SlideShare a Scribd company logo
1 of 20
Download to read offline
Viton®
fluoroelastomer
A Product of DuPont Dow Elastomers
Viton®
--
Excelling in
Modern
Automotive
Fuel Systems
Table of Contents Page
1. Introduction................................................... 3
Factors Affecting Applications........................ 3
Advantages of Viton®
...................................... 3
2. Applications of Viton in Fuel Systems ......... 4
2.a Fuel Storage Components ......................... 4
‘In Tank’ Fuel Pump Couplers.................. 4
Filler Neck Hose ....................................... 4
Fuel Tank Cap Seal ................................... 4
ORVR – Onboard Refueling Vapour
Recovery ................................................... 4
2.b Fuel Delivery Components ....................... 5
Fuel Line Hose and Tubing....................... 5
Fuel Pump Seals, Check Valves and
Rollover Valves (gasoline and diesel)....... 6
Diaphragms............................................... 6
Quick-Connect O-rings............................. 6
Fuel Injector O-rings (gasoline, diesel,
and alcohol blends) ................................... 7
2.c Emission Control Components ................. 7
Emission Control Seals............................. 7
Air Intake Manifold Gaskets..................... 7
Solenoid Armatures .................................. 7
3. Emission Regulations.................................... 8
4. Viton in the Automotive Industry ................ 8
4.a What is Viton? .......................................... 9
4.b Classification of Elastomers Based
on SAE J-200/ASTM D 2000................... 9
4.c Overview of the Properties of Viton ......... 9
5. Types and Properties of Viton ..................... 9
5.a High Temperature Properties .................... 10
5.b Properties of Viton in Gasoline................. 10
Gasoline Composition............................... 10
Resistance to Various Flex Fuels:
Swell and other Physical Properties.......... 11
Chemical Attack........................................ 11
Volume Change ......................................... 11
Fuel Blends ............................................... 11
Fuel Variables Challenge the Automotive
Engineer........................................................... 11
Effect of Aromatic Content....................... 12
Effects of Oxygenated Fuels / Fuel
Alcohol Blends.......................................... 12
Alternate Fuel Blends ............................... 12
“Sour” Fuel ............................................... 13
5.c Low Temperature Properties..................... 13
5.d Permeability Versus other Elastomers....... 14
Table of contents Page
6. Performance of Viton in Diesel Engines ...... 15
7. Seal Design for Engineers............................. 16
Designing with Elastomers.............................. 16
Common Seal Failure Modes .......................... 16
Designing with Viton Fluoroelastomers .......... 17
Limits of Elastomer Stress/Strain Properties .. 17
Permeation of Elastomers................................ 17
Design Service................................................. 18
Appendix............................................................. 18
Selection Guide for Viton................................ 18
A Summary of Viton Types for Use
in Automotive Fuel Systems..................... 18
Rating Types of Viton by Performance
Parameter .................................................. 18
References ....................................................... 19
Suggested Reading.................................... 19
2
The following ASTM/DIN abbreviations are used
throughout this publication:
Abbreviation Generic Name Trade Name
ACM Ethylacrylate copolymer –
BR Butadiene rubber –
CO Epichlorhydrin rubber –
CR Polychloroprene rubber –
CSM Chlorosulphonated polyethylene Hypalon®
EAM Ethylene/acrylate copolymer –
ECO Epichlorhydrin ethyleneoxide
copolymer rubber –
FEP Fluorinated ethylene propylene Teflon®
FFKM Perfluoroelastomer Kalrez®
FVMQ Fluorosilicone rubber –
FPM / FKM Fluoroelastomer Viton®
HNBR Hydrogenated NBR –
MVQ Silicone rubber –
NBR Acrylonitrile-butadiene rubber –
SBR Styrene butadiene rubber –
1. Introduction
Only specialty elastomers such as Viton®
fluoro-
elastomers can function in the increasingly hostile
automotive fuel system environments driven by
tough new legislation.
Modern automotive fuel systems have a tough job
to do. In addition to fuel storage, metering and fuel
delivery to the engine, these systems must comply
with ever more stringent regulations defining the
composition of fuels and emission levels. These
factors combine to create hostile working condi-
tions for fuel system components.
Fuel compositions are changing rapidly to facilitate
vehicle manufacturers in their quest to meet emis-
sion limits of these new regulations. Traditional
anti-knock agents such as tetramethyl- and tetra-
ethyl-lead are being replaced by oxygenated (alcohol
or ether) additives. These upgrades maintain fuel
octane ratings while reducing hydrocarbon and car-
bon monoxide pollutants. The result of these changes
is the emergence of a wide range of potential fuel
compositions.
Many of the newer fuel additives alter the swelling
characteristics of elastomers in fuel and contribute
to property deterioration. To simplify the problem
of determining the performance suitability of elasto-
mers, a range of “test fuels” has been adopted as a
basis for comparison of elastomer performance. In
some cases, these fuels have been designed to test
for “worst case” scenarios. Test data included in
this publication assist with the selection of elasto-
mers for use in contact with these fuels and demon-
strate the outstanding performance of Viton.
Actual part performance is simulated in these test
fuels, to the end of performance prediction in actual
use. Elastomeric engine compartment components
such as seals, hoses, diaphragms and gaskets, all
face new standards of performance, driven by the
factors cited above and augmented by high energy
costs and escalating costs of warranty and recall.
As one result, specifiers are selecting Viton for an
ever broader variety of applications.
Factors Affecting Applications
• World-wide emission regulations
• Hotter engine compartment temperatures
• Variations in fuel mixtures
• Longer warranties
• Extended service periods
• Sealing of and against plastic parts
• Designed assembly and service connections
• Vibration/noise isolation
• Crash worthiness
Fluoroelastomers in general, and Viton in particular,
have become elastomers of choice for many fuel
system sealing and hose components.
Advantages of Viton
• Low permeation to fuels and gases
• –40°C to +225°C service temperature range
• Resistant to all fuels/fuel mixtures
• Resistant to ‘sour’ fuel
• Resistant to oils
• High strength to resist damage
• Long-term sealing performance
3
Fig. 1. Viton in fuel systems
Air intake
manifold seals
In-tank seals
Fuel injector
O-ring
Fuel pump seals
Rubber/fabric
diaphragms
Fuel sender seal
Quick-connect O-rings
Vent tubing
and valve
Fuel hose
Filler neck hose
Fuel filter seals
Fuel tank
cap seal
ORVR
valve
Canister seals
Vapour recovery
line
Emission control components
– Solenoid armatures
Pressure regulator seal
Sender flange quick-connect O-rings
Canister purge solenoid valve seal
2. Applications of Viton®
in Fuel Systems
Evolved over 40 years, today’s high performance
Viton fluorolelastomers meet the toughest automo-
tive industry requirements in most fuel system seal-
ing and hose applications, including components
for fuel storage, fuel delivery and fuel/air mixing.
Several types of Viton have been developed specifi-
cally for modern automotive fuel systems. Fig. 1
shows key applications, and the Selection Guide for
Viton found in the Appendix (page 18) identifies
the most suitable type per application.
2.a Fuel Storage Components
‘In Tank’ Fuel Pump Couplers
Tubing and hose of Viton inside the fuel tank con-
nect vapour and/or liquid lines to the fuel sender
module. Components of Viton are easy to couple,
and the polymer’s inherent damping characteristics
help minimize undesirable vibration – a funda-
mental cause of component fatigue, fracture and
malfunction. The major performance requirement
of elastomers for in-tank fuel couplings is resistance
to volume swell and chemical attack by the fuels.
Parts made of Viton meet these requirements and
remain functional, even though they remain
immersed in fuel for the life of the vehicle.
Filler Neck Hose
The filler neck hose is a common source of fuel
emissions owing to its large surface area and the
constant presence of fuel and fuel vapour. This
hose must be flexible and capable of absorbing
shock and must deform without rupture, major con-
siderations for assuring vehicle crash worthiness.
Designers increasingly specify multi-layer construc-
tions using Viton as the inner fuel permeation bar-
rier. It is chosen because it adheres well to other
layer materials, meets permeation regulations and
functions for the lifetime of the vehicle.
Fuel Tank Cap Seal
Recent low fuel emission legislation has led to re-
designs of fuel tank cap seals and to fluoroelastomers
replacing acrylonitrile-butadiene copolymers (NBR).
Viton GBLT is an important candidate in meeting
legislation in cars with OBD II and in-tank pressure
sensors, since it offers low permeation and excellent
flexibility at temperatures as low as –40°C.
ORVR – Onboard Refueling Vapour Recovery
ORVR is an automobile-based control system for
emissions occurring during refuelling. The phase-in
schedule in the US for the ORVR system requires
40% of 1998 passenger cars to be so equipped, and
the system will be standard on all cars and light
trucks by 2003. ORVR may require larger charcoal
canisters and new vapour-vent lines, all of which
represent potential and additional sources of hydro-
carbon emissions.
A typical ORVR system includes the following
components:
• A narrow filler pipe allows formation of a con-
tinuous seal with the nozzle while fuel is dis-
pensed in order to prevent vapour escaping from
the fuel tank.
• Vapour from the tank headspace is forced through
a vent connected to a canister containing activated
carbon.
4
Fuel Sender
Fig. 2. Viton fuel pump coupler
Fig. 3. Filler neck hose
Fig. 4. Tank cap seal
• The carbon bed captures and temporarily retains
the hydrocarbon vapour.
• A purge system meters these vapours to the
engine as fuel. This depletion process from the
carbon is completed within 48 km of urban driv-
ing.
Even with these additional vapour recovery compo-
nents, the 2,0 g hydrocarbon evaporative limits
specified by the Environmental Protection Agency
(EPA) and California Air Resources Board (CARB)
methods must be met. Both new vehicles and those
attaining 160000 kilometres (100000 miles) of ser-
vice must meet the limit.
Other fuel storage components are illustrated in the
fuel tank cutaway in Fig. 5.
2.b Fuel Delivery Components
Fuel Line Hose and Tubing
Fuel line hose must resist permeation by conven-
tional, as well as alcohol andether-containing fuels.
These hoses are typically constructed with 4 or
5
Fig. 5. Typical fuel tank
1
2
3
3
4
3
56722
Fuel Tank Cut Away Description
Description of applications of Viton®
1. Quick connect coupling containing O-ring seal
2. Rollover valve seal
3. Quick connect O-ring
4. On-board-diagnostics (OBD II) pressure sensor diaphragm
5. Fuel pump O-rings
6. Fuel sender vibration isolators
7. Sender unit seal
Cover
Reinforcement
Tie layer
Veneer Viton®
Figs.6, 6a. Fuel line hose
5 layers with the innermost a veneer of fluoroelas-
tomer. This cost-efficient design allows the highly
fuel resistant layer to act as a primary barrier to per-
meation. (See Figs. 6, 6a).
Viton®
is frequently selected as the barrier layer be-
cause of its outstanding resistance to conventional,
oxygenated and “sour” fuels. The fluoroelastomer is
flexible, can be shaped to form, is easy to install and
couple, provides long-term sealing at couplings,
and damps noise and vibration.
An example of a high performance fuel hose con-
struction is the patented F200 barrier hose shown in
Fig. 7. The inner fuel contact veneer is Viton, and
the barrier layer is Teflon®
FEP. Reinforcement in
this construction is provided by Kevlar®
, and the
cover stock may be Vamac®
or Hypalon®
. This
marriage of materials of construction provides
unequalled resistance to permeation from within
and abuse from the exterior.
The superior permeation resistance of F200 fuel
hose compared to any other elastomeric fuel hose
construction becomes even more marked at elevated
temperatures.
Fuel Pump Seals, Check Valves
and Rollover Valves (gasoline and diesel)
The fuel resistant seals found in fuel pump check
valves and roll-over valves are designed to close off
fuel flow if the vehicle rolls over. The major perfor-
mance requirement of these seals is resistance to
swell and attack by fuels, and Viton is the material
choice for these seals.
Diaphragms
The fuel pressure regulator diaphragm is an integral
component which ensures accurate metering of fuel
to the engine. It must be resistant to swell by auto-
motive fuels and attack by sour gas and oxygenated
fuels. In addition to an excellent flex life, it must
also function at temperatures as low as –40°C.
Diaphragms made from Viton perform reliably and
remain flexible from –40°C to +140°C. The flex
life easily exceeds 1 million cycles – beyond the
normal life of the vehicle.
Quick-Connect O-rings
Quick-connect O-rings are used to seal against
leakage at connections in plastic fuel lines. As the
name “quick connect” implies, these couplings
may be easily connected or disconnected. To main-
tain the integrity of the seal after reinstallation of
the line, an O-ring with high tear strength, compres-
sion set resistance and sealing force retention is
needed.
Viton outperforms competitive elastomers in these
three critical properties and provides static sealing
at –40°C when properly formulated.
6
Fig. 7. Construction of F200 barrier hose
Fig. 8. Fuel pump check valves
Fig. 10. Fuel pressure regulator diaphragm
Fig. 9. Rollover fuel valve
Cover
Teflon® film
Kevlar®
Viton F
Tie layer
Inlet Inlet
O-rings of Viton
Diaphragm of Viton
Vacuum connection
Outlet
Fuel Injector O-rings
(gasoline, diesel, and alcohol blends)
These O-rings must meet many of the same require-
ments as the “quick-connect” O-rings, but with the
important addition of heat resistance. Sealing per-
formance must not be adversely affected during or
after excursions to extreme elevated temperatures
(as may be experienced in a “heat soak” or a “coolant
dump”). O-rings of Viton perform reliably from
–40°C to +150°C.
2.c Emission Control Components
Emission Control Seals
Modern emission control systems consist of devices
for both measuring and controlling the fuel system,
and include vapour recovery canisters, catalytic
converters, and exhaust gas and oxygen sensors.
These components rely on seals that must be resis-
tant to the vapours they contact at the extremes of
their design temperatures.
Viton is suited to many of these applications
because of its excellent balance of heat and fuel
resistance properties.
Air Intake Manifold Gaskets
Fuel is mixed with air in the air intake manifold.
These manifolds are increasingly made of glass
reinforced polyamide for performance improve-
ments and weight savings. Plastic manifolds are
difficult to seal effectively to metal blocks using
traditional gaskets because of the difference in
thermal expansion coefficients between the two.
For sealing the two surfaces, heat- and fuel-vapour-
resistant elastomeric seals have become the norm.
The low modulus of the elastomer seal enables it to
conform to the sealing faces and to take up creep.
Viton meets the performance requirements of this
seal because of its long-term functionality in hot
fuel vapour and its excellent compression set
resistance.
Solenoid Armatures
These rubber/metal parts are used in on-board
vapour recovery and evaporative vapour canisters.
Viton is specified for this application because of
its durability and outstanding dimensional stability,
low compression set, and resistance to fuels and
fuel alcohol/ether blends. The metal bonding capa-
bility of Viton is also essential to these parts.
7
Fig. 11. Quick-connects with Viton® O-rings
Fig. 12. Fuel injector O-rings
Fig. 13. Lambda probe seal
Fig.14. Air intake manifold gasket
The results of these various part requirements and
the performance of fluoroelastomers in a variety
of fuel related applications have led to the wide
specification of Viton®
by the automotive industry.
In addition to fuel related applications, Viton is
used to seal crankshafts and camshafts, cylinder
heads, water pumps, gearboxes and many other
components. These applications together bring the
use of fluoroelastomers to well above 1 kg per vehi-
cle (see Fig. 16).
3. Emission Regulations
The aim of recent regulations is to limit emissions
of various oxides of nitrogen (NOx), carbon mono-
xide (CO), hydrocarbons (HC) and particulates.
In automobiles, these are exhaust gas components,
but they are also found throughout the fuel system,
including in hoses, lines, connector systems and in
the fuel tank.
The USA has traditionally led in vehicle emission
regulations, through the work of the EPA and the
CARB in particular, using data generated through
the Air Quality Improvement Research Programme
(AQIRP). Largely as a result of the Clean Air Act
of 1990, there is also increasing emphasis on evapo-
rative emissions as measured by the Sealed Housing
for Evaporative Determination (SHED) test method.
This test determines whether or not the total emis-
sion of all components exceed the permitted hydro-
carbon level in 24 hours.
Near-term California and USA regulations and
goals stipulate that:
• Hydrocarbon emissions levels of 1998 must be
reduced 55% by the year 2000.
• Zero emissions must be achieved by 2% of vehi-
cles in 1998, and by 10% in 2003.
Diagnostic systems which monitor specific emissions
sources are being introduced. Provisions in the
EPA’s OBD II (Onboard Diagnostics Revision II)
require continuous electronic observation of numer-
ous sources of emissions on the vehicle. Results
from this monitoring are indicated to the driver and
