SlideShare uma empresa Scribd logo
1 de 64
Hepatorenal syndrome Speaker: Dr.S.Ragavendra                      Preceptors: Dr. AshutoshBiswas 						Dr. AnoopSaraya 						Dr. SandeepMahajan
Overview 2
Historical Perspective… Association between kidney dysfunction and liver diseases- Frerichs(1877). Observed oliguria with ascites Absence of urinary protein and low urinary sodium excretion- Hecker and Sherlock (1956) Functional nature- Koppel et al (1960). Done kidney Tx from HRS patients Recovered renal dysfunction after liver Tx- Iwasukiet al (1970) Later, Schroeder et al- renal vasoconstriction in HRS
Hepatorenal syndrome (HRS) International ascites club  defined HRS as a syndrome that occurs in patients with cirrhosis, portal hypertension and advanced liver failure, characterized by impaired renal function with marked abnormalities in the arterial circulation and activity of endogenous vasoactive systems Is a functional disorder Kidneys - histologically normal Arroyo V et al, Hepatology  1996;23:164e76 4
International ascites club (IAC) diagnostic criteria Major Criteria: Chronic or acute liver disease with advanced hepatic failure and portal hypertension Low GFR ~ S.cr >1.5mg/dl or 24 hrcreatinine clearance <40ml/min Absence of shock, ongoing bacterial infections, and current or recent Rx with nephrotoxic drugs Absence of GI fluid losses Absence of renal fluid losses in response to diuretic therapy No sustained improvement in renal function after diuretic withdrawal and expansion of plasma volume with 1.5 liters of isotonic saline Proteinuria <500mg/day, and no USG e/o obstructive uropathy or parenchymal renal disease Arroyo et al, Hepatol, 1996 5
International ascites club (IAC) diagnostic criteria Minor criteria Urine volume <500ml/day Urine sodium <10mmol/L Urine osmolality > Plasma osmolality Serum Na <130mmol/L Urine RBC <50/hpf 6 Arroyo et al, Hepatol, 1996
New IAC diagnostic criteria 2007 Salerno et al, Gut 2007
Rationale for the proposed diagnostic criteria for HRS Serum creatinine(> 1.5 mg%) to establish reduced GFR – consensus Volume expansion to exclude pre-renal causes Volume replacement: saline vs albumin  Shock preceding renal failure – a pointer towards “ATN” Transient AKI due to sepsis – should resolve with antibiotics Nephrotoxic drugs – commonly used 8
Stage Migration 9
Rationale for the proposed diagnostic criteria for HRS Intrinsic renal disease and obstructive uropathy to be ruled out Urine volume, Urine Na, urine : plasma osmolality –  Parameters traditionally used to differentiate functional renal failure from ATN Removed from the revised diagnostic criteria Reason: parameters not exclusive for either of the entities 10
Causes of pseudo hepatorenal syndrome 11
Types of HRS Type-1 HRS:  Rapidly progressive reduction of renal function as defined by doubling of the initial S.cr to a level >2.5 mg/dL in < 2 wk Clinical pattern: acute renal failure Type-2 HRS:  Moderate renal failure (S.cr ranging from 1.5 to 2.5 mg/dL) with a steady or slowly progressive course Clinical pattern: refractory ascites Salerno et al, Gut 2007 12
Type 1 vs Type 2 HRS 13
Probability of survival: Type 1 vsType 2 Alessandria et al, Hepatol 2005
Type 3 HRS Recently defined type 85% of end-stage cirrhotics- intrinsic renal disease on Kidney Bx Allessandria C. Hepatology 2005 Cirrhotics + pre existing renal dysfunction can develop superimposed HRS Renal histology may be required to accurately diagnose cause of renal failure May require liver-kid transplant. Never studied in therapeutic trials. 15
Type 4 HRS > 50 % of ALF develop HRS. ,[object Object]
Very poor prognosis esp. if ALF acetaminophen-related.
Pathophysiology ? similar. Lack of studies.Moore K; Eur J GastroentrolHepatol.1999 16
S.creatinine: prognostic value MELD   Score based on creatinine, bilirubin, INR Predicts mortality in patients undergoing TIPS Organ allocation based on the score Gives an idea about the requirement of RRT post LT Predicts short term and long term survival in ESLD Predicts mortality in variceal bleeding, sepsis and alcoholic hepatitis Predicts mortality in HCC resection, cardiac and abdominal surgeries Refinements -  ∆MELD, MELD-Na 17
Pathophysiology
Pathogenesis Gines and Schrier, N Engl J Med, 2009
Pathogenesis 20
Endogenous vasoactive factors Arch intern med 1993
Peripheral vasodilation hypothesis Arroyo V et al, J Hepatol 2008
Changes in cardiac output N = 66 nonazotemic cirrhotic patients 40% developed HRS during the study follow up of 1 year Ruiz-del-Arbol et al, Hepatol 2005
Modified peripheral vasodilation hypothesis Arroyo V et al, J Hepatol 2008
Regional hemodynamics Guevara et al, Hepatol 1998
Adrenal dysfunction 26 Tsai et al, Hepatol 2006
Multiorgan failure & HRS Arroyo V et al, J Hepatol 2007
Cirrhosis to HRS: Natural progression  28 DH RA Type 1 Type 2 Ramon Planas et al, ClinGastroenterolHepatol 2006
Ascites to HRS: Natural progression  39% 18% Gines et al, Gastroenterol 1993
Prevention
Prevention of HRS SBP: IV albumin administration Severe acute alcoholic hepatitis: Oral pentoxyphylline Low protein ascites: Norfloxacin as 1o SBP prophylaxis Large volume paracentesis: IV albumin to prevent paracentesis induced circulatory dysfunction (PICD)
32 Arroyo V, et al N Engl J Med 1999;341:407
Prevention of HRS SBP: IV albumin administration Arroyo V, et al N Engl J Med 1999;341:407 Severe acute alcoholic hepatitis: Oral pentoxyphylline Akriviadis E et alGastroenterology 2000 Low protein ascites: Norfloxacin as 1o SBP prophylaxis Large volume paracentesis: IV albumin to prevent PICD
Management
Management of HRS Liver transplantation is the only definitive treatment option Renal failure at time of transplant has poorer outcomes Bridge to Liver Transplantation needed
Initial Management checklist  Admission to monitored care setting with Vitals montiroing Central line placement for CVP helpful, not mandatory Routine blood and urine investigations Abdominal USG Diagnostic paracentesis Discontinue diuretics Plasma expansion with albumin Evaluation for Orthoptic liver transplantation 36
Pharmacologic therapy
Randomized trials on type 1 or type 2 HRS Treatments compared: Terlipressin (+ albumin) vs no intervention, albumin or NA + albumin Octreotide + albumin vs albumin Terlipressin + albumin given as continuous or bolus infusion
N=376
Other drugs Noradrenaline + albumin Results similar to terlipressin  Cheaper 0.1 mcg/kg/min infusion (max 0.7) Alessandria et al, J hepatology 2007 Midodrine and octreotide Oral α adrenergic agonist + long acting s/c somatostatin analogue Direct vasoconstrictor  + inhibits endogenous vasodilators 5 mg tds + 100mcg tds s/c Given along with albumin OPD use. Not studied for Type 2 Angelip;Hepatology.1999 41
Other drugs Misoprostol Synthetic-PGE1 Patients have low urinary levels of  vasodilatoryprostaglandins Evidence poor Gines;J Hepatol.1993 Renal vasoconstrictor antagonists Saralasin  - Angitensin II receptor antagonist -worsening hypotension, abandoned Endothelin antagonists- non specific tezosentan Endothelin A receptor antagonist(BQ123) SoperCP;Lancet.1996 42
TIPS(Transjugular intrahepatic portosystemic shunting) Few studies available (case series) Decreases portal pressure and consequently reduces renal sympathetic activity Improvement in renal function and      survival noted compared to no treatment     (but may take several weeks) Careful patient selection needed to        optimize safety and efficacy Guevara et al,hepatology 1998;28:416-22
Renal replacement therapy Paucity of data Optimal method not known Impact on prognosis not known No studies in comparison with medical Rx To be used in patients with an urgent indication of HD and for patients with no response to vasoconstrictor therapy Available studies: Keller et al, Ren Fail, 1995 – retrospective analysis, n = 26, better survival Witzke et al, J GastroenterolHepatol, 2004– prospective observational study, n = 30, RRT not predictive of improved survival
Artificial hepatic support Detoxification treatment ~ form of artificial extracorporeal liver support. Considered to be a bridge to  liver transplantation Liver dialysis devices –  Molecular Adsorbents Recirculation System (MARS) Single Pass Albumin Dialysis (SPAD) Prometheus system 45
Molecular adsorbent recirculating system (MARS) Most frequently used albumin dialysis system Dialysate  recirculated  and perfused online through charcoal and anion exchanger columns Improve systemic hemodynamics and renal perfusion. Better than HD for sodium,creatinine, bilirubin and PT  46
MARS 47
Liver transplantation Treats the causative organ dysfunction 1 yr survival rate: not on HD – 78.8% , on HD – 73.7% survival with   s.cr at similar MELD scores (at 15-17 and 24-40) Similar 2 yr and 5 yr survival among non HRS and HRS LT Beneficial outcomes with renal protective immunosuppression Schmitt et al, TransplInt 2009 Sharma et al, Liver Transpl 2009 Jeyarajah et al, Transplantation 1997 Lopez Lago et al, Transplant Proc 2007
Liver-Kidney transplantation Usual norms: Preoperative HRS/ ATN usually don’t need KTP Many times 1o renal disease can be managed medically  Factors contributing to renal failure: Improved medical management leading to better survival Long waiting time for transplant Post-LT calcineurin inhibitors
Liver-Kidney transplantation Issues to be addressed pre-LT: Will the ARF reverse? Is there a way to predict who will recover? What is the acceptable degree of recovery? Patients of HRS who required prolonged HD (> 4 - 8 wks) may require KLT and better outcomes have been reported Ruiz et al, Arch Surg 2006
Liver-Kidney transplantation Tanriover et al, Transplantation 2008
Summary 53
Conclusion Prevention is utmost important Low threshold to diagnose and investigate renal failure in presence of liver dysfunction. Early diagnosis and timely therapeutics can increase life expectancy for  HRS patients while these are waiting for liver transplantation as a definitive treatment. 54
	        THANK YOU 55
Ques to be answered Definitions.. Fluid therapy Cvp based? Do pts develop structural changes? Therapy lacunae? 56
Summary Decompensated cirrhosis with renal failure Rule out pre-renal causes: stop diuretics, volume expansion (NS or albumin), CVP measurement Rule out intrinsic and obstructive renal disease: urine analysis, USG KUB, check out nephrotoxic drugs Surveillance for sepsis, low threshold for antibiotics usage Medical mx to increase urine output and improvizing KFT, optimization of diuretics and management of refractory ascites, dialyze as per clinical indication TIPS/List for LT
Triple therapy vs Terlipressin HRS (n=37) Type II (n=14) Type I (n=23) Terlipressin (n=12) Terlipressin (n=4) Triple (n=11) Triple (n=10)
Terlipressin in Type I HRS
Triple therapy in Type I HRS
Terlipressin in Type II HRS
Triple therapy in Type II HRS

