Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning
30 de Oct de 2020•0 gostou
0 gostaram
Seja o primeiro a gostar disto
mostrar mais
•631 visualizações
visualizações
Vistos totais
0
No Slideshare
0
De incorporações
0
Número de incorporações
0
Baixar para ler offline
Denunciar
Engenharia
Official slides for the NeurIPS 2020 paper "Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning," by Jaehyung Kim, Youngbum Hur, Sejun Park, Eunho Yang, Sung Ju Hwang, and Jinwoo Shin.
Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning
Distribution Aligning Refinery of Pseudo-label
for Imbalanced Semi-supervised Learning
Jaehyung Kim1 Youngbum Hur2 Sejun Park1
Eunho Yang1,3 Sung Ju Hwang1,3 Jinwoo Shin1
1Korea Advanced Institute of Science and Technology (KAIST)
2Samsung Advanced Institute of Technology
3AITRICS
• Goal: reduce the need for labeled data by leveraging unlabeled data
• Common approach for SSL: generating pseudo-labels for unlabeled data
• Generating method and loss function are just different among them
• For example, the prediction of augmented data has been used as pseudo-labels
[Miyato et al., 2018; Berthelot et al., 2019; Sohn et al; 2020]
Semi-supervised Learning (SSL)
[Miyato et al. 2018] Virtual Adversarial Training: A Regularization Method for Supervised and Semi-supervised Learning. In PAMI, 2018
[Berthelot et al. 2019] MixMatch: A Holistic Approach to Semi-supervised Learning. In NeurIPS, 2019
[Sohn et al. 2020] Fixmatch: Simplifying Semi-sueprvised Learning with Consistency and Confidence. In NeurIPS, 2020
Generation method of pseudo-label in MixMatch [Berthelot et al. 2019]
1
• Balanced class distribution is typically assumed in the existing works for SSL
• However, many real-world datasets have an imbalanced class distribution
• Standard training (e.g. ERM) often fails to generalize at the minority classes
[Wang et al., 2017; Cao et al., 2019]
Class Imbalance in Training Data
Species [Van Horn et al. 2019] Places [Wang et al. 2017]
[Wang et al. 2017] Learning to Model the Tail. In NeurIPS, 2017
[Van Horn et al. 2019] The iNaturalist Species Classification and Detection Dataset. In CVPR, 2018
[Cao et al. 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss. In NeurIPS, 2019 2
• Assumption: class distribution of labeled and unlabeled data is highly imbalanced
Imbalanced Semi-supervised Learning
Imbalanced CIFAR-10
3
• Assumption: class distribution of labeled and unlabeled data is highly imbalanced
• Under imbalanced SSL scenario, recent SSL methods do not work well
• They generate pseudo-labels of unlabeled data from the model’s biased predictions
• Pseudo-labels are even more severely imbalanced ⟹ degradation on minority classes
Imbalanced Semi-supervised Learning
3
Results on imbalanced CIFAR-10
• Idea: refining the original, biased pseudo-labels from SSL methods
• Distribution of refined pseudo-labels matches the true class distribution of unlabeled data
• Simultaneously, refined pseudo-labels are constrained to be not too far from the original ones
• Refined pseudo-labels are obtained by solving a convex optimization
• : number of unlabeled data for class , : number of classes,
• Weight to preserve more information of high-confident original pseudo-labels
Distribution Aligning Refinery of Pseudo-label (DARP)
wm := H ˆyunlabeled
m
1
<latexit sha1_base64="n+xr3jkNc+0CjJ75U0Z2bnxc7js=">AAADDHicjVHLShxBFD12jK8YncSlm8ZB0EWGbhEUISBkEZcKGRVsHap7amYKqx9UVytD07+QP8kuu5BtfsCFCGaf/IW3yhJMJJhquurUufecqls3LqQodRDcTHgvJl9OTc/Mzr2af72w2Hrz9rDMK5XwbpLLXB3HrORSZLyrhZb8uFCcpbHkR/H5BxM/uuCqFHn2SY8LfpqyYSYGImGaqF7r42WvTpud95HkA722d79EI6brcWMiZ3WUMj1SaV1lksVc8n7TREoMR3rdLWf1u7DptdpBJ7DDfwpCB9pwYz9vXSNCHzkSVEjBkUETlmAo6TtBiAAFcaeoiVOEhI1zNJgjbUVZnDIYsec0D2l34tiM9saztOqETpH0K1L6WCVNTnmKsDnNt/HKOhv2X9619TR3G9MaO6+UWI0Rsc/pHjL/V2dq0Rhg29YgqKbCMqa6xLlU9lXMzf1HVWlyKIgzuE9xRTixyod39q2mtLWbt2U2/stmGtbsE5db4be5JTU4/LudT8HhRicMOuHBZnt307V6BstYwRr1cwu72MM+uuT9BVe4xU/vs/fV++Z9v0/1JpxmCX8M78cdoxSt4w==</latexit><latexit