SlideShare uma empresa Scribd logo
1 de 137
Estructura  de  hidrocarburos:Alcanos
Clases de Hidrocarburos
Hidrocarburos Aromáticos Alifáticos
Hidrocarburos Aromáticos Alifáticos Alcanos Alquenos Alquinos
H H H H C C H H Hidrocarburos 	Los alcanos son hidrocarburos en los cualestodos los enlaces son sencillos. Alifáticos Alcanos
H H C C H H Hidrocarburos 	Los alquenos son hidrocarburosquecontienen un doble enlace carbono-carbono. Alifáticos Alquenos
HC CH Hidrocarburos 	Los alquinos son hidrocarburosquecontienen un triple enlace carbono-carbono. Alifáticos Alquinos
H H H H H H Hidrocarburos 	Los hidrocarburosaromáticosmáscomúnes son los quecontienen un anillo de benzeno. Aromáticos
CnH2n+2 Introducción a los Alcanos:Metano, Etano y Propano
Los Alcanosmás Simples Metano	(CH4)  	CH4 Etano	(C2H6)	CH3CH3 Propano	(C3H8)	CH3CH2CH3 peb-160°C peb-89°C peb-42°C
Hibridación sp3 yEnlaces en el Metano
Estructura del Metano Tetrahédrica ángulos de enlace  = 109.5° longitud de enlace = 110 pm sin embargo la estructurapareceinconsistentecon la configuraciónelectrónica del carbono
ConfiguraciónElectrónica del carbono solo dos electronesdesapareados debeformar enlaces con solo dos átomos de hidrógeno los enlaces debenestar en ángulo recto uno con respectoal otro 2p 2s
Hibridación Orbital sp3 30´s  Linus Pauling 2p Se promueve un electrón del orbital 2s al 2p 2s
Hibridación Orbital sp3 2p 2p 2s 2s
Hibridación Orbital sp3 2p Mezclar (hibridizar) el orbital 2s y los tresorbitales 2p 2s
Hibridación Orbital sp3 2p 2 sp3 4 orbitalessemillenosequivalentes son consistentes con cuatro enlaces y la geometríatetrahédrica 2s
Hibridación Orbital sp3
PropiedadesNodales de los Orbitales p + – + s
Forma de los orbitaleshíbridossp3 p + – Toma el orbital s y colócalo en la parte superior del orbital p + s
+ Forma de los orbitaleshíbridos sp3 s + p + – Complemento de ondaelectrónica en regionesdonde el signoes el mismo Interferenciadestructiva en regiones de  signoopuesto
– híbridosp + el orbital mostradoeshíbridosp procesoanalogousandotresorbitalesp y uno sdahíbridossp3 la forma de los híbridossp3es similar Forma de los orbitaleshíbridossp3
+ – híbridosp - el orbital híbrido no essimétrico - mayor probabilidad de encontrar un electrón en un lado del núcleoque en otro - produce enlaces másfuertes Forma de los orbitaleshíbridossp3
+ – – El enlace   C—H en el Metano Traslape en fase de un orbital semilleno 1s de hidrógeno con un orbital híbridosemillenosp3 de carbono:  + sp3 s H C produce un enlace  . + H—C  C H
Justificaciónpara la Hibridación Orbital  consistente con la estructura del metano permite la formación de 4 enlaces en lugar de 2 los enlaces involucrados en los orbitaleshíbridossp3 son másfuertesque los involucrados en el traslapes-s o p-p
Enlaces en el Etano
Estructura del Etano C2H6 CH3CH3 geometríatetrahédrica en cadacarbono distancia de enlace C—H = 110 pm distancia de enlace C—C = 153 pm
El enlace  C—C en el Etano Traslape en fase de un orbital híbridosemillenosp3  de un carbono con un orbital híbridosemillenosp3de otro. 	El traslapees a lo largo del ejeinternuclearparadar un enlace .
El enlace  C—C en el Etano Traslape en fase de un orbital híbridosemillenosp3  de un carbono con un orbital híbridosemillenosp3de otro. 	El traslapees a lo largo del ejeinternuclearparadar un enlace .
C4H10 Alcanos Isoméricos :Los Butanos
n-Butano	CH3CH2CH2CH3 Isobutano	(CH3)3CH bp -0.4°C bp -10.2°C
n-Alcanos Superiores
CH3CH2CH2CH2CH3 n-Pentano CH3CH2CH2CH2CH2CH3 n-Hexano CH3CH2CH2CH2CH2CH2CH3 n-Heptano
Los Isómeros C5H12
C5H12 (CH3)2CHCH2CH3 CH3CH2CH2CH2CH3 Isopentano n-Pentano (CH3)4C Neopentano
¿Cuántosisómeros? El número de isómeros se incrementa al incrementar el número de carbonos. No hay unamanerasencilla de predecircuántosisómeros hay paraunafórmula molecular en particular.
Tabla 1 Número de IsómerosConstitucionales de Alcanos CH4	1	 C2H6	1 C3H8	1	 C4H10	2	 C5H12	3	 C6H14	5	 C7H16	9
Tabla 1 Número de IsómerosConstitucionales de Alcanos CH4	1	 C8H18	18 C2H6	1	 C9H20	35 C3H8	1	 C10H22	75 C4H10	2	 C15H32	4,347 C5H12	3	 C20H42	366,319 C6H14	5	 C40H82	62,491,178,805,831 C7H16	9
Propiedades Físcas delos Alcanos y Cicloalcanos
Boiling Points of Alkanes  	governed by strength of intermolecular attractive forces alkanes are nonpolar, so dipole-dipole and dipole-induced dipole forces are absent only forces of intermolecular attraction are induced dipole-induced dipole forces
Induced dipole-Induced dipole attractive forces + – + – 	two nonpolar molecules center of positive charge and center of negative charge coincide in each
Induced dipole-Induced dipole attractive forces + – + – 	movement of electrons creates an instantaneous dipole in one molecule (left)
Induced dipole-Induced dipole attractive forces – + – + 	temporary dipole in one molecule (left) induces a complementary dipole in other molecule (right)
Induced dipole-Induced dipole attractive forces – – + + 	temporary dipole in one molecule (left) induces a complementary dipole in other molecule (right)
Induced dipole-Induced dipole attractive forces – – + + 	the result is a small attractive force between the two molecules
Induced dipole-Induced dipole attractive forces – – + + 	the result is a small attractive force between the two molecules
Boiling Points increase with increasing number of carbons 	more atoms, more electrons, more 	opportunities for induced dipole-induced	dipole forces  decrease with chain branching 	branched molecules are more compact with	smaller surface area—fewer points of contact	with other molecules