are stored for evaluation at normal vehicle service
intervals. This source-oriented data collection is
expected to lead to a more accurate understanding
of emissions over the life of the vehicle. These sys-
tems will be mandatory for European gasoline pas-
senger cars from the year 2000 and for diesels from
2003.
Recently, the European Programme on Emissions,
Fuels and Engine technologies (EPEFE), was set up
to establish European legislation and the basis for
future fuel composition and emission limits. One
outcome of this programme are the EURO-2000
regulations. These regulations are similar to the
enhanced evaporative emission regulations intro-
duced in the USA. Fuel permeation is an important
component of the overall evaporative emissions in
both cases.
In the European Union, compliance to EURO-2000
emission standards for passenger cars and light duty
trucks becomes mandatory on January 1, 2000.
Motor fuel specifications decided by parliamentary
conciliation in 1998 have made the emission regu-
lations easier for vehicle manufacturers to meet by
limiting sulphur in fuels in both gasoline and diesel.
US Federal regulations generally require declining
emission levels and phase-in standards which
become more demanding each year. For example,
from 2001 onwards, a 0,075 g/mile non-methane
organic gases (NMOG) fleet average must be met,
while in California, the NMOG limit descends from
0,070 g/mile in 2001 to 0,062 in 2003.
The new European emission limits are shown in the
following table:
Limit in g/km for passenger cars <2500 kg
Year CO NC NOx Particulate
2000 G 2,30 0,20 0,15 –
D 0,64 – 0,50 0,05
2005 G 1,00 0,10 0,08 –
D 0,50 – 0,25 0,025
8
Seals of Viton
Fig. 15. Solenoid armature
5,3 kg other
1,4 kg FPM/
FKM
0,5 kg HNBR
0,9 kg MVQ
3,1 kg NBR
0,3 kg EAM
0,7 kg ECO
0,4 kg ACM
7,7 kg EPDM
4,1 kg CR
0,1 kg BR
2,0 kg SBR
2,4 kg NR
Fig. 16. Elastomers (without tires) in Mercedes E-Class
Adoption of the EURO-2000 regulations in Europe
is expected to stimulate other countries to adopt
enhanced regulations. It is foreseen that South
America, Japan and Asia-Pacific will all eventually
follow the USA and Europe.
4. Viton®
in the Automotive
Industry
4.a What is Viton?
The name Viton represents three major families
and many specialty fluoroelastomers from DuPont
Dow Elastomers. These families offer the highest
continuous heat resistance of any conventionally
processed rubber, combined with an outstanding
resistance to swell and permeation when exposed
to a range of chemicals including automotive fuels
and additives. Specific types of Viton have been
developed to satisfy service requirements in many
demanding applications.
Viton offers superior processing and outstanding
end-use performance. These characteristics result in
long service-life and low lifetime-cost components.
4.b Classification of Elastomers based
on SAE J-200/ASTM D 2000
The globally accepted standards of SAE and ASTM
define a specification system based on elastomer
performance. In these two standards, elastomers are
classified according to their heat and oil resistance.
Viton is HK classified. ‘H’ designates that its heat
resistance after thermal ageing 70 hours at 250°C
is within the following parameters:
• max. tensile strength change ±30%;
• elongation at break decreases less than 50%;
• max. hardness change ±15 points.
‘K’ represents the class of oil resistance (maximum
swell 10%) achieved by Viton after 70 hours in test
oil No. 3 according to ASTM D 471.
Only Kalrez®
perfluoroelastomer parts and Zalak®
high performance seals have higher temperature
resistance and lower swell in hydrocarbons than
Viton.
4.c Overview
of the Properties of Viton
Viton fluoroelastomers offer outstanding resistance
to heat, swell, permeation and degradation when in
contact with aggressive automotive fuels, fuel addi-
tives, oils, lubricants and most mineral acids. They
also have exceptional tensile strength, tear and
compression set resistance. These characteristics,
provided across a wide operating temperature range,
are the reasons the fluoroelastomer is specified by
automotive engineers for fuel system seals, O-rings
and hoses. Parts made of Viton fluoroelastomer
function in environments that destroy those made
from many other plastic and rubber materials.
5. Types and
Properties of Viton
The three major families of Viton fluoropolymers,
‘A’, ‘B’ and ‘F’ consist of many types, characterized
by the monomers from which they are built.
To achieve a required end use performance, proper
type selection is necessary.
9
Fluorinated monomers
Viton
fluoroelastomers
Polymerization
Synthetic, noncrystalline fluoropolymers, which show elastic properties
after crosslinking
fluoroelastomers
FKM (ASTM D-1418)
FPM (DIN/ISO 1629)
Crosslinking
Fig. 17. Fluoroelastomers derivation
Definition of types and classes
Heat-test Swell-test Volume-
temperature temperature swell max.
Type (°C) (°C) Class (%)
A 70 70 A –
B 100 100 B 140
C 125 125 C 120
D 150 150 D 100
E 175 150 E 80
F 200 150 F 60
G 225 150 G 40
H 250 150 H 30
J 275 150 J 20
K 10
Fig. 18. Classification based on SAE J-200/ASTM D 2000
Viton
Fluorine content
Fuel resistance
Heat
Low temperatures
Compression set
A
66%
++
+++
+
+++
B
68%
+++
+++
o
+++
F
70%
++++
–
+
GLT
64%
+
+++
++++
+
– = poor o = fair + = good
++ = better +++ = excellent ++++ = outstanding
GBLT
65%
++
+++
+++
+
GFLT
66%
++++
+++
++
+
Fig. 19. Types of Viton and characteristics
The Figs. 19 and 20 show the impact of fluorine
content and other polymer design parameters on
fuel resistance, compression set and high and low
temperature performance.
The Viton ‘A’ family has the lowest fluorine con-
tent and best compression set resistance, while the
progressively higher fluorine content ‘B’ and ‘F’
families have improved fuel resistance. Viton GLT,
GBLT and GFLT all offer greater flexibility at low
temperature.
5.a High Temperature Properties
Heat resistance is becoming more important in fuel
system components because smaller engine compart-
ments bring higher engine compartment temperatures.
Temperature and heat history play key roles in the
durability of an elastomer seal. Elasticity, flexibility,
compression set and sealing force can all be adversely
affected by elevated temperatures which can shorten
the life of elastomer parts or even destroy them.
Fig. 21 shows the temperature limits of fluoroelasto-
mer seals in continuous use. Laboratory tests con-
firm that Viton remains usefully elastic (elonga-
tion >100%) for well over 10000 hours when
exposed to a temperature of 200°C. Conventional
general purpose elastomers would become brittle
after just one day at 200°C under the same test
conditions. Other rubbers are generally limited to
an operating ceiling of 150°C and for a substantially
shorter period.
Seals made of Viton remain resilient and retain an
effective sealing force long after ordinary rubber
seals have failed. Fig. 22 shows retained sealing
force of O-rings made from Viton and other elas-
tomers. After 100 hours under static conditions in
air at 150°C, Viton retains over 90% of its original
sealing force, while seals produced from fluorosili-
cone, polyacrylate and nitrile rubber retained 70%,
58% and 40%, respectively.
After 10000 hours, the retained sealing force of
Viton was 77% while that of silicone, the only other
rubber to survive the test, was 13%.
5.b Properties of Viton in Gasoline
Gasoline Composition
Gasoline has undergone many changes since it was
first commercially available soon after the First
World War. Even with the refinement of today’s
gasolines, there are still great variations in specific
composition. Typically, gasoline consists of hydro-
carbons ranging from 4 to 12 carbons in length
and may include dissolved paraffins, olefin compo-
nents, naphthenes and aromatics. Aromatic hydro-
carbons (toluene, benzene, xylenes) cause more
swelling and more adversely affect physical proper-
ties than either aliphatic or olefinic hydrocarbons.
The increasing use of oxygenates (alcohols and
ethers) to boost the effective octane rating in gaso-
line further extends the range of composition varia-
tions possible in gasoline. Oxygenate-rich gasolines
exhibit higher volatility which is correlated with
increased permeation through elastomeric materials.
Oxygenated additives cause swelling and property
deterioration of elastomers as well. Ethers such as
methyl- and ethyl-tetrabutyl ether (MTBE and
10
Letter Meaning Comment
A low fluorine content good compression set
B medium fluorine content improved fuel resistance
F high fluorine content resistance against oxygenates
permeation
G prepared for peroxide additional base resistance
curing system
LT excellent low temperature special monomer incorporated
(LT) properties
Fig. 20. Viton® nomenclature
4000
230°C
3000
285°C
240
260°C
1000
0
2000
200°C
Hours of
service
>10000
6000
8000
Fig. 21. Heat resistance of Viton in air
60
80
RetainedSealingForce–
%oforiginal
10000
Silicone
polyacrylatenitrile
10001000
0
20
40
100
Hours at 150°C
VITON®
Fig. 22. Retained sealing force of Viton
and other elastomers
ETBE) are preferable oxygenates to alcohols from
an environmental point of view; they are less volatile
but have similar octane boosting characteristics.
They also cause less swelling and property deterio-
ration in elastomers than alcohols at the most fre-
quently used levels (around 15%).
Physical property change usually goes hand in hand
with volume swell: the greater the volume swell,
the greater the expected loss of other properties.
Consistent with its low volume swell, Viton®
pro-
vides excellent retention of physical properties after
fuel immersion.
In fact, compounds of Viton exhibit lower volume
swell in fuels than any other class of elastomers
except for perfluoroelastomers such as Kalrez®
.
High fluorine types of Viton are especially well
suited for service in fuels containing oxygenates.
Testing also indicates that Viton is suitable for ser-
vice in low sulphur and bio-diesel rapeseed methyl
ester (RME) fuels.
Resistance to Various Flex Fuels:
Swell and other Physical Properties
Chemical Attack
Non-reversible chemical changes may occur in
elastomers as a result of exposure to fuels. Viton
is especially resistant to these effects and to the
additional aggressive nature of additives and fuel
oxidation by-products in gasoline and traditional
diesel fuels.
Volume Change
Volume swell of an elastomer by a fuel can precede
seal leakage and failure or compromise the accuracy
of fuel metering systems. Compounds of Viton exhibit
lower volume swell in fuels than any other class of
elastomers used commercially (See Fig. 23).
Fuel Blends
The superior resistance of Viton parts to blends of
gasoline alcohol and aromatic additives enables
these components to deliver dependable performance
with minimum swell, low compression set, minimal
dimensional change and superior flexibility.
Figs. 24 and 24a demonstrate the superior low-swell
characteristics of Viton in typical blends of gasoline/
methanol and gasoline/ethanol.
Fuel Variables Challenge
the Automotive Engineer
Fuel system components must be designed to accom-
modate the most adverse of anticipated conditions.
The trend to one-design components that can per-
form in any of the world’s wide-ranging fuel com-
positions challenges the automotive engineer.
Besides the normal hydrocarbon variations inherent
in gasolines, the designer must contend with fuel
mixtures designed for regional climatic conditions,
a wide range of blends with oxygenates and “sour”
gasoline generated in the fuel system.
11
Volumeswell168h,23°C(%)
Viton BFVMQ
fuel C
NBR HNBR
0
90
80
70
60
50
40
30
20
10
M-15
Fig. 23. Swell in fuel mixtures
Volume % ethanol in gasoline (42 % aromatic)Volumeswell,%
5 10 15 20 250
0
100
80
60
40
20
ECO
NBR
CO
Viton
Fig. 24. Equilibrium volume swell at 21°C versus
ethanol concentration
Fig. 24a. Equilibrium volume swell at 21°C versus
methanol concentration
Volume % methanol in gasoline (42 % aromatic)
Volumeswell,%
5 10 15 20 250
0
100
80
60
40
20
ECO,
NBR
CO
Viton
The selection guide on page 18 lists the perfor-
mance of different types of Viton®
in various fuels.
It is important to select the right type of Viton for
demanding applications such as aggressive metha-
nol fuel blends or for sealability at temperatures to
–40°C.
Effect of Aromatic Content
As noted in Figs. 25 and 26, the aromatic content
of Reference Fuels A, B and C spans the range
encountered in commercial gasoline.
Type of fuel Aromatic content (%)
Leaded – regular 7-34
– premium 5-34
Unleaded – regular 5-42
– premium 17-46
Fig. 25. Aromatic content of commercial gasoline
Aromatic content plays a major role in the effect a
fuel has on elastomers. Fuel C with 50% aromatic
content has a substantially greater effect on volume
change and property retention of most elastomers
than either Fuels A or B with 0% and 30% aromatic
content, respectively. In all of these fuels, volume
change of Viton is minimal, and strength retention
is excellent.
Effects of Oxygenated Fuels /
Fuel Alcohol Blends
Blends of gasoline with oxygen-containing additives
such as ethanol, methanol or MTBE are common
today, and in the future, other additives such as
ETBE may appear. These blends, categorized as
gasoline/alcohol or gasoline/ether, burn cleaner
and emit fewer air pollutants.
The graph below (see Fig. 27) shows the swell of
four test fuels of NBR, ECO, FVMQ (fluorosili-
cone) and two types of Viton. The compounds of
Viton have the lowest swell profiles in any of the
fuel blends, and higher fluorine-content types such
as Viton B600 and GF have very low swell in all
the test fuels.
Alternate Fuel Blends
Automobile manufacturers have studied the concept
of vehicles fueled with gasoline, methanol or blends.
These so called “alternate” or “flexible” fuels place
severe demands on elastomeric seals, O-rings and
hoses.
The chart below (Fig. 28) shows the swell results
of five types of Viton immersed in five different
blends of Fuel C and methanol. Lower-fluorine
types of Viton such as GLT and the ‘A’ family
resist Fuel C and 85/15 Fuel C/methanol blends,
but as methanol content increases, so does volume
swell.
High fluorine types of Viton such as B600, GF and
GFLT show only a modest increase in swell when
up to 50% methanol is used. In blends above 50%,
12
(shares in vol. %) ASTM D471/ISO 1817 DIN 51604
Non aromatic HC 100 70 50 60 30,0 25,4 12,0
Aromatic HC 0 30 50 40 50,0 42,3 20,0
Alcohol 0 0 0 0 5,0 19,2 60,0
Iso-octane 100 70 50 60 30,0
Toluene 0 30 50 40 50,0
Ethanol 5,0
Diiso-butylene 15,0
Fam. A 84,5 40,0
Methanol 0,0 15,0 58,0
Deionized H2O 0,0 0,5 2,0
Fig. 26. Compositions of reference fuels
FuelA
FuelB
FuelC
FuelD
Fam.A
Fam.B
Fam.C
+ Methanol* + MTBE*
NBR
Fuel C + Ethanol*
0
70
60
90
100
80
50
40
30
20
10
ECO FVMQ Viton B-600 Viton GF
*+ 10% (v) in Fuel C
VolumeSwell(%),168hat23°C
Fig. 27. Swell in fuel mixtures – Influence of type
of oxygenated additives
VolumeSwell(%),168hat23°C
50 10085
Viton A
0 15
0
100
90
80
70
60
50
40
30
20
10
Viton B-600 Viton GF Viton GFLT Viton GLT
% Methanol in Fuel C
Fig. 28. Swell in fuel mixture
volume swell of these types usually decreases; con-
sequently, they are recommended for use in systems
where flexible fuels are used.
“Sour” Fuel
Fuel “sours” or becomes stale when oxygen reacts
with it to form hydroperoxides. These unstable
species decompose, forming free radicals that may
attack some elastomers. This attack can cause either
“reversion” (rubber softening), or further crosslink-
ing, resulting in embrittlement. The olefinic por-
tions of “cracked” gasoline are the most suscepti-
ble to oxidative attack, and gasoline blended with
alcohol also tends to be unstable.
The results of immersion of Viton®
and other elasto-
mers in “sour” fuels for three weeks at 54°C are
shown in Fig. 29. Viton shows very little change
and excellent resistance compared to FVMQ and
NBR. ECO “reverted” in less than two weeks, and
its results are not reported. NBR became brittle in
a short period of time while Viton remained virtu-
ally unaffected by the sour fuel.
Fuel containing hydroperoxides can cause dramatic
changes in the properties of some elastomers in a
short time, as indicated. Under the same conditions,
Viton remains unaffected and can be considered a
prime candidate for fuel systems handling “sour”
fuels.
5.c Low Temperature Properties
An elastomer seal works by exerting a pressure
against its housing greater than that of the con-
tained fluid.
This sealing force of an elastomer is time and tem-
perature dependent and will gradually decrease due
to physical and chemical effects. Retention of seal-
ing force at lower temperatures depends on the abil-
ity of the elastomer to recover from the applied
deformation at that temperature. As temperature
decreases, the rubber becomes stiffer, loses its elastic
recovery, and finally becomes hard and brittle.
Results of O-ring leakage testing and the TR-10
test on different types of Viton demonstrate the
temperature at which leakage commences and the
behaviour variations in low temperature flexibility.
Viton GLT, which was designed specifically for low
temperature performance, shows the best results in
both tests. (See Fig. 31).
The TR-10 test provides an indication of low tem-
perature elastomeric performance of a polymer by
measuring the onset of elastomeric behaviour as the
temperature is gradually raised from a point at which
the specimen is frozen. The behaviour of Viton types
is seen to closely follow the order of the O-ring test
results, with the LT types having the best low tem-
perature performance.
13
Volumeswell(%),after3weeksat54°C
NBRFVMQViton BViton A Viton GF
0
60
50
40
30
20
10
Fig. 29. Swell in sour fuel C (Peroxide number 100)
Test-gas (N2)
Test-unit
10%
20%
30%
Leak-sensor
Leak-flow
Test-O-ring
Initial tension
Fig. 30. Low temperature O-ring leakage test
Temperature(°C)
TR-10
Viton F
O-ring-test
–50
–45
–40
–35
–30
–25
–20
–15
–10
–5
0
Viton B Viton A Viton B-70 Viton GFLT
Viton GBLT Viton GLT
Fig. 31. Low temperature flexibility. Comparison
of different test methods
Fig. 32 shows the low temperature sealing ability of
seven fluoroelastomer compounds tested for sealing
of nitrogen at 1,4 MPa (200 psi) at 10% compression,
when dry, immersed in unleaded fuel and immersed