sha1_base64="n+xr3jkNc+0CjJ75U0Z2bnxc7js=">AAADDHicjVHLShxBFD12jK8YncSlm8ZB0EWGbhEUISBkEZcKGRVsHap7amYKqx9UVytD07+QP8kuu5BtfsCFCGaf/IW3yhJMJJhquurUufecqls3LqQodRDcTHgvJl9OTc/Mzr2af72w2Hrz9rDMK5XwbpLLXB3HrORSZLyrhZb8uFCcpbHkR/H5BxM/uuCqFHn2SY8LfpqyYSYGImGaqF7r42WvTpud95HkA722d79EI6brcWMiZ3WUMj1SaV1lksVc8n7TREoMR3rdLWf1u7DptdpBJ7DDfwpCB9pwYz9vXSNCHzkSVEjBkUETlmAo6TtBiAAFcaeoiVOEhI1zNJgjbUVZnDIYsec0D2l34tiM9saztOqETpH0K1L6WCVNTnmKsDnNt/HKOhv2X9619TR3G9MaO6+UWI0Rsc/pHjL/V2dq0Rhg29YgqKbCMqa6xLlU9lXMzf1HVWlyKIgzuE9xRTixyod39q2mtLWbt2U2/stmGtbsE5db4be5JTU4/LudT8HhRicMOuHBZnt307V6BstYwRr1cwu72MM+uuT9BVe4xU/vs/fV++Z9v0/1JpxmCX8M78cdoxSt4w==</latexit><latexit sha1_base64="n+xr3jkNc+0CjJ75U0Z2bnxc7js=">AAADDHicjVHLShxBFD12jK8YncSlm8ZB0EWGbhEUISBkEZcKGRVsHap7amYKqx9UVytD07+QP8kuu5BtfsCFCGaf/IW3yhJMJJhquurUufecqls3LqQodRDcTHgvJl9OTc/Mzr2af72w2Hrz9rDMK5XwbpLLXB3HrORSZLyrhZb8uFCcpbHkR/H5BxM/uuCqFHn2SY8LfpqyYSYGImGaqF7r42WvTpud95HkA722d79EI6brcWMiZ3WUMj1SaV1lksVc8n7TREoMR3rdLWf1u7DptdpBJ7DDfwpCB9pwYz9vXSNCHzkSVEjBkUETlmAo6TtBiAAFcaeoiVOEhI1zNJgjbUVZnDIYsec0D2l34tiM9saztOqETpH0K1L6WCVNTnmKsDnNt/HKOhv2X9619TR3G9MaO6+UWI0Rsc/pHjL/V2dq0Rhg29YgqKbCMqa6xLlU9lXMzf1HVWlyKIgzuE9xRTixyod39q2mtLWbt2U2/stmGtbsE5db4be5JTU4/LudT8HhRicMOuHBZnt307V6BstYwRr1cwu72MM+uuT9BVe4xU/vs/fV++Z9v0/1JpxmCX8M78cdoxSt4w==</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="aQ6VNeX17tKdKtbSum7ouo/KEII=">AAADAXicjVLLahsxFD2evhLXbdxusxlqCumiZqablkAgkEWzTCB+gCc2mrFsC2seaDQpZphf6J90113pV3QRAu0++YteKWNoYkqrYaSjc+850pUUZlLk2vOuGs6Dh48eP9nabj5tPXu+037R6udpoSLei1KZqmHIci5FwntaaMmHmeIsDiUfhMsjEx9ccJWLNDnTq4yfx2yeiJmImCZq0v74aVLG1f5BIPlM7x3fDsGC6XJVmci4DGKmFyoui0SykEs+rapAiflCv6mHcfnWrybtjtf1bHM3gV+DDup2krYvEWCKFBEKxOBIoAlLMOT0jeDDQ0bcOUriFCFh4xwVmqQtKItTBiN2Sf2cZqOaTWhuPHOrjmgVSb8ipYvXpEkpTxE2q7k2Xlhnw/7Nu7SeZm8rGsPaKyZWY0Hsv3TrzP/VmVo0ZvhgaxBUU2YZU11UuxT2VMzO3T+q0uSQEWfwlOKKcGSV63N2rSa3tZuzZTZ+bTMNa+ZRnVvgxuySLti/f52boP+u63td/9TDFnbxCnt0je9xiGOcoEeWX/ADP/HL+ex8db7dPgWnUb+Jl7jTnO+/AS2lrHk=</latexit><latexit sha1_base64="aQ6VNeX17tKdKtbSum7ouo/KEII=">AAADAXicjVLLahsxFD2evhLXbdxusxlqCumiZqablkAgkEWzTCB+gCc2mrFsC2seaDQpZphf6J90113pV3QRAu0++YteKWNoYkqrYaSjc+850pUUZlLk2vOuGs6Dh48eP9nabj5tPXu+037R6udpoSLei1KZqmHIci5FwntaaMmHmeIsDiUfhMsjEx9ccJWLNDnTq4yfx2yeiJmImCZq0v74aVLG1f5BIPlM7x3fDsGC6XJVmci4DGKmFyoui0SykEs+rapAiflCv6mHcfnWrybtjtf1bHM3gV+DDup2krYvEWCKFBEKxOBIoAlLMOT0jeDDQ0bcOUriFCFh4xwVmqQtKItTBiN2Sf2cZqOaTWhuPHOrjmgVSb8ipYvXpEkpTxE2q7k2Xlhnw/7Nu7SeZm8rGsPaKyZWY0Hsv3TrzP/VmVo0ZvhgaxBUU2YZU11UuxT2VMzO3T+q0uSQEWfwlOKKcGSV63N2rSa3tZuzZTZ+bTMNa+ZRnVvgxuySLti/f52boP+u63td/9TDFnbxCnt0je9xiGOcoEeWX/ADP/HL+ex8db7dPgWnUb+Jl7jTnO+/AS2lrHk=</latexit><latexit sha1_base64="+iaWb8t9MW732eOHdR8CMqoyYM8=">AAADDHicjVFNSx0xFD2OrVpr7WtddjP4EHTRx4wUWoSC0EVdKvhUcPSRmZf3XjDzQSajPIb5C/0n3bkrbv0DLkSw+/ovvIkRqlJshklOzr3nJDc3LqQodRBcTXiTL15OTc+8mn0992b+bevd+50yr1TCu0kuc7UXs5JLkfGuFlryvUJxlsaS78ZH30x895irUuTZth4X/CBlw0wMRMI0Ub3W95NenTZrXyPJB3p5426JRkzX48ZEDusoZXqk0rrKJIu55P2miZQYjvSKWw7rj2HTa7WDTmCH/xSEDrThxmbeukSEPnIkqJCCI4MmLMFQ0rePEAEK4g5QE6cICRvnaDBL2oqyOGUwYo9oHtJu37EZ7Y1nadUJnSLpV6T0sUSanPIUYXOab+OVdTbsv7xr62nuNqY1dl4psRojYp/T3Wf+r87UojHAF1uDoJoKy5jqEudS2VcxN/f/qkqTQ0GcwX2KK8KJVd6/s281pa3dvC2z8T8207Bmn7jcCjfmltTg8HE7n4Kd1U4YdMKtoL3+ybV6Bh+wiGXq52esYwOb6JL3T1zgGr+9H96p98s7u0v1JpxmAQ+Gd34LodSt3w==</latexit><latexit sha1_base64="n+xr3jkNc+0CjJ75U0Z2bnxc7js=">AAADDHicjVHLShxBFD12jK8YncSlm8ZB0EWGbhEUISBkEZcKGRVsHap7amYKqx9UVytD07+QP8kuu5BtfsCFCGaf/IW3yhJMJJhquurUufecqls3LqQodRDcTHgvJl9OTc/Mzr2af72w2Hrz9rDMK5XwbpLLXB3HrORSZLyrhZb8uFCcpbHkR/H5BxM/uuCqFHn2SY8LfpqyYSYGImGaqF7r42WvTpud95HkA722d79EI6brcWMiZ3WUMj1SaV1lksVc8n7TREoMR3rdLWf1u7DptdpBJ7DDfwpCB9pwYz9vXSNCHzkSVEjBkUETlmAo6TtBiAAFcaeoiVOEhI1zNJgjbUVZnDIYsec0D2l34tiM9saztOqETpH0K1L6WCVNTnmKsDnNt/HKOhv2X9619TR3G9MaO6+UWI0Rsc/pHjL/V2dq0Rhg29YgqKbCMqa6xLlU9lXMzf1HVWlyKIgzuE9xRTixyod39q2mtLWbt2U2/stmGtbsE5db4be5JTU4/LudT8HhRicMOuHBZnt307V6BstYwRr1cwu72MM+uuT9BVe4xU/vs/fV++Z9v0/1JpxmCX8M78cdoxSt4w==</latexit><latexit