SlideShare uma empresa Scribd logo
1 de 38
FUELS AND
COMBUSTION
 Fuels and Combustion
 Types of Fuels
 Complete/Incomplete Combustion
 Oxidation of Carbon
 Oxidation of Hydrogen
 Oxidation of Sulfur
 Air composition
 Combustion with Air
 Theoretical Air
 Hydrocarbon fuels
 Combustion of Hydrocarbon Fuel
FUELS
and
COMBUSTION
By. Engr. Yuri G. Melliza
Fuels and Combustion
Fuel: Substances composed of chemical
elements which in rapid chemical union
with oxygen produced combustion.
Combustion: Is that rapid chemical union
with oxygen of an element, whose exo-
thermic heat of reaction is sufficiently
great and whose rate of reaction is suf-
ficiently fast whereby useful quantities of
heat are liberated at elevated tempera-
ture.
TYPES OF FUELS
Solid Fuels
x: Wood, coal, charcoal
iquid Fuels
x: gasoline, diesel, kerosene
Gaseous Fuels
x: LPG, Natural Gas, Methane
Nuclear Fuels
x: Uranium
Combustible Elements
1.Carbon (C) 3. Sulfur (S)
2.Hydrogen (H2)
Complete Combustion: Occurs when all the
combustible elements has been fully
oxidized.
Ex:
C + O2 → CO2
Incomplete Combustion: Occurs when some
of the combustible elements has not
been fully oxidized.
Ex:
C + O2 → CO
Common Combustion Gases
GAS MOLECULAR
Weight (M)
C 12
H 1
H2 2
O 16
O2 32
N 14
N2 28
S 32
HE COMBUSTION CHEMISTRY
Oxidation of Carbon
1183
443612
32)1(121(16)1(12)
BasisMass
111
BasisMole
COOC 2
→+
→+
+→+
→+
→+ 2
Oxidation of Hydrogen
981
18162
2)1(16(32)1(2)
BasisMass
11
BasisMole
OHOH
2
1
2
1
2
→+
→+
+→+
→+
→+ 22 2
1
Oxidation of Sulfur
211
643232
32)1(32(32)1(32)
BasisMass
111
BasisMole
OSOS
→+
→+
+→+
→+
→+
1
22
Composition of AIR
a. Percentages by Volume or
(by mole)
O2 = 21%
N2 = 79%
b. Percentages by Mass
O2 = 23%
N2 = 77%
763
21
79
.==
2
2
OofMole
NofMoles
Combustion with Air
A. Combustion of Carbon with air
C + O2 + 3.76N2 → CO2 + 3.76N2
Mole Basis:
1 + 1 + 3.76 → 1+ 3.76
Mass Basis:
1(12) + 1(32) + 3.76(28) → 1(44) +3.76(28)
12 + 32 + 3.76(28) → 44 + 3.76(28)
3 + 8 + 3.76(7) → 11+ 3.76(7)
kg of air per kg of Carbon:
Cofkg
airofkg
11.44=
3
3.76(7)+8
=
Cofkg
airofkg
B. Combustion of Hydrogen with air
H2 + ½ O2 + ½ (3.76)N2 → H2O +
½(3.76)N2
Mole Basis:
1 + ½ + ½(3.76) → 1 + ½(3.76)
Mass Basis:
1(2) + ½ (32) + ½(3.76)(28) → 1(18) +
½(3.76)(28)
2 + 16 + 3.76(14) → 18 + 3.76(14)
1 + 8 + 3.76(7) → 9 + 3.76(7)
kg of air per kg of Hydrogen:
22 Hofkg
airofkg
34.32=
1
3.76(7)+8
=
Hofkg
airofkg
C. Combustion of Sulfur with air
S + O2 + 3.76N2 → SO2 + 3.76N2
Mole Basis:
1 + 1 + 3.76 → 1 + 3.76N2
Mass Basis:
1(32) + 1(32) + 3.76(28) → 1(64) +
3.76(28)
32 + 32 + 105.28 → 64 + 105.28
kg of air per kg of Sulfur:
Sofkg
airofkg
4.29=
32
105.2832
=
Sofkg
airofkg +
Theoretical Air
It is the minimum amount of air required to oxidize
the reactants or the combustible elements found
in the fuel. With theoretical air no O2 is found in
products.
Excess Air
It is an amount of air in excess of the theoretical
requirements in order to influence complete
combustion. With excess air O2 is present in the
products.
HYDROCARBON FUELS
Fuels containing the element s Carbon
and Hydrogen.
Chemical Formula: CnHm
Family Formula Structure Saturated
Paraffin CnH2n+2 Chain Yes
Olefin CnH2n Chain No
Diolefin CnH2n-2 Chain No
Naphthene CnH2n Ring Yes
Aromatic
Benzene CnH2n-6 Ring No
Naphthalene CnH2n-12 Ring No
Alcohols Note: Alcohols are not pure
hydrocarbon, because one of its
hydrogen atom is replace by an
OH radical. Sometimes it is used
as fuel in an ICE.
Methanol CH3OH
Ethanol C2H5OH
Saturated Hydrocarbon: All the carbon
atoms are joined by a single bond.
Unsaturated Hydrocarbon: It has two or
more adjacent Carbon atoms joined by a
double or triple bond.
Isomers: Two hydrocarbons with the same
number of carbon and hydrogen atoms but
at different structures.
H H H H
   