Mais conteúdo relacionado

Mais procurados

Delayed Graft Function post kidney transplant, Moh'd sharshir
Delayed Graft Function post kidney transplant, Moh'd sharshirDelayed Graft Function post kidney transplant, Moh'd sharshir
Delayed Graft Function post kidney transplant, Moh'd sharshirMoh'd sharshir
 
CONTRAST INDUCED NEPHROPATHY
CONTRAST INDUCED NEPHROPATHYCONTRAST INDUCED NEPHROPATHY
CONTRAST INDUCED NEPHROPATHYfareedresidency
 
Hepatorenal syndrome
Hepatorenal syndromeHepatorenal syndrome
Hepatorenal syndromeAshiqur Papel
 
Cardiorenal Syndrome
Cardiorenal SyndromeCardiorenal Syndrome
Cardiorenal SyndromeSujay Iyer
 
Management of acute kidney injury
Management of acute kidney injuryManagement of acute kidney injury
Management of acute kidney injuryMohammed Ahmed
 
Acute Liver Failure
Acute Liver Failure Acute Liver Failure
Acute Liver Failure AnandNaik65
 
Cardiorenal syndromes and management
Cardiorenal syndromes and managementCardiorenal syndromes and management
Cardiorenal syndromes and managementDIPAK PATADE
 
Membranous nephropathy
Membranous nephropathyMembranous nephropathy
Membranous nephropathyVishal Golay
 
Approach to a Patient with Acute kidney injury
Approach to a Patient with Acute kidney injury Approach to a Patient with Acute kidney injury
Approach to a Patient with Acute kidney injury AIIMS, New Delhi, India
 
Intra dialytic hypotension ,,, prof Alaa Sabry
Intra dialytic hypotension ,,,  prof Alaa SabryIntra dialytic hypotension ,,,  prof Alaa Sabry
Intra dialytic hypotension ,,, prof Alaa SabryFarragBahbah
 

Mais procurados (20)

Hepatorenal Syndrome
Hepatorenal SyndromeHepatorenal Syndrome
Hepatorenal Syndrome
 
Delayed Graft Function post kidney transplant, Moh'd sharshir
Delayed Graft Function post kidney transplant, Moh'd sharshirDelayed Graft Function post kidney transplant, Moh'd sharshir
Delayed Graft Function post kidney transplant, Moh'd sharshir
 
Anemia in ckd
Anemia in ckdAnemia in ckd
Anemia in ckd
 
CONTRAST INDUCED NEPHROPATHY
CONTRAST INDUCED NEPHROPATHYCONTRAST INDUCED NEPHROPATHY
CONTRAST INDUCED NEPHROPATHY
 
Hepatorenal syndrome
Hepatorenal syndromeHepatorenal syndrome
Hepatorenal syndrome
 