sha1_base64="n+xr3jkNc+0CjJ75U0Z2bnxc7js=">AAADDHicjVHLShxBFD12jK8YncSlm8ZB0EWGbhEUISBkEZcKGRVsHap7amYKqx9UVytD07+QP8kuu5BtfsCFCGaf/IW3yhJMJJhquurUufecqls3LqQodRDcTHgvJl9OTc/Mzr2af72w2Hrz9rDMK5XwbpLLXB3HrORSZLyrhZb8uFCcpbHkR/H5BxM/uuCqFHn2SY8LfpqyYSYGImGaqF7r42WvTpud95HkA722d79EI6brcWMiZ3WUMj1SaV1lksVc8n7TREoMR3rdLWf1u7DptdpBJ7DDfwpCB9pwYz9vXSNCHzkSVEjBkUETlmAo6TtBiAAFcaeoiVOEhI1zNJgjbUVZnDIYsec0D2l34tiM9saztOqETpH0K1L6WCVNTnmKsDnNt/HKOhv2X9619TR3G9MaO6+UWI0Rsc/pHjL/V2dq0Rhg29YgqKbCMqa6xLlU9lXMzf1HVWlyKIgzuE9xRTixyod39q2mtLWbt2U2/stmGtbsE5db4be5JTU4/LudT8HhRicMOuHBZnt307V6BstYwRr1cwu72MM+uuT9BVe4xU/vs/fV++Z9v0/1JpxmCX8M78cdoxSt4w==</latexit><latexit sha1_base64="n+xr3jkNc+0CjJ75U0Z2bnxc7js=">AAADDHicjVHLShxBFD12jK8YncSlm8ZB0EWGbhEUISBkEZcKGRVsHap7amYKqx9UVytD07+QP8kuu5BtfsCFCGaf/IW3yhJMJJhquurUufecqls3LqQodRDcTHgvJl9OTc/Mzr2af72w2Hrz9rDMK5XwbpLLXB3HrORSZLyrhZb8uFCcpbHkR/H5BxM/uuCqFHn2SY8LfpqyYSYGImGaqF7r42WvTpud95HkA722d79EI6brcWMiZ3WUMj1SaV1lksVc8n7TREoMR3rdLWf1u7DptdpBJ7DDfwpCB9pwYz9vXSNCHzkSVEjBkUETlmAo6TtBiAAFcaeoiVOEhI1zNJgjbUVZnDIYsec0D2l34tiM9saztOqETpH0K1L6WCVNTnmKsDnNt/HKOhv2X9619TR3G9MaO6+UWI0Rsc/pHjL/V2dq0Rhg29YgqKbCMqa6xLlU9lXMzf1HVWlyKIgzuE9xRTixyod39q2mtLWbt2U2/stmGtbsE5db4be5JTU4/LudT8HhRicMOuHBZnt307V6BstYwRr1cwu72MM+uuT9BVe4xU/vs/fV++Z9v0/1JpxmCX8M78cdoxSt4w==</latexit><latexit sha1_base64="n+xr3jkNc+0CjJ75U0Z2bnxc7js=">AAADDHicjVHLShxBFD12jK8YncSlm8ZB0EWGbhEUISBkEZcKGRVsHap7amYKqx9UVytD07+QP8kuu5BtfsCFCGaf/IW3yhJMJJhquurUufecqls3LqQodRDcTHgvJl9OTc/Mzr2af72w2Hrz9rDMK5XwbpLLXB3HrORSZLyrhZb8uFCcpbHkR/H5BxM/uuCqFHn2SY8LfpqyYSYGImGaqF7r42WvTpud95HkA722d79EI6brcWMiZ3WUMj1SaV1lksVc8n7TREoMR3rdLWf1u7DptdpBJ7DDfwpCB9pwYz9vXSNCHzkSVEjBkUETlmAo6TtBiAAFcaeoiVOEhI1zNJgjbUVZnDIYsec0D2l34tiM9saztOqETpH0K1L6WCVNTnmKsDnNt/HKOhv2X9619TR3G9MaO6+UWI0Rsc/pHjL/V2dq0Rhg29YgqKbCMqa6xLlU9lXMzf1HVWlyKIgzuE9xRTixyod39q2mtLWbt2U2/stmGtbsE5db4be5JTU4/LudT8HhRicMOuHBZnt307V6BstYwRr1cwu72MM+uuT9BVe4xU/vs/fV++Z9v0/1JpxmCX8M78cdoxSt4w==</latexit><latexit sha1_base64="n+xr3jkNc+0CjJ75U0Z2bnxc7js=">AAADDHicjVHLShxBFD12jK8YncSlm8ZB0EWGbhEUISBkEZcKGRVsHap7amYKqx9UVytD07+QP8kuu5BtfsCFCGaf/IW3yhJMJJhquurUufecqls3LqQodRDcTHgvJl9OTc/Mzr2af72w2Hrz9rDMK5XwbpLLXB3HrORSZLyrhZb8uFCcpbHkR/H5BxM/uuCqFHn2SY8LfpqyYSYGImGaqF7r42WvTpud95HkA722d79EI6brcWMiZ3WUMj1SaV1lksVc8n7TREoMR3rdLWf1u7DptdpBJ7DDfwpCB9pwYz9vXSNCHzkSVEjBkUETlmAo6TtBiAAFcaeoiVOEhI1zNJgjbUVZnDIYsec0D2l34tiM9saztOqETpH0K1L6WCVNTnmKsDnNt/HKOhv2X9619TR3G9MaO6+UWI0Rsc/pHjL/V2dq0Rhg29YgqKbCMqa6xLlU9lXMzf1HVWlyKIgzuE9xRTixyod39q2mtLWbt2U2/stmGtbsE5db4be5JTU4/LudT8HhRicMOuHBZnt307V6BstYwRr1cwu72MM+uuT9BVe4xU/vs/fV++Z9v0/1JpxmCX8M78cdoxSt4w==</latexit><latexit sha1_base64="n+xr3jkNc+0CjJ75U0Z2bnxc7js=">AAADDHicjVHLShxBFD12jK8YncSlm8ZB0EWGbhEUISBkEZcKGRVsHap7amYKqx9UVytD07+QP8kuu5BtfsCFCGaf/IW3yhJMJJhquurUufecqls3LqQodRDcTHgvJl9OTc/Mzr2af72w2Hrz9rDMK5XwbpLLXB3HrORSZLyrhZb8uFCcpbHkR/H5BxM/uuCqFHn2SY8LfpqyYSYGImGaqF7r42WvTpud95HkA722d79EI6brcWMiZ3WUMj1SaV1lksVc8n7TREoMR3rdLWf1u7DptdpBJ7DDfwpCB9pwYz9vXSNCHzkSVEjBkUETlmAo6TtBiAAFcaeoiVOEhI1zNJgjbUVZnDIYsec0D2l34tiM9saztOqETpH0K1L6WCVNTnmKsDnNt/HKOhv2X9619TR3G9MaO6+UWI0Rsc/pHjL/V2dq0Rhg29YgqKbCMqa6xLlU9lXMzf1HVWlyKIgzuE9xRTixyod39q2mtLWbt2U2/stmGtbsE5db4be5JTU4/LudT8HhRicMOuHBZnt307V6BstYwRr1cwu72MM+uuT9BVe4xU/vs/fV++Z9v0/1JpxmCX8M78cdoxSt4w==</latexit>
wm<latexit sha1_base64="opxQNj2swkpdqHZm1SeBabun9/4=">AAACxnicjVHLSsNAFD3GV62vqks3wSK4KokUdFlw02VF+4BaSjKd1qF5MZlYShH8Abf6aeIf6F94Z0xBLaITkpw5954zc+/1k0CkynFel6zlldW19cJGcXNre2e3tLffSuNMMt5kcRDLju+lPBARbyqhAt5JJPdCP+Btf3yh4+07LlMRR9dqmvBe6I0iMRTMU0RdTfphv1R2Ko5Z9iJwc1BGvhpx6QU3GCAGQ4YQHBEU4QAeUnq6cOEgIa6HGXGSkDBxjnsUSZtRFqcMj9gxfUe06+ZsRHvtmRo1o1MCeiUpbRyTJqY8SVifZpt4Zpw1+5v3zHjqu03p7+deIbEKt8T+pZtn/lena1EY4tzUIKimxDC6Opa7ZKYr+ub2l6oUOSTEaTyguCTMjHLeZ9toUlO77q1n4m8mU7N6z/LcDO/6ljRg9+c4F0HrtOI6FfeyWq5V81EXcIgjnNA8z1BDHQ00yXuERzzh2apbkZVZk89UaynXHODbsh4+AJXzkE4=</latexit><latexit