H C C C CH
   
H H H H
Chain structure Saturated
H H
| |
HC C=C C H
| | | |
H H H H
Chain Structure Unsaturated
Ring structure Saturated
H H
H C H
C C
H C H
H H
Theoretical Air: It is the minimum or theoretical amount
of air required to oxidized the reactants. With theoretical
air no O2 is found in the products.
Excess Air: It is an amount of air in excess of the theo-
retical air required to influence complete combustion.
With excess air O2 is found in the products.
Combustion of Hydrocarbon Fuel(CnHm)
A. Combustion with 100% theoretical air
CnHm + aO2 + a(3.76)N2 → bCO2 + cH2O + a(3.76)N2
fuel
air
t kg
kg
m12n
)a(3.76)(28a(32)
F
A
+
+
=





fuel
air
a kg
kg
m12n
)a(3.76)(28a(32)
e)(1
F
A




+
+
+=





B. Combustion with excess air e
CnHm +(1+e) aO2 + (1+e)a(3.76)N2 → bCO2 + cH2O + dO2 +
(1+e)a(3.76)N2
Actual Air – Fuel Ratio
fuel
air
ta kg
kg
F
A
e)(1
F
A






+=





Where: e – excess air in decimal
Note: Sometimes excess air is expressible in terms of
theoretical air.
Example: 25% excess air = 125% theoretical air
Orsat Analysis: Orsat analysis gives the volumetric
or molal analysis of the PRODUCTS on a DRY
BASIS, (no amount of H2O given).
Proximate Analysis: Proximate analysis gives the
amount of Fixed Carbon, Volatiles, Ash and Moisture,
in percent by mass. Volatiles are those compounds
that evaporates at low temperature when the solid
fuel is heated.00
ULTIMATE ANALYSIS: Ultimate analysis gives the
amount of C, H, O, N, S in percentages by mass, and
sometimes the amount of moisture and ash are given.
OLID FUELS
omponents of Solid Fuels:
1. Carbon (C)
2. Hydrogen (H2)
3. Oxygen (O2)
4. Nitrogen (N2)
5. Sulfur (S)
6. Moisture (M)
7. Ash (A)
A. Combustion with 100% theoretical air
aC + bH2 + cO2 + dN2 + eS + fH2O + gO2 +
g(3.76)N2 → hCO2 + iH2O + jSO2 + kN2
B.Combustion with excess air x:
aC + bH2 + cO2 + dN2 + eS + fH2O + (1+x)gO2
+(1+x)g(3.76)N2 → hCO2 + iH2O + jSO2 +
lO2 + mN2
WHERE: a, b, c, d, e, f, g, h, I, j, k, x are the number of
moles of the elements.
x – excess air in decimal
fuelkg
airkg
18f32e28d32c2b12a
3.76(28)g32g
F
A
t +++++
+
=





Theoretical air-fuel ratio:
Actual air-fuel ratio:
[ ]
fuelkg
airkg
18f32e28d32c2b12a
3.76(28)g32gx)(1
aF
A
+++++
++
=





S FLOW RATE OF FLUE GAS (Produc
Air+Fuel → Products
Without considering Ash loss






+= 1
F
A
mm Fg
Considering Ash loss






−+= lossAsh1
F
A
mm Fg
Heating
Value
Heating Value - is the energy released
by fuel when it is completely burned and
the products of combustion are cooled to
the original fuel temperature.
Higher Heating Value (HHV) - is the
heating value obtained when the water in
the products is liquid.
Lower Heating Value (LHV) - is the
heating value obtained when the water in
the products is vapor.
or Solid Fuels with the presence of Fuel’s
ULTIMATE ANALYSIS
kg
KJ
S9304
8
O
H212,144C820,33HHV 2
2 +