Boiling Points increase with increasing number of carbons 	more atoms, more electrons, more 	opportunities for induced dipole-induced	dipole forces  Heptanebp 98°C Octanebp 125°C Nonanebp 150°C
Boiling Points decrease with chain branching 	branched molecules are more compact with	smaller surface area—fewer points of contact	with other molecules  Octane:  bp 125°C 2-Methylheptane:  bp 118°C 2,2,3,3-Tetramethylbutane:  bp 107°C
Propiedades Químicas:Combustión de Alcanos All alkanes burn in air to givecarbon dioxide and water.
Heats of Combustion increase with increasing number of carbons 	more moles of O2 consumed, more moles	of CO2 and H2O formed
Heats of Combustion Heptane 4817 kJ/mol 654 kJ/mol Octane 5471 kJ/mol 654 kJ/mol Nonane 6125 kJ/mol
Heats of Combustion increase with increasing number of carbons 	more moles of O2 consumed, more moles	of CO2 and H2O formed decrease with chain branching 	branched molecules are more stable	(have less potential energy) than their	unbranched isomers
5 kJ/mol 8 kJ/mol 6 kJ/mol Heats of Combustion 5471 kJ/mol 5466 kJ/mol 5458 kJ/mol 5452 kJ/mol
Estructura  de Alquenos
Alkenes Alkenes are hydrocarbons that contain a carbon-carbon double bond also called "olefins" characterized by molecular formula CnH2n said to be "unsaturated"
Hibridación sp2y Enlaces en el Etileno
Structure of Ethylene C2H4 H2C=CH2 planar bond angles:  	close to 120° bond distances: 	C—H = 110 pm	C=C  = 134 pm
sp2 Orbital Hybridization 2p Promote an electron from the 2s to the 2p orbital  2s
sp2 Orbital Hybridization 2p 2p 2s 2s
sp2 Orbital Hybridization 2p Mix together (hybridize) the 2s orbital and two of the three 2p orbitals 2s
sp2 Orbital Hybridization 2p 2 sp2 3 equivalent half-filled sp2 hybrid orbitals plus 1 p orbital left unhybridized 2s
sp2 Orbital Hybridization
     sp2 Orbital Hybridization p 2 sp2
 Bonding in Ethylene the unhybridized p orbital of carbon is involved in  bondingto the other carbon  p 2 sp2
 Bonding in Ethylene
 Bonding in Ethylene
Isomerismo en Alquenos
Isomers Isomers are different compounds thathave the same molecular formula.
same connnectivity;different arrangementof atoms in space different connectivity Isomers  Constitutional isomers Stereoisomers
Isomers  Constitutional isomers Stereoisomers consider the isomeric alkenes of molecular formula C4H8
H3C H CH2CH3 H C C C C H3C H H H CH3 H3C H H3C C C C C H H H CH3 1-Butene 2-Methylpropene trans-2-Butene cis-2-Butene
H3C H CH2CH3 H C C C C H3C H H H CH3 H3C C C H H 1-Butene 2-Methylpropene Constitutional isomers cis-2-Butene
H3C H CH2CH3 H C C C C H3C H H H H H3C C C H CH3 1-Butene 2-Methylpropene Constitutional isomers trans-2-Butene
CH3 H3C H H3C C C C C H H H CH3 Stereoisomers trans-2-Butene cis-2-Butene
Stereochemical Notation 	trans (identical or  	analogous substituents  	on opposite sides) cis (identical or analogous substitutents on same side)
Figure Interconversion of stereoisomericalkenes does not normally occur.Requires that component of doublebond be broken. cis trans
Figure cis trans
Naming Steroisomeric Alkenesby the E-Z Notational System
C C Stereochemical Notation CH2(CH2)6CO2H CH3(CH2)6CH2 Oleic acid H H 	cis and trans are useful when substituents are identical or analogous (oleic acid has a cis double bond) cis and trans are ambiguous when analogies are not obvious
Cl Br C C H F Example What is needed:1)  	systematic body of rules for ranking   			substituents 	2)	  	new set of stereochemical symbols other		than cis and trans
C C The E-Z Notational System E :	higher ranked substituents on opposite sides  Z :	higher ranked substituents on same side  higher lower
C C The E-Z Notational System E :	higher ranked substituents on opposite sides  Z :	higher ranked substituents on same side  lower higher
higher higher C C C C lower lower Zusammen The E-Z Notational System E :	higher ranked substituents on opposite sides  Z :	higher ranked substituents on same side  higher lower higher lower Entgegen
C C C C The E-Z Notational System Question:  How are substituents ranked? Answer:  	They are ranked in order of 	 decreasing atomic number. higher lower higher higher higher lower lower lower Entgegen Zusammen
The Cahn-Ingold-Prelog (CIP) System 	The system that we use was devised by	R. S. Cahn	Sir Christopher Ingold	Vladimir Prelog 	Their rules for ranking groups were devised in connection with a different kind of stereochemistry—one that we will discuss later—but have been adapted to alkene stereochemistry.
higher higher Br Cl C C F H lower lower Table   CIP Rules (1)	Higher atomic number outranks lower 	atomic number Br > F	Cl  >  H
higher higher Br Cl C C F H lower lower Table   CIP Rules (1)	Higher atomic number outranks lower 	atomic number Br > F	Cl  >  H (Z )-1-Bromo-2-chloro-1-fluoroethene
—C(H,H,H) —C(C,H,H) Table   CIP Rules (2)  When two atoms are identical, compare the 	atoms attached to them on the basis of their 	atomic numbers. Precedence is established 	at the first point of difference.  —CH2CH3 outranks —CH3
Table   CIP Rules (3)  Work outward from the point of attachment, 	comparing all the atoms attached to a 	particular atom before proceeding further	along the chain.  —CH(CH3)2 outranks —CH2CH2OH —C(C,H,H) —C(C,C,H)
Table   CIP Rules (4)  	Evaluate substituents one by one.  	Don't add atomic numbers within groups. —CH2OH  outranks —C(CH3)3 —C(O,H,H) —C(C,C,C)
Table   CIP Rules (5)	An atom that is multiply bonded to another 	atom is considered to be replicated as a  	substituent on that atom. —CH=O  outranks —CH2OH —C(O,O,H) —C(O,H,H)
Table   CIP Rules 	A table of commonly encountered  substituents ranked according to precedence is given on the inside back cover of the text.
