SlideShare uma empresa Scribd logo
1 de 28
Baixar para ler offline
Application of data sparse approximation
techniques for solving SPDE
Alexander Litvinenko
Institut f¨ur Wissenschaftliches Rechnen, Technische Universit¨at Braunschweig,
0531-391-3008, litvinen@tu-bs.de
March 6, 2008
Outline
Problem setup
Karhunen-Lo`eve expansion
Data Sparse Techniques
Fast Fourier Transformation (FFT)
Hierarchical Matrices
Sparse tensor approximation
Applications
Conclusion
Outline
Problem setup
Karhunen-Lo`eve expansion
Data Sparse Techniques
Fast Fourier Transformation (FFT)
Hierarchical Matrices
Sparse tensor approximation
Applications
Conclusion
Stochastic PDE
We consider
− div(κ(x, ω)∇u) = f(x, ω) in D,
u = 0 on ∂D,
with stochastic coefficients κ(x, ω), x ∈ D ⊆ Rd
and ω belongs to the
space of random events Ω.
[Babuˇska, Ghanem, Schwab, Vandewalle, ...].
Methods and techniques:
1. Response surface
2. Monte-Carlo
3. Perturbation
4. Stochastic Galerkin
Plan of the solution
1. Discretisation of the determ. operator (FE method).
2. Discretisation of the random fields κ(x, ω), f(x, ω) (KLE).
KLE is computed by the Lanczos method + sparse data techniques.
3. Iterative solving a huge linear system
Total dimension of the SPDE is the product of dimensions of the
determ. and stochastic parts.
Covariance functions
The random field requires to specify its spatial correl. structure
covf (x, y) = E[(f(x, ·) − µf (x))(f(y, ·) − µf (y))],
where E is the expectation and µf (x) := E[f(x, ·)].
We classify all covariance functions into three groups:
1. isotropic (directionally independent) and stationary (translation
invariant), i.e.
cov(x, y) = cov(|x − y|),
2. anisotropic (directionally dependent) and stationary, i.e.
cov(x, y) = cov(x − y),
3. instationary, i.e. of a general type.
Outline
Problem setup
Karhunen-Lo`eve expansion
Data Sparse Techniques
Fast Fourier Transformation (FFT)
Hierarchical Matrices
Sparse tensor approximation
Applications
Conclusion
KLE
The spectral representation of the cov. function is
Cκ(x, y) = ∞
i=0 λi ki(x)ki (y), where λi and ki(x) are the eigenvalues
and eigenfunctions.
The Karhunen-Lo`eve expansion [Loeve, 1977] is the series
κ(x, ω) = µk (x) +
∞
i=1
λi ki (x)ξi (ω), where
ξi (ω) are uncorrelated random variables and ki are basis functions in
L2
(D).
Eigenpairs λi , ki are the solution of
Tki = λi ki, ki ∈ L2
(D), i ∈ N, where.
T : L2
(D) → L2
(D),
(Tu)(x) := D
covk (x, y)u(y)dy.
Outline
Problem setup
Karhunen-Lo`eve expansion
Data Sparse Techniques
Fast Fourier Transformation (FFT)
Hierarchical Matrices
Sparse tensor approximation
Applications
Conclusion
Computation of eigenpairs by FFT
If the cov. function depends on (x − y) then on a uniform tensor grid
the cov. matrix C is (block) Toeplitz.
Then C can be extended to the circulant one and the decomposition
C =
1
n
F H
ΛF (1)
may be computed like follows. Multiply (1) by F , obtain
F C = ΛF , for the first column we have
F C1 = ΛF1.
Since all entries of F1 are unity, obtain
λ = F C1.
F C1 may be computed very efficiently by FFT [Cooley, 1965] in
O(n log n) FLOPS.
C1 may be represented in a matrix or in a tensor format.
Properties of FFT
Lemma: Let C ∈ Rn×m
and C = k
i=0 ai bT
i , where ai ∈ Rn
, bi ∈ Rm
.
Then
F (2)
(C) =
k
i=0
F (1)
(ai )F (1)
(bT
i ). (2)
Lemma: The d-dim. FT F (d)
can be represented as following
F (d)
=
d
i=i
F (1)
= F (1)
⊗ F (1)
. . . ⊗ F (1)
(3)
and the computational complexity of F (d)
is O(dnd
log n), where nd
is
the number of dofs.
Discrete eigenvalue problem
After discretisation of the integral equation above, obtain
Wij :=
k,m D
bi (x)bk (x)dxCkm
D
bj (y)bm(y)dy,
Mij =
D
bi (x)bj (x)dx,
and the discrete equation will be
W fh
ℓ = λℓMfh
ℓ , where W := MCM
Approximate C in
◮ a low rank format
◮ the H-matrix format
◮ a sparse tensor format
and use the Lanczos method to compute m largest eigenvalues.
H-matrix [Hackbusch et al. 99]
25 11
11 20 12
13
20 11
9 16
13
13
20 11
11 20 13
13 32
13
13
20 8
10 20 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
20 10
10 20 12
12 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
32 13
13 32
13
13
20 9
9 20 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