in Fuel C. Results show a significant difference in
sealing force retention among the types of Viton®
,
with Viton GLT demonstrating the superior perfor-
mance under these conditions. Following immersion
in such fuels, Viton fluoroelastomer type GFLT
exhibits the best combination of low volume swell
and good low temperature sealing.
Fuel seals in engines run on ‘flex fuel’ blends of
unleaded gasoline with methanol are among the
most challenging of all automotive sealing applica-
tions. In addition to flex fuel resistance, O-rings in
fuel injector and quick-connect systems are required
to have at least –40°C static sealing capability.
Even though certain types of Viton may not possess
specific low temperature properties they can often
be used successfully when immersed in fuels at low
temperature. The small absorption of fuel into the
seal made of Viton actually improves low tempera-
ture properties by plasticisation of the elastomer.
For functionality in a dry system, the special low
temperature types of Viton should be used.
5.d Permeability
Versus other Elastomers
All elastomers are permeable to some degree to fuels,
in gas and liquid form, but the degree of permeabil-
ity varies widely depending on the elastomer type.
Fluoroelastomers such as Viton have the lowest per-
meability to fuel of all elastomers used commer-
cially in automotive fuel systems, enabling these
materials to meet the most stringent of current and
expected emission regulations.
Fig. 33 shows the permeation rates of Viton versus
other polymers used in fuel lines, filler neck hose
and seals using the modified ASTM E96-66
“Thwing Albert” cup permeation test method
(a recognized and commonly used test for perme-
ation of elastomers). The data are presented in per-
meation rate units, and show that Viton A has a
permeation rate less than 3 g/m2 /day in Fuel C
(50% iso-octane/50% toluene) compared to
125-600 g/m2 /day for HNBR, NBR and FVMQ.
In addition these high permeation rates for the
other materials are observed after only 21 days.
The results of similar testing in Fuel M-15 have
also been shown to dramatically favour Viton, with
a permeation rate of approximately 50 g/m2 /day
compared to the extreme of over 800 g/m2 /day
for FVQM.
14
Temperature(°C)
Fuel C*Unleaded fuel*
Viton F
dry
0
–10
–20
–30
–40
–50
–60
Viton B Viton A Viton B-70 Viton GFLT
Viton GBLT Viton GLT
*exposure 168 h/23°C
permeationat23°C,28days(g/m2/day)
M-15Fuel C
0
900
800
700
600
500
400
300
200
100
Viton A HBNR 44% ACN* HBNR 33% ACN* FVMQ*
*Test only 21 days
Fig. 32. Low temperature flexibility.
Leakage temperature during O-ring test
Fig. 33. Permeation resistance according to Thwing
Albert Test – Viton versus other materials
(Fuel C/M-15)
(Fuel M-15 composition is 85% Fuel C and 15% methanol)
permeationat23°C,28days(g/m2/day)
M-15Fuel C
0
80
70
60
50
40
30
20
10
Viton GF Viton B Viton GFLT Viton A Viton GLT
Fig. 34. Permeation resistance according to
Thwing Albert Test of different types of Viton
(fuel C/M-15)
Fig. 34 shows the permeation rates of different types
of Viton®
in the same test fuels using the modified
ASTM E96-66 “Thwing Albert” cup permeation
test method. All types perform very well in ASTM
Fuel C, while Viton GF performs best when immersed
in M-15.
6. Performance of Viton
in Diesel Engines
Applications:
• Direct injector O-ring seals
• Rotary pump seals
• Control diaphragms
• Fuel hose
Diesel fuel is used in compression ignition engines,
which generally have improved thermal efficiency
compared with spark-ignited gasoline engines.
Diesel fuel has a higher boiling point range than
gasoline fuels, hence it is less prone to evaporative
emissions.
Diesel engines are used to power a significant and
growing proportion of all vehicles. This is parti-
cularly true in Europe where most heavy goods
vehicles and many passenger cars are diesel powered.
The rubber components used in the fuel systems
of diesel powered vehicles have traditionally not
needed high performance elastomers such as Viton
since diesel fuels are not as aggressive to elastomers
as is gasoline.
Nevertheless, both gasoline and diesel powered
vehicles are subject to regulations governing toler-
able limits of air polluting emissions (see page 8).
The goals in the case of diesels are to reduce aro-
matic hydrocarbon content, reduce sulphur content
(typically from 1000 ppm to 200 ppm) and to
increase cetane number used to quantify the igni-
tion characteristics of diesel fuel, thereby provid-
ing increased engine efficiency for lower levels of
emissions.
“Low sulphur diesel fuel” and “bio-diesel fuel”
define specific compositions, but they are also
terms used to describe a range of diesel fuel com-
positions. Esters made via trans-esterification of
rapeseed oil (producing RME bio-diesel) are
becoming more popular as an alternative to diesel
from fossil sources, either used in blends or as fossil
fuel replacement. Expectations that most of the
diesel engines in passenger cars would run with
“bio-diesel” have not materialized, although a num-
ber of commercial vehicles available today are
designed to run with non-fossil fuels.
15
Gasket
Testing vessel
Flange
Sealing effect
by pressing
Ring
• Fill in 100 ml liquid
• Seal with test material
• Measure weight
• Invert, store at room temperature
• Measure weight loss during 21 to 28 days every 3rd day
• After equilibrium evaluate average in g/m2/day
B A
Test sheet 76,2
Fig. 35. Thwing Albert permeation test procedure
Volumeswell(%),168hat23°C
Low Sulphur DieselM-15 Bio Diesel
–5
35
30
25
20
15
10
5
0
A B F
Viton Family
Fig. 36. Swell of various families of Viton in M-15,
bio-diesel and low sulphur diesel fuel
While the use of bio-diesel in passenger cars is still
relatively small, trucks and off-road vehicles are
using some RME and similar products.
Testing of Viton®
has shown its excellent resistance
to swelling and property deterioration in both low
sulphur and bio-diesel fuels (Fig. 36). This perfor-
mance identifies Viton as an excellent candidate for
diesel fuel system components in the future.
Fig. 37 confirms the very low swell over extended
periods (4% or less after 1008 hours in RME at
100°C) of bisphenol-cured Viton A and B families
and type GF.
Note: Specific curing systems must be used with
Viton for applications in RME diesel. For guid-
ance, contact your local DuPont Dow customer ser-
vice office or authorized distributor.
7. Seal Design for Engineers
The following notes offer a guide in the use of elas-
tomers in sealing systems for automotive engineers.
Designing with Elastomers
Designers having more experience and familiarity
with metals and alloys than with polymers may have
experienced failures with elastomeric seals even
though the elastomer was well suited to the condi-
tions. This common experience is often traced to the
fact that such parts were designed into the applica-
tion without full consideration of the fundamental
design requirements of elastomeric materials.
In the case of new applications, or performance or
design upgrades of existing ones, the first course of
action is to define the requirements in use, in terms
of both performance and economics. Selection of a
polymer underdesigned for the use results in prema-
ture failure; overdesign is costly.
The checklist for performance should include:
• A full description of the functional requirements
of the application;
• Temperature range, and cycling times if known;
• Media exposure within the temperature range
(specific fuel composition, for example);
• Pressure(s) or vacuum to be sealed;
• Desired lifetime;
• Mechanical stresses/strains including static
or dynamic flex requirements;
• Colour code needs;
• Electrical properties;
• In the case of fuels, desired permeation levels
in cyclic conditions.
Special consideration should be given to the fuel
itself. It should neither affect, nor be affected by, the
elastomer component in contact with it.
Common Seal Failure Modes
Other than inappropriate selection of elastomer type,
seal failure can result from a number of design
factors related to the surface, cavity or groove to
be sealed:
• Sharp corners or acute angles, causing rupture as
the elastomer flexes under pressure and/or as a
result of thermal effects;
• Poor surface finish (especially important for gases
and against vacuum);
• Excessive cavity tolerance and part width, allow-
ing ‘weeping’ of seal;
• Insufficient compression of the seal, allowing
leakage at lower temperatures, and poor low
pressure gas retention;
• High compression, causing seal splitting at high
temperatures, and excessive compression set;
• Poor fitting technique, resulting in twisted O-ring
sections;
• Cavity volume inadequate for thermal and fluid
expansion, leading to extrusion of the seal or
gasket (Fig. 38);
• Lack of back-up rings, precipitating extrusion
at high pressure (Fig. 39).
16
Volumechange(%),1008h@100°C
Viton BViton A Viton GF
0
1,5
2
2,5
3,5
4
3
0,5
1
Fig. 37. Viton fluoroelastomers aged in
Connediesel RME 99/-8
Fig. 38. Swell/thermal expansion
Normal
Swell
Thermal
expansion
Your DuPont Dow Elastomers development engi-
neer can help with the choice of elastomer type and
compound to meet the operating requirements of
your application.
Designing
with Viton®
Fluoroelastomers
Viton fluoroelastomers are capable of sealing auto-
motive fuels at much higher temperatures and for
longer periods than almost any other elastomer.
The high fluorine levels that make such performance
possible also influence seal design. For example,
fluoroelastomers demonstrate higher thermal expan-
sion and contraction than most other elastomers,
and any small swell in fuels or other media is aug-
mented by these thermal effects. Also, like most
polymers, fluoroelastomers have a tendency to
soften at higher temperatures.
Therefore, when designing for wide temperature
fluctuations, part size, compression and seal cavity
volume may have to be adjusted to optimise perfor-
mance (Fig. 40). Special consideration should also
be given to parts exposed to rapid temperature cycling.
While high service temperatures can lead to some
softening of the fluoroelastomer, coincidental high
pressures can lead to displacement of the fluoro-
elastomer and possible extrusion and leakage of the
part. The rubber chemist can help minimize these
effects through the selection of a high modulus or
high hardness formulation, but the use of back-up
rings and cavity volume adjustment may be neces-
sary. (Fig. 41)
Limits of Elastomer
Stress/Strain Properties
Finite element design, backed by experience of mil-
lions of parts, has led to some basic ‘use and abuse’
rules which apply to most elastomers. For example,
elastomers in seal or gasket applications should never
be subjected to greater than 25% compression or
strain. Higher compression can create stress fields
within the part which may exceed the ultimate
strength of the material, leading to high compression
set and reduced seal life.
A nominal O-ring compression of 18% is sufficient
for most applications, allowing for a degree of tol-
erance in seal cavity and part size. Even lower com-
pression, in the order of 11%, can be used for gas-
kets. Gaskets do not need the compressive force of
other parts due to the comparatively thin sections
and high surface-to-volume ratio.
O-rings seated in position should never be stretched
by more than 5% of original internal diameter (over
a piston groove, for example) particularly if the part
is in a dynamic use.
Permeation of Elastomers
Permeation by a fluid into a polymer is governed by
solubility parameters, pressures of the fluid, com-
pression of the part, and temperature. Permeation is
inversely proportional to part thickness. Thus, gas-
kets will be more permeation resistant if designed
with increased cross-section, as will O-rings with
increased section diameter. For optimum perfor-
mance, selection of polymer to task is critically
important.
17
Zero pressure
High pressure
Temperature/
Pressure drop
Fig. 39. Extrusion effects
Squeeze
No pressure
Pressure
applied
Pressure
Pressure
Pressure
reversed
Fig. 40. How the O-ring seals
Pressure
Pressure
Pressure
Pressure
Fig. 41. Anti-extrusion
Design Service
Your DuPont Dow Elastomers automotive develop-
ment engineer will be pleased to assist you with
sealing proposals and solutions. Please call or fax
one of DuPont Dow’s regional headquarters listed
on the back of this publication.
Appendix
Selection Guide for Viton®
The following tables will help the automotive fuel
system engineer select the correct family or type
of Viton for a specific application.
A summary of families and types of Viton
for use in Automotive Fuel Systems
Application Service Viton
Requirements Family
In Tank Hose and Tubing Fuel Resistance
Compression Set Resistance B, F
Low Swell
Filler Neck Hose Fuel Resistance
Fuel Line Hose Permeation Resistance B, F
F-200 Veneers Compression Set Resistance
Quick Connect Seals Fuel Resistance
Permeation Resistance
Compression Set Resistance A, AL
Stress Relaxation Resistance
Low Swell
Quick Connect Seals Low Temperature Sealing
GLT, GFLT,
GBLT
Fuel Injector Seals Fuel Resistance
Compression Set Resistance
AL, B
Stress Relaxation Resistance
Low Temperature Sealing
Fuel Injector Seals Fuel Resistance
GLT,
(Low Temperature) Compression Set Resistance
GBLT,
Stress Relaxation Resistance
GFLT
Low Temperature Sealing
Fuel Pump Seals Fuel Resistance
Compression Set Resistance A, B
Low Swell
Diaphragms Fuel Resistance A, B
Diaphragms Fuel Resistance and GLT, GBLT,
(Low Temperature) Low Temperature Flex Life GFLT
Emission Control Devices Heat Resistance A, B
Air Intake Manifold Heat Resistance
A
Gaskets Compression Set Resistance
The table below lists the primary families and types
of Viton and their performance in various fuels at
both high and low temperatures.
Rating of families and types of Viton
by performance parameter
Viton Family
A B F GLT GBLT GFLT
Polymer Characteristics
Ter/
Polymer Type(s) Di Ter Tetra Tetra Tetra Tetra
Fluorine Level 66 68 70 65 66 67
Fluids Resistance – Fuels
Unleaded Gasoline E E E E E E
‘Sour’ Gasoline (80 PN) E E E E E E
Gasohol –
(U.Gas/10% Ethanol) G E E G E E
Unleaded Gasoline/Methanol Blends
• 5-10% Methanol G E E G E E
• 11-30% Methanol F G E F G E
• >30% Methanol P-F G E P-F G E
Methanol 100% P G E P G E
MTBE 100% P P P P P P
U.Gas/MTBE-
Blends/(5-20%) G-E E E G-E G-E E
Permeability
Unleaded Gasoline E E E E E E
U.Gas/Methanol Blends F G E F G E
Heat Resistance
To 150°C E E E E E E
To 204°C E E E E E E
To 275°C F-G G F F F F
Compression Set Resistance
At 150°C E E G-E E G-E E
At 200°C E G-E F-G G G F-G
At –20°C P-F P P G G G
Low Temperature Properties
Flexibility at 0°C E E F E E E
At –20°C F F-P P E G-E G-E
Static Seal Ability
At –20°C G F-G P-F E E E
At –40°C P-F P P G G G
Low Temperature Retraction (ASTM D-1329)
TR-10, °C –17 –14 –7 –30 –26 –24
O-Ring Leakage Test, °C –32 –26 –25 –45 –40 –37
Rating Scale: E = Excellent, G = Good, F = Fair, P = Poor
18
References
1. Wittig, W.R. TPE – eine Chance für die
Partnerschaft von Elastomerverarbeitern und
der Automobilindustrie, aus: Thermoplastische
Elastomere – Herausforderung an die Elastomer-
verarbeiter, VDI (Hrsg.), VDI Verlag, Düssel-
dorf, 1997.
2. California Environmental Protection Agency Air
Resources Board, Factsheet – September 1997,
“Gasoline Vapor Recovery Certifications: Inter-
action with Onboard Refuelling Vapor Recovery
(ORVR).”
Suggested Reading
1. N.N.
Viton®
Fluid Resistance Guide
Literature reference: H-69132
DuPont Dow Elastomers, 1996
2. N.N.
Viton®
Selection Guide
Literature reference: D-10242
DuPont Dow Elastomers, 1996
3. Stevens, RD; Thomas, E.W.; Brown, J.H.;
Revolta, W.N.K.
Low Temperature Sealing Capabilities of Fluoro-
elastomers,
Society of Automotive Engineers (Hrsg.),
SAE Technical Paper Series, Nr. 900194,
Warrendale PA, USA, 1990
4. Bothe, N.
Viton®
, Vamac®
, Advanta®
– Evaluations
in Rapeseed Oil Methylester,
Literature reference: NB-960718.1
DuPont Dow Elastomers, 1996
5. Stahl, W.M.; Stevens, R.D.
Fuel-Alcohol Permeation Rates of Fluoro-
elastomers,
Fluoroplastics, and other Fuel Resistant Materials,
Society of Automotive Engineers (Hrsg.),
SAE Technical Paper Series, Nr. 920163,
Warrendale PA, USA, 1992
19
3/99 Printed in U.S.A.
H-82107
The information set forth herein is furnished free of charge and is based on technical data that DuPont Dow Elastomers believes to be reliable. It is intended for use by persons having technical
skill, at their own discretion and risk. The handling precaution information contained herein is given with the understanding that those using it will satisfy themselves that their particular condi-
tions of use present no health or safety hazards. Because conditions of product use and disposal are outside of our control, we make no warranties, express or implied, and assume no liability in
connection with any use of this information. As with any material, evaluation of any compound under end-use conditions prior to specification is essential. Nothing herein is to be taken as a
license to operate or a recommendation to infringe on any patents.
Caution: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, discuss with your DuPont Dow Elastomers customer service repre-
sentative, and read Medical Caution Statement H-69237.
For further information on Viton®
(800) 853-5515 (U.S. & Canada)
or other elastomers: (302) 792-4000
www.dupont-dow.com
Global Headquarters
DuPont Dow Elastomers L.L.C.
300 Bellevue Parkway, Suite 300
Wilmington, DE 19809 USA
Tel. 302-792-4000
Fax 302-892-7390
Latin America Regional
Headquarters
DuPont Dow Elastomers, Ltda.
Rua Henrique Monteiro, 90
5:andar – Pinheiros
05423-912
Sao Paolo – SP
Brazil
Tel. +55-11-816-0256
Fax +55-11-814-6845
European Regional
Headquarters
DuPont Dow Elastomers S.A.
2, chemin du Pavillon
CH-1218 Le Grand-Saconnex
Geneva, Switzerland
Tel. +41-22-717-4000
Fax +41-22-717-4001
Asia Pacific Regional
Headquarters
DuPont Dow Elastomers Pte. Ltd.
1 Maritime Square #10-54
World Trade Center
Singapore 099253
Tel. +65-275-9383
Fax +65-275-9395
Advanta®, Hypalon®, Kalrez®, Zalak® and Viton® are registered trademarks of DuPont Dow Elastomers.
Kevlar®, Teflon® and Vamac® are registered trademarks of DuPont.
Copyright © 1999 DuPont Dow Elastomers.
All Rights Reserved.