−+=
where: C, H2
, O2
, and S are in decimals from the
ultimate analysis
HHV = 31 405C + 141 647H KJ/kg
HHV = 43 385 + 93(Be - 10) KJ/kg
For Liquid Fuels
where: Be - degrees Baume
For Coal and Oils with the absence of Ultimate
Analysis
fuelofkg
airofKg
3041
HHV
F
A
t
=





For Gasoline
kg
KJ)API(93639,38LHV
kg
KJ)API(93160,41HHV
°+=
°+=
kg
KJ)API(93035,39LHV
kg
KJ)API(93943,41HHV
°+=
°+=
For Kerosene
For Fuel Oils
InstitutePetroleumAmericanAPI
kg
KJ)API(6.139105,38LHV
kg
KJ)API(6.139130,41HHV
−
°+=
°+=
For Fuel Oils (From Bureau of Standard
Formula)
).t(.St@S 561500070
API131.5
141.5
S
−−=
°+
=
HHV = 51,716 – 8,793.8 (S)2
KJ/kg
LHV = HHV - QL
KJ/kg
QL
= 2442.7(9H2
) KJ/kg
H2
= 0.26 - 0.15(S) kg of H2
/ kg of
fuel
Where
S - specific gravity of fuel oil at 15.56 °C
H2
- hydrogen content of fuel oil
QL
- heat required to evaporate and superheat the water vapor
formed bythe combustion of hydrogen in the fuel
S @ t - specific gravity of fuel oil at any temperature t
Oxygen Bomb Calorimeter - instrument used in measuring heating
value of solid and liquid fuels.
Gas Calorimeter - instrument used for measuring heating value
of gaseous fuels.
Properties of Fuels and Lubricants
a)Viscosity - a measure of the resistance to flow that a
lubricant offers when it is subjected to shear stress.
b) Absolute Viscosity - viscosity which is determined by
direct measurement of shear resistance.
c) Kinematics Viscosity - the ratio of the absolute viscosity
to the density
d) Viscosity Index - the rate at which viscosity changes with
temperature.
e) Flash Point - the temperature at which the vapor above
a volatile liquid forms a combustible mixture with air.
f) Fire Point - The temperature at which oil gives off vapor
that burns continuously when ignited.
g) Pour Point - the temperature at which oil will no longer
pour freely.
h) Dropping Point - the temperature at which grease
melts.
i) Condradson Number(carbon residue) - the percentage
amount by mass of the carbonaceous residue
remaining after destructive distillation.
j) Octane Number - a number that provides a measure of
the ability of a fuel to resist knocking when it is burnt
in a gasoline engine. It is the percentage by volume of
iso-octane in a blend with normal heptane that matches
the knocking behavior of the fuel.
k) Cetane Number - a number that provides a measure
of the ignition characteristics of a diesel fuel when it
is burnt in a standard diesel engine. It is the
percentage of cetane in the standard fuel.
Prepared By: ENGR YURI G. MELLIZA, RME

Mais conteúdo relacionado

Mais procurados

Fuels and Combustion Lectures (GIKI)
Fuels and Combustion Lectures (GIKI)Fuels and Combustion Lectures (GIKI)
Fuels and Combustion Lectures (GIKI)SAFFI Ud Din Ahmad
 
I.C.Engine performance parameters
I.C.Engine performance parametersI.C.Engine performance parameters
I.C.Engine performance parametersLokendra Kumar
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersVaidyanathan Ramakrishnan
 
Liquid fuels presentation
Liquid fuels presentationLiquid fuels presentation
Liquid fuels presentationUsman Arshad
 
CI Engine Emission
CI Engine EmissionCI Engine Emission
CI Engine EmissionRajat Seth
 
Air compressor
Air compressorAir compressor
Air compressorsureshkcet
 
Solution of numerical problem on boiler performance - Part 2
Solution of numerical problem on boiler performance - Part 2Solution of numerical problem on boiler performance - Part 2
Solution of numerical problem on boiler performance - Part 2AVDHESH TYAGI
 
reciprocating compressor
reciprocating compressorreciprocating compressor
reciprocating compressorRajesh Sharma
 
i c engines efficiencies
i c engines efficienciesi c engines efficiencies
i c engines efficienciesmp poonia
 
Presentation on Filmwise and Dropwise Condensation
Presentation on  Filmwise and Dropwise CondensationPresentation on  Filmwise and Dropwise Condensation
Presentation on Filmwise and Dropwise CondensationKrishna Khandelwal
 

Mais procurados (20)