Propiedades Físicas de Alquenos
H H C C H H H3C H C C H H  = 0.3 D Dipole moments 	What is direction of dipole moment? 	Does a methyl group donate electrons to the double bond, or does it withdraw them?  = 0 D
 = 1.4 D H H C C H H Cl H C C H H H3C H C C H H  = 0.3 D Dipole moments 	Chlorine is electronegative and attracts electrons.  = 0 D
 = 1.4 D H H C C Cl H H3C H C C Cl H H3C H  = 1.7 D C C H H  = 0.3 D Dipole moments 	Dipole moment of 1-chloropropene is equal to the sum of the dipole moments of vinyl chloride and propene.
 = 1.4 D H H C C Cl H H3C H C C Cl H H3C H C C H H  = 0.3 D Dipole moments 	Therefore, a methyl group donates electrons to the double bond.  = 1.7 D
R—C+ is more stable than H—C+ • R—C is more stable than • H—C R—C is more stable than H—C Alkyl groups stabilize sp2 hybridizedcarbon by releasing electrons
Estabilidades Relativas de Alquenos
H R C C H H H R C C C C C C R' H disubstituted Double bonds are classified according tothe number of carbons attached to them. monosubstituted R' H R R R' H H H disubstituted disubstituted
R" R" R R C C C C R' H R' R"' trisubstituted tetrasubstituted Double bonds are classified according tothe number of carbons attached to them.
Substituent Effects on Alkene Stability Electronic disubstituted alkenes are more stable than monosubstituted alkenes Steric trans alkenes are more stable than cis alkenes
Figure  Heats of combustion of C4H8isomers. 2717 kJ/mol + 6O2 2710 kJ/mol 2707 kJ/mol 2700 kJ/mol 4CO2 + 8H2O
Substituent Effects on Alkene Stability Electronic alkyl groups stabilize double bonds more than H more highly substituted double bonds are morestable than less highly substituted ones.
H3C CH3 C C H3C CH3 Problem  Give the structure or make a molecular model of the most stable C6H12 alkene.
Substituent Effects on Alkene Stability Steric trans alkenes are more stable than cis alkenes cis alkenes are destabilized by van der Waalsstrain
van der Waals straindue to crowding ofcis-methyl groups Figure  cis and trans-2-Butene cis-2-butene trans-2-butene
Figure  cis and trans-2-Butene van der Waals straindue to crowding ofcis-methyl groups cis-2-butene trans-2-butene
H3C CH3 CH3 H3C CH3 H3C C C C C H H van der Waals Strain Steric effect causes a large difference in stabilitybetween cis and trans-(CH3)3CCH=CHC(CH3)3 cis is 44 kJ/mol less stable than trans
Cicloalquenos
Cycloalkenes 	Cyclopropene and cyclobutene have angle strain. Larger cycloalkenes, such as cyclopenteneand cyclohexene, can incorporate a double bond into the ring with little or no angle strain.
H H H H Stereoisomeric cycloalkenes cis-cyclooctene and trans-cycloocteneare stereoisomers cis-cyclooctene is 39 kJ/ mol more stablethan trans-cyclooctene cis-Cyclooctene trans-Cyclooctene
H H Stereoisomeric cycloalkenes trans-cyclooctene is smallest trans-cycloalkene  that is stable at room temperature cis stereoisomer is more stable than trans through C11 cycloalkenes trans-Cyclooctene
Stereoisomeric cycloalkenes cis and trans-cyclododeceneare approximately equal instability trans-Cyclododecene cis-Cyclododecene 	When there are more than 12 carbons in thering, trans-cycloalkenes are more stable than cis.The ring is large enough so the cycloalkene behaves much like a noncyclic one.
Structure and Bonding in Alkynes:sp Hybridization
120 pm H C C H 106 pm 106 pm 121 pm C CH3 C H 146 pm 106 pm linear geometry for acetylene Structure
C C Cycloalkynes Cyclononyne is the smallest cycloalkyne stable enough to be stored at room temperaturefor a reasonable length of time.  Cyclooctyne polymerizeson standing.
Hibridación spy Enlaces en el Acetileno
HC CH Structure of Acetylene C2H2 linear bond angles:  	180° bond distances: 	C—H = 106 pm	CC  = 120 pm
spOrbital Hybridization 2p Promote an electron from the 2s to the 2p orbital  2s
sp Orbital Hybridization 2p 2p 2s 2s
spOrbital Hybridization 2p Mix together (hybridize) the 2s orbital and one of the three 2p orbitals 2s
sp Orbital Hybridization 2p 2 p 2 sp 2 equivalent half-filled sp hybrid orbitals plus 2 p orbitals left unhybridized 2s
sp Orbital Hybridization
sp Orbital Hybridization  2 p  2 sp 
 Bonding in Acetylene the unhybridized p orbitals of carbon are involved in separate bonds to the other carbon  2 p 2 sp
 Bonding in Acetylene
 Bonding in Acetylene
 Bonding in Acetylene
H C C Acidity of Acetyleneand Terminal Alkynes
H2C CH2 Acidity of Hydrocarbons In general, hydrocarbons are     exceedingly weak acids Compound	pKa 		HF	3.2 		H2O	15.7 		NH3	36 45 CH4	60
HC CH H2C CH2 Acetylene Acetylene is a weak acid, but not nearlyas weak as alkanes or alkenes. Compound	pKa 		HF	3.2 		H2O	15.7 		NH3	36 45 CH4	60 26
pKa = 60 – sp3 : C H++ H C H sp2 : pKa = 45 H++ C C C C – pKa = 26 – sp : H C C C C H++ Carbon:  Hybridization and Electronegativity Electrons in an orbital with more s character are closer to thenucleus and more strongly held.
NaC CH + + NaOH NaC H2O CH HC CH Sodium Acetylide Objective: 	Prepare a solution containing sodium acetylideWill treatment of acetylene with NaOH be effective?
– .. .. – stronger acidpKa = 15.7 weaker acidpKa = 26 + CH C : + CH C H : H HO HO .. .. Sodium Acetylide No.  Hydroxide is not a strong enough base to deprotonate acetylene. In acid-base reactions, the equilibrium lies tothe side of the weaker acid.
+ + NaNH2 NaC NH3 CH HC CH – .. .. – + : : + H2N H H2N CH C CH C H weaker acidpKa = 36 stronger acidpKa = 26 Sodium Acetylide Solution:  Use a stronger base.  Sodium amideis a stronger base than sodium hydroxide. Ammonia is a weaker acid than acetylene.The position of equilibrium lies to the right.