More Related Content

What's hot (11)

Internship in Laxmi Hyundai
Internship in Laxmi HyundaiInternship in Laxmi Hyundai
Internship in Laxmi Hyundai
 
Power Oil And Lubes PPT
Power Oil And Lubes PPTPower Oil And Lubes PPT
Power Oil And Lubes PPT
 
Chap73
Chap73Chap73
Chap73
 
Chap76
Chap76Chap76
Chap76
 
Tribology proper lubricant_selection Mr Tùng - 0987 988 407 | www.khodaumo.com
Tribology proper lubricant_selection Mr Tùng - 0987 988 407 | www.khodaumo.comTribology proper lubricant_selection Mr Tùng - 0987 988 407 | www.khodaumo.com
Tribology proper lubricant_selection Mr Tùng - 0987 988 407 | www.khodaumo.com
 
Unit 4 lubrication system
Unit 4 lubrication systemUnit 4 lubrication system
Unit 4 lubrication system
 
Chap72
Chap72Chap72
Chap72
 
Lubrication system
Lubrication system   Lubrication system
Lubrication system
 
Lubrication system
Lubrication systemLubrication system
Lubrication system
 
Chap74
Chap74Chap74
Chap74
 
Oil Contamination White Paper
Oil Contamination White PaperOil Contamination White Paper
Oil Contamination White Paper
 

Similar to Viton excelling in modern automotive fuel systems

XFT_Commercial_Introduction_White_Paper
XFT_Commercial_Introduction_White_PaperXFT_Commercial_Introduction_White_Paper
XFT_Commercial_Introduction_White_Paper
Gibson Mrewa
 
Liebherr R 916 Classic Hydraulic Excavator Service Repair Manual SN:17943 and up
Liebherr R 916 Classic Hydraulic Excavator Service Repair Manual SN:17943 and upLiebherr R 916 Classic Hydraulic Excavator Service Repair Manual SN:17943 and up
Liebherr R 916 Classic Hydraulic Excavator Service Repair Manual SN:17943 and up
ufhsjeskekmdm
 
Liebherr R 906 Classic Hydraulic Excavator Service Repair Manual SN:23145 and up
Liebherr R 906 Classic Hydraulic Excavator Service Repair Manual SN:23145 and upLiebherr R 906 Classic Hydraulic Excavator Service Repair Manual SN:23145 and up
Liebherr R 906 Classic Hydraulic Excavator Service Repair Manual SN:23145 and up
jkmsmem ejksmmd
 
CIMAC_WG8_Guideline_2017_Two_Stroke_Engine_Cold_Corrosion.pdf
CIMAC_WG8_Guideline_2017_Two_Stroke_Engine_Cold_Corrosion.pdfCIMAC_WG8_Guideline_2017_Two_Stroke_Engine_Cold_Corrosion.pdf
CIMAC_WG8_Guideline_2017_Two_Stroke_Engine_Cold_Corrosion.pdf
magedaminhassanmaged
 
USSeal Catalog 2012 - Complete catalog
USSeal Catalog 2012 - Complete catalogUSSeal Catalog 2012 - Complete catalog
USSeal Catalog 2012 - Complete catalog
Jason Cassie
 
Future trends and challenges in engine lubricants icis-lor kuala lumpur 2008
Future trends and challenges in engine lubricants   icis-lor kuala lumpur 2008Future trends and challenges in engine lubricants   icis-lor kuala lumpur 2008
Future trends and challenges in engine lubricants icis-lor kuala lumpur 2008
Sam Cheng
 
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
hsemmd sehkdmm
 

Similar to Viton excelling in modern automotive fuel systems (20)

IRJET- Design and Fabrication of Hybrid Petrol Tank
IRJET-  	  Design and Fabrication of Hybrid Petrol TankIRJET-  	  Design and Fabrication of Hybrid Petrol Tank
IRJET- Design and Fabrication of Hybrid Petrol Tank
 
WMTC-137-2015.R3
WMTC-137-2015.R3WMTC-137-2015.R3
WMTC-137-2015.R3
 
XFT_Commercial_Introduction_White_Paper
XFT_Commercial_Introduction_White_PaperXFT_Commercial_Introduction_White_Paper
XFT_Commercial_Introduction_White_Paper
 
Liebherr R 916 Classic Hydraulic Excavator Service Repair Manual SN:17943 and up
Liebherr R 916 Classic Hydraulic Excavator Service Repair Manual SN:17943 and upLiebherr R 916 Classic Hydraulic Excavator Service Repair Manual SN:17943 and up
Liebherr R 916 Classic Hydraulic Excavator Service Repair Manual SN:17943 and up
 
Liebherr R 906 Classic Hydraulic Excavator Service Repair Manual SN:23145 and up
Liebherr R 906 Classic Hydraulic Excavator Service Repair Manual SN:23145 and upLiebherr R 906 Classic Hydraulic Excavator Service Repair Manual SN:23145 and up
Liebherr R 906 Classic Hydraulic Excavator Service Repair Manual SN:23145 and up
 
CIMAC_WG8_Guideline_2017_Two_Stroke_Engine_Cold_Corrosion.pdf
CIMAC_WG8_Guideline_2017_Two_Stroke_Engine_Cold_Corrosion.pdfCIMAC_WG8_Guideline_2017_Two_Stroke_Engine_Cold_Corrosion.pdf
CIMAC_WG8_Guideline_2017_Two_Stroke_Engine_Cold_Corrosion.pdf
 
USSeal Catalog 2012 - Complete catalog
USSeal Catalog 2012 - Complete catalogUSSeal Catalog 2012 - Complete catalog
USSeal Catalog 2012 - Complete catalog
 
Future trends and challenges in engine lubricants icis-lor kuala lumpur 2008
Future trends and challenges in engine lubricants   icis-lor kuala lumpur 2008Future trends and challenges in engine lubricants   icis-lor kuala lumpur 2008
Future trends and challenges in engine lubricants icis-lor kuala lumpur 2008
 
Liebherr R 926 Advanced Hydraulic Excavator Service Repair Manual SN:17833 an...
Liebherr R 926 Advanced Hydraulic Excavator Service Repair Manual SN:17833 an...Liebherr R 926 Advanced Hydraulic Excavator Service Repair Manual SN:17833 an...
Liebherr R 926 Advanced Hydraulic Excavator Service Repair Manual SN:17833 an...
 