sha1_base64="opxQNj2swkpdqHZm1SeBabun9/4=">AAACxnicjVHLSsNAFD3GV62vqks3wSK4KokUdFlw02VF+4BaSjKd1qF5MZlYShH8Abf6aeIf6F94Z0xBLaITkpw5954zc+/1k0CkynFel6zlldW19cJGcXNre2e3tLffSuNMMt5kcRDLju+lPBARbyqhAt5JJPdCP+Btf3yh4+07LlMRR9dqmvBe6I0iMRTMU0RdTfphv1R2Ko5Z9iJwc1BGvhpx6QU3GCAGQ4YQHBEU4QAeUnq6cOEgIa6HGXGSkDBxjnsUSZtRFqcMj9gxfUe06+ZsRHvtmRo1o1MCeiUpbRyTJqY8SVifZpt4Zpw1+5v3zHjqu03p7+deIbEKt8T+pZtn/lena1EY4tzUIKimxDC6Opa7ZKYr+ub2l6oUOSTEaTyguCTMjHLeZ9toUlO77q1n4m8mU7N6z/LcDO/6ljRg9+c4F0HrtOI6FfeyWq5V81EXcIgjnNA8z1BDHQ00yXuERzzh2apbkZVZk89UaynXHODbsh4+AJXzkE4=</latexit><latexit sha1_base64="opxQNj2swkpdqHZm1SeBabun9/4=">AAACxnicjVHLSsNAFD3GV62vqks3wSK4KokUdFlw02VF+4BaSjKd1qF5MZlYShH8Abf6aeIf6F94Z0xBLaITkpw5954zc+/1k0CkynFel6zlldW19cJGcXNre2e3tLffSuNMMt5kcRDLju+lPBARbyqhAt5JJPdCP+Btf3yh4+07LlMRR9dqmvBe6I0iMRTMU0RdTfphv1R2Ko5Z9iJwc1BGvhpx6QU3GCAGQ4YQHBEU4QAeUnq6cOEgIa6HGXGSkDBxjnsUSZtRFqcMj9gxfUe06+ZsRHvtmRo1o1MCeiUpbRyTJqY8SVifZpt4Zpw1+5v3zHjqu03p7+deIbEKt8T+pZtn/lena1EY4tzUIKimxDC6Opa7ZKYr+ub2l6oUOSTEaTyguCTMjHLeZ9toUlO77q1n4m8mU7N6z/LcDO/6ljRg9+c4F0HrtOI6FfeyWq5V81EXcIgjnNA8z1BDHQ00yXuERzzh2apbkZVZk89UaynXHODbsh4+AJXzkE4=</latexit><latexit sha1_base64="opxQNj2swkpdqHZm1SeBabun9/4=">AAACxnicjVHLSsNAFD3GV62vqks3wSK4KokUdFlw02VF+4BaSjKd1qF5MZlYShH8Abf6aeIf6F94Z0xBLaITkpw5954zc+/1k0CkynFel6zlldW19cJGcXNre2e3tLffSuNMMt5kcRDLju+lPBARbyqhAt5JJPdCP+Btf3yh4+07LlMRR9dqmvBe6I0iMRTMU0RdTfphv1R2Ko5Z9iJwc1BGvhpx6QU3GCAGQ4YQHBEU4QAeUnq6cOEgIa6HGXGSkDBxjnsUSZtRFqcMj9gxfUe06+ZsRHvtmRo1o1MCeiUpbRyTJqY8SVifZpt4Zpw1+5v3zHjqu03p7+deIbEKt8T+pZtn/lena1EY4tzUIKimxDC6Opa7ZKYr+ub2l6oUOSTEaTyguCTMjHLeZ9toUlO77q1n4m8mU7N6z/LcDO/6ljRg9+c4F0HrtOI6FfeyWq5V81EXcIgjnNA8z1BDHQ00yXuERzzh2apbkZVZk89UaynXHODbsh4+AJXzkE4=</latexit>
Mk<latexit sha1_base64="V0qzsExbnNA+b2pD24RDP3NMMUo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LLgphuhom2FWkoyndbQvJhMlFIEf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+mkYZNJxXgvWwuLS8kpxtbS2vrG5Vd7eaWdJLhhvsSRMxJXvZTwMYt6SgQz5VSq4F/kh7/jjUxXv3HKRBUl8KScp70XeKA6GAfMkURdn/XG/XHGqjl72PHANqMCsZlJ+wTUGSMCQIwJHDEk4hIeMni5cOEiJ62FKnCAU6DjHPUqkzSmLU4ZH7Ji+I9p1DRvTXnlmWs3olJBeQUobB6RJKE8QVqfZOp5rZ8X+5j3VnupuE/r7xisiVuKG2L90s8z/6lQtEkOc6BoCqinVjKqOGZdcd0Xd3P5SlSSHlDiFBxQXhJlWzvpsa02ma1e99XT8TWcqVu2Zyc3xrm5JA3Z/jnMetI+qrlN1z2uVes2Muog97OOQ5nmMOhpookXeIzziCc9Ww4qt3Lr7TLUKRrOLb8t6+AAtH5Ai</latexit><latexit sha1_base64="V0qzsExbnNA+b2pD24RDP3NMMUo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LLgphuhom2FWkoyndbQvJhMlFIEf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+mkYZNJxXgvWwuLS8kpxtbS2vrG5Vd7eaWdJLhhvsSRMxJXvZTwMYt6SgQz5VSq4F/kh7/jjUxXv3HKRBUl8KScp70XeKA6GAfMkURdn/XG/XHGqjl72PHANqMCsZlJ+wTUGSMCQIwJHDEk4hIeMni5cOEiJ62FKnCAU6DjHPUqkzSmLU4ZH7Ji+I9p1DRvTXnlmWs3olJBeQUobB6RJKE8QVqfZOp5rZ8X+5j3VnupuE/r7xisiVuKG2L90s8z/6lQtEkOc6BoCqinVjKqOGZdcd0Xd3P5SlSSHlDiFBxQXhJlWzvpsa02ma1e99XT8TWcqVu2Zyc3xrm5JA3Z/jnMetI+qrlN1z2uVes2Muog97OOQ5nmMOhpookXeIzziCc9Ww4qt3Lr7TLUKRrOLb8t6+AAtH5Ai</latexit><latexit sha1_base64="V0qzsExbnNA+b2pD24RDP3NMMUo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LLgphuhom2FWkoyndbQvJhMlFIEf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+mkYZNJxXgvWwuLS8kpxtbS2vrG5Vd7eaWdJLhhvsSRMxJXvZTwMYt6SgQz5VSq4F/kh7/jjUxXv3HKRBUl8KScp70XeKA6GAfMkURdn/XG/XHGqjl72PHANqMCsZlJ+wTUGSMCQIwJHDEk4hIeMni5cOEiJ62FKnCAU6DjHPUqkzSmLU4ZH7Ji+I9p1DRvTXnlmWs3olJBeQUobB6RJKE8QVqfZOp5rZ8X+5j3VnupuE/r7xisiVuKG2L90s8z/6lQtEkOc6BoCqinVjKqOGZdcd0Xd3P5SlSSHlDiFBxQXhJlWzvpsa02ma1e99XT8TWcqVu2Zyc3xrm5JA3Z/jnMetI+qrlN1z2uVes2Muog97OOQ5nmMOhpookXeIzziCc9Ww4qt3Lr7TLUKRrOLb8t6+AAtH5Ai</latexit><latexit sha1_base64="V0qzsExbnNA+b2pD24RDP3NMMUo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LLgphuhom2FWkoyndbQvJhMlFIEf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+mkYZNJxXgvWwuLS8kpxtbS2vrG5Vd7eaWdJLhhvsSRMxJXvZTwMYt6SgQz5VSq4F/kh7/jjUxXv3HKRBUl8KScp70XeKA6GAfMkURdn/XG/XHGqjl72PHANqMCsZlJ+wTUGSMCQIwJHDEk4hIeMni5cOEiJ62FKnCAU6DjHPUqkzSmLU4ZH7Ji+I9p1DRvTXnlmWs3olJBeQUobB6RJKE8QVqfZOp5rZ8X+5j3VnupuE/r7xisiVuKG2L90s8z/6lQtEkOc6BoCqinVjKqOGZdcd0Xd3P5SlSSHlDiFBxQXhJlWzvpsa02ma1e99XT8TWcqVu2Zyc3xrm5JA3Z/jnMetI+qrlN1z2uVes2Muog97OOQ5nmMOhpookXeIzziCc9Ww4qt3Lr7TLUKRrOLb8t6+AAtH5Ai</latexit>