Mais conteúdo relacionado

Mais procurados

Mais procurados (17)

Iupac nomenclature
Iupac nomenclatureIupac nomenclature
Iupac nomenclature
 
Alkane alkene and alkynes
Alkane alkene and alkynes Alkane alkene and alkynes
Alkane alkene and alkynes
 
Electrophilic aromatic substitution
Electrophilic aromatic substitutionElectrophilic aromatic substitution
Electrophilic aromatic substitution
 
Iupac naming
Iupac namingIupac naming
Iupac naming
 
Hydrocarbon arjav patel
Hydrocarbon arjav patelHydrocarbon arjav patel
Hydrocarbon arjav patel
 
File
FileFile
File
 
Anhing
AnhingAnhing
Anhing
 
Benzene and its deivatives
Benzene and its deivativesBenzene and its deivatives
Benzene and its deivatives
 
Ch22 z5e organic
Ch22 z5e organicCh22 z5e organic
Ch22 z5e organic
 
Organic chemistry
Organic chemistryOrganic chemistry
Organic chemistry
 
Benzene
BenzeneBenzene
Benzene
 
Hydrocarbons
HydrocarbonsHydrocarbons
Hydrocarbons
 
Alkenes
Alkenes Alkenes
Alkenes
 
Organic chemistry ii
Organic chemistry iiOrganic chemistry ii
Organic chemistry ii
 
Structure and Nomenclature of Hydrocarbons
Structure and Nomenclature of HydrocarbonsStructure and Nomenclature of Hydrocarbons
Structure and Nomenclature of Hydrocarbons
 
Benzene and its derivatives- According to PCI Syllabus
Benzene and its derivatives- According to PCI Syllabus  Benzene and its derivatives- According to PCI Syllabus
Benzene and its derivatives- According to PCI Syllabus
 
Chemistry- JIB Organic Chemistry
Chemistry- JIB Organic ChemistryChemistry- JIB Organic Chemistry
Chemistry- JIB Organic Chemistry
 

Semelhante a Estructura de__hidrocarburos

Chemistry- JIB Organic Chemistry Review
Chemistry- JIB Organic Chemistry ReviewChemistry- JIB Organic Chemistry Review
Chemistry- JIB Organic Chemistry Review
Sam Richard
 
K4 Organic Chemistry Alkanes And Alkenes (Includes Polymers)
K4  Organic  Chemistry    Alkanes And  Alkenes (Includes Polymers)K4  Organic  Chemistry    Alkanes And  Alkenes (Includes Polymers)
K4 Organic Chemistry Alkanes And Alkenes (Includes Polymers)
Sean Hunt
 

Semelhante a Estructura de__hidrocarburos (20)

Hydrocarbons.pptx
Hydrocarbons.pptxHydrocarbons.pptx
Hydrocarbons.pptx
 
B sc i chemistry i u iii(a) alkane,alkene and alkynes a
B sc  i chemistry i u iii(a) alkane,alkene and alkynes aB sc  i chemistry i u iii(a) alkane,alkene and alkynes a
B sc i chemistry i u iii(a) alkane,alkene and alkynes a
 
B sc_I_General chemistry U-III(A) Alkane,alkene and alkynes
B sc_I_General chemistry U-III(A) Alkane,alkene and alkynes B sc_I_General chemistry U-III(A) Alkane,alkene and alkynes
B sc_I_General chemistry U-III(A) Alkane,alkene and alkynes
 
Organic chemistry I
Organic chemistry IOrganic chemistry I
Organic chemistry I
 
theory organic 1.pdf
theory organic 1.pdftheory organic 1.pdf
theory organic 1.pdf
 