Figure: An H-matrix approximates of cov(x, y) = e−2|x−y|
, CH ∈ Rn×n
,
n = 322
. Dense blocks are red and rank-k blocks green, max. rank-k = 13.
Construction process
H-matrixvertices
finite elements
cluster tree
block
cluster tree
admissibility
condition
admissible
partitioning
ACAcov. function
a good
preconditioner
fast
arithmetics
Figure: A block cluster tree. The initial matrix is decomposed into blocks and
each block is filled by a low-rank matrix or by a dense matrix.
H - Matrices
Comp. complexity is O(kn log n) and storage O(kn log n).
To assemble low-rank blocks use ACA [Bebendorf, Tyrtyshnikov].
Dependence of the computational time and storage requirements of
CH on the rank k, n = 322
.
k time (sec.) memory (MB) C−CH 2
C 2
2 0.04 2e + 6 3.5e − 5
6 0.1 4e + 6 1.4e − 5
9 0.14 5.4e + 6 1.4e − 5
12 0.17 6.8e + 6 3.1e − 7
17 0.23 9.3e + 6 6.3e − 8
The time for dense matrix C is 3.3 sec. and the storage 1.4e + 8 MB.
H - Matrices
Let h =
2
i=1 h2
i /ℓ2
i + d2 − d
2
, where hi := xi − yi , i = 1, 2, 3,
ℓi are cov. lengths and d = 1.
exponential cov(h) = σ2
· exp(−h),
The cov. matrix C ∈ Rn×n
, n = 652
.
ℓ1 ℓ2
C−CH 2
C 2
0.01 0.02 3e − 2
0.1 0.2 8e − 3
1 2 2.8e − 6
10 20 3.7e − 9
H - matrices + ARPACK → Eigenvalues
Table: Time required for computing m eigenpairs. exponential cov. matrix
C ∈ Rn×
, n = 2572
, ℓ1 = ℓ2 = 0.1. H-matrix comp. time is 26 sec., storage
for C is 1.2 GB.
m 10 20 40 80 160
time (sec.), ℓ1 = ℓ2 = 1 7 16 34 104 449
time (sec.), ℓ1 = ℓ2 = 0.1 35 51 97 194 532
Eigenvalues and the computational error for different covariance
lengths, max. rank k = 20.
ℓ1 = ℓ2 = 1 ℓ1 = ℓ2 = 0.1
i λi Cxi − λi xi 2 λi Cxi − λi xi 2
1 303748 1.6e-4 26006 0.03
2 56358 1.7e-3 21120 0.01
20 1463 2.2e-2 4895 0.2
80 139 4.2e-2 956 0.26
150 68 7e-2 370 0.5
Exponential Eigenvalue decay
0 100 200 300 400 500 600 700 800 900 1000
0
100
200
300
400
500
600
700
0 100 200 300 400 500 600 700 800 900 1000
0
1
2
3
4
5
6
7
8
9
10
x 10
4
0 100 200 300 400 500 600 700 800 900 1000
0
200
400
600
800
1000
1200
1400
1600
1800
0 100 200 300 400 500 600 700 800 900 1000
0
0.5
1
1.5
2
2.5
x 10
5
0 100 200 300 400 500 600 700 800 900 1000
0
50
100
150
0 100 200 300 400 500 600 700 800 900 1000
0
0.5
1
1.5
2
2.5
3
3.5
4
x 10
4
Figure: 23 grid 48 × 64 × 40, (left) ℓ1 = 1, ℓ2 = 2, ℓ3 = 1 and (right) ℓ1 = 5,
ℓ2 = 10, ℓ2 = 5. 1st row - Gaussian, 2-nd exponential and 3-rd spherical cov.
Sparse tensor decompositions of kernels
cov(x, y) = cov(x − y)
We want to approximate C ∈ RN×N
, N = nd
by
Cr = r
k=1 V 1
k ⊗ ... ⊗ V d
k such that C − Cr ≤ ε.
The storage of C is O(N2
) = O(n2d
) and the storage of Cr is O(rdn2
).
To define V i
k use e.g. SVD.
Approximate all V i
k in the H-matrix format ⇒ HKT format
[Hackbusch, Khoromskij, Tyrtyshnikov].
Assume f(x, y), x = (x1, x2), y = (y1, y2), then the equivalent approx.
problem is f(x1, x2; y1, y2) ≈
r
k=1 Φk (x1, y1)Ψk (x2, y2).
Numerical examples of tensor approximations
Gaussian kernel exp{−|x − y|2
} has the Kroneker rank 1.
The exponen. kernel exp{−|x − y|} can be approximated by a tensor
with low Kronecker rank
r 1 2 3 4 5 6 10
C−Cr ∞
C ∞
11.5 1.7 0.4 0.14 0.035 0.007 2.8e − 8
C−Cr 2
C 2
6.7 0.52 0.1 0.03 0.008 0.001 5.3e − 9
Outline
Problem setup
Karhunen-Lo`eve expansion
Data Sparse Techniques
Fast Fourier Transformation (FFT)
Hierarchical Matrices
Sparse tensor approximation
Applications
Conclusion
Application: covariance of the solution
Let K be the stiffness matrix. For SPDE with stochastic RHS the
eigenvalue problem and spectral decom. look like
Cf fℓ = λℓfℓ, Cf = Φf Λf ΦT
f .
If we only want the covariance
Cu = (K ⊗ K)−1
Cf = (K−1
⊗ K−1
)Cf = K−1
Cf K−T
,
one may with the KLE of Cf = Φf Λf ΦT
f reduce this to
Cu = K−1
Cf K−T
= K−1
Φf ΛΦT
f K−T
.
Application: higher order moments
Let operator K be deterministic and
Ku(θ) =
α∈J
Ku(α)
Hα(θ) = ˜f(θ) =
α∈J
f(α)
Hα(θ), with
u(α)
= [u
(α)
1 , ..., u
(α)
N ]T
. Projecting onto each Hα obtain
Ku(α)
= f(α)
.
The KLE of f(θ) is
f(θ) = f +
ℓ
λℓφℓ(θ)fℓ =
ℓ α
λℓφ
(α)
ℓ Hα(θ)fℓ
=
α
Hα(θ)f(α)
,
where f(α)
= ℓ
√
λℓφ
(α)
ℓ fℓ.
Application: higher order moments
The 3-rd moment of u is
M
(3)
u = E