k<latexit sha1_base64="MaenEFsKtSUOisFFlS12vTNpRAI=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LIgiMsW7ANqkWQ6raHTJEwmQin6A27128Q/0L/wzjgFtYhOSHLm3HvOzL03TEWUKc97LThLyyura8X10sbm1vZOeXevnSW5ZLzFEpHIbhhkXEQxb6lICd5NJQ8moeCdcHyu4507LrMoia/UNOX9STCKo2HEAkVUc3xTrnhVzyx3EfgWVGBXIym/4BoDJGDIMQFHDEVYIEBGTw8+PKTE9TEjThKKTJzjHiXS5pTFKSMgdkzfEe16lo1prz0zo2Z0iqBXktLFEWkSypOE9WmuiefGWbO/ec+Mp77blP6h9ZoQq3BL7F+6eeZ/dboWhSHOTA0R1ZQaRlfHrEtuuqJv7n6pSpFDSpzGA4pLwswo5312jSYzteveBib+ZjI1q/fM5uZ417ekAfs/x7kI2idV36v6zVqlXrOjLuIAhzimeZ6ijks00DLej3jCs3PhCCdz8s9Up2A1+/i2nIcPSAaPYg==</latexit><latexit sha1_base64="MaenEFsKtSUOisFFlS12vTNpRAI=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LIgiMsW7ANqkWQ6raHTJEwmQin6A27128Q/0L/wzjgFtYhOSHLm3HvOzL03TEWUKc97LThLyyura8X10sbm1vZOeXevnSW5ZLzFEpHIbhhkXEQxb6lICd5NJQ8moeCdcHyu4507LrMoia/UNOX9STCKo2HEAkVUc3xTrnhVzyx3EfgWVGBXIym/4BoDJGDIMQFHDEVYIEBGTw8+PKTE9TEjThKKTJzjHiXS5pTFKSMgdkzfEe16lo1prz0zo2Z0iqBXktLFEWkSypOE9WmuiefGWbO/ec+Mp77blP6h9ZoQq3BL7F+6eeZ/dboWhSHOTA0R1ZQaRlfHrEtuuqJv7n6pSpFDSpzGA4pLwswo5312jSYzteveBib+ZjI1q/fM5uZ417ekAfs/x7kI2idV36v6zVqlXrOjLuIAhzimeZ6ijks00DLej3jCs3PhCCdz8s9Up2A1+/i2nIcPSAaPYg==</latexit><latexit sha1_base64="MaenEFsKtSUOisFFlS12vTNpRAI=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LIgiMsW7ANqkWQ6raHTJEwmQin6A27128Q/0L/wzjgFtYhOSHLm3HvOzL03TEWUKc97LThLyyura8X10sbm1vZOeXevnSW5ZLzFEpHIbhhkXEQxb6lICd5NJQ8moeCdcHyu4507LrMoia/UNOX9STCKo2HEAkVUc3xTrnhVzyx3EfgWVGBXIym/4BoDJGDIMQFHDEVYIEBGTw8+PKTE9TEjThKKTJzjHiXS5pTFKSMgdkzfEe16lo1prz0zo2Z0iqBXktLFEWkSypOE9WmuiefGWbO/ec+Mp77blP6h9ZoQq3BL7F+6eeZ/dboWhSHOTA0R1ZQaRlfHrEtuuqJv7n6pSpFDSpzGA4pLwswo5312jSYzteveBib+ZjI1q/fM5uZ417ekAfs/x7kI2idV36v6zVqlXrOjLuIAhzimeZ6ijks00DLej3jCs3PhCCdz8s9Up2A1+/i2nIcPSAaPYg==</latexit><latexit sha1_base64="MaenEFsKtSUOisFFlS12vTNpRAI=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LIgiMsW7ANqkWQ6raHTJEwmQin6A27128Q/0L/wzjgFtYhOSHLm3HvOzL03TEWUKc97LThLyyura8X10sbm1vZOeXevnSW5ZLzFEpHIbhhkXEQxb6lICd5NJQ8moeCdcHyu4507LrMoia/UNOX9STCKo2HEAkVUc3xTrnhVzyx3EfgWVGBXIym/4BoDJGDIMQFHDEVYIEBGTw8+PKTE9TEjThKKTJzjHiXS5pTFKSMgdkzfEe16lo1prz0zo2Z0iqBXktLFEWkSypOE9WmuiefGWbO/ec+Mp77blP6h9ZoQq3BL7F+6eeZ/dboWhSHOTA0R1ZQaRlfHrEtuuqJv7n6pSpFDSpzGA4pLwswo5312jSYzteveBib+ZjI1q/fM5uZ417ekAfs/x7kI2idV36v6zVqlXrOjLuIAhzimeZ6ijks00DLej3jCs3PhCCdz8s9Up2A1+/i2nIcPSAaPYg==</latexit>
K<latexit sha1_base64="Zoz/5QEOWbZ/Nm7/Z1wf/UlhXR4=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LIgiOCmBVsLtUiSTuvQNAkzE6EU/QG3+m3iH+hfeGecglpEJyQ5c+49Z+beG2Yxl8rzXgvOwuLS8kpxtbS2vrG5Vd7eacs0FxFrRWmcik4YSBbzhLUUVzHrZIIF4zBmV+HoVMev7piQPE0u1SRjvXEwTPiAR4EiqnlxU654Vc8sdx74FlRgVyMtv+AafaSIkGMMhgSKcIwAkp4ufHjIiOthSpwgxE2c4R4l0uaUxSgjIHZE3yHtupZNaK89pVFHdEpMryCliwPSpJQnCOvTXBPPjbNmf/OeGk99twn9Q+s1Jlbhlti/dLPM/+p0LQoDnJgaONWUGUZXF1mX3HRF39z9UpUih4w4jfsUF4Qjo5z12TUaaWrXvQ1M/M1kalbvI5ub413fkgbs/xznPGgfVX2v6jdrlXrNjrqIPezjkOZ5jDrO0UDLeD/iCc/OmRM70sk/U52C1ezi23IePgD7949C</latexit><latexit sha1_base64="Zoz/5QEOWbZ/Nm7/Z1wf/UlhXR4=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LIgiOCmBVsLtUiSTuvQNAkzE6EU/QG3+m3iH+hfeGecglpEJyQ5c+49Z+beG2Yxl8rzXgvOwuLS8kpxtbS2vrG5Vd7eacs0FxFrRWmcik4YSBbzhLUUVzHrZIIF4zBmV+HoVMev7piQPE0u1SRjvXEwTPiAR4EiqnlxU654Vc8sdx74FlRgVyMtv+AafaSIkGMMhgSKcIwAkp4ufHjIiOthSpwgxE2c4R4l0uaUxSgjIHZE3yHtupZNaK89pVFHdEpMryCliwPSpJQnCOvTXBPPjbNmf/OeGk99twn9Q+s1Jlbhlti/dLPM/+p0LQoDnJgaONWUGUZXF1mX3HRF39z9UpUih4w4jfsUF4Qjo5z12TUaaWrXvQ1M/M1kalbvI5ub413fkgbs/xznPGgfVX2v6jdrlXrNjrqIPezjkOZ5jDrO0UDLeD/iCc/OmRM70sk/U52C1ezi23IePgD7949C</latexit><latexit sha1_base64="Zoz/5QEOWbZ/Nm7/Z1wf/UlhXR4=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LIgiOCmBVsLtUiSTuvQNAkzE6EU/QG3+m3iH+hfeGecglpEJyQ5c+49Z+beG2Yxl8rzXgvOwuLS8kpxtbS2vrG5Vd7eacs0FxFrRWmcik4YSBbzhLUUVzHrZIIF4zBmV+HoVMev7piQPE0u1SRjvXEwTPiAR4EiqnlxU654Vc8sdx74FlRgVyMtv+AafaSIkGMMhgSKcIwAkp4ufHjIiOthSpwgxE2c4R4l0uaUxSgjIHZE3yHtupZNaK89pVFHdEpMryCliwPSpJQnCOvTXBPPjbNmf/OeGk99twn9Q+s1Jlbhlti/dLPM/+p0LQoDnJgaONWUGUZXF1mX3HRF39z9UpUih4w4jfsUF4Qjo5z12TUaaWrXvQ1M/M1kalbvI5ub413fkgbs/xznPGgfVX2v6jdrlXrNjrqIPezjkOZ5jDrO0UDLeD/iCc/OmRM70sk/U52C1ezi23IePgD7949C</latexit><latexit