Fuels and Combustion Lectures (GIKI)
Fuels and Combustion Lectures (GIKI)Fuels and Combustion Lectures (GIKI)
Fuels and Combustion Lectures (GIKI)
 
Fuels and combustion
Fuels and combustionFuels and combustion
Fuels and combustion
 
I.C.Engine performance parameters
I.C.Engine performance parametersI.C.Engine performance parameters
I.C.Engine performance parameters
 
Fuels ppts 674816
Fuels ppts 674816Fuels ppts 674816
Fuels ppts 674816
 
Knocking & detonation
Knocking & detonationKnocking & detonation
Knocking & detonation
 
Dual cycle
Dual cycleDual cycle
Dual cycle
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswers
 
Liquid fuels presentation
Liquid fuels presentationLiquid fuels presentation
Liquid fuels presentation
 
CI Engine Emission
CI Engine EmissionCI Engine Emission
CI Engine Emission
 
Air standard cycle
Air standard cycleAir standard cycle
Air standard cycle
 
Air compressor
Air compressorAir compressor
Air compressor
 
Solution of numerical problem on boiler performance - Part 2
Solution of numerical problem on boiler performance - Part 2Solution of numerical problem on boiler performance - Part 2
Solution of numerical problem on boiler performance - Part 2
 
E4 fuels
E4 fuelsE4 fuels
E4 fuels
 
Gaseous fuels
Gaseous fuelsGaseous fuels
Gaseous fuels
 
Carbon residue report
Carbon residue reportCarbon residue report
Carbon residue report
 
Referigeration
ReferigerationReferigeration
Referigeration
 
reciprocating compressor
reciprocating compressorreciprocating compressor
reciprocating compressor
 
i c engines efficiencies
i c engines efficienciesi c engines efficiencies
i c engines efficiencies
 
Presentation on Filmwise and Dropwise Condensation
Presentation on  Filmwise and Dropwise CondensationPresentation on  Filmwise and Dropwise Condensation
Presentation on Filmwise and Dropwise Condensation
 
Flash AND Fire Point
Flash AND Fire PointFlash AND Fire Point
Flash AND Fire Point
 

Destaque

Fossil fuels power point
Fossil fuels power pointFossil fuels power point
Fossil fuels power pointkylmor1
 
Combustion Powerpoint
Combustion PowerpointCombustion Powerpoint
Combustion Powerpointguestd950c8
 
Fossil fuel
Fossil fuelFossil fuel
Fossil fuelnindy21
 
Fossil fuel
Fossil fuelFossil fuel
Fossil fuelJosgal3
 
Combustion Reaction Power Point
Combustion Reaction Power PointCombustion Reaction Power Point
Combustion Reaction Power Pointguest504aef5
 
Improvement in combustion process
Improvement in combustion processImprovement in combustion process
Improvement in combustion processSamer Ahmed
 
combustion
combustioncombustion
combustiontorie123
 
Fossil fuels
Fossil fuelsFossil fuels
Fossil fuelsLuna55555
 
2012 04-05 complete and incomplete combustion-3
2012 04-05 complete and incomplete combustion-32012 04-05 complete and incomplete combustion-3
2012 04-05 complete and incomplete combustion-3Sabina Seidakhmetova
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)Yuri Melliza
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineersYuri Melliza
 
Fossil fuels power point
Fossil fuels power pointFossil fuels power point
Fossil fuels power pointfrousm1
 
Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC Yuri Melliza
 
Refrigeration system 2
Refrigeration system 2Refrigeration system 2
Refrigeration system 2Yuri Melliza
 

Destaque (20)

Fossil fuels power point
Fossil fuels power pointFossil fuels power point
Fossil fuels power point
 
Pumps (mech 326)
Pumps (mech 326)Pumps (mech 326)
Pumps (mech 326)
 
Combustion Powerpoint
Combustion PowerpointCombustion Powerpoint
Combustion Powerpoint
 
Combustion
CombustionCombustion
Combustion
 
Fossil fuel
Fossil fuelFossil fuel
Fossil fuel
 
Fossil fuel
Fossil fuelFossil fuel
Fossil fuel
 
Combustion Reaction Power Point
Combustion Reaction Power PointCombustion Reaction Power Point
Combustion Reaction Power Point
 
climate change
climate change climate change
climate change
 
Improvement in combustion process
Improvement in combustion processImprovement in combustion process
Improvement in combustion process
 
combustion
combustioncombustion
combustion
 
Fossil fuels
Fossil fuelsFossil fuels
Fossil fuels
 
2012 04-05 complete and incomplete combustion-3
2012 04-05 complete and incomplete combustion-32012 04-05 complete and incomplete combustion-3
2012 04-05 complete and incomplete combustion-3
 