α,β,γ
u(α)
⊗ u(β)
⊗ u(γ)
HαHβHγ

 =
α,β,γ
u(α)
⊗u(β)
⊗u(γ)
cα,β,γ,
cα,β,γ := E (Hα(θ)Hβ(θ)Hγ(θ)) = cα,β · γ!, and cα,β are constants
from the Hermitian algebra.
Using u(α)
= K−1
f(α)
= ℓ
√
λℓφ
(α)
ℓ K−1
fℓ and uℓ := K−1
fℓ, obtain
M
(3)
u =
p,q,r
tp,q,r up ⊗ uq ⊗ ur , where
tp,q,r := λpλqλr
α,β,γ
φ
(α)
p φ
(β)
q φ
(γ)
r cα,βγ.
Outline
Problem setup
Karhunen-Lo`eve expansion
Data Sparse Techniques
Fast Fourier Transformation (FFT)
Hierarchical Matrices
Sparse tensor approximation
Applications
Conclusion
Conclusion
◮ Covariance matrices allow data sparse approximations.
◮ Application of H-matrices
◮ extend the class of covariance functions to work with,
◮ allows non-regular discretisations of the cov. function on large
spatial grids.
◮ Application of sparse tensor product allows computation of k-th
moments.
Plans for Feature
1. Apply H-matrix - ARPACK technique for solving SPDEs [M.
Krosche’s software]
2. Further research how to apply sparse KLE for computing
moments and functionals of the solution [DFG]
3. Implement sparse tensor vector product for the Lanczos method
[MPI Leipzig]
Thank you for your attention!
Questions?