sha1_base64="Zoz/5QEOWbZ/Nm7/Z1wf/UlhXR4=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6LIgiOCmBVsLtUiSTuvQNAkzE6EU/QG3+m3iH+hfeGecglpEJyQ5c+49Z+beG2Yxl8rzXgvOwuLS8kpxtbS2vrG5Vd7eacs0FxFrRWmcik4YSBbzhLUUVzHrZIIF4zBmV+HoVMev7piQPE0u1SRjvXEwTPiAR4EiqnlxU654Vc8sdx74FlRgVyMtv+AafaSIkGMMhgSKcIwAkp4ufHjIiOthSpwgxE2c4R4l0uaUxSgjIHZE3yHtupZNaK89pVFHdEpMryCliwPSpJQnCOvTXBPPjbNmf/OeGk99twn9Q+s1Jlbhlti/dLPM/+p0LQoDnJgaONWUGUZXF1mX3HRF39z9UpUih4w4jfsUF4Qjo5z12TUaaWrXvQ1M/M1kalbvI5ub413fkgbs/xznPGgfVX2v6jdrlXrNjrqIPezjkOZ5jDrO0UDLeD/iCc/OmRM70sk/U52C1ezi23IePgD7949C</latexit>
M =
XK
k=1
Mk
<latexit sha1_base64="vDpCUpTnsJnTuCbeJVpKVfhI1js=">AAAC5HicjVHLSsNAFD2Nr/qOunRhsAiuSqKCbgqCG0EKFWwrtLUkcapD8yIzEaR06c6duPUH3Oq3iH+gf+GdMYIPRCckOXPuPWfm3uslARfStp8Lxsjo2PhEcXJqemZ2bt5cWGyIOEt9VvfjIE6PPVewgEesLrkM2HGSMjf0Atb0+nsq3rxgqeBxdCQvE9YJ3bOI97jvSqK65krVqlhtkYXtKA54yKXoDvoVZ3gyOBha1W6/a5bssq2X9RM4OSghX7XYfEIbp4jhI0MIhgiScAAXgp4WHNhIiOtgQFxKiOs4wxBTpM0oi1GGS2yfvme0a+VsRHvlKbTap1MCelNSWlgjTUx5KWF1mqXjmXZW7G/eA+2p7nZJfy/3ComVOCf2L91H5n91qhaJHnZ0DZxqSjSjqvNzl0x3Rd3c+lSVJIeEOIVPKZ4S9rXyo8+W1ghdu+qtq+MvOlOxau/nuRle1S1pwM73cf4EjY2yY5edw63S7mY+6iKWsYp1muc2drGPGurkfYV7PODR6BnXxo1x+55qFHLNEr4s4+4Nzi+boQ==</latexit><latexit sha1_base64="vDpCUpTnsJnTuCbeJVpKVfhI1js=">AAAC5HicjVHLSsNAFD2Nr/qOunRhsAiuSqKCbgqCG0EKFWwrtLUkcapD8yIzEaR06c6duPUH3Oq3iH+gf+GdMYIPRCckOXPuPWfm3uslARfStp8Lxsjo2PhEcXJqemZ2bt5cWGyIOEt9VvfjIE6PPVewgEesLrkM2HGSMjf0Atb0+nsq3rxgqeBxdCQvE9YJ3bOI97jvSqK65krVqlhtkYXtKA54yKXoDvoVZ3gyOBha1W6/a5bssq2X9RM4OSghX7XYfEIbp4jhI0MIhgiScAAXgp4WHNhIiOtgQFxKiOs4wxBTpM0oi1GGS2yfvme0a+VsRHvlKbTap1MCelNSWlgjTUx5KWF1mqXjmXZW7G/eA+2p7nZJfy/3ComVOCf2L91H5n91qhaJHnZ0DZxqSjSjqvNzl0x3Rd3c+lSVJIeEOIVPKZ4S9rXyo8+W1ghdu+qtq+MvOlOxau/nuRle1S1pwM73cf4EjY2yY5edw63S7mY+6iKWsYp1muc2drGPGurkfYV7PODR6BnXxo1x+55qFHLNEr4s4+4Nzi+boQ==</latexit><latexit sha1_base64="vDpCUpTnsJnTuCbeJVpKVfhI1js=">AAAC5HicjVHLSsNAFD2Nr/qOunRhsAiuSqKCbgqCG0EKFWwrtLUkcapD8yIzEaR06c6duPUH3Oq3iH+gf+GdMYIPRCckOXPuPWfm3uslARfStp8Lxsjo2PhEcXJqemZ2bt5cWGyIOEt9VvfjIE6PPVewgEesLrkM2HGSMjf0Atb0+nsq3rxgqeBxdCQvE9YJ3bOI97jvSqK65krVqlhtkYXtKA54yKXoDvoVZ3gyOBha1W6/a5bssq2X9RM4OSghX7XYfEIbp4jhI0MIhgiScAAXgp4WHNhIiOtgQFxKiOs4wxBTpM0oi1GGS2yfvme0a+VsRHvlKbTap1MCelNSWlgjTUx5KWF1mqXjmXZW7G/eA+2p7nZJfy/3ComVOCf2L91H5n91qhaJHnZ0DZxqSjSjqvNzl0x3Rd3c+lSVJIeEOIVPKZ4S9rXyo8+W1ghdu+qtq+MvOlOxau/nuRle1S1pwM73cf4EjY2yY5edw63S7mY+6iKWsYp1muc2drGPGurkfYV7PODR6BnXxo1x+55qFHLNEr4s4+4Nzi+boQ==</latexit><latexit sha1_base64="vDpCUpTnsJnTuCbeJVpKVfhI1js=">AAAC5HicjVHLSsNAFD2Nr/qOunRhsAiuSqKCbgqCG0EKFWwrtLUkcapD8yIzEaR06c6duPUH3Oq3iH+gf+GdMYIPRCckOXPuPWfm3uslARfStp8Lxsjo2PhEcXJqemZ2bt5cWGyIOEt9VvfjIE6PPVewgEesLrkM2HGSMjf0Atb0+nsq3rxgqeBxdCQvE9YJ3bOI97jvSqK65krVqlhtkYXtKA54yKXoDvoVZ3gyOBha1W6/a5bssq2X9RM4OSghX7XYfEIbp4jhI0MIhgiScAAXgp4WHNhIiOtgQFxKiOs4wxBTpM0oi1GGS2yfvme0a+VsRHvlKbTap1MCelNSWlgjTUx5KWF1mqXjmXZW7G/eA+2p7nZJfy/3ComVOCf2L91H5n91qhaJHnZ0DZxqSjSjqvNzl0x3Rd3c+lSVJIeEOIVPKZ4S9rXyo8+W1ghdu+qtq+MvOlOxau/nuRle1S1pwM73cf4EjY2yY5edw63S7mY+6iKWsYp1muc2drGPGurkfYV7PODR6BnXxo1x+55qFHLNEr4s4+4Nzi+boQ==</latexit>
4
• For solving the optimization, we propose an efficient iterative algorithm
• It is a coordinate ascent algorithm for solving its Lagrangian dual with a provable guarantee
• Number of unlabeled data can be inferred or simply estimated
Distribution Aligning Refinery of Pseudo-label (DARP)
Simple matrix multiplication
Solved by existing efficient solver
5
{Mk}K