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
 
Liebherr R 926 Advanced Hydraulic Excavator Service Repair Manual SN:17833 an...
Liebherr R 926 Advanced Hydraulic Excavator Service Repair Manual SN:17833 an...Liebherr R 926 Advanced Hydraulic Excavator Service Repair Manual SN:17833 an...
Liebherr R 926 Advanced Hydraulic Excavator Service Repair Manual SN:17833 an...
 
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
 
Liebherr R 916 Advanced Hydraulic Excavator Service Repair Manual SN:17834 an...
Liebherr R 916 Advanced Hydraulic Excavator Service Repair Manual SN:17834 an...Liebherr R 916 Advanced Hydraulic Excavator Service Repair Manual SN:17834 an...
Liebherr R 916 Advanced Hydraulic Excavator Service Repair Manual SN:17834 an...
 
Liebherr R 916 Advanced Hydraulic Excavator Service Repair Manual SN:17834 an...
Liebherr R 916 Advanced Hydraulic Excavator Service Repair Manual SN:17834 an...Liebherr R 916 Advanced Hydraulic Excavator Service Repair Manual SN:17834 an...
Liebherr R 916 Advanced Hydraulic Excavator Service Repair Manual SN:17834 an...
 
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
Liebherr R 906 Advanced Hydraulic Excavator Service Repair Manual SN:18002 an...
 
Exj 14
Exj 14Exj 14
Exj 14
 
RSCI cat fines presentation, rev 2
RSCI cat fines presentation, rev 2RSCI cat fines presentation, rev 2
RSCI cat fines presentation, rev 2
 
Ecotec
EcotecEcotec
Ecotec
 
2005 Pontiac GTO Service Repair Manual.pdf
2005 Pontiac GTO Service Repair Manual.pdf2005 Pontiac GTO Service Repair Manual.pdf
2005 Pontiac GTO Service Repair Manual.pdf
 
2005 Pontiac GTO Service Repair Manual.pdf
2005 Pontiac GTO Service Repair Manual.pdf2005 Pontiac GTO Service Repair Manual.pdf
2005 Pontiac GTO Service Repair Manual.pdf
 

More from Jupira Silva

More from Jupira Silva (20)

Resolucao189 06
Resolucao189 06Resolucao189 06
Resolucao189 06
 
Resolucao187 06
Resolucao187 06Resolucao187 06
Resolucao187 06
 
Resolucao186 06
Resolucao186 06Resolucao186 06
Resolucao186 06
 
Resolucao185 05
Resolucao185 05Resolucao185 05
Resolucao185 05
 
Resolucao184 05
Resolucao184 05Resolucao184 05
Resolucao184 05
 
Resolucao182 05
Resolucao182 05Resolucao182 05
Resolucao182 05
 
Resolucao181 05
Resolucao181 05Resolucao181 05
Resolucao181 05
 
Resolucao179 05
Resolucao179 05Resolucao179 05
Resolucao179 05
 
Resolucao178 05
Resolucao178 05Resolucao178 05
Resolucao178 05
 
Resolucao174 05
Resolucao174 05Resolucao174 05
Resolucao174 05
 
Resolucao169 05
Resolucao169 05Resolucao169 05
Resolucao169 05
 
Resolucao168 04
Resolucao168 04Resolucao168 04
Resolucao168 04
 
Resolucao166 04
Resolucao166 04Resolucao166 04
Resolucao166 04
 
Resolucao165 04
Resolucao165 04Resolucao165 04
Resolucao165 04
 
Resolucao164 04
Resolucao164 04Resolucao164 04
Resolucao164 04
 
Resolucao163 04
Resolucao163 04Resolucao163 04
Resolucao163 04
 
Resolucao157 04
Resolucao157 04Resolucao157 04
Resolucao157 04
 
Resolucao155 03
Resolucao155 03Resolucao155 03
Resolucao155 03
 
Resolucao153 03
Resolucao153 03Resolucao153 03
Resolucao153 03
 
Resolucao151 03
Resolucao151 03Resolucao151 03
Resolucao151 03
 

Recently uploaded

Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Anamikakaur10
 
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Sheetaleventcompany
 
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
dlhescort
 
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
lizamodels9
 
Nelamangala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Nelamangala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Nelamangala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Nelamangala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
amitlee9823
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
dlhescort
 
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai KuwaitThe Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
daisycvs
 
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
amitlee9823
 

Recently uploaded (20)

JAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
JAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRLJAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
JAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
 
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
 
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
 
Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1
 
Falcon's Invoice Discounting: Your Path to Prosperity
Falcon's Invoice Discounting: Your Path to ProsperityFalcon's Invoice Discounting: Your Path to Prosperity
Falcon's Invoice Discounting: Your Path to Prosperity
 
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
 
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
Famous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st CenturyFamous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st Century
 
Nelamangala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Nelamangala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Nelamangala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Nelamangala Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
 
Falcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business Growth
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League City
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors Data
 
Uneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration PresentationUneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration Presentation
 
It will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 MayIt will be International Nurses' Day on 12 May
It will be International Nurses' Day on 12 May
 
Malegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Malegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceMalegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Malegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai KuwaitThe Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
 
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
Call Girls Kengeri Satellite Town Just Call 👗 7737669865 👗 Top Class Call Gir...
 