Fossil fuels (teach)
Fossil fuels (teach)Fossil fuels (teach)
Fossil fuels (teach)
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineers
 
Fossil fuels power point
Fossil fuels power pointFossil fuels power point
Fossil fuels power point
 
psychrometrics
psychrometricspsychrometrics
psychrometrics
 
Pump principles
Pump principlesPump principles
Pump principles
 
Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC Methods of handling Supply air in HVAC
Methods of handling Supply air in HVAC
 
Refrigeration system 2
Refrigeration system 2Refrigeration system 2
Refrigeration system 2
 

Semelhante a Fuels and combustion(2013)

007 fuels and combustion
007 fuels and combustion007 fuels and combustion
007 fuels and combustionphysics101
 
FUELS AND COMBUSTION .pptx
FUELS AND COMBUSTION .pptxFUELS AND COMBUSTION .pptx
FUELS AND COMBUSTION .pptxssusere6313f
 
ch13_part1 (Reacting mixtures and combustion, Heating values, Gibbs function)...
ch13_part1 (Reacting mixtures and combustion, Heating values, Gibbs function)...ch13_part1 (Reacting mixtures and combustion, Heating values, Gibbs function)...
ch13_part1 (Reacting mixtures and combustion, Heating values, Gibbs function)...Mehran Bashir
 
Dr. vora ppt chapter 2 emission formation
Dr. vora ppt chapter 2 emission formationDr. vora ppt chapter 2 emission formation
Dr. vora ppt chapter 2 emission formationKamal Vora
 
Solved numerical problem on Combustion thermodynamics.pptx
Solved numerical problem on Combustion thermodynamics.pptxSolved numerical problem on Combustion thermodynamics.pptx
Solved numerical problem on Combustion thermodynamics.pptxchaitatva
 
Combustion & Flue Gas Analysis
Combustion & Flue Gas AnalysisCombustion & Flue Gas Analysis
Combustion & Flue Gas AnalysisAmit Makwana
 
04 fuels & combustion calculation09
04 fuels & combustion calculation0904 fuels & combustion calculation09
04 fuels & combustion calculation09Ravi shankar
 
Module 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculationsModule 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculationsbalaaguywithagang1
 
Stoichiometric calculations
Stoichiometric calculationsStoichiometric calculations
Stoichiometric calculationsMANJUNATH N
 
Seminar Topic on Chemical Exergy
Seminar Topic on Chemical ExergySeminar Topic on Chemical Exergy
Seminar Topic on Chemical ExergyNishant Shah
 
5. COMBUSTION PRINCIPLES.pptx
5. COMBUSTION  PRINCIPLES.pptx5. COMBUSTION  PRINCIPLES.pptx
5. COMBUSTION PRINCIPLES.pptxRENERGISTICS
 
Lecture 6combustion at higher temperatures.pptx
Lecture 6combustion at higher temperatures.pptxLecture 6combustion at higher temperatures.pptx
Lecture 6combustion at higher temperatures.pptxSphesihleLungani
 
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdfOmkarVartak6
 
Introduction combustion
Introduction combustionIntroduction combustion
Introduction combustionBench Gueco
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performanceAshish Kumar Jain
 
Chemical thermodynamics
Chemical thermodynamicsChemical thermodynamics
Chemical thermodynamicsTanQinyang
 
Combustion Calculations
Combustion CalculationsCombustion Calculations
Combustion CalculationsAhsanN2
 
Power Cycle Components/Processes and Compressible Flow Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis WebinarPower Cycle Components/Processes and Compressible Flow Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis WebinarEngineering Software
 

Semelhante a Fuels and combustion(2013) (20)

Me 312 module 1
Me 312 module 1Me 312 module 1
Me 312 module 1
 
007 fuels and combustion
007 fuels and combustion007 fuels and combustion
007 fuels and combustion
 
FUELS AND COMBUSTION .pptx
FUELS AND COMBUSTION .pptxFUELS AND COMBUSTION .pptx
FUELS AND COMBUSTION .pptx
 
ch13_part1 (Reacting mixtures and combustion, Heating values, Gibbs function)...
ch13_part1 (Reacting mixtures and combustion, Heating values, Gibbs function)...ch13_part1 (Reacting mixtures and combustion, Heating values, Gibbs function)...
ch13_part1 (Reacting mixtures and combustion, Heating values, Gibbs function)...
 