Cardiorenal Syndrome
Cardiorenal SyndromeCardiorenal Syndrome
Cardiorenal Syndrome
 
Contrast induced nephropathy
Contrast  induced nephropathyContrast  induced nephropathy
Contrast induced nephropathy
 
Hypertension and renal diseases
Hypertension and renal diseasesHypertension and renal diseases
Hypertension and renal diseases
 
Renal Artery Stenosis
Renal Artery StenosisRenal Artery Stenosis
Renal Artery Stenosis
 
Management of acute kidney injury
Management of acute kidney injuryManagement of acute kidney injury
Management of acute kidney injury
 
Acute Liver Failure
Acute Liver Failure Acute Liver Failure
Acute Liver Failure
 
Diuretic resistence
Diuretic resistenceDiuretic resistence
Diuretic resistence
 
Cardiorenal syndromes and management
Cardiorenal syndromes and managementCardiorenal syndromes and management
Cardiorenal syndromes and management
 
Membranous nephropathy
Membranous nephropathyMembranous nephropathy
Membranous nephropathy
 
Anemia in ckd
Anemia in ckd Anemia in ckd
Anemia in ckd
 
Hepatorenal syndrome
Hepatorenal syndromeHepatorenal syndrome
Hepatorenal syndrome
 
Renal artery stenosis
Renal artery stenosisRenal artery stenosis
Renal artery stenosis
 
Approach to a Patient with Acute kidney injury
Approach to a Patient with Acute kidney injury Approach to a Patient with Acute kidney injury
Approach to a Patient with Acute kidney injury
 
Hepatorenal
HepatorenalHepatorenal
Hepatorenal
 
Intra dialytic hypotension ,,, prof Alaa Sabry
Intra dialytic hypotension ,,,  prof Alaa SabryIntra dialytic hypotension ,,,  prof Alaa Sabry
Intra dialytic hypotension ,,, prof Alaa Sabry
 

Semelhante a Hepatorenal syndrome

Hepatorenal Syndrome
Hepatorenal SyndromeHepatorenal Syndrome
Hepatorenal Syndromeedwinchowyw
 
Hrs ashraf omar
Hrs ashraf omarHrs ashraf omar
Hrs ashraf omarFAARRAG
 
HEPATO-RENAL SYNDROME : DEV BUCHE
HEPATO-RENAL SYNDROME : DEV BUCHEHEPATO-RENAL SYNDROME : DEV BUCHE
HEPATO-RENAL SYNDROME : DEV BUCHEDevawrat Buche
 
Renal replacement therapy for internists
Renal replacement therapy for internistsRenal replacement therapy for internists
Renal replacement therapy for internistsMahidol University
 
Continuous renal replacement therapy in AKI
Continuous renal replacement therapy in AKIContinuous renal replacement therapy in AKI
Continuous renal replacement therapy in AKIAbduzhappar Gaipov
 
Acute Renal Failure Lecture
Acute Renal Failure LectureAcute Renal Failure Lecture
Acute Renal Failure LectureJoel Topf
 
AKI Lecture 2010
AKI Lecture 2010AKI Lecture 2010
AKI Lecture 2010Joel Topf
 
How Best To Prevent & Manage Acute Renal failure
How Best To Prevent & Manage Acute Renal failureHow Best To Prevent & Manage Acute Renal failure
How Best To Prevent & Manage Acute Renal failurechandra talur
 
02 Sperati Prevention And Management Of Acute Renal Failure
02 Sperati   Prevention And Management Of Acute Renal Failure02 Sperati   Prevention And Management Of Acute Renal Failure
02 Sperati Prevention And Management Of Acute Renal FailureDang Thanh Tuan
 
02 Sperati Prevention And Management Of Acute Renal Failure
02 Sperati   Prevention And Management Of Acute Renal Failure02 Sperati   Prevention And Management Of Acute Renal Failure
02 Sperati Prevention And Management Of Acute Renal Failureguest2379201
 
Approach to cardio renal syndrome
Approach to cardio renal syndromeApproach to cardio renal syndrome
Approach to cardio renal syndromeajayyadav753
 
09 Nouri Acute Renal Failure
09 Nouri   Acute Renal Failure09 Nouri   Acute Renal Failure
09 Nouri Acute Renal Failureguest2379201
 
09 Nouri Acute Renal Failure
09 Nouri   Acute Renal Failure09 Nouri   Acute Renal Failure
09 Nouri Acute Renal FailureDang Thanh Tuan
 
Early Vs Late Renal Replacement Therapy
Early Vs Late Renal Replacement TherapyEarly Vs Late Renal Replacement Therapy
Early Vs Late Renal Replacement TherapyKhushboo Gandhi
 
Hepatorenal Syndrome.pptx
Hepatorenal Syndrome.pptxHepatorenal Syndrome.pptx
Hepatorenal Syndrome.pptxHasnainAfzal9
 
Overview of liver transplantation
Overview of liver transplantationOverview of liver transplantation
Overview of liver transplantationhr77
 
Acute renal failure patho physiology & anaesthetic management
Acute renal failure patho physiology & anaesthetic managementAcute renal failure patho physiology & anaesthetic management
Acute renal failure patho physiology & anaesthetic managementdrriyas03
 

Semelhante a Hepatorenal syndrome (20)

Hepatorenal Syndrome
Hepatorenal SyndromeHepatorenal Syndrome
Hepatorenal Syndrome
 
Hrs ashraf omar
Hrs ashraf omarHrs ashraf omar
Hrs ashraf omar
 
HEPATO-RENAL SYNDROME : DEV BUCHE
HEPATO-RENAL SYNDROME : DEV BUCHEHEPATO-RENAL SYNDROME : DEV BUCHE
HEPATO-RENAL SYNDROME : DEV BUCHE
 
Journal Club: Residual renal function
Journal Club: Residual renal functionJournal Club: Residual renal function
Journal Club: Residual renal function
 
Renal replacement therapy for internists
Renal replacement therapy for internistsRenal replacement therapy for internists
Renal replacement therapy for internists
 
Continuous renal replacement therapy in AKI
Continuous renal replacement therapy in AKIContinuous renal replacement therapy in AKI
Continuous renal replacement therapy in AKI
 
Acute Renal Failure Lecture
Acute Renal Failure LectureAcute Renal Failure Lecture
Acute Renal Failure Lecture
 
AKI Lecture 2010
AKI Lecture 2010AKI Lecture 2010
AKI Lecture 2010
 
How Best To Prevent & Manage Acute Renal failure
How Best To Prevent & Manage Acute Renal failureHow Best To Prevent & Manage Acute Renal failure
How Best To Prevent & Manage Acute Renal failure
 
02 Sperati Prevention And Management Of Acute Renal Failure
02 Sperati   Prevention And Management Of Acute Renal Failure02 Sperati   Prevention And Management Of Acute Renal Failure
02 Sperati Prevention And Management Of Acute Renal Failure
 