Viton excelling in modern automotive fuel systems

  • 1. Viton® fluoroelastomer A Product of DuPont Dow Elastomers Viton® -- Excelling in Modern Automotive Fuel Systems
  • 2. Table of Contents Page 1. Introduction................................................... 3 Factors Affecting Applications........................ 3 Advantages of Viton® ...................................... 3 2. Applications of Viton in Fuel Systems ......... 4 2.a Fuel Storage Components ......................... 4 ‘In Tank’ Fuel Pump Couplers.................. 4 Filler Neck Hose ....................................... 4 Fuel Tank Cap Seal ................................... 4 ORVR – Onboard Refueling Vapour Recovery ................................................... 4 2.b Fuel Delivery Components ....................... 5 Fuel Line Hose and Tubing....................... 5 Fuel Pump Seals, Check Valves and Rollover Valves (gasoline and diesel)....... 6 Diaphragms............................................... 6 Quick-Connect O-rings............................. 6 Fuel Injector O-rings (gasoline, diesel, and alcohol blends) ................................... 7 2.c Emission Control Components ................. 7 Emission Control Seals............................. 7 Air Intake Manifold Gaskets..................... 7 Solenoid Armatures .................................. 7 3. Emission Regulations.................................... 8 4. Viton in the Automotive Industry ................ 8 4.a What is Viton? .......................................... 9 4.b Classification of Elastomers Based on SAE J-200/ASTM D 2000................... 9 4.c Overview of the Properties of Viton ......... 9 5. Types and Properties of Viton ..................... 9 5.a High Temperature Properties .................... 10 5.b Properties of Viton in Gasoline................. 10 Gasoline Composition............................... 10 Resistance to Various Flex Fuels: Swell and other Physical Properties.......... 11 Chemical Attack........................................ 11 Volume Change ......................................... 11 Fuel Blends ............................................... 11 Fuel Variables Challenge the Automotive Engineer........................................................... 11 Effect of Aromatic Content....................... 12 Effects of Oxygenated Fuels / Fuel Alcohol Blends.......................................... 12 Alternate Fuel Blends ............................... 12 “Sour” Fuel ............................................... 13 5.c Low Temperature Properties..................... 13 5.d Permeability Versus other Elastomers....... 14 Table of contents Page 6. Performance of Viton in Diesel Engines ...... 15 7. Seal Design for Engineers............................. 16 Designing with Elastomers.............................. 16 Common Seal Failure Modes .......................... 16 Designing with Viton Fluoroelastomers .......... 17 Limits of Elastomer Stress/Strain Properties .. 17 Permeation of Elastomers................................ 17 Design Service................................................. 18 Appendix............................................................. 18 Selection Guide for Viton................................ 18 A Summary of Viton Types for Use in Automotive Fuel Systems..................... 18 Rating Types of Viton by Performance Parameter .................................................. 18 References ....................................................... 19 Suggested Reading.................................... 19 2 The following ASTM/DIN abbreviations are used throughout this publication: Abbreviation Generic Name Trade Name ACM Ethylacrylate copolymer – BR Butadiene rubber – CO Epichlorhydrin rubber – CR Polychloroprene rubber – CSM Chlorosulphonated polyethylene Hypalon® EAM Ethylene/acrylate copolymer – ECO Epichlorhydrin ethyleneoxide copolymer rubber – FEP Fluorinated ethylene propylene Teflon® FFKM Perfluoroelastomer Kalrez® FVMQ Fluorosilicone rubber – FPM / FKM Fluoroelastomer Viton® HNBR Hydrogenated NBR – MVQ Silicone rubber – NBR Acrylonitrile-butadiene rubber – SBR Styrene butadiene rubber –
  • 3. 1. Introduction Only specialty elastomers such as Viton® fluoro- elastomers can function in the increasingly hostile automotive fuel system environments driven by tough new legislation. Modern automotive fuel systems have a tough job to do. In addition to fuel storage, metering and fuel delivery to the engine, these systems must comply with ever more stringent regulations defining the composition of fuels and emission levels. These factors combine to create hostile working condi- tions for fuel system components. Fuel compositions are changing rapidly to facilitate vehicle manufacturers in their quest to meet emis- sion limits of these new regulations. Traditional anti-knock agents such as tetramethyl- and tetra- ethyl-lead are being replaced by oxygenated (alcohol or ether) additives. These upgrades maintain fuel octane ratings while reducing hydrocarbon and car- bon monoxide pollutants. The result of these changes is the emergence of a wide range of potential fuel compositions. Many of the newer fuel additives alter the swelling characteristics of elastomers in fuel and contribute to property deterioration. To simplify the problem of determining the performance suitability of elasto- mers, a range of “test fuels” has been adopted as a basis for comparison of elastomer performance. In some cases, these fuels have been designed to test for “worst case” scenarios. Test data included in this publication assist with the selection of elasto- mers for use in contact with these fuels and demon- strate the outstanding performance of Viton. Actual part performance is simulated in these test fuels, to the end of performance prediction in actual use. Elastomeric engine compartment components such as seals, hoses, diaphragms and gaskets, all face new standards of performance, driven by the factors cited above and augmented by high energy costs and escalating costs of warranty and recall. As one result, specifiers are selecting Viton for an ever broader variety of applications. Factors Affecting Applications • World-wide emission regulations • Hotter engine compartment temperatures • Variations in fuel mixtures • Longer warranties • Extended service periods • Sealing of and against plastic parts • Designed assembly and service connections • Vibration/noise isolation • Crash worthiness Fluoroelastomers in general, and Viton in particular, have become elastomers of choice for many fuel system sealing and hose components. Advantages of Viton • Low permeation to fuels and gases • –40°C to +225°C service temperature range • Resistant to all fuels/fuel mixtures • Resistant to ‘sour’ fuel • Resistant to oils • High strength to resist damage • Long-term sealing performance 3 Fig. 1. Viton in fuel systems Air intake manifold seals In-tank seals Fuel injector O-ring Fuel pump seals Rubber/fabric diaphragms Fuel sender seal Quick-connect O-rings Vent tubing and valve Fuel hose Filler neck hose Fuel filter seals Fuel tank cap seal ORVR valve Canister seals Vapour recovery line Emission control components – Solenoid armatures Pressure regulator seal Sender flange quick-connect O-rings Canister purge solenoid valve seal
  • 4. 2. Applications of Viton® in Fuel Systems Evolved over 40 years, today’s high performance Viton fluorolelastomers meet the toughest automo- tive industry requirements in most fuel system seal- ing and hose applications, including components for fuel storage, fuel delivery and fuel/air mixing. Several types of Viton have been developed specifi- cally for modern automotive fuel systems. Fig. 1 shows key applications, and the Selection Guide for Viton found in the Appendix (page 18) identifies the most suitable type per application. 2.a Fuel Storage Components ‘In Tank’ Fuel Pump Couplers Tubing and hose of Viton inside the fuel tank con- nect vapour and/or liquid lines to the fuel sender module. Components of Viton are easy to couple, and the polymer’s inherent damping characteristics help minimize undesirable vibration – a funda- mental cause of component fatigue, fracture and malfunction. The major performance requirement of elastomers for in-tank fuel couplings is resistance to volume swell and chemical attack by the fuels. Parts made of Viton meet these requirements and remain functional, even though they remain immersed in fuel for the life of the vehicle. Filler Neck Hose The filler neck hose is a common source of fuel emissions owing to its large surface area and the constant presence of fuel and fuel vapour. This hose must be flexible and capable of absorbing shock and must deform without rupture, major con- siderations for assuring vehicle crash worthiness. Designers increasingly specify multi-layer construc- tions using Viton as the inner fuel permeation bar- rier. It is chosen because it adheres well to other layer materials, meets permeation regulations and functions for the lifetime of the vehicle. Fuel Tank Cap Seal Recent low fuel emission legislation has led to re- designs of fuel tank cap seals and to fluoroelastomers replacing acrylonitrile-butadiene copolymers (NBR). Viton GBLT is an important candidate in meeting legislation in cars with OBD II and in-tank pressure sensors, since it offers low permeation and excellent flexibility at temperatures as low as –40°C. ORVR – Onboard Refueling Vapour Recovery ORVR is an automobile-based control system for emissions occurring during refuelling. The phase-in schedule in the US for the ORVR system requires 40% of 1998 passenger cars to be so equipped, and the system will be standard on all cars and light trucks by 2003. ORVR may require larger charcoal canisters and new vapour-vent lines, all of which represent potential and additional sources of hydro- carbon emissions. A typical ORVR system includes the following components: • A narrow filler pipe allows formation of a con- tinuous seal with the nozzle while fuel is dis- pensed in order to prevent vapour escaping from the fuel tank. • Vapour from the tank headspace is forced through a vent connected to a canister containing activated carbon. 4 Fuel Sender Fig. 2. Viton fuel pump coupler Fig. 3. Filler neck hose Fig. 4. Tank cap seal
  • 5. • The carbon bed captures and temporarily retains the hydrocarbon vapour. • A purge system meters these vapours to the engine as fuel. This depletion process from the carbon is completed within 48 km of urban driv- ing. Even with these additional vapour recovery compo- nents, the 2,0 g hydrocarbon evaporative limits specified by the Environmental Protection Agency (EPA) and California Air Resources Board (CARB) methods must be met. Both new vehicles and those attaining 160000 kilometres (100000 miles) of ser- vice must meet the limit. Other fuel storage components are illustrated in the fuel tank cutaway in Fig. 5. 2.b Fuel Delivery Components Fuel Line Hose and Tubing Fuel line hose must resist permeation by conven- tional, as well as alcohol andether-containing fuels. These hoses are typically constructed with 4 or 5 Fig. 5. Typical fuel tank 1 2 3 3 4 3 56722 Fuel Tank Cut Away Description Description of applications of Viton® 1. Quick connect coupling containing O-ring seal 2. Rollover valve seal 3. Quick connect O-ring 4. On-board-diagnostics (OBD II) pressure sensor diaphragm 5. Fuel pump O-rings 6. Fuel sender vibration isolators 7. Sender unit seal Cover Reinforcement Tie layer Veneer Viton® Figs.6, 6a. Fuel line hose
  • 6. 5 layers with the innermost a veneer of fluoroelas- tomer. This cost-efficient design allows the highly fuel resistant layer to act as a primary barrier to per- meation. (See Figs. 6, 6a). Viton® is frequently selected as the barrier layer be- cause of its outstanding resistance to conventional, oxygenated and “sour” fuels. The fluoroelastomer is flexible, can be shaped to form, is easy to install and couple, provides long-term sealing at couplings, and damps noise and vibration. An example of a high performance fuel hose con- struction is the patented F200 barrier hose shown in Fig. 7. The inner fuel contact veneer is Viton, and the barrier layer is Teflon® FEP. Reinforcement in this construction is provided by Kevlar® , and the cover stock may be Vamac® or Hypalon® . This marriage of materials of construction provides unequalled resistance to permeation from within and abuse from the exterior. The superior permeation resistance of F200 fuel hose compared to any other elastomeric fuel hose construction becomes even more marked at elevated temperatures. Fuel Pump Seals, Check Valves and Rollover Valves (gasoline and diesel) The fuel resistant seals found in fuel pump check valves and roll-over valves are designed to close off fuel flow if the vehicle rolls over. The major perfor- mance requirement of these seals is resistance to swell and attack by fuels, and Viton is the material choice for these seals. Diaphragms The fuel pressure regulator diaphragm is an integral component which ensures accurate metering of fuel to the engine. It must be resistant to swell by auto- motive fuels and attack by sour gas and oxygenated fuels. In addition to an excellent flex life, it must also function at temperatures as low as –40°C. Diaphragms made from Viton perform reliably and remain flexible from –40°C to +140°C. The flex life easily exceeds 1 million cycles – beyond the normal life of the vehicle. Quick-Connect O-rings Quick-connect O-rings are used to seal against leakage at connections in plastic fuel lines. As the name “quick connect” implies, these couplings may be easily connected or disconnected. To main- tain the integrity of the seal after reinstallation of the line, an O-ring with high tear strength, compres- sion set resistance and sealing force retention is needed. Viton outperforms competitive elastomers in these three critical properties and provides static sealing at –40°C when properly formulated. 6 Fig. 7. Construction of F200 barrier hose Fig. 8. Fuel pump check valves Fig. 10. Fuel pressure regulator diaphragm Fig. 9. Rollover fuel valve Cover Teflon® film Kevlar® Viton F Tie layer Inlet Inlet O-rings of Viton Diaphragm of Viton Vacuum connection Outlet
  • 7. Fuel Injector O-rings (gasoline, diesel, and alcohol blends) These O-rings must meet many of the same require- ments as the “quick-connect” O-rings, but with the important addition of heat resistance. Sealing per- formance must not be adversely affected during or after excursions to extreme elevated temperatures (as may be experienced in a “heat soak” or a “coolant dump”). O-rings of Viton perform reliably from –40°C to +150°C. 2.c Emission Control Components Emission Control Seals Modern emission control systems consist of devices for both measuring and controlling the fuel system, and include vapour recovery canisters, catalytic converters, and exhaust gas and oxygen sensors. These components rely on seals that must be resis- tant to the vapours they contact at the extremes of their design temperatures. Viton is suited to many of these applications because of its excellent balance of heat and fuel resistance properties. Air Intake Manifold Gaskets Fuel is mixed with air in the air intake manifold. These manifolds are increasingly made of glass reinforced polyamide for performance improve- ments and weight savings. Plastic manifolds are difficult to seal effectively to metal blocks using traditional gaskets because of the difference in thermal expansion coefficients between the two. For sealing the two surfaces, heat- and fuel-vapour- resistant elastomeric seals have become the norm. The low modulus of the elastomer seal enables it to conform to the sealing faces and to take up creep. Viton meets the performance requirements of this seal because of its long-term functionality in hot fuel vapour and its excellent compression set resistance. Solenoid Armatures These rubber/metal parts are used in on-board vapour recovery and evaporative vapour canisters. Viton is specified for this application because of its durability and outstanding dimensional stability, low compression set, and resistance to fuels and fuel alcohol/ether blends. The metal bonding capa- bility of Viton is also essential to these parts. 7 Fig. 11. Quick-connects with Viton® O-rings Fig. 12. Fuel injector O-rings Fig. 13. Lambda probe seal Fig.14. Air intake manifold gasket
