 = 710 0000 0000 0000 0000 0000 0000 0000 01 1 02 = 610 1 0
  • 27. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 0 1 112 = 710 0000 0000 0000 0000 0000 0000 0000 0 1 102 = 610 0 01
  • 28. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610 0000 0000 0000 0000 0000 0000 0000 00012
  • 29. Binary Subtraction • Direct Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 01112 = 710 0000 0000 0000 0000 0000 0000 0000 01102 = 610 0000 0000 0000 0000 0000 0000 0000 00012 = 110
  • 30. Binary Subtraction • 2’s Complement Method 710 - 610 0000 0000 0000 0000 0000 0000 0000 01112 = 710 2’s c of - 610=1111 1111 1111 1111 1111 1111 1111 10102 = 610 0000 0000 0000 0000 0000 0000 0000 00012 = 110
  • 31. Overflow • When the actual result of an arithmetic operation is outside the representable range, an arithmetic overflow has occurred. • No overflow when adding a positive and a negative number • No overflow when subtracting numbers with the same sign • Overflow occurs when adding two positive numbers produces a negative result, or when adding two negative numbers produces a positive result.
  • 33. Overflow - Example • No overflow when adding a positive and a negative number • A+B • A = +3 • B = -2 +3 => 011 -2 => 110 • ----------- +1 => 001 • Result - representable range n=3 bits => Range: - 4 to +3 +3 011 +2 010 +1 001 0 000 -1 111 -2 110 -3 101 -4 100
  • 34. Overflow - Example • No overflow when subtracting numbers with the same sign • A - B • A = - 3 • B = - 2 • (-3) – (-2) => -3 + 2 -3 => 101 +2 => 010 • ----------- -1 => 111 • Result - representable range n=3 bits => Range: - 4 to +3 +3 011 +2 010 +1 001 0 000 -1 111 -2 110 -3 101 -4 100
  • 35. Overflow - Example • Overflow occurs when adding two positive numbers produces a negative result, or when adding two negative numbers produces a positive result. • A + B • A = + 3 • B = + 3 +3 => 011 +3 => 011 • ----------- -2 => 110 n=3 bits => Range: - 4 to +3 +3 011 +2 010 +1 001 0 000 -1 111 -2 110 -3 101 -4 100
  • 36. • No overflow when adding a positive and a negative number • No overflow when subtracting numbers with the same sign • Overflow occurs when the result has “wrong” sign (verify!): Operation Operand A Operand B Result Indicating Overflow A + B  0  0  0 A + B  0  0  0 A – B  0  0  0 A – B  0  0  0 • Consider the operations A + B, and A – B o can overflow occur if B is 0 ? o can overflow occur if A is 0 ? Detecting Overflow
  • 37. Multiply • Grade school shift-add method: Multiplicand 1000 Multiplier 1001 x 1000 0000 0000 1000 Product 01001000 • m bits x n bits = m+n bit product • Binary makes it easy: o multiplier bit 1 => copy multiplicand (1 x multiplicand) o multiplier bit 0 => place 0 (0 x multiplicand) x
  • 38. Shift-add Multiplier 64-bit ALU Control test Multiplier Shift right Product Write Multiplicand Shift left 64 bits 64 bits 32 bits Done 1. Test Multiplier0 1a. Add multiplicand to product and place the result in Product register 2. Shift the Multiplicand register left 1 bit 3. Shift the Multiplier register right 1 bit 32nd repetition? Start Multiplier0 = 0 Multiplier0 = 1 No: < 32 repetitions Yes: 32 repetitions Multiplicand register, product register, ALU are 64-bit wide; multiplier register is 32-bit wide Algorithm 32-bit multiplicand starts at right half of multiplicand register Product register is initialized at 0
  • 39. Shift-add Multiplier Itera Step Multiplier Multiplicand Product -tion 0 init 0011 0000 0010 0000 0000 values 1 1a 0011 0000 0010 0000 0010 2 0011 0000 0100 0000 0010 3 0001 0000 0100 0000 0010 2 1a 0001 0000 0100 0000 0110 2 0001 0000 1000 0000 0110 3 0000 0000 1000 0000 0110 3 1 0000 0000 1000 0000 0110 2 0000 0001 0000 0000 0110 3 0000 0001 0000 0000 0110 4 1 0000 0001 0000 0000 0110 2 0000 0010 0000 0000 0110 3 0000 0010 0000 0000 0110 Example: 0010 * 0011: Algorithm Done 1. Test Multiplier0 1a. Add multiplicand to product and place the result in Product register 2. Shift the Multiplicand register left 1 bit 3. Shift the Multiplier register right 1 bit 32nd repetition? Start Multiplier0 = 0 Multiplier0 = 1 No: < 32 repetitions Yes: 32 repetitions Final Product
  • 40. Signed Multiplication Booth Algorithm The Booth Algorithm: • The Booth algorithm generates a 2n-bit product and treats both positive and • negative 2’scomplement n-bit operands uniformly. • The Booth algorithm has two attractive features. First, it handles both positive and negative multipliers uniformly. Second, it achieves some efficiency in the number of additions required when the multiplier has a few large blocks of 1s.