Dr. vora ppt chapter 2 emission formation
Dr. vora ppt chapter 2 emission formationDr. vora ppt chapter 2 emission formation
Dr. vora ppt chapter 2 emission formation
 
Solved numerical problem on Combustion thermodynamics.pptx
Solved numerical problem on Combustion thermodynamics.pptxSolved numerical problem on Combustion thermodynamics.pptx
Solved numerical problem on Combustion thermodynamics.pptx
 
Combustion & Flue Gas Analysis
Combustion & Flue Gas AnalysisCombustion & Flue Gas Analysis
Combustion & Flue Gas Analysis
 
04 fuels & combustion calculation09
04 fuels & combustion calculation0904 fuels & combustion calculation09
04 fuels & combustion calculation09
 
Module 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculationsModule 7 - Energy Balance chemical process calculations
Module 7 - Energy Balance chemical process calculations
 
Stoichiometric calculations
Stoichiometric calculationsStoichiometric calculations
Stoichiometric calculations
 
Seminar Topic on Chemical Exergy
Seminar Topic on Chemical ExergySeminar Topic on Chemical Exergy
Seminar Topic on Chemical Exergy
 
5. COMBUSTION PRINCIPLES.pptx
5. COMBUSTION  PRINCIPLES.pptx5. COMBUSTION  PRINCIPLES.pptx
5. COMBUSTION PRINCIPLES.pptx
 
Lecture 6combustion at higher temperatures.pptx
Lecture 6combustion at higher temperatures.pptxLecture 6combustion at higher temperatures.pptx
Lecture 6combustion at higher temperatures.pptx
 
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
7BurnerTechnology-ASGE2011-Worgas-G_Berthold.pdf
 
Introduction combustion
Introduction combustionIntroduction combustion
Introduction combustion
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performance
 
Chemical thermodynamics
Chemical thermodynamicsChemical thermodynamics
Chemical thermodynamics
 
Combustion Calculations
Combustion CalculationsCombustion Calculations
Combustion Calculations
 
Power Cycle Components/Processes and Compressible Flow Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis WebinarPower Cycle Components/Processes and Compressible Flow Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis Webinar
 
Combustion Analysis Webinar
Combustion Analysis WebinarCombustion Analysis Webinar
Combustion Analysis Webinar
 

Mais de Yuri Melliza

Airconditioning system (ppt)
Airconditioning system (ppt)Airconditioning system (ppt)
Airconditioning system (ppt)Yuri Melliza
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesYuri Melliza
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)Yuri Melliza
 
Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Yuri Melliza
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)Yuri Melliza
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022Yuri Melliza
 
Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Yuri Melliza
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Yuri Melliza
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022Yuri Melliza
 
Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Yuri Melliza
 
Fuels and Combustion
Fuels and CombustionFuels and Combustion
Fuels and CombustionYuri Melliza
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Yuri Melliza
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLEYuri Melliza
 
Chapter 7 Processes of Fluids
Chapter 7 Processes of FluidsChapter 7 Processes of Fluids
Chapter 7 Processes of FluidsYuri Melliza
 
Chapter 6 Gas Mixture
Chapter 6 Gas MixtureChapter 6 Gas Mixture
Chapter 6 Gas MixtureYuri Melliza
 
Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Yuri Melliza
 
Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Yuri Melliza
 
Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)Yuri Melliza
 

Mais de Yuri Melliza (20)

Airconditioning system (ppt)
Airconditioning system (ppt)Airconditioning system (ppt)
Airconditioning system (ppt)
 
Fundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notesFundamentals of heat transfer lecture notes
Fundamentals of heat transfer lecture notes
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)
 
Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)Module 9 (second law & carnot cycle)
Module 9 (second law & carnot cycle)
 
Module 7 (processes of fluids)
Module 7 (processes of fluids)Module 7 (processes of fluids)
Module 7 (processes of fluids)
 
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
Module 6 (ideal or perfect gas and gas mixture) 2021   2022Module 6 (ideal or perfect gas and gas mixture) 2021   2022
Module 6 (ideal or perfect gas and gas mixture) 2021 2022
 
Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022Module 5 (properties of pure substance)2021 2022
Module 5 (properties of pure substance)2021 2022
 
Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022Module 4 (first law of thermodynamics) 2021 2022
Module 4 (first law of thermodynamics) 2021 2022
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022
 
Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022Module 1 (terms and definition & properties of fluids)2021 2022
Module 1 (terms and definition & properties of fluids)2021 2022
 
Fuels and Combustion
Fuels and CombustionFuels and Combustion
Fuels and Combustion
 
Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)Fluid mechanics ( 2019 2020)
Fluid mechanics ( 2019 2020)
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
 