Unit 4
Unit 4Unit 4
Unit 4
 
Unit 4ale
Unit 4aleUnit 4ale
Unit 4ale
 
P O S T L A B Biochem D L S L
P O S T L A B Biochem  D L S LP O S T L A B Biochem  D L S L
P O S T L A B Biochem D L S L
 
Benzene and its derivatives.ppt
Benzene and its derivatives.pptBenzene and its derivatives.ppt
Benzene and its derivatives.ppt
 
Chemistry- JIB Organic Chemistry Review
Chemistry- JIB Organic Chemistry ReviewChemistry- JIB Organic Chemistry Review
Chemistry- JIB Organic Chemistry Review
 
Carbon and Its Compound
Carbon and Its CompoundCarbon and Its Compound
Carbon and Its Compound
 
Organic chem
Organic chemOrganic chem
Organic chem
 
File
FileFile
File
 
Fused polynuclear compounds
Fused polynuclear compoundsFused polynuclear compounds
Fused polynuclear compounds
 
K4 Organic Chemistry Alkanes And Alkenes (Includes Polymers)
K4  Organic  Chemistry    Alkanes And  Alkenes (Includes Polymers)K4  Organic  Chemistry    Alkanes And  Alkenes (Includes Polymers)
K4 Organic Chemistry Alkanes And Alkenes (Includes Polymers)
 
Chapter 3 ketone
Chapter 3 ketoneChapter 3 ketone
Chapter 3 ketone
 
Nomenclature
NomenclatureNomenclature
Nomenclature
 
Carbono inicial
Carbono inicialCarbono inicial
Carbono inicial
 
All.ppt
All.pptAll.ppt
All.ppt
 
Ch22z5eorganic 110115233612-phpapp01
Ch22z5eorganic 110115233612-phpapp01Ch22z5eorganic 110115233612-phpapp01
Ch22z5eorganic 110115233612-phpapp01
 

Mais de Almadalista (13)

Sistema digestivo
Sistema digestivoSistema digestivo
Sistema digestivo
 
Vision cuadernillo6
Vision cuadernillo6Vision cuadernillo6
Vision cuadernillo6
 
Practica 3.8 percepcion del gusto
Practica 3.8 percepcion del gustoPractica 3.8 percepcion del gusto
Practica 3.8 percepcion del gusto
 
Estereoq
EstereoqEstereoq
Estereoq
 
Nomenclatura
NomenclaturaNomenclatura
Nomenclatura
 
Practica 3.4 receptores cutaneos y dolor referido
Practica 3.4 receptores cutaneos y dolor referidoPractica 3.4 receptores cutaneos y dolor referido
Practica 3.4 receptores cutaneos y dolor referido
 
Calculo no. de part
Calculo no. de partCalculo no. de part
Calculo no. de part
 
Clinical anatomy
Clinical anatomyClinical anatomy
Clinical anatomy
 
Atlas of human_skeletal_anatomy
Atlas of human_skeletal_anatomyAtlas of human_skeletal_anatomy
Atlas of human_skeletal_anatomy
 
Expocicion dennys efectiva
Expocicion dennys efectivaExpocicion dennys efectiva
Expocicion dennys efectiva
 
20 pasos hacia_adelante_-_bucay__jorge
20 pasos hacia_adelante_-_bucay__jorge20 pasos hacia_adelante_-_bucay__jorge
20 pasos hacia_adelante_-_bucay__jorge
 
Sistema músculo esquelético
Sistema músculo esqueléticoSistema músculo esquelético
Sistema músculo esquelético
 
Sistema locomotor expo trabajo escritp
Sistema locomotor expo trabajo escritpSistema locomotor expo trabajo escritp
Sistema locomotor expo trabajo escritp
 

Último

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 

Último (20)

ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdf
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 