02 Sperati Prevention And Management Of Acute Renal Failure
02 Sperati   Prevention And Management Of Acute Renal Failure02 Sperati   Prevention And Management Of Acute Renal Failure
02 Sperati Prevention And Management Of Acute Renal Failure
 
Approach to cardio renal syndrome
Approach to cardio renal syndromeApproach to cardio renal syndrome
Approach to cardio renal syndrome
 
09 Nouri Acute Renal Failure
09 Nouri   Acute Renal Failure09 Nouri   Acute Renal Failure
09 Nouri Acute Renal Failure
 
09 Nouri Acute Renal Failure
09 Nouri   Acute Renal Failure09 Nouri   Acute Renal Failure
09 Nouri Acute Renal Failure
 
Early Vs Late Renal Replacement Therapy
Early Vs Late Renal Replacement TherapyEarly Vs Late Renal Replacement Therapy
Early Vs Late Renal Replacement Therapy
 
Hepatorenal Syndrome.pptx
Hepatorenal Syndrome.pptxHepatorenal Syndrome.pptx
Hepatorenal Syndrome.pptx
 
Overview of liver transplantation
Overview of liver transplantationOverview of liver transplantation
Overview of liver transplantation
 
Acute renal failure patho physiology & anaesthetic management
Acute renal failure patho physiology & anaesthetic managementAcute renal failure patho physiology & anaesthetic management
Acute renal failure patho physiology & anaesthetic management
 
RRT
RRTRRT
RRT
 
International Journal of Hepatology & Gastroenterology
International Journal of Hepatology & GastroenterologyInternational Journal of Hepatology & Gastroenterology
International Journal of Hepatology & Gastroenterology
 

Último

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 

Último (20)