  • 41. Signed Multiplication Booth Algorithm Booth multiplier recoding table
  • 42. Booth Algorithm Booth Recoded Multipliers Ex: -6 in 2’s complement is 11010 11010 0 Peform recoding 1 1 0 1 0 0 Add a zero to the RHS of the multiplier 0 -1 +1 -1 So this is the recoded multiplier 0
  • 43. Booth Multiplication • Let us perform +13 * -6 Steps: • Recode the multiplier -6 when recoded is 0 -1 +1 -1 0 +13 = 0 1 1 0 1 - 6 = 0-1+1-10 Note: Multiplier bit is : 0 All 0s +1 multiplicand -1 2’s c of multiplicand 0 1 1 0 1 X 0-1+1-10 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 Final Product = 11101100102 = -7810 Carry is ignored
  • 44. 1001 Quotient Divisor 1000 1001010 Dividend –1000 10 101 1010 -1000 10 Remainder • Junior school method: see how big a multiple of the divisor can be subtracted, creating quotient digit at each step • Binary makes it easy  first, try 1 * divisor; if too big, 0 * divisor • Dividend = (Quotient * Divisor) + Remainder Division
  • 45. Restoring Division 64-bit ALU Control test Quotient Shift left Remainder Write Divisor Shift right 64 bits 64 bits 32 bits Done Test Remainder 2a. Shift the Quotient register to the left, setting the new rightmost bit to 1 3. Shift the Divisor register right 1 bit 33rd repetition? Start Remainder < 0 No: < 33 repetitions Yes: 33 repetitions 2b. Restore the original value by adding the Divisor register to the Remainder register and place the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0 1. Subtract the Divisor register from the Remainder register and place the result in the Remainder register Remainder > 0 – Divisor register, remainder register, ALU are 64-bit wide; quotient register is 32-bit wide Algorithm 32-bit divisor starts at left half of divisor register Remainder register is initialized with the dividend at right Why 33? We shall see later… Quotient register is initialized to be 0
  • 46. Division Done Test Remainder 2a. Shift the Quotient register to the left, setting the new rightmost bit to 1 3. Shift the Divisor register right 1 bit 33rd repetition? Start Remainder < 0 No: < 33 repetitions Yes: 33 repetitions 2b. Restore the original value by adding the Divisor register to the Remainder register and place the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0 1. Subtract the Divisor register from the Remainder register and place the result in the Remainder register Remainder > 0 – Itera- Step Quotient Divisor Remainder tion 0 init 0000 0010 0000 0000 0111 1 1 0000 0010 0000 1110 0111 2b 0000 0010 0000 0000 0111 3 0000 0001 0000 0000 0111 2 1 0000 0001 0000 1111 0111 2b 0000 0001 0000 0000 0111 3 0000 0000 1000 0000 0111 3 1 0000 0000 1000 1111 1111 2b 0000 0000 1000 0000 0111 3 0000 0000 0100 0000 0111 4 1 0000 0000 0100 0000 0011 2a 0001 0000 0100 0000 0011 3 0001 0000 0010 0000 0011 5 1 0001 0000 0010 0000 0001 2a 0011 0000 0010 0000 0001 3 0011 0000 0001 0000 0001 Example: 0111 / 0010: Algorithm R = Reminder – Divisor R = 0000 0111 – 0010 0000 R = 1110 0111 Restore, R = R + D R = Reminder – Divisor R = 0000 0111 – 0001 0000 R = 1111 0111 Restore, R = R + D R = Reminder – Divisor R = 0000 0111 – 0000 1000 R = 1111 1111 Restore, R = R + D R = Reminder – Divisor R = 0000 0111 – 0000 0100 R = 0000 0011 R = Reminder – Divisor R = 0000 0011 – 0000 0010 R = 0000 0001