Estructura de__hidrocarburos

  • 1. Estructura de hidrocarburos:Alcanos
  • 4. Hidrocarburos Aromáticos Alifáticos Alcanos Alquenos Alquinos
  • 5. H H H H C C H H Hidrocarburos Los alcanos son hidrocarburos en los cualestodos los enlaces son sencillos. Alifáticos Alcanos
  • 6. H H C C H H Hidrocarburos Los alquenos son hidrocarburosquecontienen un doble enlace carbono-carbono. Alifáticos Alquenos
  • 7. HC CH Hidrocarburos Los alquinos son hidrocarburosquecontienen un triple enlace carbono-carbono. Alifáticos Alquinos
  • 8. H H H H H H Hidrocarburos Los hidrocarburosaromáticosmáscomúnes son los quecontienen un anillo de benzeno. Aromáticos
  • 9. CnH2n+2 Introducción a los Alcanos:Metano, Etano y Propano
  • 10. Los Alcanosmás Simples Metano (CH4) CH4 Etano (C2H6) CH3CH3 Propano (C3H8) CH3CH2CH3 peb-160°C peb-89°C peb-42°C
  • 12. Estructura del Metano Tetrahédrica ángulos de enlace = 109.5° longitud de enlace = 110 pm sin embargo la estructurapareceinconsistentecon la configuraciónelectrónica del carbono
  • 13. ConfiguraciónElectrónica del carbono solo dos electronesdesapareados debeformar enlaces con solo dos átomos de hidrógeno los enlaces debenestar en ángulo recto uno con respectoal otro 2p 2s
  • 14. Hibridación Orbital sp3 30´s Linus Pauling 2p Se promueve un electrón del orbital 2s al 2p 2s
  • 16. Hibridación Orbital sp3 2p Mezclar (hibridizar) el orbital 2s y los tresorbitales 2p 2s
  • 17. Hibridación Orbital sp3 2p 2 sp3 4 orbitalessemillenosequivalentes son consistentes con cuatro enlaces y la geometríatetrahédrica 2s
  • 19. PropiedadesNodales de los Orbitales p + – + s
  • 20. Forma de los orbitaleshíbridossp3 p + – Toma el orbital s y colócalo en la parte superior del orbital p + s
  • 21. + Forma de los orbitaleshíbridos sp3 s + p + – Complemento de ondaelectrónica en regionesdonde el signoes el mismo Interferenciadestructiva en regiones de signoopuesto
  • 22. – híbridosp + el orbital mostradoeshíbridosp procesoanalogousandotresorbitalesp y uno sdahíbridossp3 la forma de los híbridossp3es similar Forma de los orbitaleshíbridossp3
  • 23. + – híbridosp - el orbital híbrido no essimétrico - mayor probabilidad de encontrar un electrón en un lado del núcleoque en otro - produce enlaces másfuertes Forma de los orbitaleshíbridossp3
  • 24. + – – El enlace  C—H en el Metano Traslape en fase de un orbital semilleno 1s de hidrógeno con un orbital híbridosemillenosp3 de carbono: + sp3 s H C produce un enlace  . + H—C  C H
  • 25. Justificaciónpara la Hibridación Orbital consistente con la estructura del metano permite la formación de 4 enlaces en lugar de 2 los enlaces involucrados en los orbitaleshíbridossp3 son másfuertesque los involucrados en el traslapes-s o p-p
  • 26. Enlaces en el Etano
  • 27. Estructura del Etano C2H6 CH3CH3 geometríatetrahédrica en cadacarbono distancia de enlace C—H = 110 pm distancia de enlace C—C = 153 pm
  • 28. El enlace  C—C en el Etano Traslape en fase de un orbital híbridosemillenosp3 de un carbono con un orbital híbridosemillenosp3de otro. El traslapees a lo largo del ejeinternuclearparadar un enlace .
  • 29. El enlace  C—C en el Etano Traslape en fase de un orbital híbridosemillenosp3 de un carbono con un orbital híbridosemillenosp3de otro. El traslapees a lo largo del ejeinternuclearparadar un enlace .
  • 33. CH3CH2CH2CH2CH3 n-Pentano CH3CH2CH2CH2CH2CH3 n-Hexano CH3CH2CH2CH2CH2CH2CH3 n-Heptano
  • 35. C5H12 (CH3)2CHCH2CH3 CH3CH2CH2CH2CH3 Isopentano n-Pentano (CH3)4C Neopentano
  • 36. ¿Cuántosisómeros? El número de isómeros se incrementa al incrementar el número de carbonos. No hay unamanerasencilla de predecircuántosisómeros hay paraunafórmula molecular en particular.
  • 37. Tabla 1 Número de IsómerosConstitucionales de Alcanos CH4 1 C2H6 1 C3H8 1 C4H10 2 C5H12 3 C6H14 5 C7H16 9
  • 38. Tabla 1 Número de IsómerosConstitucionales de Alcanos CH4 1 C8H18 18 C2H6 1 C9H20 35 C3H8 1 C10H22 75 C4H10 2 C15H32 4,347 C5H12 3 C20H42 366,319 C6H14 5 C40H82 62,491,178,805,831 C7H16 9
  • 39. Propiedades Físcas delos Alcanos y Cicloalcanos
  • 40. Boiling Points of Alkanes governed by strength of intermolecular attractive forces alkanes are nonpolar, so dipole-dipole and dipole-induced dipole forces are absent only forces of intermolecular attraction are induced dipole-induced dipole forces
  • 41. Induced dipole-Induced dipole attractive forces + – + – two nonpolar molecules center of positive charge and center of negative charge coincide in each
  • 42. Induced dipole-Induced dipole attractive forces + – + – movement of electrons creates an instantaneous dipole in one molecule (left)
  • 43. Induced dipole-Induced dipole attractive forces – + – + temporary dipole in one molecule (left) induces a complementary dipole in other molecule (right)
  • 44. Induced dipole-Induced dipole attractive forces – – + + temporary dipole in one molecule (left) induces a complementary dipole in other molecule (right)
  • 45. Induced dipole-Induced dipole attractive forces – – + + the result is a small attractive force between the two molecules
  • 46. Induced dipole-Induced dipole attractive forces – – + + the result is a small attractive force between the two molecules
  • 47. Boiling Points increase with increasing number of carbons more atoms, more electrons, more opportunities for induced dipole-induced dipole forces decrease with chain branching branched molecules are more compact with smaller surface area—fewer points of contact with other molecules
  • 48. Boiling Points increase with increasing number of carbons more atoms, more electrons, more opportunities for induced dipole-induced dipole forces Heptanebp 98°C Octanebp 125°C Nonanebp 150°C