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 

Hepatorenal syndrome

  • 1. Hepatorenal syndrome Speaker: Dr.S.Ragavendra Preceptors: Dr. AshutoshBiswas Dr. AnoopSaraya Dr. SandeepMahajan
  • 3. Historical Perspective… Association between kidney dysfunction and liver diseases- Frerichs(1877). Observed oliguria with ascites Absence of urinary protein and low urinary sodium excretion- Hecker and Sherlock (1956) Functional nature- Koppel et al (1960). Done kidney Tx from HRS patients Recovered renal dysfunction after liver Tx- Iwasukiet al (1970) Later, Schroeder et al- renal vasoconstriction in HRS
  • 4. Hepatorenal syndrome (HRS) International ascites club defined HRS as a syndrome that occurs in patients with cirrhosis, portal hypertension and advanced liver failure, characterized by impaired renal function with marked abnormalities in the arterial circulation and activity of endogenous vasoactive systems Is a functional disorder Kidneys - histologically normal Arroyo V et al, Hepatology 1996;23:164e76 4
  • 5. International ascites club (IAC) diagnostic criteria Major Criteria: Chronic or acute liver disease with advanced hepatic failure and portal hypertension Low GFR ~ S.cr >1.5mg/dl or 24 hrcreatinine clearance <40ml/min Absence of shock, ongoing bacterial infections, and current or recent Rx with nephrotoxic drugs Absence of GI fluid losses Absence of renal fluid losses in response to diuretic therapy No sustained improvement in renal function after diuretic withdrawal and expansion of plasma volume with 1.5 liters of isotonic saline Proteinuria <500mg/day, and no USG e/o obstructive uropathy or parenchymal renal disease Arroyo et al, Hepatol, 1996 5
  • 6. International ascites club (IAC) diagnostic criteria Minor criteria Urine volume <500ml/day Urine sodium <10mmol/L Urine osmolality > Plasma osmolality Serum Na <130mmol/L Urine RBC <50/hpf 6 Arroyo et al, Hepatol, 1996
  • 7. New IAC diagnostic criteria 2007 Salerno et al, Gut 2007
  • 8. Rationale for the proposed diagnostic criteria for HRS Serum creatinine(> 1.5 mg%) to establish reduced GFR – consensus Volume expansion to exclude pre-renal causes Volume replacement: saline vs albumin Shock preceding renal failure – a pointer towards “ATN” Transient AKI due to sepsis – should resolve with antibiotics Nephrotoxic drugs – commonly used 8
  • 10. Rationale for the proposed diagnostic criteria for HRS Intrinsic renal disease and obstructive uropathy to be ruled out Urine volume, Urine Na, urine : plasma osmolality – Parameters traditionally used to differentiate functional renal failure from ATN Removed from the revised diagnostic criteria Reason: parameters not exclusive for either of the entities 10
  • 11. Causes of pseudo hepatorenal syndrome 11
  • 12. Types of HRS Type-1 HRS: Rapidly progressive reduction of renal function as defined by doubling of the initial S.cr to a level >2.5 mg/dL in < 2 wk Clinical pattern: acute renal failure Type-2 HRS: Moderate renal failure (S.cr ranging from 1.5 to 2.5 mg/dL) with a steady or slowly progressive course Clinical pattern: refractory ascites Salerno et al, Gut 2007 12
  • 13. Type 1 vs Type 2 HRS 13
  • 14. Probability of survival: Type 1 vsType 2 Alessandria et al, Hepatol 2005
  • 15. Type 3 HRS Recently defined type 85% of end-stage cirrhotics- intrinsic renal disease on Kidney Bx Allessandria C. Hepatology 2005 Cirrhotics + pre existing renal dysfunction can develop superimposed HRS Renal histology may be required to accurately diagnose cause of renal failure May require liver-kid transplant. Never studied in therapeutic trials. 15
  • 16.
  • 17. Very poor prognosis esp. if ALF acetaminophen-related.
  • 18. Pathophysiology ? similar. Lack of studies.Moore K; Eur J GastroentrolHepatol.1999 16
  • 19. S.creatinine: prognostic value MELD Score based on creatinine, bilirubin, INR Predicts mortality in patients undergoing TIPS Organ allocation based on the score Gives an idea about the requirement of RRT post LT Predicts short term and long term survival in ESLD Predicts mortality in variceal bleeding, sepsis and alcoholic hepatitis Predicts mortality in HCC resection, cardiac and abdominal surgeries Refinements - ∆MELD, MELD-Na 17
  • 21. Pathogenesis Gines and Schrier, N Engl J Med, 2009
  • 23. Endogenous vasoactive factors Arch intern med 1993
  • 24. Peripheral vasodilation hypothesis Arroyo V et al, J Hepatol 2008
  • 25. Changes in cardiac output N = 66 nonazotemic cirrhotic patients 40% developed HRS during the study follow up of 1 year Ruiz-del-Arbol et al, Hepatol 2005
  • 26. Modified peripheral vasodilation hypothesis Arroyo V et al, J Hepatol 2008
  • 27. Regional hemodynamics Guevara et al, Hepatol 1998
  • 28. Adrenal dysfunction 26 Tsai et al, Hepatol 2006
  • 29. Multiorgan failure & HRS Arroyo V et al, J Hepatol 2007
  • 30. Cirrhosis to HRS: Natural progression 28 DH RA Type 1 Type 2 Ramon Planas et al, ClinGastroenterolHepatol 2006
  • 31. Ascites to HRS: Natural progression 39% 18% Gines et al, Gastroenterol 1993
  • 33. Prevention of HRS SBP: IV albumin administration Severe acute alcoholic hepatitis: Oral pentoxyphylline Low protein ascites: Norfloxacin as 1o SBP prophylaxis Large volume paracentesis: IV albumin to prevent paracentesis induced circulatory dysfunction (PICD)
  • 34. 32 Arroyo V, et al N Engl J Med 1999;341:407
  • 35. Prevention of HRS SBP: IV albumin administration Arroyo V, et al N Engl J Med 1999;341:407 Severe acute alcoholic hepatitis: Oral pentoxyphylline Akriviadis E et alGastroenterology 2000 Low protein ascites: Norfloxacin as 1o SBP prophylaxis Large volume paracentesis: IV albumin to prevent PICD
  • 37. Management of HRS Liver transplantation is the only definitive treatment option Renal failure at time of transplant has poorer outcomes Bridge to Liver Transplantation needed
  • 38. Initial Management checklist Admission to monitored care setting with Vitals montiroing Central line placement for CVP helpful, not mandatory Routine blood and urine investigations Abdominal USG Diagnostic paracentesis Discontinue diuretics Plasma expansion with albumin Evaluation for Orthoptic liver transplantation 36
  • 40. Randomized trials on type 1 or type 2 HRS Treatments compared: Terlipressin (+ albumin) vs no intervention, albumin or NA + albumin Octreotide + albumin vs albumin Terlipressin + albumin given as continuous or bolus infusion
  • 41. N=376
  • 42.
  • 43. Other drugs Noradrenaline + albumin Results similar to terlipressin Cheaper 0.1 mcg/kg/min infusion (max 0.7) Alessandria et al, J hepatology 2007 Midodrine and octreotide Oral α adrenergic agonist + long acting s/c somatostatin analogue Direct vasoconstrictor + inhibits endogenous vasodilators 5 mg tds + 100mcg tds s/c Given along with albumin OPD use. Not studied for Type 2 Angelip;Hepatology.1999 41
  • 44. Other drugs Misoprostol Synthetic-PGE1 Patients have low urinary levels of vasodilatoryprostaglandins Evidence poor Gines;J Hepatol.1993 Renal vasoconstrictor antagonists Saralasin - Angitensin II receptor antagonist -worsening hypotension, abandoned Endothelin antagonists- non specific tezosentan Endothelin A receptor antagonist(BQ123) SoperCP;Lancet.1996 42
  • 45. TIPS(Transjugular intrahepatic portosystemic shunting) Few studies available (case series) Decreases portal pressure and consequently reduces renal sympathetic activity Improvement in renal function and survival noted compared to no treatment (but may take several weeks) Careful patient selection needed to optimize safety and efficacy Guevara et al,hepatology 1998;28:416-22
  • 46. Renal replacement therapy Paucity of data Optimal method not known Impact on prognosis not known No studies in comparison with medical Rx To be used in patients with an urgent indication of HD and for patients with no response to vasoconstrictor therapy Available studies: Keller et al, Ren Fail, 1995 – retrospective analysis, n = 26, better survival Witzke et al, J GastroenterolHepatol, 2004– prospective observational study, n = 30, RRT not predictive of improved survival
  • 47. Artificial hepatic support Detoxification treatment ~ form of artificial extracorporeal liver support. Considered to be a bridge to liver transplantation Liver dialysis devices – Molecular Adsorbents Recirculation System (MARS) Single Pass Albumin Dialysis (SPAD) Prometheus system 45
  • 48. Molecular adsorbent recirculating system (MARS) Most frequently used albumin dialysis system Dialysate recirculated and perfused online through charcoal and anion exchanger columns Improve systemic hemodynamics and renal perfusion. Better than HD for sodium,creatinine, bilirubin and PT 46
  • 50. Liver transplantation Treats the causative organ dysfunction 1 yr survival rate: not on HD – 78.8% , on HD – 73.7% survival with s.cr at similar MELD scores (at 15-17 and 24-40) Similar 2 yr and 5 yr survival among non HRS and HRS LT Beneficial outcomes with renal protective immunosuppression Schmitt et al, TransplInt 2009 Sharma et al, Liver Transpl 2009 Jeyarajah et al, Transplantation 1997 Lopez Lago et al, Transplant Proc 2007
  • 51.
  • 52. Liver-Kidney transplantation Usual norms: Preoperative HRS/ ATN usually don’t need KTP Many times 1o renal disease can be managed medically Factors contributing to renal failure: Improved medical management leading to better survival Long waiting time for transplant Post-LT calcineurin inhibitors
  • 53. Liver-Kidney transplantation Issues to be addressed pre-LT: Will the ARF reverse? Is there a way to predict who will recover? What is the acceptable degree of recovery? Patients of HRS who required prolonged HD (> 4 - 8 wks) may require KLT and better outcomes have been reported Ruiz et al, Arch Surg 2006
  • 54. Liver-Kidney transplantation Tanriover et al, Transplantation 2008
  • 56. Conclusion Prevention is utmost important Low threshold to diagnose and investigate renal failure in presence of liver dysfunction. Early diagnosis and timely therapeutics can increase life expectancy for HRS patients while these are waiting for liver transplantation as a definitive treatment. 54
  • 57. THANK YOU 55
  • 58. Ques to be answered Definitions.. Fluid therapy Cvp based? Do pts develop structural changes? Therapy lacunae? 56
  • 59. Summary Decompensated cirrhosis with renal failure Rule out pre-renal causes: stop diuretics, volume expansion (NS or albumin), CVP measurement Rule out intrinsic and obstructive renal disease: urine analysis, USG KUB, check out nephrotoxic drugs Surveillance for sepsis, low threshold for antibiotics usage Medical mx to increase urine output and improvizing KFT, optimization of diuretics and management of refractory ascites, dialyze as per clinical indication TIPS/List for LT
  • 60. Triple therapy vs Terlipressin HRS (n=37) Type II (n=14) Type I (n=23) Terlipressin (n=12) Terlipressin (n=4) Triple (n=11) Triple (n=10)
  • 62. Triple therapy in Type I HRS
  • 64. Triple therapy in Type II HRS
  • 65. HRS-I: terlipressin vs triple therapy
  • 66. HRS-II: terlipressin vs triple therapy