Mais conteúdo relacionado

Mais procurados

Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexityFrank Nielsen
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Daisuke Yoneoka
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化Akira Tanimoto
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsFrank Nielsen
 
sublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiessublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiesFujimoto Keisuke
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon informationFrank Nielsen
 
On learning statistical mixtures maximizing the complete likelihood
On learning statistical mixtures maximizing the complete likelihoodOn learning statistical mixtures maximizing the complete likelihood
On learning statistical mixtures maximizing the complete likelihoodFrank Nielsen
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applicationsFrank Nielsen
 
Non-informative reparametrisation for location-scale mixtures
Non-informative reparametrisation for location-scale mixturesNon-informative reparametrisation for location-scale mixtures
Non-informative reparametrisation for location-scale mixturesChristian Robert
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clusteringFrank Nielsen
 
Delayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithmsDelayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithmsChristian Robert
 

Mais procurados (19)

Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
 
Slides
SlidesSlides
Slides
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli... Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metrics
 
sublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energiessublabel accurate convex relaxation of vectorial multilabel energies
sublabel accurate convex relaxation of vectorial multilabel energies
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
On learning statistical mixtures maximizing the complete likelihood
On learning statistical mixtures maximizing the complete likelihoodOn learning statistical mixtures maximizing the complete likelihood
On learning statistical mixtures maximizing the complete likelihood
 
QMC Opening Workshop, High Accuracy Algorithms for Interpolating and Integrat...
QMC Opening Workshop, High Accuracy Algorithms for Interpolating and Integrat...QMC Opening Workshop, High Accuracy Algorithms for Interpolating and Integrat...
QMC Opening Workshop, High Accuracy Algorithms for Interpolating and Integrat...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applications
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Non-informative reparametrisation for location-scale mixtures
Non-informative reparametrisation for location-scale mixturesNon-informative reparametrisation for location-scale mixtures
Non-informative reparametrisation for location-scale mixtures
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clustering
 
Delayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithmsDelayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithms
 

Semelhante a Hierarchical matrices for approximating large covariance matries and computing Karhunen-Loeve Expansion in PDEs with uncertain coefficients

Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionAlexander Litvinenko
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Alexander Litvinenko
 
A new implementation of k-MLE for mixture modelling of Wishart distributions
A new implementation of k-MLE for mixture modelling of Wishart distributionsA new implementation of k-MLE for mixture modelling of Wishart distributions
A new implementation of k-MLE for mixture modelling of Wishart distributionsFrank Nielsen
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationAlexander Litvinenko
 
New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...Alexander Litvinenko
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
The Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionThe Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionPedro222284
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderJuliho Castillo
 
Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindIJECEIAES
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017Fred J. Hickernell
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential slides
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theoremWathna
 

Semelhante a Hierarchical matrices for approximating large covariance matries and computing Karhunen-Loeve Expansion in PDEs with uncertain coefficients (20)

Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 
A new implementation of k-MLE for mixture modelling of Wishart distributions
A new implementation of k-MLE for mixture modelling of Wishart distributionsA new implementation of k-MLE for mixture modelling of Wishart distributions
A new implementation of k-MLE for mixture modelling of Wishart distributions
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
The Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionThe Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability Distribution
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first order
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Conformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kindConformable Chebyshev differential equation of first kind
Conformable Chebyshev differential equation of first kind
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017
 
The Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal FunctionThe Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal Function
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 

Mais de Alexander Litvinenko

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdfAlexander Litvinenko
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityAlexander Litvinenko
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfAlexander Litvinenko
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfAlexander Litvinenko
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Alexander Litvinenko
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowAlexander Litvinenko
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowAlexander Litvinenko
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsAlexander Litvinenko
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleAlexander Litvinenko
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonAlexander Litvinenko
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Alexander Litvinenko
 

Mais de Alexander Litvinenko (20)

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdf
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
 
litvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdflitvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdf
 
Litvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdfLitvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdf
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdf
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster Ensemble
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in Houston
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
 
Talk litvinenko gamm19
Talk litvinenko gamm19Talk litvinenko gamm19
Talk litvinenko gamm19
 

Último

JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 

Último (20)

JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 

Hierarchical matrices for approximating large covariance matries and computing Karhunen-Loeve Expansion in PDEs with uncertain coefficients

  • 1. Application of data sparse approximation techniques for solving SPDE Alexander Litvinenko Institut f¨ur Wissenschaftliches Rechnen, Technische Universit¨at Braunschweig, 0531-391-3008, litvinen@tu-bs.de March 6, 2008
  • 2. Outline Problem setup Karhunen-Lo`eve expansion Data Sparse Techniques Fast Fourier Transformation (FFT) Hierarchical Matrices Sparse tensor approximation Applications Conclusion
  • 3. Outline Problem setup Karhunen-Lo`eve expansion Data Sparse Techniques Fast Fourier Transformation (FFT) Hierarchical Matrices Sparse tensor approximation Applications Conclusion
  • 4. Stochastic PDE We consider − div(κ(x, ω)∇u) = f(x, ω) in D, u = 0 on ∂D, with stochastic coefficients κ(x, ω), x ∈ D ⊆ Rd and ω belongs to the space of random events Ω. [Babuˇska, Ghanem, Schwab, Vandewalle, ...]. Methods and techniques: 1. Response surface 2. Monte-Carlo 3. Perturbation 4. Stochastic Galerkin
  • 5. Plan of the solution 1. Discretisation of the determ. operator (FE method). 2. Discretisation of the random fields κ(x, ω), f(x, ω) (KLE). KLE is computed by the Lanczos method + sparse data techniques. 3. Iterative solving a huge linear system Total dimension of the SPDE is the product of dimensions of the determ. and stochastic parts.
  • 6. Covariance functions The random field requires to specify its spatial correl. structure covf (x, y) = E[(f(x, ·) − µf (x))(f(y, ·) − µf (y))], where E is the expectation and µf (x) := E[f(x, ·)]. We classify all covariance functions into three groups: 1. isotropic (directionally independent) and stationary (translation invariant), i.e. cov(x, y) = cov(|x − y|), 2. anisotropic (directionally dependent) and stationary, i.e. cov(x, y) = cov(x − y), 3. instationary, i.e. of a general type.
  • 7. Outline Problem setup Karhunen-Lo`eve expansion Data Sparse Techniques Fast Fourier Transformation (FFT) Hierarchical Matrices Sparse tensor approximation Applications Conclusion
  • 8. KLE The spectral representation of the cov. function is Cκ(x, y) = ∞ i=0 λi ki(x)ki (y), where λi and ki(x) are the eigenvalues and eigenfunctions. The Karhunen-Lo`eve expansion [Loeve, 1977] is the series κ(x, ω) = µk (x) + ∞ i=1 λi ki (x)ξi (ω), where ξi (ω) are uncorrelated random variables and ki are basis functions in L2 (D). Eigenpairs λi , ki are the solution of Tki = λi ki, ki ∈ L2 (D), i ∈ N, where. T : L2 (D) → L2 (D), (Tu)(x) := D covk (x, y)u(y)dy.
  • 9. Outline Problem setup Karhunen-Lo`eve expansion Data Sparse Techniques Fast Fourier Transformation (FFT) Hierarchical Matrices Sparse tensor approximation Applications Conclusion