  • 49. Boiling Points decrease with chain branching branched molecules are more compact with smaller surface area—fewer points of contact with other molecules Octane: bp 125°C 2-Methylheptane: bp 118°C 2,2,3,3-Tetramethylbutane: bp 107°C
  • 50. Propiedades Químicas:Combustión de Alcanos All alkanes burn in air to givecarbon dioxide and water.
  • 51. Heats of Combustion increase with increasing number of carbons more moles of O2 consumed, more moles of CO2 and H2O formed
  • 52. Heats of Combustion Heptane 4817 kJ/mol 654 kJ/mol Octane 5471 kJ/mol 654 kJ/mol Nonane 6125 kJ/mol
  • 53. Heats of Combustion increase with increasing number of carbons more moles of O2 consumed, more moles of CO2 and H2O formed decrease with chain branching branched molecules are more stable (have less potential energy) than their unbranched isomers
  • 54. 5 kJ/mol 8 kJ/mol 6 kJ/mol Heats of Combustion 5471 kJ/mol 5466 kJ/mol 5458 kJ/mol 5452 kJ/mol
  • 55. Estructura de Alquenos
  • 56. Alkenes Alkenes are hydrocarbons that contain a carbon-carbon double bond also called "olefins" characterized by molecular formula CnH2n said to be "unsaturated"
  • 57. Hibridación sp2y Enlaces en el Etileno
  • 58. Structure of Ethylene C2H4 H2C=CH2 planar bond angles: close to 120° bond distances: C—H = 110 pm C=C = 134 pm
  • 59. sp2 Orbital Hybridization 2p Promote an electron from the 2s to the 2p orbital 2s
  • 61. sp2 Orbital Hybridization 2p Mix together (hybridize) the 2s orbital and two of the three 2p orbitals 2s
  • 62. sp2 Orbital Hybridization 2p 2 sp2 3 equivalent half-filled sp2 hybrid orbitals plus 1 p orbital left unhybridized 2s
  • 64.      sp2 Orbital Hybridization p 2 sp2
  • 65.  Bonding in Ethylene the unhybridized p orbital of carbon is involved in  bondingto the other carbon p 2 sp2
  • 66.  Bonding in Ethylene
  • 67.  Bonding in Ethylene
  • 69. Isomers Isomers are different compounds thathave the same molecular formula.
  • 70. same connnectivity;different arrangementof atoms in space different connectivity Isomers Constitutional isomers Stereoisomers
  • 71. Isomers Constitutional isomers Stereoisomers consider the isomeric alkenes of molecular formula C4H8
  • 72. H3C H CH2CH3 H C C C C H3C H H H CH3 H3C H H3C C C C C H H H CH3 1-Butene 2-Methylpropene trans-2-Butene cis-2-Butene
  • 73. H3C H CH2CH3 H C C C C H3C H H H CH3 H3C C C H H 1-Butene 2-Methylpropene Constitutional isomers cis-2-Butene
  • 74. H3C H CH2CH3 H C C C C H3C H H H H H3C C C H CH3 1-Butene 2-Methylpropene Constitutional isomers trans-2-Butene
  • 75. CH3 H3C H H3C C C C C H H H CH3 Stereoisomers trans-2-Butene cis-2-Butene
  • 76. Stereochemical Notation trans (identical or analogous substituents on opposite sides) cis (identical or analogous substitutents on same side)
  • 77. Figure Interconversion of stereoisomericalkenes does not normally occur.Requires that component of doublebond be broken. cis trans
  • 79. Naming Steroisomeric Alkenesby the E-Z Notational System
  • 80. C C Stereochemical Notation CH2(CH2)6CO2H CH3(CH2)6CH2 Oleic acid H H cis and trans are useful when substituents are identical or analogous (oleic acid has a cis double bond) cis and trans are ambiguous when analogies are not obvious
  • 81. Cl Br C C H F Example What is needed:1) systematic body of rules for ranking substituents 2) new set of stereochemical symbols other than cis and trans
  • 82. C C The E-Z Notational System E : higher ranked substituents on opposite sides Z : higher ranked substituents on same side higher lower
  • 83. C C The E-Z Notational System E : higher ranked substituents on opposite sides Z : higher ranked substituents on same side lower higher
  • 84. higher higher C C C C lower lower Zusammen The E-Z Notational System E : higher ranked substituents on opposite sides Z : higher ranked substituents on same side higher lower higher lower Entgegen
  • 85. C C C C The E-Z Notational System Question: How are substituents ranked? Answer: They are ranked in order of decreasing atomic number. higher lower higher higher higher lower lower lower Entgegen Zusammen
  • 86. The Cahn-Ingold-Prelog (CIP) System The system that we use was devised by R. S. Cahn Sir Christopher Ingold Vladimir Prelog Their rules for ranking groups were devised in connection with a different kind of stereochemistry—one that we will discuss later—but have been adapted to alkene stereochemistry.
  • 87. higher higher Br Cl C C F H lower lower Table CIP Rules (1) Higher atomic number outranks lower atomic number Br > F Cl > H
  • 88. higher higher Br Cl C C F H lower lower Table CIP Rules (1) Higher atomic number outranks lower atomic number Br > F Cl > H (Z )-1-Bromo-2-chloro-1-fluoroethene
  • 89. —C(H,H,H) —C(C,H,H) Table CIP Rules (2) When two atoms are identical, compare the atoms attached to them on the basis of their atomic numbers. Precedence is established at the first point of difference. —CH2CH3 outranks —CH3
  • 90. Table CIP Rules (3) Work outward from the point of attachment, comparing all the atoms attached to a particular atom before proceeding further along the chain. —CH(CH3)2 outranks —CH2CH2OH —C(C,H,H) —C(C,C,H)
  • 91. Table CIP Rules (4) Evaluate substituents one by one. Don't add atomic numbers within groups. —CH2OH outranks —C(CH3)3 —C(O,H,H) —C(C,C,C)
  • 92. Table CIP Rules (5) An atom that is multiply bonded to another atom is considered to be replicated as a substituent on that atom. —CH=O outranks —CH2OH —C(O,O,H) —C(O,H,H)
  • 93. Table CIP Rules A table of commonly encountered substituents ranked according to precedence is given on the inside back cover of the text.