Notas do Editor

  1. The first reports of renal failure occurring in individuals with chronic liver diseases were from the late 19th century by Frerichs and Flint.[8] However, the hepatorenal syndrome was first defined as acute renal failure that occurred in the setting of biliary surgery.[1][41] The syndrome was soon re-associated with advanced liver disease,[22] and, in the 1950s, was clinically defined by Sherlock, Hecker, Papper and Vessin as being associated with systemic hemodynamic abnormalities and high mortality.[8][42] Hecker and Sherlock specifically identified that individuals with HRS had low urinary output, very low sodium in the urine, and no protein in the urine.[1] Murray Epstein was the first to characterize splanchnic vasodilation and renal vasoconstriction as the key alterations in hemodynamics in patients with the syndrome.[43] The functional nature of the renal impairment in HRS was crystallized by studies demonstrating that kidneys transplanted from patients with hepatorenal syndrome returned to function in the new host,[44] leading to the hypothesis that hepatorenal syndrome was a systemic condition and not a renal disease. The first systematic attempt to define hepatorenal syndrome was made in 1994 by the International Ascites Club, a group of liver specialists. The more recent history of HRS has involved elucidation of the various vasoactive mediators that cause the splanchnic and renal blood flow abnormalities of the condition.[8]
  2. The first step in the diagnosis of HRS is the demonstration of a reduced GFR, and this is not easy in advanced cirrhosis. The muscle mass, and therefore, the release of creatinine, is considerably reduced in these patients and they may present normal serum creatinine concentration in the setting of a very low GFR. Similarly, urea is synthesized by the liver and may be reduced as a consequence of hepatic insufficiency. Therefore, false negative diagnosis of HRS is relatively common. There is consensus to establish the diagnosis of HRS when serum creatinine has risen above 1.5 mg/dl or creatinine clearance has decreased to less than 40 ml/min.The first step in the diagnosis of HRS is the demonstration of a reduced GFR, and this is not easy in advanced cirrhosis. The muscle mass, and therefore, the release of creatinine, is reduced in these patients and they may present normal or only moderately increased serum creatinine concentration in the setting of a very low GFR. Similarly, urea is synthesized by the liver and may be reduced as a consequence of hepatic insufficiency. Therefore, false-negative diagnosis of HRS is relatively common. There is consensus to establish the diagnosis of HRS when serum creatinine has risen above 1.5 mg/dL. A creatinine clearance of less than 40 mL/min, which was also a criteria for the diagnosis of renal failure in cirrhosis has been excluded because errors in the urine collection may lead to high rate of false-positive diagnosis. A rising serum creatinine in a patient with cirrhosis or ALF is sufficient cause to investigate for possible HRS. In patients with advanced cirrhosis, the normal serum creatinine level is typically 0.6 to 0.8 mg/dL because of muscle wasting, and a serum creatinine above 1.4 mg/dL reflects a substantially decreased GFR.The first step in the diagnosis of HRS is the demonstration of a reduced GFR, and this is not easy in advanced cirrhosis. The muscle mass, and therefore, the release of creatinine, is considerably reduced in these patients and they may present normal serum creatinine concentration in the setting of a very low GFR. Similarly, urea is synthesized by the liver andmay be reduced as a consequence of hepatic insufficiency. Therefore, false negative diagnosis of HRS is relatively common. There is consensus to establish the diagnosis of HRS when serum creatinine has risen above 1.5 mg/dl or creatinine clearance has decreased to less than 40 ml/min.Because of the lack of specific tests, diagnosis of HRS is based on the exclusion of other disorders that can cause renal failure in cirrhosis. Acute renal failure of pre-renal origin due to renal (diuretics) or extrarenal fluid losses should be investigated. If renal failure is secondary to volume depletion, renal function improves rapidly after volume expansion, whereas noimprovement occurs in HRS. Even if there is no history of fluid losses, renal function should be assessed after diuretic withdrawal and volume expansion to rule out any subtle reduction in plasma volume as the cause of renal failure.The diagnostic criteria of HRS proposed by the International Ascites Club in San Francisco in 2005 consider that volume replacement should be performed with I.V. albumin (1 g/kg body weight up to a maximum of 100 g), rather than with saline. This proposal is based on a randomized study showing that albumin is more effective as plasma expander than a saline solution of hydroxyethyl starch in patients with SBP.Ref – RCT – Abstract:The administration of albumin improves circulatory function, prevents hepatorenal syndrome, and reduces hospital mortality in patients with cirrhosis and spontaneous bacterial peritonitis. This randomized unblinded pilot study compared the effect of albumin (10 patients) and the synthetic plasma expander hydroxyethyl starch 200/0.5 (10 patients) on the systemic hemodynamics of patients with spontaneous bacterial peritonitis. Baseline measurements were performed within 12 hours after diagnosis of infection. Patients thenreceived 2 doses of the volume expander (1.5 g/kg body weight after baseline measurements and 1 g/kg body weight on day 3). Measurements were repeated after infection resolution. Treatment with albumin was associated with a significant increase in arterial pressure and a suppression of plasma renin activity, indicating an improvement in circulatory function. This occurred in the setting of a significant expansion of central blood volume (increase in cardiopulmonary pressures and atrial natriuretic factor) and an increase in systolic volume and systemic vascular resistance. In contrast, no significant changes were observed in these parameters in patients treated with hydroxyethyl starch. Von Willebrand–related antigen plasma levels significantly decreased in patients treated with albumin but not in those treated with hydroxyethyl starch. Serum nitrates and nitrites increased in patients treated with hydroxyethyl starch but not in those treated with albumin. These data suggest an effect of albumin on endothelial function. In conclusion, albumin but not hydroxyethyl starch improves systemic hemodynamics in patients with spontaneous bacterial peritonitis. This effect is due not only to volume expansion but also to an action on the peripheral arterial circulation. (HEPATOLOGY 2005;42:627-634.)The oncotic capacity of 1 g albumin is identical to that of 1 g HES 200/0.5. However, the pharmacokinetics and pharmacodynamics of both substances as well as the characteristics of the solutions are markedly different. In healthy subjects, the half-life of albumin is of 19 days, although it decreases to 9 days in patients with sepsis and perhaps even more in patients with SBP accumulating ascites. In contrast, in healthy subjects, the half-life of HESs ranges from 6 hours to 3 days. Albumin presents numerous biological effects in addition to its oncotic action, and this is probably not the case with HESs. Finally, albumin solutions are prepared at high concentrations (20%) in a saline solution containing 130-160 mEq/L sodium in the form of caprylate and acetyltryptophanate salts. Therefore, high doses of albumin can be given within a short period without inducing a significant water and sodium overload. In contrast, HES 200/0.5 is prepared at a 6% concentration in a sodium chloride solution. This limits the administration of high doses of this compound within a short period. For an identical amount of the active compound, in the current study the amount of water and sodium infused was 3.3 times higher and the amount of oncotic equivalents per unit of time 3 times lower in patients treated with HES 200/0.5.On the other hand, cirrhotic patients with infections may develop transient renal failure, which resolves after resolution of the infection. This occurs in approximately one third of patients.Therefore, HRS in cirrhotic patients with bacterial infections should be diagnosed in patients without septic shock and only if renal failure does not improve following antibiotic administration. Complete resolution of the infection, which was required for the diagnosis of HRS in the initial proposal by the International Ascites Club in 1996, is no longer accepted because it may delay the initiation of treatment with vasoconstrictors and albumin.Cirrhotic patients are predisposed to develop renal failure in the setting of treatments with aminoglycosides, nonsteroidal anti-inflammatory drugs, and vasodilators (renin-angiotensin system inhibitors, prazosin,nitrates). Therefore, treatment with these drugs in the days preceding the diagnosis of renal failure should be ruled out.