k=1<latexit sha1_base64="lFWluioy0kF5xBwAEpS4DtmWbOY=">AAAC2HicjVHLSsNAFD2Nr1pf1S7dBIvgqiQi2I1QcCOIUME+sK0lSac1NC+SiVBCwJ249Qfc6heJf6B/4Z0xBbWITsjMmXPvOTN3rhk4dsQ17TWnzM0vLC7llwsrq2vrG8XNrWbkx6HFGpbv+GHbNCLm2B5rcJs7rB2EzHBNh7XM8bGIt25YGNm+d8EnAeu5xsizh7ZlcKL6xVI3Oesn47Sb0nykp1fJadovlrWKJoc6C/QMlJGNul98QRcD+LAQwwWDB07YgYGIvg50aAiI6yEhLiRkyzhDigJpY8pilGEQO6Z5RLtOxnq0F56RVFt0ikN/SEoVu6TxKS8kLE5TZTyWzoL9zTuRnuJuE1rNzMslluOa2L9008z/6kQtHENUZQ021RRIRlRnZS6xfBVxc/VLVZwcAuIEHlA8JGxJ5fSdVamJZO3ibQ0Zf5OZghV7K8uN8S5uSQ3Wf7ZzFjT3K7pW0c8PyrVq1uo8trGDPernIWo4QR0N8p7gEU94Vi6VW+VOuf9MVXKZpoRvQ3n4AMJ6l3A=</latexit><latexit sha1_base64="lFWluioy0kF5xBwAEpS4DtmWbOY=">AAAC2HicjVHLSsNAFD2Nr1pf1S7dBIvgqiQi2I1QcCOIUME+sK0lSac1NC+SiVBCwJ249Qfc6heJf6B/4Z0xBbWITsjMmXPvOTN3rhk4dsQ17TWnzM0vLC7llwsrq2vrG8XNrWbkx6HFGpbv+GHbNCLm2B5rcJs7rB2EzHBNh7XM8bGIt25YGNm+d8EnAeu5xsizh7ZlcKL6xVI3Oesn47Sb0nykp1fJadovlrWKJoc6C/QMlJGNul98QRcD+LAQwwWDB07YgYGIvg50aAiI6yEhLiRkyzhDigJpY8pilGEQO6Z5RLtOxnq0F56RVFt0ikN/SEoVu6TxKS8kLE5TZTyWzoL9zTuRnuJuE1rNzMslluOa2L9008z/6kQtHENUZQ021RRIRlRnZS6xfBVxc/VLVZwcAuIEHlA8JGxJ5fSdVamJZO3ibQ0Zf5OZghV7K8uN8S5uSQ3Wf7ZzFjT3K7pW0c8PyrVq1uo8trGDPernIWo4QR0N8p7gEU94Vi6VW+VOuf9MVXKZpoRvQ3n4AMJ6l3A=</latexit><latexit sha1_base64="lFWluioy0kF5xBwAEpS4DtmWbOY=">AAAC2HicjVHLSsNAFD2Nr1pf1S7dBIvgqiQi2I1QcCOIUME+sK0lSac1NC+SiVBCwJ249Qfc6heJf6B/4Z0xBbWITsjMmXPvOTN3rhk4dsQ17TWnzM0vLC7llwsrq2vrG8XNrWbkx6HFGpbv+GHbNCLm2B5rcJs7rB2EzHBNh7XM8bGIt25YGNm+d8EnAeu5xsizh7ZlcKL6xVI3Oesn47Sb0nykp1fJadovlrWKJoc6C/QMlJGNul98QRcD+LAQwwWDB07YgYGIvg50aAiI6yEhLiRkyzhDigJpY8pilGEQO6Z5RLtOxnq0F56RVFt0ikN/SEoVu6TxKS8kLE5TZTyWzoL9zTuRnuJuE1rNzMslluOa2L9008z/6kQtHENUZQ021RRIRlRnZS6xfBVxc/VLVZwcAuIEHlA8JGxJ5fSdVamJZO3ibQ0Zf5OZghV7K8uN8S5uSQ3Wf7ZzFjT3K7pW0c8PyrVq1uo8trGDPernIWo4QR0N8p7gEU94Vi6VW+VOuf9MVXKZpoRvQ3n4AMJ6l3A=</latexit><latexit sha1_base64="lFWluioy0kF5xBwAEpS4DtmWbOY=">AAAC2HicjVHLSsNAFD2Nr1pf1S7dBIvgqiQi2I1QcCOIUME+sK0lSac1NC+SiVBCwJ249Qfc6heJf6B/4Z0xBbWITsjMmXPvOTN3rhk4dsQ17TWnzM0vLC7llwsrq2vrG8XNrWbkx6HFGpbv+GHbNCLm2B5rcJs7rB2EzHBNh7XM8bGIt25YGNm+d8EnAeu5xsizh7ZlcKL6xVI3Oesn47Sb0nykp1fJadovlrWKJoc6C/QMlJGNul98QRcD+LAQwwWDB07YgYGIvg50aAiI6yEhLiRkyzhDigJpY8pilGEQO6Z5RLtOxnq0F56RVFt0ikN/SEoVu6TxKS8kLE5TZTyWzoL9zTuRnuJuE1rNzMslluOa2L9008z/6kQtHENUZQ021RRIRlRnZS6xfBVxc/VLVZwcAuIEHlA8JGxJ5fSdVamJZO3ibQ0Zf5OZghV7K8uN8S5uSQ3Wf7ZzFjT3K7pW0c8PyrVq1uo8trGDPernIWo4QR0N8p7gEU94Vi6VW+VOuf9MVXKZpoRvQ3n4AMJ6l3A=</latexit>
Inferred or estimated
• Both labeled and unlabeled data have the same class distribution
• Number of unlabeled data is inferred from that of labeled data
• SSL: semi-supervised learning (not consider imbalance), RB: re-balancing (not use unlabeled data)
Experiments: “Same” Class Distributions
DARP improves the accuracy
of all the applied baselines
Biased pseudo-labels
degrade the performance
6*bACC / GM: arithmetic / geometric mean over class-wise accuracy*Larger ⟹ More severely imbalanced<latexit sha1_base64="4JXcQvmS1cZ5PKlmHsv0tSJYNSM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/Qikym0xqbl8lErMWVP+BWf0z8A/0L74xTUIvohCRnzr3nzNx7vSTwM+k4rwVrZnZufqG4WFpaXlldK69vNLM4T7lo8DiI07bHMhH4kWhIXwainaSChV4gWt7wSMVbNyLN/Dg6k6NEnIdsEPl9nzNJVLM7YGHILsoVp+roZU8D14AKzKrH5Rd00UMMjhwhBCJIwgEYMno6cOEgIe4cY+JSQr6OC9yjRNqcsgRlMGKH9B3QrmPYiPbKM9NqTqcE9KaktLFDmpjyUsLqNFvHc+2s2N+8x9pT3W1Ef894hcRKXBL7l26S+V+dqkWij0Ndg081JZpR1XHjkuuuqJvbX6qS5JAQp3CP4ilhrpWTPttak+naVW+Zjr/pTMWqPTe5Od7VLWnA7s9xToPmXtV1qu7pfqXmmFEXsYVt7NI8D1DDMepokPcVHvGEZ+vEurZurbvPVKtgNJv4tqyHD61DkYQ=</latexit><latexit sha1_base64="4JXcQvmS1cZ5PKlmHsv0tSJYNSM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/Qikym0xqbl8lErMWVP+BWf0z8A/0L74xTUIvohCRnzr3nzNx7vSTwM+k4rwVrZnZufqG4WFpaXlldK69vNLM4T7lo8DiI07bHMhH4kWhIXwainaSChV4gWt7wSMVbNyLN/Dg6k6NEnIdsEPl9nzNJVLM7YGHILsoVp+roZU8D14AKzKrH5Rd00UMMjhwhBCJIwgEYMno6cOEgIe4cY+JSQr6OC9yjRNqcsgRlMGKH9B3QrmPYiPbKM9NqTqcE9KaktLFDmpjyUsLqNFvHc+2s2N+8x9pT3W1Ef894hcRKXBL7l26S+V+dqkWij0Ndg081JZpR1XHjkuuuqJvbX6qS5JAQp3CP4ilhrpWTPttak+naVW+Zjr/pTMWqPTe5Od7VLWnA7s9xToPmXtV1qu7pfqXmmFEXsYVt7NI8D1DDMepokPcVHvGEZ+vEurZurbvPVKtgNJv4tqyHD61DkYQ=</latexit><latexit sha1_base64="4JXcQvmS1cZ5PKlmHsv0tSJYNSM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/Qikym0xqbl8lErMWVP+BWf0z8A/0L74xTUIvohCRnzr3nzNx7vSTwM+k4rwVrZnZufqG4WFpaXlldK69vNLM4T7lo8DiI07bHMhH4kWhIXwainaSChV4gWt7wSMVbNyLN/Dg6k6NEnIdsEPl9nzNJVLM7YGHILsoVp+roZU8D14AKzKrH5Rd00UMMjhwhBCJIwgEYMno6cOEgIe4cY+JSQr6OC9yjRNqcsgRlMGKH9B3QrmPYiPbKM9NqTqcE9KaktLFDmpjyUsLqNFvHc+2s2N+8x9pT3W1Ef894hcRKXBL7l26S+V+dqkWij0Ndg081JZpR1XHjkuuuqJvbX6qS5JAQp3CP4ilhrpWTPttak+naVW+Zjr/pTMWqPTe5Od7VLWnA7s9xToPmXtV1qu7pfqXmmFEXsYVt7NI8D1DDMepokPcVHvGEZ+vEurZurbvPVKtgNJv4tqyHD61DkYQ=</latexit><latexit