Me 12 quiz no. 3
Me 12 quiz no. 3Me 12 quiz no. 3
Me 12 quiz no. 3
 
Chapter 7 Processes of Fluids
Chapter 7 Processes of FluidsChapter 7 Processes of Fluids
Chapter 7 Processes of Fluids
 
Chapter 6 Gas Mixture
Chapter 6 Gas MixtureChapter 6 Gas Mixture
Chapter 6 Gas Mixture
 
Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)Chapter 5 (ideal gas & gas mixture)
Chapter 5 (ideal gas & gas mixture)
 
Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)Chapter 4 (propertiesof pure substance)
Chapter 4 (propertiesof pure substance)
 
Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)Chapter 3 (law of conservation of mass & and 1st law)
Chapter 3 (law of conservation of mass & and 1st law)
 
Chapter 2
Chapter 2 Chapter 2
Chapter 2
 

Último

Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024The Digital Insurer
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 

Último (20)

Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 

Fuels and combustion(2013)

  • 1. FUELS AND COMBUSTION  Fuels and Combustion  Types of Fuels  Complete/Incomplete Combustion  Oxidation of Carbon  Oxidation of Hydrogen  Oxidation of Sulfur  Air composition  Combustion with Air  Theoretical Air  Hydrocarbon fuels  Combustion of Hydrocarbon Fuel
  • 3. Fuels and Combustion Fuel: Substances composed of chemical elements which in rapid chemical union with oxygen produced combustion. Combustion: Is that rapid chemical union with oxygen of an element, whose exo- thermic heat of reaction is sufficiently great and whose rate of reaction is suf- ficiently fast whereby useful quantities of heat are liberated at elevated tempera- ture.
  • 4. TYPES OF FUELS Solid Fuels x: Wood, coal, charcoal iquid Fuels x: gasoline, diesel, kerosene Gaseous Fuels x: LPG, Natural Gas, Methane Nuclear Fuels x: Uranium Combustible Elements 1.Carbon (C) 3. Sulfur (S) 2.Hydrogen (H2)
  • 5. Complete Combustion: Occurs when all the combustible elements has been fully oxidized. Ex: C + O2 → CO2 Incomplete Combustion: Occurs when some of the combustible elements has not been fully oxidized. Ex: C + O2 → CO
  • 6. Common Combustion Gases GAS MOLECULAR Weight (M) C 12 H 1 H2 2 O 16 O2 32 N 14 N2 28 S 32
  • 7. HE COMBUSTION CHEMISTRY Oxidation of Carbon 1183 443612 32)1(121(16)1(12) BasisMass 111 BasisMole COOC 2 →+ →+ +→+ →+ →+ 2
  • 10. Composition of AIR a. Percentages by Volume or (by mole) O2 = 21% N2 = 79% b. Percentages by Mass O2 = 23% N2 = 77% 763 21 79 .== 2 2 OofMole NofMoles
  • 11. Combustion with Air A. Combustion of Carbon with air C + O2 + 3.76N2 → CO2 + 3.76N2 Mole Basis: 1 + 1 + 3.76 → 1+ 3.76 Mass Basis: 1(12) + 1(32) + 3.76(28) → 1(44) +3.76(28) 12 + 32 + 3.76(28) → 44 + 3.76(28) 3 + 8 + 3.76(7) → 11+ 3.76(7)
  • 12. kg of air per kg of Carbon: Cofkg airofkg 11.44= 3 3.76(7)+8 = Cofkg airofkg
  • 13. B. Combustion of Hydrogen with air H2 + ½ O2 + ½ (3.76)N2 → H2O + ½(3.76)N2 Mole Basis: 1 + ½ + ½(3.76) → 1 + ½(3.76) Mass Basis: 1(2) + ½ (32) + ½(3.76)(28) → 1(18) + ½(3.76)(28) 2 + 16 + 3.76(14) → 18 + 3.76(14) 1 + 8 + 3.76(7) → 9 + 3.76(7)
  • 14. kg of air per kg of Hydrogen: 22 Hofkg airofkg 34.32= 1 3.76(7)+8 = Hofkg airofkg
  • 15. C. Combustion of Sulfur with air S + O2 + 3.76N2 → SO2 + 3.76N2 Mole Basis: 1 + 1 + 3.76 → 1 + 3.76N2 Mass Basis: 1(32) + 1(32) + 3.76(28) → 1(64) + 3.76(28) 32 + 32 + 105.28 → 64 + 105.28
  • 16. kg of air per kg of Sulfur: Sofkg airofkg 4.29= 32 105.2832 = Sofkg airofkg +
  • 17. Theoretical Air It is the minimum amount of air required to oxidize the reactants or the combustible elements found in the fuel. With theoretical air no O2 is found in products. Excess Air It is an amount of air in excess of the theoretical requirements in order to influence complete combustion. With excess air O2 is present in the products.