  3. This is just a mathematical/statistical assumption made – to demostrate stage migration.Such changes should be taken into consideration when comparing treatment results of new studies with those obtained in the previous years, because changes in definitions may lead to a sort of stage migration, a phenomenon that is well known to bio-statisticians, and is characterized by an improvement in outcome in both stages involved. Indeed, if patients with infections unresponsive to a 2-day infusion of albumin have a mortality rate intermediate between classical HRS and pre-renal azotemia (with the values suggested in the figure), the migration of these patients towards the group of patients with HRS would decrease mortality in HRS from 80% to 65%, and that of pre-renal azotemia from 27.5% to 20%.
  4. Now coming to the minor criteria:Differentiation of HRS from other types of renal failure. For many years this was based on the traditional parameters used to differentiate functional renal failure from acute tubular necrosis (urine volume, urine sodium concentration, and urine-to-plasma osmolality ratio). However, acute tubular necrosis in patients with cirrhosis and ascites usually courses with oliguria, low urine sodium concentration, and urine osmolality greater than plasma osmolality.On the contrary, relatively high urinary sodium concentration has been observed in patients with HRS and high serum bilirubin. Based on these data, these parameters have been removed from the diagnostic criteria of HRS.
  5. Many disease states in which there are clinical indications of renal and hepatic disease but there is no relationship between the two, e.g. a systemic disease in which the agent causes both hepatic and renal damage.
  6. Original –Hepatorenal syndrome may be classified on a clinical basis into two different clinical types: (1) type I hepatorenal syndrome, characterized by rapidly progressive reduction of renal function as defined by a doubling of the initial serum creatinine to a level greater than 2.5 mg/dL or a 50% reduction of the initial 24-hour creatinine clearance to a level lower than 20 mL/min in less than 2 weeks; and (2) type II hepatorenal syndrome, in which the renal failure does not have a rapidly progressive course.In type 1 HRS the serum creatinine level doubles to greater than 2.5 mg/dL within 2 weeks. The key features of type 1 HRS are its rapid progression and high mortality, with a median survival of only 1 to 2 weeks. Common precipitating events in type 1 HRS include bacterial infections, particularly spontaneous bacterial peritonitis; varicealhemorrhage; major surgery; and acute alcoholic hepatitis. Sometimes acute hepatic injury, superimposed on cirrhosis, may lead to liver failure and HRS. The hepatic injury can occur from acute viral hepatitis; drug-induced liver injury (acetaminophen; idiopathic drug-induced hepatitis); hepatic ischemia; flare of chronic hepatitis B virus infection caused by an emergent resistant viral strain or withdrawal of antiviral therapy; or superimposed acute delta virus hepatitis. Early identification of a precipitating event is clinically important because it is frequently preventable or treatable with specific medical therapy.In type 2 HRS, the serum creatinine increases slowly and gradually during several weeks or months with a reciprocal gradual reduction in glomerular infiltration rate (GFR). This generally occurs without a precipitating factor. The median survival of type 2 HRS is about 6 months, significantly longer than for type 1. Nonetheless, type 2 HRS still has an extremely poor prognosis. Unless liver transplantation is performed, or a dramatic response to therapy of the underlying liver disease occurs (such as HBV related cirrhosis responding to antiviral therapy), many patients with type 2 HRS eventually progress to type 1 HRS because of a precipitating factor.The clinician should distinguish between type 1 and type 2 HRS. The former is associated with a rapidly fatal prognosis. Type 1 HRS must be urgently managed, with elimination of precipitating factors and evaluation for liver transplantation. In contrast, type 2 HRS permits less frantic evaluation and therapy. Both types are part of a spectrum of renal dysfunction in the setting of severe liver disease. Patients may progress from type 2 to type 1 HRS without an obvious precipitating factor other than worsening liver failure. The mechanisms of this progression are unknown.Clinical data suggest that type-1 and type-2 HRS are different syndromes and not different expressions of a common underlying disorder. Renal failure in type-1 HRS is severe and progressive whereas in type-2 it is moderate and steady. As expected, circulatory function is also stable in type-2 HRS whereas a rapidly progressive impairment in circulatory function occurs in type-1 HRS. Type-1 HRS is frequently associated to a precipitant event, mainly SBP. In contrast, type-2 HRS develops spontaneously in most cases. Finally, the main clinical consequence of type 1 HRS is severe hepatorenal failure and death whereas it is refractory ascites in type-2 HRS. Type-2 HRS probably represents the genuine functional renal failure of cirrhosis. It would be the extreme expression of the impairment in circulatory function that spontaneously develops during the course of the disease. In contrast, type-1 HRS mimics the acute renal failure associated with other conditions such as sepsis or severe pancreatitis, with features of multiorgan failure including acute impairment in cardiovascular, renal, hepatic and cerebral function and relative adrenal insufficiency
  7. Now let us see the factors associated to hepatorenal syndrome. This will lead us to understand the pathophysiology of HRS, the dysfunction leading to HRS and thus the larger picture that HRS is part of a multiorgan failure
  8. If we take a look at this pic, it shows the circulatory dysfunction in cirrhosis, leading in progression to the development of HRS.I’ll discuss these things in detail few slides down the way.
  9. Studies in both laboratory animals and patients with cirrhosis suggest that bacterial translocation — that is, the passage of bacteria from the intestinal lumen to the mesenteric lymph nodes — may play an important role in impairing circulatory function in advanced cirrhosis. Bacterial translocation may elicit an inflammatory response, with increased production of proinflammatory cytokines (mainly tumor necrosis factor α and interleukin-6) and vasodilator factors (e.g., nit r ic oxide) in the splanchnic area; this response in turn may lead to vasodilatation of the splanchnic arterial vessels. Patients with cirrhosis and increased levels of lipopolysaccharide-binding protein or circulating levels of bacterial DNA (which may be considered surrogate markers of bacterial translocation) have increased serum levels of cytokines, reduced systemic vascular resistance, and increased cardiac output, as compared with those who have cirrhosis but do not have these markers of bacterial translocation. Moreover, the administration of norfloxacin, an antibiotic that results in selective intestinal decontamination and reduces bacterial translocation, ameliorates but does not normalize the hemodynamic abnormalities in patients with cirrhosis.