  • 47. Floating Point • We need a way to represent o numbers with fractions, e.g., 3.1416 o very small numbers (in absolute value), e.g., .00000000023 o very large numbers (in absolute value) , e.g., – 3.15576 * 1046
  • 48. Floating Point • Still use a fixed number of bits o Sign bit S, exponent E, significand F o Value: (-1)S x (1+F) x 2E • IEEE 754 standard 4 8 Size Exponent Significand Range Single precision 32b 8b 23b 2x10+/-38 Double precision 64b 11b 52b 2x10+/-308 S E F
  • 49. IEEE 754 Floating-point Standard • IEEE 754 floating point standard: o single precision: one word o double precision: two words 31 sign bits 30 to 23 8-bit exponent bits 22 to 0 23-bit significand 31 sign bits 30 to 20 11-bit exponent bits 19 to 0 upper 20 bits of 52-bit significand bits 31 to 0 lower 32 bits of 52-bit significand
  • 50. Floating Point Exponent • Exponent specified in biased or excess notation • Why? o To simplify sorting o Sign bit is MSB to ease sorting o 2’s complement exponent: • Large numbers have positive exponent • Small numbers have negative exponent o Sorting does not follow naturally 5 0
  • 51. Excess or Biased Exponent • Value: (-1)S x (1 + F) x 2(E-bias) o SP: bias is 127 o DP: bias is 1023 5 1 Exponent 2’s Compl Excess-127 -127 1000 0001 0000 0000 -126 1000 0010 0000 0001 … … … +127 0111 1111 1111 1110
  • 52. Floating Point Normalization • S,E,F representation allows more than one representation for a particular value, e.g. 1.0 x 105 = 0.1 x 106 = 10.0 x 104 o This makes comparison operations difficult o Prefer to have a single representation • Hence, normalize by convention: o Only one digit to the left of the floating point o In binary, that digit must be a 1 • Since leading ‘1’ is implicit, no need to store it • Hence, obtain one extra bit of precision for free 5 2
  • 53. FP Overflow/Underflow • FP Overflow o Analogous to integer overflow o Result is too big to represent o Means exponent is too big • FP Underflow o Result is too small to represent o Means exponent is too small (too negative) • Both can raise an exception under IEEE754 5 3
  • 54. IEEE754 Special Cases 5 4 Single Precision Double Precision Value Exponent Significand Exponent Significand 0 0 0 0 0 0 nonzero 0 nonzero denormalized 1-254 anything 1-2046 anything fp number 255 0 2047 0 infinity 255 nonzero 2047 nonzero NaN (Not a Number)
  • 55. Show the IEEE 754 binary representation of the number -0.75ten in single and double precision Converting -0.75ten to binary 0.75 x 2 = 1.50 (take only integral part, ie 1) 0.50 x 2 = 1.00 0.11 x 2 -0 After Normalizing the above value is 1.1 x 2 -1 The general representation for a single precision no is (-1)S x (1 + F) x 2(E-127) Subtracting the bias 127 from the exponent of -1.1two x 2-1 yields (-1)1 x (1+.1000 0000 0000 0000 0000 000two) x 2(126-127) (Contd…)
  • 56. (Contd…) The single precision binary representation of -0.75ten is then The double precision representation is Show the IEEE 754 binary representation of the number -0.75ten in single and double precision