  • 10. Computation of eigenpairs by FFT If the cov. function depends on (x − y) then on a uniform tensor grid the cov. matrix C is (block) Toeplitz. Then C can be extended to the circulant one and the decomposition C = 1 n F H ΛF (1) may be computed like follows. Multiply (1) by F , obtain F C = ΛF , for the first column we have F C1 = ΛF1. Since all entries of F1 are unity, obtain λ = F C1. F C1 may be computed very efficiently by FFT [Cooley, 1965] in O(n log n) FLOPS. C1 may be represented in a matrix or in a tensor format.
  • 11. Properties of FFT Lemma: Let C ∈ Rn×m and C = k i=0 ai bT i , where ai ∈ Rn , bi ∈ Rm . Then F (2) (C) = k i=0 F (1) (ai )F (1) (bT i ). (2) Lemma: The d-dim. FT F (d) can be represented as following F (d) = d i=i F (1) = F (1) ⊗ F (1) . . . ⊗ F (1) (3) and the computational complexity of F (d) is O(dnd log n), where nd is the number of dofs.
  • 12. Discrete eigenvalue problem After discretisation of the integral equation above, obtain Wij := k,m D bi (x)bk (x)dxCkm D bj (y)bm(y)dy, Mij = D bi (x)bj (x)dx, and the discrete equation will be W fh ℓ = λℓMfh ℓ , where W := MCM Approximate C in ◮ a low rank format ◮ the H-matrix format ◮ a sparse tensor format and use the Lanczos method to compute m largest eigenvalues.
  • 13. H-matrix [Hackbusch et al. 99] 25 11 11 20 12 13 20 11 9 16 13 13 20 11 11 20 13 13 32 13 13 20 8 10 20 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 20 10 10 20 12 12 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 32 13 13 32 13 13 20 9 9 20 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 Figure: An H-matrix approximates of cov(x, y) = e−2|x−y| , CH ∈ Rn×n , n = 322 . Dense blocks are red and rank-k blocks green, max. rank-k = 13.
  • 14. Construction process H-matrixvertices finite elements cluster tree block cluster tree admissibility condition admissible partitioning ACAcov. function a good preconditioner fast arithmetics Figure: A block cluster tree. The initial matrix is decomposed into blocks and each block is filled by a low-rank matrix or by a dense matrix.
  • 15. H - Matrices Comp. complexity is O(kn log n) and storage O(kn log n). To assemble low-rank blocks use ACA [Bebendorf, Tyrtyshnikov]. Dependence of the computational time and storage requirements of CH on the rank k, n = 322 . k time (sec.) memory (MB) C−CH 2 C 2 2 0.04 2e + 6 3.5e − 5 6 0.1 4e + 6 1.4e − 5 9 0.14 5.4e + 6 1.4e − 5 12 0.17 6.8e + 6 3.1e − 7 17 0.23 9.3e + 6 6.3e − 8 The time for dense matrix C is 3.3 sec. and the storage 1.4e + 8 MB.
  • 16. H - Matrices Let h = 2 i=1 h2 i /ℓ2 i + d2 − d 2 , where hi := xi − yi , i = 1, 2, 3, ℓi are cov. lengths and d = 1. exponential cov(h) = σ2 · exp(−h), The cov. matrix C ∈ Rn×n , n = 652 . ℓ1 ℓ2 C−CH 2 C 2 0.01 0.02 3e − 2 0.1 0.2 8e − 3 1 2 2.8e − 6 10 20 3.7e − 9
  • 17. H - matrices + ARPACK → Eigenvalues Table: Time required for computing m eigenpairs. exponential cov. matrix C ∈ Rn× , n = 2572 , ℓ1 = ℓ2 = 0.1. H-matrix comp. time is 26 sec., storage for C is 1.2 GB. m 10 20 40 80 160 time (sec.), ℓ1 = ℓ2 = 1 7 16 34 104 449 time (sec.), ℓ1 = ℓ2 = 0.1 35 51 97 194 532 Eigenvalues and the computational error for different covariance lengths, max. rank k = 20. ℓ1 = ℓ2 = 1 ℓ1 = ℓ2 = 0.1 i λi Cxi − λi xi 2 λi Cxi − λi xi 2 1 303748 1.6e-4 26006 0.03 2 56358 1.7e-3 21120 0.01 20 1463 2.2e-2 4895 0.2 80 139 4.2e-2 956 0.26 150 68 7e-2 370 0.5