  10. The development of portal hypertension in cirrhosis is associated to arterial vasodilation in the splanchnic circulation due to the local release of nitric oxide and other vasodilatory substances. Early in the course of the disease, the decrease in systemic vascular resistance is compensated by the development of a hyperdynamic circulation (increased heart rate and cardiac output). However, as the disease progresses and arterial vasodilation increases, the hyperdynamic circulation is insufficient to correct the effective arterial hypovolemia. Arterial hypotension develops, leading to activation of high pressure baroreceptors, reflex stimulation of the renin–angiotensin and sympathetic nervous systems, increase in arterial pressure to normal or near normal levels, sodium and water retention and the formation of ascites. The activation of antidiuretic hormone causes water retention and dilutionalhyponatremia, which occurs at later phases of decompensated cirrhosis. At this stage of the disease, the renin–angiotensin and sympathetic nervous systems are markedly stimulated and arterial pressure is critically dependent on the vascular effect of the sympathetic nervous activity, angiotensin-II and antidiuretic hormone. Since the splanchnic circulation is resistant to the effect of angiotensin-II, noradrenaline and vasopressin due to the local release of nitric oxide and other vasodilators, the maintenance of arterial pressure is due to vasoconstriction in extra-splanchnic vascular territories such as the kidneys and brain. HRS develops at the latest phase of the disease when there is extreme deterioration in effective arterial blood volume and severe arterial hypotension. The homeostatic stimulation of the renin–angiotensin system, the sympathetic nervous system and antidiuretic hormone is very intense leading to extreme renal vasoconstriction, a marked decrease in renal perfusion and GFR, azotemia and increased serum creatinine concentration.
  11. Resistive index – measure of resistance to arterial flow Peak systolic velocity – low diastolic velocity / peak systolic velocityVasoconstriction in the cutaneous, muscular and cerebral circulations in HRS Brachial and femoral blood flows have been found markedly reduced by echo-Doppler in patients with HRS in comparison to patients without HRS. These results suggest that HRS is associated to vasoconstriction in the cutaneous and muscular arterial vascular beds, although this must be confirmed in studies using other techniques. The resistive index in the meancerebral artery is also increased in these patients indicating cerebral vasoconstriction. The degree of vasoconstriction in cutaneous, muscular and cerebral territories found in these studies correlated directly with the degree of renal vasoconstriction and with the plasma levels of renin.The clinical consequence of the decreased muscular blood flow in advanced cirrhosis has not been explored. Patients with type-2 HRS and refractory ascites frequently present muscle cramps. Although the pathogenesis of this abnormality is unknown, muscle cramps disappear or improve following plasma volume expansion with albumin suggesting that they could be related to this reduction of muscular blood flow. Hepatic encephalopathy is common in patients with type-1 HRS. There are many possible mechanisms of this complication, including the precipitating event of HRS, which can also cause hepatic encephalopathy, and the deterioration of hepatic function seen in these patients. Cerebral vasoconstriction, however, could be an additional factor.
  12. type-1 HRS mimics the acute renal failure associated with other conditions such as sepsis or severe pancreatitis, with features of multiorgan failure including acute impairment in cardiovascular, renal, hepatic and cerebral function and relative adrenal insufficiencyClinical data suggest that type-1 and type-2 HRS are different syndromes and not different expressions of a common underlying disorder. Renal failure in type-1 HRS is severe and progressive whereas in type-2 it is moderate and steady. As expected, circulatory function is also stable in type-2 HRS, whereas a rapidly progressive impairment in circulatory function occurs in type-1 HRS. Type-1 HRS is frequently associated with a precipitant event, mainly SBP. In contrast, type-2 HRS develops spontaneously in most cases. Finally,the main clinical consequence of type-1 HRS is severe hepatorenal failure and death, whereas in type-2 HRS it is refractory ascites. Type-2 HRS probably represents the genuine functional renal failure of cirrhosis. It would be the extreme expression of the impairment in circulatory function that spontaneously develops up to the final stages of the disease. In contrast, type-1 HRS appears to share similarities with acute renal failure associated with other conditions such as septic shock or severe pancreatitis. In fact, as indicated previously, features of multiorgan failure including acute impairment in cardiovascular, renal, hepatic, and cerebral function and relative adrenal insufficiency are common in patients with type-1 HRS but rare in patients with type-2 HRS.
  13. it is surprising that there have been so few studies assessing the natural history of cirrhotic patients with ascites. Therefore, at present, it is not well-established how many of these patients will develop other ascitic complications, what their survival rate is, and whether there are clinical and laboratory data of value in predicting prognosis.Natural history of ascites (Hep C and alcohol) – Ramon Planos et al, Spain, CGH 06: Included are HCV and alcohol related cirrhosis (~ 50% each) with either grade 2 or 3 ascites. ~ 75% of alcoholics remained abstinent. N = 263, median f/u = 41 months, mean age ~ 61 yr. In ~ 82%, ascites is the first decompensation. During this f/u, ~ 26% developed SBP. The 5-year probability of DH, RA, and HRS development was 37.1%, 16.7%, and 11.4%, respectively. 1 yr mortality after grade 2 or 3 ascites is 15% and 5 yr mortality is 45%. If patients don’t develop DH/RA/HRS – 5 yr mortality is only 20%. But in case of development of DH, RA, HRS during follow up, the 5 yr mortality is 75%, 85% and 90%.The 1-year probability of survival after developing DH, RA, and type 2 HRS was ~ 25%, 30%, and 38%, respectively. The survival of cirrhotic patients with ascites is relatively high, and it is mainly influenced by age and Child-Pugh score at the time of ascites decompensation, as well as by DH development. Moreover, although the probability of RA and HRS development is relatively low, they are associated with a low survival rate.
  14. Background: The aim of the study was to investigate the incidence, predictive factors, and prognosis of the hepatorenal syndrome in cirrhosis with ascites. Methods: The study is a follow-up investigation in 234 nonazotemic patients with cirrhosis and ascites. Thirty-nine variables obtained at inclusion were analyzed as possible predictors of hepatorenal syndrome occurrence (Kaplan-Meier method, Mantel-Cox test, and step-wise Cox regression procedure). Median follow up is 17 months.Results: The probability of hepatorenal syndrome occurrence was 18% at 1 year and 39% at 5 years. Sixteen variables had predictive value for hepatorenal syndrome occurrence in the univariate analysis: history of ascites, hepatomegaly, nutritional status, blood urea nitrogen level, serum creatinine concentration, serum sodium and potassium concentration, serum and urine osmolality, urinary sodium excretion, free water clearance after a water load, glomerular filtration rate, arterial pressure, plasma renin activity, plasma norepinephrine concentration, and esophageal varices. Neither etiology (alcoholic vs. nonalcoholic) nor the Child-Pugh score had predictive value. A multivariate analysis disclosed only three independent predictors of hepatorenal syndrome occurrence: low serum sodium concentration, high plasma renin activity, and absence of hepatomegaly. Conclusions: The hepatorenal syndrome is a relatively frequent complication in cirrhotic patients with ascites that is associated with an extremely short survival. Liver size, plasma renin activity, and serum sodium concentration are predictors of hepatorenal syndrome occurrence in these patients.
  15. Ten randomized trials on terlipressin alone or with albumin, octreotide plus albumin, and noradrenalin plus albumin were included. The total number of patients was 376. Overall, vasoconstrictor drugs used alone or with albumin reduced mortality compared with no intervention oralbumin (relative risk [RR], 0.82; 95% confidence interval [CI], 0.70-0.96).