  • 95. H H C C H H H3C H C C H H  = 0.3 D Dipole moments What is direction of dipole moment? Does a methyl group donate electrons to the double bond, or does it withdraw them?  = 0 D
  • 96.  = 1.4 D H H C C H H Cl H C C H H H3C H C C H H  = 0.3 D Dipole moments Chlorine is electronegative and attracts electrons.  = 0 D
  • 97.  = 1.4 D H H C C Cl H H3C H C C Cl H H3C H  = 1.7 D C C H H  = 0.3 D Dipole moments Dipole moment of 1-chloropropene is equal to the sum of the dipole moments of vinyl chloride and propene.
  • 98.  = 1.4 D H H C C Cl H H3C H C C Cl H H3C H C C H H  = 0.3 D Dipole moments Therefore, a methyl group donates electrons to the double bond.  = 1.7 D
  • 99. R—C+ is more stable than H—C+ • R—C is more stable than • H—C R—C is more stable than H—C Alkyl groups stabilize sp2 hybridizedcarbon by releasing electrons
  • 101. H R C C H H H R C C C C C C R' H disubstituted Double bonds are classified according tothe number of carbons attached to them. monosubstituted R' H R R R' H H H disubstituted disubstituted
  • 102. R" R" R R C C C C R' H R' R"' trisubstituted tetrasubstituted Double bonds are classified according tothe number of carbons attached to them.
  • 103. Substituent Effects on Alkene Stability Electronic disubstituted alkenes are more stable than monosubstituted alkenes Steric trans alkenes are more stable than cis alkenes
  • 104. Figure Heats of combustion of C4H8isomers. 2717 kJ/mol + 6O2 2710 kJ/mol 2707 kJ/mol 2700 kJ/mol 4CO2 + 8H2O
  • 105. Substituent Effects on Alkene Stability Electronic alkyl groups stabilize double bonds more than H more highly substituted double bonds are morestable than less highly substituted ones.
  • 106. H3C CH3 C C H3C CH3 Problem Give the structure or make a molecular model of the most stable C6H12 alkene.
  • 107. Substituent Effects on Alkene Stability Steric trans alkenes are more stable than cis alkenes cis alkenes are destabilized by van der Waalsstrain
  • 108. van der Waals straindue to crowding ofcis-methyl groups Figure cis and trans-2-Butene cis-2-butene trans-2-butene
  • 109. Figure cis and trans-2-Butene van der Waals straindue to crowding ofcis-methyl groups cis-2-butene trans-2-butene
  • 110. H3C CH3 CH3 H3C CH3 H3C C C C C H H van der Waals Strain Steric effect causes a large difference in stabilitybetween cis and trans-(CH3)3CCH=CHC(CH3)3 cis is 44 kJ/mol less stable than trans
  • 112. Cycloalkenes Cyclopropene and cyclobutene have angle strain. Larger cycloalkenes, such as cyclopenteneand cyclohexene, can incorporate a double bond into the ring with little or no angle strain.
  • 113. H H H H Stereoisomeric cycloalkenes cis-cyclooctene and trans-cycloocteneare stereoisomers cis-cyclooctene is 39 kJ/ mol more stablethan trans-cyclooctene cis-Cyclooctene trans-Cyclooctene
  • 114. H H Stereoisomeric cycloalkenes trans-cyclooctene is smallest trans-cycloalkene that is stable at room temperature cis stereoisomer is more stable than trans through C11 cycloalkenes trans-Cyclooctene
  • 115. Stereoisomeric cycloalkenes cis and trans-cyclododeceneare approximately equal instability trans-Cyclododecene cis-Cyclododecene When there are more than 12 carbons in thering, trans-cycloalkenes are more stable than cis.The ring is large enough so the cycloalkene behaves much like a noncyclic one.
  • 116. Structure and Bonding in Alkynes:sp Hybridization
  • 117. 120 pm H C C H 106 pm 106 pm 121 pm C CH3 C H 146 pm 106 pm linear geometry for acetylene Structure
  • 118. C C Cycloalkynes Cyclononyne is the smallest cycloalkyne stable enough to be stored at room temperaturefor a reasonable length of time. Cyclooctyne polymerizeson standing.
  • 119. Hibridación spy Enlaces en el Acetileno
  • 120. HC CH Structure of Acetylene C2H2 linear bond angles: 180° bond distances: C—H = 106 pm CC = 120 pm
  • 121. spOrbital Hybridization 2p Promote an electron from the 2s to the 2p orbital 2s
  • 122. sp Orbital Hybridization 2p 2p 2s 2s
  • 123. spOrbital Hybridization 2p Mix together (hybridize) the 2s orbital and one of the three 2p orbitals 2s
  • 124. sp Orbital Hybridization 2p 2 p 2 sp 2 equivalent half-filled sp hybrid orbitals plus 2 p orbitals left unhybridized 2s
  • 126. sp Orbital Hybridization  2 p  2 sp 
  • 127.  Bonding in Acetylene the unhybridized p orbitals of carbon are involved in separate bonds to the other carbon 2 p 2 sp
  • 128.  Bonding in Acetylene
  • 129.  Bonding in Acetylene
  • 130.  Bonding in Acetylene
  • 131. H C C Acidity of Acetyleneand Terminal Alkynes
  • 132. H2C CH2 Acidity of Hydrocarbons In general, hydrocarbons are exceedingly weak acids Compound pKa HF 3.2 H2O 15.7 NH3 36 45 CH4 60
  • 133. HC CH H2C CH2 Acetylene Acetylene is a weak acid, but not nearlyas weak as alkanes or alkenes. Compound pKa HF 3.2 H2O 15.7 NH3 36 45 CH4 60 26
  • 134. pKa = 60 – sp3 : C H++ H C H sp2 : pKa = 45 H++ C C C C – pKa = 26 – sp : H C C C C H++ Carbon: Hybridization and Electronegativity Electrons in an orbital with more s character are closer to thenucleus and more strongly held.
  • 135. NaC CH + + NaOH NaC H2O CH HC CH Sodium Acetylide Objective: Prepare a solution containing sodium acetylideWill treatment of acetylene with NaOH be effective?
  • 136. – .. .. – stronger acidpKa = 15.7 weaker acidpKa = 26 + CH C : + CH C H : H HO HO .. .. Sodium Acetylide No. Hydroxide is not a strong enough base to deprotonate acetylene. In acid-base reactions, the equilibrium lies tothe side of the weaker acid.
  • 137. + + NaNH2 NaC NH3 CH HC CH – .. .. – + : : + H2N H H2N CH C CH C H weaker acidpKa = 36 stronger acidpKa = 26 Sodium Acetylide Solution: Use a stronger base. Sodium amideis a stronger base than sodium hydroxide. Ammonia is a weaker acid than acetylene.The position of equilibrium lies to the right.