  • 18. Exponential Eigenvalue decay 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 800 900 1000 0 1 2 3 4 5 6 7 8 9 10 x 10 4 0 100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 1200 1400 1600 1800 0 100 200 300 400 500 600 700 800 900 1000 0 0.5 1 1.5 2 2.5 x 10 5 0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 0 100 200 300 400 500 600 700 800 900 1000 0 0.5 1 1.5 2 2.5 3 3.5 4 x 10 4 Figure: 23 grid 48 × 64 × 40, (left) ℓ1 = 1, ℓ2 = 2, ℓ3 = 1 and (right) ℓ1 = 5, ℓ2 = 10, ℓ2 = 5. 1st row - Gaussian, 2-nd exponential and 3-rd spherical cov.
  • 19. Sparse tensor decompositions of kernels cov(x, y) = cov(x − y) We want to approximate C ∈ RN×N , N = nd by Cr = r k=1 V 1 k ⊗ ... ⊗ V d k such that C − Cr ≤ ε. The storage of C is O(N2 ) = O(n2d ) and the storage of Cr is O(rdn2 ). To define V i k use e.g. SVD. Approximate all V i k in the H-matrix format ⇒ HKT format [Hackbusch, Khoromskij, Tyrtyshnikov]. Assume f(x, y), x = (x1, x2), y = (y1, y2), then the equivalent approx. problem is f(x1, x2; y1, y2) ≈ r k=1 Φk (x1, y1)Ψk (x2, y2).
  • 20. Numerical examples of tensor approximations Gaussian kernel exp{−|x − y|2 } has the Kroneker rank 1. The exponen. kernel exp{−|x − y|} can be approximated by a tensor with low Kronecker rank r 1 2 3 4 5 6 10 C−Cr ∞ C ∞ 11.5 1.7 0.4 0.14 0.035 0.007 2.8e − 8 C−Cr 2 C 2 6.7 0.52 0.1 0.03 0.008 0.001 5.3e − 9
  • 21. Outline Problem setup Karhunen-Lo`eve expansion Data Sparse Techniques Fast Fourier Transformation (FFT) Hierarchical Matrices Sparse tensor approximation Applications Conclusion
  • 22. Application: covariance of the solution Let K be the stiffness matrix. For SPDE with stochastic RHS the eigenvalue problem and spectral decom. look like Cf fℓ = λℓfℓ, Cf = Φf Λf ΦT f . If we only want the covariance Cu = (K ⊗ K)−1 Cf = (K−1 ⊗ K−1 )Cf = K−1 Cf K−T , one may with the KLE of Cf = Φf Λf ΦT f reduce this to Cu = K−1 Cf K−T = K−1 Φf ΛΦT f K−T .
  • 23. Application: higher order moments Let operator K be deterministic and Ku(θ) = α∈J Ku(α) Hα(θ) = ˜f(θ) = α∈J f(α) Hα(θ), with u(α) = [u (α) 1 , ..., u (α) N ]T . Projecting onto each Hα obtain Ku(α) = f(α) . The KLE of f(θ) is f(θ) = f + ℓ λℓφℓ(θ)fℓ = ℓ α λℓφ (α) ℓ Hα(θ)fℓ = α Hα(θ)f(α) , where f(α) = ℓ √ λℓφ (α) ℓ fℓ.
  • 24. Application: higher order moments The 3-rd moment of u is M (3) u = E   α,β,γ u(α) ⊗ u(β) ⊗ u(γ) HαHβHγ   = α,β,γ u(α) ⊗u(β) ⊗u(γ) cα,β,γ, cα,β,γ := E (Hα(θ)Hβ(θ)Hγ(θ)) = cα,β · γ!, and cα,β are constants from the Hermitian algebra. Using u(α) = K−1 f(α) = ℓ √ λℓφ (α) ℓ K−1 fℓ and uℓ := K−1 fℓ, obtain M (3) u = p,q,r tp,q,r up ⊗ uq ⊗ ur , where tp,q,r := λpλqλr α,β,γ φ (α) p φ (β) q φ (γ) r cα,βγ.
  • 25. Outline Problem setup Karhunen-Lo`eve expansion Data Sparse Techniques Fast Fourier Transformation (FFT) Hierarchical Matrices Sparse tensor approximation Applications Conclusion
  • 26. Conclusion ◮ Covariance matrices allow data sparse approximations. ◮ Application of H-matrices ◮ extend the class of covariance functions to work with, ◮ allows non-regular discretisations of the cov. function on large spatial grids. ◮ Application of sparse tensor product allows computation of k-th moments.
  • 27. Plans for Feature 1. Apply H-matrix - ARPACK technique for solving SPDEs [M. Krosche’s software] 2. Further research how to apply sparse KLE for computing moments and functionals of the solution [DFG] 3. Implement sparse tensor vector product for the Lanczos method [MPI Leipzig]
  • 28. Thank you for your attention! Questions?