  • 8. The results of these various part requirements and the performance of fluoroelastomers in a variety of fuel related applications have led to the wide specification of Viton® by the automotive industry. In addition to fuel related applications, Viton is used to seal crankshafts and camshafts, cylinder heads, water pumps, gearboxes and many other components. These applications together bring the use of fluoroelastomers to well above 1 kg per vehi- cle (see Fig. 16). 3. Emission Regulations The aim of recent regulations is to limit emissions of various oxides of nitrogen (NOx), carbon mono- xide (CO), hydrocarbons (HC) and particulates. In automobiles, these are exhaust gas components, but they are also found throughout the fuel system, including in hoses, lines, connector systems and in the fuel tank. The USA has traditionally led in vehicle emission regulations, through the work of the EPA and the CARB in particular, using data generated through the Air Quality Improvement Research Programme (AQIRP). Largely as a result of the Clean Air Act of 1990, there is also increasing emphasis on evapo- rative emissions as measured by the Sealed Housing for Evaporative Determination (SHED) test method. This test determines whether or not the total emis- sion of all components exceed the permitted hydro- carbon level in 24 hours. Near-term California and USA regulations and goals stipulate that: • Hydrocarbon emissions levels of 1998 must be reduced 55% by the year 2000. • Zero emissions must be achieved by 2% of vehi- cles in 1998, and by 10% in 2003. Diagnostic systems which monitor specific emissions sources are being introduced. Provisions in the EPA’s OBD II (Onboard Diagnostics Revision II) require continuous electronic observation of numer- ous sources of emissions on the vehicle. Results from this monitoring are indicated to the driver and are stored for evaluation at normal vehicle service intervals. This source-oriented data collection is expected to lead to a more accurate understanding of emissions over the life of the vehicle. These sys- tems will be mandatory for European gasoline pas- senger cars from the year 2000 and for diesels from 2003. Recently, the European Programme on Emissions, Fuels and Engine technologies (EPEFE), was set up to establish European legislation and the basis for future fuel composition and emission limits. One outcome of this programme are the EURO-2000 regulations. These regulations are similar to the enhanced evaporative emission regulations intro- duced in the USA. Fuel permeation is an important component of the overall evaporative emissions in both cases. In the European Union, compliance to EURO-2000 emission standards for passenger cars and light duty trucks becomes mandatory on January 1, 2000. Motor fuel specifications decided by parliamentary conciliation in 1998 have made the emission regu- lations easier for vehicle manufacturers to meet by limiting sulphur in fuels in both gasoline and diesel. US Federal regulations generally require declining emission levels and phase-in standards which become more demanding each year. For example, from 2001 onwards, a 0,075 g/mile non-methane organic gases (NMOG) fleet average must be met, while in California, the NMOG limit descends from 0,070 g/mile in 2001 to 0,062 in 2003. The new European emission limits are shown in the following table: Limit in g/km for passenger cars <2500 kg Year CO NC NOx Particulate 2000 G 2,30 0,20 0,15 – D 0,64 – 0,50 0,05 2005 G 1,00 0,10 0,08 – D 0,50 – 0,25 0,025 8 Seals of Viton Fig. 15. Solenoid armature 5,3 kg other 1,4 kg FPM/ FKM 0,5 kg HNBR 0,9 kg MVQ 3,1 kg NBR 0,3 kg EAM 0,7 kg ECO 0,4 kg ACM 7,7 kg EPDM 4,1 kg CR 0,1 kg BR 2,0 kg SBR 2,4 kg NR Fig. 16. Elastomers (without tires) in Mercedes E-Class
  • 9. Adoption of the EURO-2000 regulations in Europe is expected to stimulate other countries to adopt enhanced regulations. It is foreseen that South America, Japan and Asia-Pacific will all eventually follow the USA and Europe. 4. Viton® in the Automotive Industry 4.a What is Viton? The name Viton represents three major families and many specialty fluoroelastomers from DuPont Dow Elastomers. These families offer the highest continuous heat resistance of any conventionally processed rubber, combined with an outstanding resistance to swell and permeation when exposed to a range of chemicals including automotive fuels and additives. Specific types of Viton have been developed to satisfy service requirements in many demanding applications. Viton offers superior processing and outstanding end-use performance. These characteristics result in long service-life and low lifetime-cost components. 4.b Classification of Elastomers based on SAE J-200/ASTM D 2000 The globally accepted standards of SAE and ASTM define a specification system based on elastomer performance. In these two standards, elastomers are classified according to their heat and oil resistance. Viton is HK classified. ‘H’ designates that its heat resistance after thermal ageing 70 hours at 250°C is within the following parameters: • max. tensile strength change ±30%; • elongation at break decreases less than 50%; • max. hardness change ±15 points. ‘K’ represents the class of oil resistance (maximum swell 10%) achieved by Viton after 70 hours in test oil No. 3 according to ASTM D 471. Only Kalrez® perfluoroelastomer parts and Zalak® high performance seals have higher temperature resistance and lower swell in hydrocarbons than Viton. 4.c Overview of the Properties of Viton Viton fluoroelastomers offer outstanding resistance to heat, swell, permeation and degradation when in contact with aggressive automotive fuels, fuel addi- tives, oils, lubricants and most mineral acids. They also have exceptional tensile strength, tear and compression set resistance. These characteristics, provided across a wide operating temperature range, are the reasons the fluoroelastomer is specified by automotive engineers for fuel system seals, O-rings and hoses. Parts made of Viton fluoroelastomer function in environments that destroy those made from many other plastic and rubber materials. 5. Types and Properties of Viton The three major families of Viton fluoropolymers, ‘A’, ‘B’ and ‘F’ consist of many types, characterized by the monomers from which they are built. To achieve a required end use performance, proper type selection is necessary. 9 Fluorinated monomers Viton fluoroelastomers Polymerization Synthetic, noncrystalline fluoropolymers, which show elastic properties after crosslinking fluoroelastomers FKM (ASTM D-1418) FPM (DIN/ISO 1629) Crosslinking Fig. 17. Fluoroelastomers derivation Definition of types and classes Heat-test Swell-test Volume- temperature temperature swell max. Type (°C) (°C) Class (%) A 70 70 A – B 100 100 B 140 C 125 125 C 120 D 150 150 D 100 E 175 150 E 80 F 200 150 F 60 G 225 150 G 40 H 250 150 H 30 J 275 150 J 20 K 10 Fig. 18. Classification based on SAE J-200/ASTM D 2000 Viton Fluorine content Fuel resistance Heat Low temperatures Compression set A 66% ++ +++ + +++ B 68% +++ +++ o +++ F 70% ++++ – + GLT 64% + +++ ++++ + – = poor o = fair + = good ++ = better +++ = excellent ++++ = outstanding GBLT 65% ++ +++ +++ + GFLT 66% ++++ +++ ++ + Fig. 19. Types of Viton and characteristics
  • 10. The Figs. 19 and 20 show the impact of fluorine content and other polymer design parameters on fuel resistance, compression set and high and low temperature performance. The Viton ‘A’ family has the lowest fluorine con- tent and best compression set resistance, while the progressively higher fluorine content ‘B’ and ‘F’ families have improved fuel resistance. Viton GLT, GBLT and GFLT all offer greater flexibility at low temperature. 5.a High Temperature Properties Heat resistance is becoming more important in fuel system components because smaller engine compart- ments bring higher engine compartment temperatures. Temperature and heat history play key roles in the durability of an elastomer seal. Elasticity, flexibility, compression set and sealing force can all be adversely affected by elevated temperatures which can shorten the life of elastomer parts or even destroy them. Fig. 21 shows the temperature limits of fluoroelasto- mer seals in continuous use. Laboratory tests con- firm that Viton remains usefully elastic (elonga- tion >100%) for well over 10000 hours when exposed to a temperature of 200°C. Conventional general purpose elastomers would become brittle after just one day at 200°C under the same test conditions. Other rubbers are generally limited to an operating ceiling of 150°C and for a substantially shorter period. Seals made of Viton remain resilient and retain an effective sealing force long after ordinary rubber seals have failed. Fig. 22 shows retained sealing force of O-rings made from Viton and other elas- tomers. After 100 hours under static conditions in air at 150°C, Viton retains over 90% of its original sealing force, while seals produced from fluorosili- cone, polyacrylate and nitrile rubber retained 70%, 58% and 40%, respectively. After 10000 hours, the retained sealing force of Viton was 77% while that of silicone, the only other rubber to survive the test, was 13%. 5.b Properties of Viton in Gasoline Gasoline Composition Gasoline has undergone many changes since it was first commercially available soon after the First World War. Even with the refinement of today’s gasolines, there are still great variations in specific composition. Typically, gasoline consists of hydro- carbons ranging from 4 to 12 carbons in length and may include dissolved paraffins, olefin compo- nents, naphthenes and aromatics. Aromatic hydro- carbons (toluene, benzene, xylenes) cause more swelling and more adversely affect physical proper- ties than either aliphatic or olefinic hydrocarbons. The increasing use of oxygenates (alcohols and ethers) to boost the effective octane rating in gaso- line further extends the range of composition varia- tions possible in gasoline. Oxygenate-rich gasolines exhibit higher volatility which is correlated with increased permeation through elastomeric materials. Oxygenated additives cause swelling and property deterioration of elastomers as well. Ethers such as methyl- and ethyl-tetrabutyl ether (MTBE and 10 Letter Meaning Comment A low fluorine content good compression set B medium fluorine content improved fuel resistance F high fluorine content resistance against oxygenates permeation G prepared for peroxide additional base resistance curing system LT excellent low temperature special monomer incorporated (LT) properties Fig. 20. Viton® nomenclature 4000 230°C 3000 285°C 240 260°C 1000 0 2000 200°C Hours of service >10000 6000 8000 Fig. 21. Heat resistance of Viton in air 60 80 RetainedSealingForce– %oforiginal 10000 Silicone polyacrylatenitrile 10001000 0 20 40 100 Hours at 150°C VITON® Fig. 22. Retained sealing force of Viton and other elastomers
  • 11. ETBE) are preferable oxygenates to alcohols from an environmental point of view; they are less volatile but have similar octane boosting characteristics. They also cause less swelling and property deterio- ration in elastomers than alcohols at the most fre- quently used levels (around 15%). Physical property change usually goes hand in hand with volume swell: the greater the volume swell, the greater the expected loss of other properties. Consistent with its low volume swell, Viton® pro- vides excellent retention of physical properties after fuel immersion. In fact, compounds of Viton exhibit lower volume swell in fuels than any other class of elastomers except for perfluoroelastomers such as Kalrez® . High fluorine types of Viton are especially well suited for service in fuels containing oxygenates. Testing also indicates that Viton is suitable for ser- vice in low sulphur and bio-diesel rapeseed methyl ester (RME) fuels. Resistance to Various Flex Fuels: Swell and other Physical Properties Chemical Attack Non-reversible chemical changes may occur in elastomers as a result of exposure to fuels. Viton is especially resistant to these effects and to the additional aggressive nature of additives and fuel oxidation by-products in gasoline and traditional diesel fuels. Volume Change Volume swell of an elastomer by a fuel can precede seal leakage and failure or compromise the accuracy of fuel metering systems. Compounds of Viton exhibit lower volume swell in fuels than any other class of elastomers used commercially (See Fig. 23). Fuel Blends The superior resistance of Viton parts to blends of gasoline alcohol and aromatic additives enables these components to deliver dependable performance with minimum swell, low compression set, minimal dimensional change and superior flexibility. Figs. 24 and 24a demonstrate the superior low-swell characteristics of Viton in typical blends of gasoline/ methanol and gasoline/ethanol. Fuel Variables Challenge the Automotive Engineer Fuel system components must be designed to accom- modate the most adverse of anticipated conditions. The trend to one-design components that can per- form in any of the world’s wide-ranging fuel com- positions challenges the automotive engineer. Besides the normal hydrocarbon variations inherent in gasolines, the designer must contend with fuel mixtures designed for regional climatic conditions, a wide range of blends with oxygenates and “sour” gasoline generated in the fuel system. 11 Volumeswell168h,23°C(%) Viton BFVMQ fuel C NBR HNBR 0 90 80 70 60 50 40 30 20 10 M-15 Fig. 23. Swell in fuel mixtures Volume % ethanol in gasoline (42 % aromatic)Volumeswell,% 5 10 15 20 250 0 100 80 60 40 20 ECO NBR CO Viton Fig. 24. Equilibrium volume swell at 21°C versus ethanol concentration Fig. 24a. Equilibrium volume swell at 21°C versus methanol concentration Volume % methanol in gasoline (42 % aromatic) Volumeswell,% 5 10 15 20 250 0 100 80 60 40 20 ECO, NBR CO Viton
  • 12. The selection guide on page 18 lists the perfor- mance of different types of Viton® in various fuels. It is important to select the right type of Viton for demanding applications such as aggressive metha- nol fuel blends or for sealability at temperatures to –40°C. Effect of Aromatic Content As noted in Figs. 25 and 26, the aromatic content of Reference Fuels A, B and C spans the range encountered in commercial gasoline. Type of fuel Aromatic content (%) Leaded – regular 7-34 – premium 5-34 Unleaded – regular 5-42 – premium 17-46 Fig. 25. Aromatic content of commercial gasoline Aromatic content plays a major role in the effect a fuel has on elastomers. Fuel C with 50% aromatic content has a substantially greater effect on volume change and property retention of most elastomers than either Fuels A or B with 0% and 30% aromatic content, respectively. In all of these fuels, volume change of Viton is minimal, and strength retention is excellent. Effects of Oxygenated Fuels / Fuel Alcohol Blends Blends of gasoline with oxygen-containing additives such as ethanol, methanol or MTBE are common today, and in the future, other additives such as ETBE may appear. These blends, categorized as gasoline/alcohol or gasoline/ether, burn cleaner and emit fewer air pollutants. The graph below (see Fig. 27) shows the swell of four test fuels of NBR, ECO, FVMQ (fluorosili- cone) and two types of Viton. The compounds of Viton have the lowest swell profiles in any of the fuel blends, and higher fluorine-content types such as Viton B600 and GF have very low swell in all the test fuels. Alternate Fuel Blends Automobile manufacturers have studied the concept of vehicles fueled with gasoline, methanol or blends. These so called “alternate” or “flexible” fuels place severe demands on elastomeric seals, O-rings and hoses. The chart below (Fig. 28) shows the swell results of five types of Viton immersed in five different blends of Fuel C and methanol. Lower-fluorine types of Viton such as GLT and the ‘A’ family resist Fuel C and 85/15 Fuel C/methanol blends, but as methanol content increases, so does volume swell. High fluorine types of Viton such as B600, GF and GFLT show only a modest increase in swell when up to 50% methanol is used. In blends above 50%, 12 (shares in vol. %) ASTM D471/ISO 1817 DIN 51604 Non aromatic HC 100 70 50 60 30,0 25,4 12,0 Aromatic HC 0 30 50 40 50,0 42,3 20,0 Alcohol 0 0 0 0 5,0 19,2 60,0 Iso-octane 100 70 50 60 30,0 Toluene 0 30 50 40 50,0 Ethanol 5,0 Diiso-butylene 15,0 Fam. A 84,5 40,0 Methanol 0,0 15,0 58,0 Deionized H2O 0,0 0,5 2,0 Fig. 26. Compositions of reference fuels FuelA FuelB FuelC FuelD Fam.A Fam.B Fam.C + Methanol* + MTBE* NBR Fuel C + Ethanol* 0 70 60 90 100 80 50 40 30 20 10 ECO FVMQ Viton B-600 Viton GF *+ 10% (v) in Fuel C VolumeSwell(%),168hat23°C Fig. 27. Swell in fuel mixtures – Influence of type of oxygenated additives VolumeSwell(%),168hat23°C 50 10085 Viton A 0 15 0 100 90 80 70 60 50 40 30 20 10 Viton B-600 Viton GF Viton GFLT Viton GLT % Methanol in Fuel C Fig. 28. Swell in fuel mixture
  • 13. volume swell of these types usually decreases; con- sequently, they are recommended for use in systems where flexible fuels are used. “Sour” Fuel Fuel “sours” or becomes stale when oxygen reacts with it to form hydroperoxides. These unstable species decompose, forming free radicals that may attack some elastomers. This attack can cause either “reversion” (rubber softening), or further crosslink- ing, resulting in embrittlement. The olefinic por- tions of “cracked” gasoline are the most suscepti- ble to oxidative attack, and gasoline blended with alcohol also tends to be unstable. The results of immersion of Viton® and other elasto- mers in “sour” fuels for three weeks at 54°C are shown in Fig. 29. Viton shows very little change and excellent resistance compared to FVMQ and NBR. ECO “reverted” in less than two weeks, and its results are not reported. NBR became brittle in a short period of time while Viton remained virtu- ally unaffected by the sour fuel. Fuel containing hydroperoxides can cause dramatic changes in the properties of some elastomers in a short time, as indicated. Under the same conditions, Viton remains unaffected and can be considered a prime candidate for fuel systems handling “sour” fuels. 5.c Low Temperature Properties An elastomer seal works by exerting a pressure against its housing greater than that of the con- tained fluid. This sealing force of an elastomer is time and tem- perature dependent and will gradually decrease due to physical and chemical effects. Retention of seal- ing force at lower temperatures depends on the abil- ity of the elastomer to recover from the applied deformation at that temperature. As temperature decreases, the rubber becomes stiffer, loses its elastic recovery, and finally becomes hard and brittle. Results of O-ring leakage testing and the TR-10 test on different types of Viton demonstrate the temperature at which leakage commences and the behaviour variations in low temperature flexibility. Viton GLT, which was designed specifically for low temperature performance, shows the best results in both tests. (See Fig. 31). The TR-10 test provides an indication of low tem- perature elastomeric performance of a polymer by measuring the onset of elastomeric behaviour as the temperature is gradually raised from a point at which the specimen is frozen. The behaviour of Viton types is seen to closely follow the order of the O-ring test results, with the LT types having the best low tem- perature performance. 13 Volumeswell(%),after3weeksat54°C NBRFVMQViton BViton A Viton GF 0 60 50 40 30 20 10 Fig. 29. Swell in sour fuel C (Peroxide number 100) Test-gas (N2) Test-unit 10% 20% 30% Leak-sensor Leak-flow Test-O-ring Initial tension Fig. 30. Low temperature O-ring leakage test Temperature(°C) TR-10 Viton F O-ring-test –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0 Viton B Viton A Viton B-70 Viton GFLT Viton GBLT Viton GLT Fig. 31. Low temperature flexibility. Comparison of different test methods