sha1_base64="4JXcQvmS1cZ5PKlmHsv0tSJYNSM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/Qikym0xqbl8lErMWVP+BWf0z8A/0L74xTUIvohCRnzr3nzNx7vSTwM+k4rwVrZnZufqG4WFpaXlldK69vNLM4T7lo8DiI07bHMhH4kWhIXwainaSChV4gWt7wSMVbNyLN/Dg6k6NEnIdsEPl9nzNJVLM7YGHILsoVp+roZU8D14AKzKrH5Rd00UMMjhwhBCJIwgEYMno6cOEgIe4cY+JSQr6OC9yjRNqcsgRlMGKH9B3QrmPYiPbKM9NqTqcE9KaktLFDmpjyUsLqNFvHc+2s2N+8x9pT3W1Ef894hcRKXBL7l26S+V+dqkWij0Ndg081JZpR1XHjkuuuqJvbX6qS5JAQp3CP4ilhrpWTPttak+naVW+Zjr/pTMWqPTe5Od7VLWnA7s9xToPmXtV1qu7pfqXmmFEXsYVt7NI8D1DDMepokPcVHvGEZ+vEurZurbvPVKtgNJv4tqyHD61DkYQ=</latexit>
• Class distribution of unlabeled data is not same as that of labeled data
• Estimated number of unlabeled data is used for both DARP and ReMixMatch*
• SSL: semi-supervised learning (not consider imbalance), RB: re-balancing (not use unlabeled data)
Experiments: “Different” Class Distributions
7*bACC / GM: arithmetic / geometric mean over class-wise accuracy
As the gap between
distributions is increased,
the improvement from
DAPR is also increased
*Larger ⟹ More severely imbalanced<latexit sha1_base64="4JXcQvmS1cZ5PKlmHsv0tSJYNSM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/Qikym0xqbl8lErMWVP+BWf0z8A/0L74xTUIvohCRnzr3nzNx7vSTwM+k4rwVrZnZufqG4WFpaXlldK69vNLM4T7lo8DiI07bHMhH4kWhIXwainaSChV4gWt7wSMVbNyLN/Dg6k6NEnIdsEPl9nzNJVLM7YGHILsoVp+roZU8D14AKzKrH5Rd00UMMjhwhBCJIwgEYMno6cOEgIe4cY+JSQr6OC9yjRNqcsgRlMGKH9B3QrmPYiPbKM9NqTqcE9KaktLFDmpjyUsLqNFvHc+2s2N+8x9pT3W1Ef894hcRKXBL7l26S+V+dqkWij0Ndg081JZpR1XHjkuuuqJvbX6qS5JAQp3CP4ilhrpWTPttak+naVW+Zjr/pTMWqPTe5Od7VLWnA7s9xToPmXtV1qu7pfqXmmFEXsYVt7NI8D1DDMepokPcVHvGEZ+vEurZurbvPVKtgNJv4tqyHD61DkYQ=</latexit><latexit sha1_base64="4JXcQvmS1cZ5PKlmHsv0tSJYNSM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/Qikym0xqbl8lErMWVP+BWf0z8A/0L74xTUIvohCRnzr3nzNx7vSTwM+k4rwVrZnZufqG4WFpaXlldK69vNLM4T7lo8DiI07bHMhH4kWhIXwainaSChV4gWt7wSMVbNyLN/Dg6k6NEnIdsEPl9nzNJVLM7YGHILsoVp+roZU8D14AKzKrH5Rd00UMMjhwhBCJIwgEYMno6cOEgIe4cY+JSQr6OC9yjRNqcsgRlMGKH9B3QrmPYiPbKM9NqTqcE9KaktLFDmpjyUsLqNFvHc+2s2N+8x9pT3W1Ef894hcRKXBL7l26S+V+dqkWij0Ndg081JZpR1XHjkuuuqJvbX6qS5JAQp3CP4ilhrpWTPttak+naVW+Zjr/pTMWqPTe5Od7VLWnA7s9xToPmXtV1qu7pfqXmmFEXsYVt7NI8D1DDMepokPcVHvGEZ+vEurZurbvPVKtgNJv4tqyHD61DkYQ=</latexit><latexit sha1_base64="4JXcQvmS1cZ5PKlmHsv0tSJYNSM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/Qikym0xqbl8lErMWVP+BWf0z8A/0L74xTUIvohCRnzr3nzNx7vSTwM+k4rwVrZnZufqG4WFpaXlldK69vNLM4T7lo8DiI07bHMhH4kWhIXwainaSChV4gWt7wSMVbNyLN/Dg6k6NEnIdsEPl9nzNJVLM7YGHILsoVp+roZU8D14AKzKrH5Rd00UMMjhwhBCJIwgEYMno6cOEgIe4cY+JSQr6OC9yjRNqcsgRlMGKH9B3QrmPYiPbKM9NqTqcE9KaktLFDmpjyUsLqNFvHc+2s2N+8x9pT3W1Ef894hcRKXBL7l26S+V+dqkWij0Ndg081JZpR1XHjkuuuqJvbX6qS5JAQp3CP4ilhrpWTPttak+naVW+Zjr/pTMWqPTe5Od7VLWnA7s9xToPmXtV1qu7pfqXmmFEXsYVt7NI8D1DDMepokPcVHvGEZ+vEurZurbvPVKtgNJv4tqyHD61DkYQ=</latexit><latexit sha1_base64="4JXcQvmS1cZ5PKlmHsv0tSJYNSM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/Qikym0xqbl8lErMWVP+BWf0z8A/0L74xTUIvohCRnzr3nzNx7vSTwM+k4rwVrZnZufqG4WFpaXlldK69vNLM4T7lo8DiI07bHMhH4kWhIXwainaSChV4gWt7wSMVbNyLN/Dg6k6NEnIdsEPl9nzNJVLM7YGHILsoVp+roZU8D14AKzKrH5Rd00UMMjhwhBCJIwgEYMno6cOEgIe4cY+JSQr6OC9yjRNqcsgRlMGKH9B3QrmPYiPbKM9NqTqcE9KaktLFDmpjyUsLqNFvHc+2s2N+8x9pT3W1Ef894hcRKXBL7l26S+V+dqkWij0Ndg081JZpR1XHjkuuuqJvbX6qS5JAQp3CP4ilhrpWTPttak+naVW+Zjr/pTMWqPTe5Od7VLWnA7s9xToPmXtV1qu7pfqXmmFEXsYVt7NI8D1DDMepokPcVHvGEZ+vEurZurbvPVKtgNJv4tqyHD61DkYQ=</latexit>
• We investigate imbalanced SSL, which is an important but under-explored
• We identify that current SSL algorithms can be suffered under such a scenario
• We propose a simple, yet effective pseudo-label refining method (DARP)
Summary
In our paper, there are
• Formal derivation and proof
• Detailed analysis
• More experiments
• Results on other dataset
Thank you for your attention !