  • 14. Fig. 32 shows the low temperature sealing ability of seven fluoroelastomer compounds tested for sealing of nitrogen at 1,4 MPa (200 psi) at 10% compression, when dry, immersed in unleaded fuel and immersed in Fuel C. Results show a significant difference in sealing force retention among the types of Viton® , with Viton GLT demonstrating the superior perfor- mance under these conditions. Following immersion in such fuels, Viton fluoroelastomer type GFLT exhibits the best combination of low volume swell and good low temperature sealing. Fuel seals in engines run on ‘flex fuel’ blends of unleaded gasoline with methanol are among the most challenging of all automotive sealing applica- tions. In addition to flex fuel resistance, O-rings in fuel injector and quick-connect systems are required to have at least –40°C static sealing capability. Even though certain types of Viton may not possess specific low temperature properties they can often be used successfully when immersed in fuels at low temperature. The small absorption of fuel into the seal made of Viton actually improves low tempera- ture properties by plasticisation of the elastomer. For functionality in a dry system, the special low temperature types of Viton should be used. 5.d Permeability Versus other Elastomers All elastomers are permeable to some degree to fuels, in gas and liquid form, but the degree of permeabil- ity varies widely depending on the elastomer type. Fluoroelastomers such as Viton have the lowest per- meability to fuel of all elastomers used commer- cially in automotive fuel systems, enabling these materials to meet the most stringent of current and expected emission regulations. Fig. 33 shows the permeation rates of Viton versus other polymers used in fuel lines, filler neck hose and seals using the modified ASTM E96-66 “Thwing Albert” cup permeation test method (a recognized and commonly used test for perme- ation of elastomers). The data are presented in per- meation rate units, and show that Viton A has a permeation rate less than 3 g/m2 /day in Fuel C (50% iso-octane/50% toluene) compared to 125-600 g/m2 /day for HNBR, NBR and FVMQ. In addition these high permeation rates for the other materials are observed after only 21 days. The results of similar testing in Fuel M-15 have also been shown to dramatically favour Viton, with a permeation rate of approximately 50 g/m2 /day compared to the extreme of over 800 g/m2 /day for FVQM. 14 Temperature(°C) Fuel C*Unleaded fuel* Viton F dry 0 –10 –20 –30 –40 –50 –60 Viton B Viton A Viton B-70 Viton GFLT Viton GBLT Viton GLT *exposure 168 h/23°C permeationat23°C,28days(g/m2/day) M-15Fuel C 0 900 800 700 600 500 400 300 200 100 Viton A HBNR 44% ACN* HBNR 33% ACN* FVMQ* *Test only 21 days Fig. 32. Low temperature flexibility. Leakage temperature during O-ring test Fig. 33. Permeation resistance according to Thwing Albert Test – Viton versus other materials (Fuel C/M-15) (Fuel M-15 composition is 85% Fuel C and 15% methanol) permeationat23°C,28days(g/m2/day) M-15Fuel C 0 80 70 60 50 40 30 20 10 Viton GF Viton B Viton GFLT Viton A Viton GLT Fig. 34. Permeation resistance according to Thwing Albert Test of different types of Viton (fuel C/M-15)
  • 15. Fig. 34 shows the permeation rates of different types of Viton® in the same test fuels using the modified ASTM E96-66 “Thwing Albert” cup permeation test method. All types perform very well in ASTM Fuel C, while Viton GF performs best when immersed in M-15. 6. Performance of Viton in Diesel Engines Applications: • Direct injector O-ring seals • Rotary pump seals • Control diaphragms • Fuel hose Diesel fuel is used in compression ignition engines, which generally have improved thermal efficiency compared with spark-ignited gasoline engines. Diesel fuel has a higher boiling point range than gasoline fuels, hence it is less prone to evaporative emissions. Diesel engines are used to power a significant and growing proportion of all vehicles. This is parti- cularly true in Europe where most heavy goods vehicles and many passenger cars are diesel powered. The rubber components used in the fuel systems of diesel powered vehicles have traditionally not needed high performance elastomers such as Viton since diesel fuels are not as aggressive to elastomers as is gasoline. Nevertheless, both gasoline and diesel powered vehicles are subject to regulations governing toler- able limits of air polluting emissions (see page 8). The goals in the case of diesels are to reduce aro- matic hydrocarbon content, reduce sulphur content (typically from 1000 ppm to 200 ppm) and to increase cetane number used to quantify the igni- tion characteristics of diesel fuel, thereby provid- ing increased engine efficiency for lower levels of emissions. “Low sulphur diesel fuel” and “bio-diesel fuel” define specific compositions, but they are also terms used to describe a range of diesel fuel com- positions. Esters made via trans-esterification of rapeseed oil (producing RME bio-diesel) are becoming more popular as an alternative to diesel from fossil sources, either used in blends or as fossil fuel replacement. Expectations that most of the diesel engines in passenger cars would run with “bio-diesel” have not materialized, although a num- ber of commercial vehicles available today are designed to run with non-fossil fuels. 15 Gasket Testing vessel Flange Sealing effect by pressing Ring • Fill in 100 ml liquid • Seal with test material • Measure weight • Invert, store at room temperature • Measure weight loss during 21 to 28 days every 3rd day • After equilibrium evaluate average in g/m2/day B A Test sheet 76,2 Fig. 35. Thwing Albert permeation test procedure Volumeswell(%),168hat23°C Low Sulphur DieselM-15 Bio Diesel –5 35 30 25 20 15 10 5 0 A B F Viton Family Fig. 36. Swell of various families of Viton in M-15, bio-diesel and low sulphur diesel fuel
  • 16. While the use of bio-diesel in passenger cars is still relatively small, trucks and off-road vehicles are using some RME and similar products. Testing of Viton® has shown its excellent resistance to swelling and property deterioration in both low sulphur and bio-diesel fuels (Fig. 36). This perfor- mance identifies Viton as an excellent candidate for diesel fuel system components in the future. Fig. 37 confirms the very low swell over extended periods (4% or less after 1008 hours in RME at 100°C) of bisphenol-cured Viton A and B families and type GF. Note: Specific curing systems must be used with Viton for applications in RME diesel. For guid- ance, contact your local DuPont Dow customer ser- vice office or authorized distributor. 7. Seal Design for Engineers The following notes offer a guide in the use of elas- tomers in sealing systems for automotive engineers. Designing with Elastomers Designers having more experience and familiarity with metals and alloys than with polymers may have experienced failures with elastomeric seals even though the elastomer was well suited to the condi- tions. This common experience is often traced to the fact that such parts were designed into the applica- tion without full consideration of the fundamental design requirements of elastomeric materials. In the case of new applications, or performance or design upgrades of existing ones, the first course of action is to define the requirements in use, in terms of both performance and economics. Selection of a polymer underdesigned for the use results in prema- ture failure; overdesign is costly. The checklist for performance should include: • A full description of the functional requirements of the application; • Temperature range, and cycling times if known; • Media exposure within the temperature range (specific fuel composition, for example); • Pressure(s) or vacuum to be sealed; • Desired lifetime; • Mechanical stresses/strains including static or dynamic flex requirements; • Colour code needs; • Electrical properties; • In the case of fuels, desired permeation levels in cyclic conditions. Special consideration should be given to the fuel itself. It should neither affect, nor be affected by, the elastomer component in contact with it. Common Seal Failure Modes Other than inappropriate selection of elastomer type, seal failure can result from a number of design factors related to the surface, cavity or groove to be sealed: • Sharp corners or acute angles, causing rupture as the elastomer flexes under pressure and/or as a result of thermal effects; • Poor surface finish (especially important for gases and against vacuum); • Excessive cavity tolerance and part width, allow- ing ‘weeping’ of seal; • Insufficient compression of the seal, allowing leakage at lower temperatures, and poor low pressure gas retention; • High compression, causing seal splitting at high temperatures, and excessive compression set; • Poor fitting technique, resulting in twisted O-ring sections; • Cavity volume inadequate for thermal and fluid expansion, leading to extrusion of the seal or gasket (Fig. 38); • Lack of back-up rings, precipitating extrusion at high pressure (Fig. 39). 16 Volumechange(%),1008h@100°C Viton BViton A Viton GF 0 1,5 2 2,5 3,5 4 3 0,5 1 Fig. 37. Viton fluoroelastomers aged in Connediesel RME 99/-8 Fig. 38. Swell/thermal expansion Normal Swell Thermal expansion
  • 17. Your DuPont Dow Elastomers development engi- neer can help with the choice of elastomer type and compound to meet the operating requirements of your application. Designing with Viton® Fluoroelastomers Viton fluoroelastomers are capable of sealing auto- motive fuels at much higher temperatures and for longer periods than almost any other elastomer. The high fluorine levels that make such performance possible also influence seal design. For example, fluoroelastomers demonstrate higher thermal expan- sion and contraction than most other elastomers, and any small swell in fuels or other media is aug- mented by these thermal effects. Also, like most polymers, fluoroelastomers have a tendency to soften at higher temperatures. Therefore, when designing for wide temperature fluctuations, part size, compression and seal cavity volume may have to be adjusted to optimise perfor- mance (Fig. 40). Special consideration should also be given to parts exposed to rapid temperature cycling. While high service temperatures can lead to some softening of the fluoroelastomer, coincidental high pressures can lead to displacement of the fluoro- elastomer and possible extrusion and leakage of the part. The rubber chemist can help minimize these effects through the selection of a high modulus or high hardness formulation, but the use of back-up rings and cavity volume adjustment may be neces- sary. (Fig. 41) Limits of Elastomer Stress/Strain Properties Finite element design, backed by experience of mil- lions of parts, has led to some basic ‘use and abuse’ rules which apply to most elastomers. For example, elastomers in seal or gasket applications should never be subjected to greater than 25% compression or strain. Higher compression can create stress fields within the part which may exceed the ultimate strength of the material, leading to high compression set and reduced seal life. A nominal O-ring compression of 18% is sufficient for most applications, allowing for a degree of tol- erance in seal cavity and part size. Even lower com- pression, in the order of 11%, can be used for gas- kets. Gaskets do not need the compressive force of other parts due to the comparatively thin sections and high surface-to-volume ratio. O-rings seated in position should never be stretched by more than 5% of original internal diameter (over a piston groove, for example) particularly if the part is in a dynamic use. Permeation of Elastomers Permeation by a fluid into a polymer is governed by solubility parameters, pressures of the fluid, com- pression of the part, and temperature. Permeation is inversely proportional to part thickness. Thus, gas- kets will be more permeation resistant if designed with increased cross-section, as will O-rings with increased section diameter. For optimum perfor- mance, selection of polymer to task is critically important. 17 Zero pressure High pressure Temperature/ Pressure drop Fig. 39. Extrusion effects Squeeze No pressure Pressure applied Pressure Pressure Pressure reversed Fig. 40. How the O-ring seals Pressure Pressure Pressure Pressure Fig. 41. Anti-extrusion
  • 18. Design Service Your DuPont Dow Elastomers automotive develop- ment engineer will be pleased to assist you with sealing proposals and solutions. Please call or fax one of DuPont Dow’s regional headquarters listed on the back of this publication. Appendix Selection Guide for Viton® The following tables will help the automotive fuel system engineer select the correct family or type of Viton for a specific application. A summary of families and types of Viton for use in Automotive Fuel Systems Application Service Viton Requirements Family In Tank Hose and Tubing Fuel Resistance Compression Set Resistance B, F Low Swell Filler Neck Hose Fuel Resistance Fuel Line Hose Permeation Resistance B, F F-200 Veneers Compression Set Resistance Quick Connect Seals Fuel Resistance Permeation Resistance Compression Set Resistance A, AL Stress Relaxation Resistance Low Swell Quick Connect Seals Low Temperature Sealing GLT, GFLT, GBLT Fuel Injector Seals Fuel Resistance Compression Set Resistance AL, B Stress Relaxation Resistance Low Temperature Sealing Fuel Injector Seals Fuel Resistance GLT, (Low Temperature) Compression Set Resistance GBLT, Stress Relaxation Resistance GFLT Low Temperature Sealing Fuel Pump Seals Fuel Resistance Compression Set Resistance A, B Low Swell Diaphragms Fuel Resistance A, B Diaphragms Fuel Resistance and GLT, GBLT, (Low Temperature) Low Temperature Flex Life GFLT Emission Control Devices Heat Resistance A, B Air Intake Manifold Heat Resistance A Gaskets Compression Set Resistance The table below lists the primary families and types of Viton and their performance in various fuels at both high and low temperatures. Rating of families and types of Viton by performance parameter Viton Family A B F GLT GBLT GFLT Polymer Characteristics Ter/ Polymer Type(s) Di Ter Tetra Tetra Tetra Tetra Fluorine Level 66 68 70 65 66 67 Fluids Resistance – Fuels Unleaded Gasoline E E E E E E ‘Sour’ Gasoline (80 PN) E E E E E E Gasohol – (U.Gas/10% Ethanol) G E E G E E Unleaded Gasoline/Methanol Blends • 5-10% Methanol G E E G E E • 11-30% Methanol F G E F G E • >30% Methanol P-F G E P-F G E Methanol 100% P G E P G E MTBE 100% P P P P P P U.Gas/MTBE- Blends/(5-20%) G-E E E G-E G-E E Permeability Unleaded Gasoline E E E E E E U.Gas/Methanol Blends F G E F G E Heat Resistance To 150°C E E E E E E To 204°C E E E E E E To 275°C F-G G F F F F Compression Set Resistance At 150°C E E G-E E G-E E At 200°C E G-E F-G G G F-G At –20°C P-F P P G G G Low Temperature Properties Flexibility at 0°C E E F E E E At –20°C F F-P P E G-E G-E Static Seal Ability At –20°C G F-G P-F E E E At –40°C P-F P P G G G Low Temperature Retraction (ASTM D-1329) TR-10, °C –17 –14 –7 –30 –26 –24 O-Ring Leakage Test, °C –32 –26 –25 –45 –40 –37 Rating Scale: E = Excellent, G = Good, F = Fair, P = Poor 18
  • 19. References 1. Wittig, W.R. TPE – eine Chance für die Partnerschaft von Elastomerverarbeitern und der Automobilindustrie, aus: Thermoplastische Elastomere – Herausforderung an die Elastomer- verarbeiter, VDI (Hrsg.), VDI Verlag, Düssel- dorf, 1997. 2. California Environmental Protection Agency Air Resources Board, Factsheet – September 1997, “Gasoline Vapor Recovery Certifications: Inter- action with Onboard Refuelling Vapor Recovery (ORVR).” Suggested Reading 1. N.N. Viton® Fluid Resistance Guide Literature reference: H-69132 DuPont Dow Elastomers, 1996 2. N.N. Viton® Selection Guide Literature reference: D-10242 DuPont Dow Elastomers, 1996 3. Stevens, RD; Thomas, E.W.; Brown, J.H.; Revolta, W.N.K. Low Temperature Sealing Capabilities of Fluoro- elastomers, Society of Automotive Engineers (Hrsg.), SAE Technical Paper Series, Nr. 900194, Warrendale PA, USA, 1990 4. Bothe, N. Viton® , Vamac® , Advanta® – Evaluations in Rapeseed Oil Methylester, Literature reference: NB-960718.1 DuPont Dow Elastomers, 1996 5. Stahl, W.M.; Stevens, R.D. Fuel-Alcohol Permeation Rates of Fluoro- elastomers, Fluoroplastics, and other Fuel Resistant Materials, Society of Automotive Engineers (Hrsg.), SAE Technical Paper Series, Nr. 920163, Warrendale PA, USA, 1992 19
  • 20. 3/99 Printed in U.S.A. H-82107 The information set forth herein is furnished free of charge and is based on technical data that DuPont Dow Elastomers believes to be reliable. It is intended for use by persons having technical skill, at their own discretion and risk. The handling precaution information contained herein is given with the understanding that those using it will satisfy themselves that their particular condi- tions of use present no health or safety hazards. Because conditions of product use and disposal are outside of our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information. As with any material, evaluation of any compound under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendation to infringe on any patents. Caution: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, discuss with your DuPont Dow Elastomers customer service repre- sentative, and read Medical Caution Statement H-69237. For further information on Viton® (800) 853-5515 (U.S. & Canada) or other elastomers: (302) 792-4000 www.dupont-dow.com Global Headquarters DuPont Dow Elastomers L.L.C. 300 Bellevue Parkway, Suite 300 Wilmington, DE 19809 USA Tel. 302-792-4000 Fax 302-892-7390 Latin America Regional Headquarters DuPont Dow Elastomers, Ltda. Rua Henrique Monteiro, 90 5:andar – Pinheiros 05423-912 Sao Paolo – SP Brazil Tel. +55-11-816-0256 Fax +55-11-814-6845 European Regional Headquarters DuPont Dow Elastomers S.A. 2, chemin du Pavillon CH-1218 Le Grand-Saconnex Geneva, Switzerland Tel. +41-22-717-4000 Fax +41-22-717-4001 Asia Pacific Regional Headquarters DuPont Dow Elastomers Pte. Ltd. 1 Maritime Square #10-54 World Trade Center Singapore 099253 Tel. +65-275-9383 Fax +65-275-9395 Advanta®, Hypalon®, Kalrez®, Zalak® and Viton® are registered trademarks of DuPont Dow Elastomers. Kevlar®, Teflon® and Vamac® are registered trademarks of DuPont. Copyright © 1999 DuPont Dow Elastomers. All Rights Reserved.