  • 18. HYDROCARBON FUELS Fuels containing the element s Carbon and Hydrogen. Chemical Formula: CnHm
  • 19. Family Formula Structure Saturated Paraffin CnH2n+2 Chain Yes Olefin CnH2n Chain No Diolefin CnH2n-2 Chain No Naphthene CnH2n Ring Yes Aromatic Benzene CnH2n-6 Ring No Naphthalene CnH2n-12 Ring No Alcohols Note: Alcohols are not pure hydrocarbon, because one of its hydrogen atom is replace by an OH radical. Sometimes it is used as fuel in an ICE. Methanol CH3OH Ethanol C2H5OH
  • 20. Saturated Hydrocarbon: All the carbon atoms are joined by a single bond. Unsaturated Hydrocarbon: It has two or more adjacent Carbon atoms joined by a double or triple bond. Isomers: Two hydrocarbons with the same number of carbon and hydrogen atoms but at different structures.
  • 21. H H H H     H C C C CH     H H H H Chain structure Saturated H H | | HC C=C C H | | | | H H H H Chain Structure Unsaturated Ring structure Saturated H H H C H C C H C H H H
  • 22. Theoretical Air: It is the minimum or theoretical amount of air required to oxidized the reactants. With theoretical air no O2 is found in the products. Excess Air: It is an amount of air in excess of the theo- retical air required to influence complete combustion. With excess air O2 is found in the products. Combustion of Hydrocarbon Fuel(CnHm) A. Combustion with 100% theoretical air CnHm + aO2 + a(3.76)N2 → bCO2 + cH2O + a(3.76)N2 fuel air t kg kg m12n )a(3.76)(28a(32) F A + + =     
  • 23. fuel air a kg kg m12n )a(3.76)(28a(32) e)(1 F A     + + +=      B. Combustion with excess air e CnHm +(1+e) aO2 + (1+e)a(3.76)N2 → bCO2 + cH2O + dO2 + (1+e)a(3.76)N2 Actual Air – Fuel Ratio fuel air ta kg kg F A e)(1 F A       +=      Where: e – excess air in decimal Note: Sometimes excess air is expressible in terms of theoretical air. Example: 25% excess air = 125% theoretical air
  • 24. Orsat Analysis: Orsat analysis gives the volumetric or molal analysis of the PRODUCTS on a DRY BASIS, (no amount of H2O given). Proximate Analysis: Proximate analysis gives the amount of Fixed Carbon, Volatiles, Ash and Moisture, in percent by mass. Volatiles are those compounds that evaporates at low temperature when the solid fuel is heated.00 ULTIMATE ANALYSIS: Ultimate analysis gives the amount of C, H, O, N, S in percentages by mass, and sometimes the amount of moisture and ash are given.
  • 25. OLID FUELS omponents of Solid Fuels: 1. Carbon (C) 2. Hydrogen (H2) 3. Oxygen (O2) 4. Nitrogen (N2) 5. Sulfur (S) 6. Moisture (M) 7. Ash (A)
  • 26. A. Combustion with 100% theoretical air aC + bH2 + cO2 + dN2 + eS + fH2O + gO2 + g(3.76)N2 → hCO2 + iH2O + jSO2 + kN2 B.Combustion with excess air x: aC + bH2 + cO2 + dN2 + eS + fH2O + (1+x)gO2 +(1+x)g(3.76)N2 → hCO2 + iH2O + jSO2 + lO2 + mN2 WHERE: a, b, c, d, e, f, g, h, I, j, k, x are the number of moles of the elements. x – excess air in decimal
  • 27. fuelkg airkg 18f32e28d32c2b12a 3.76(28)g32g F A t +++++ + =      Theoretical air-fuel ratio: Actual air-fuel ratio: [ ] fuelkg airkg 18f32e28d32c2b12a 3.76(28)g32gx)(1 aF A +++++ ++ =     
  • 28. S FLOW RATE OF FLUE GAS (Produc Air+Fuel → Products Without considering Ash loss       += 1 F A mm Fg Considering Ash loss       −+= lossAsh1 F A mm Fg
  • 29. Heating Value Heating Value - is the energy released by fuel when it is completely burned and the products of combustion are cooled to the original fuel temperature. Higher Heating Value (HHV) - is the heating value obtained when the water in the products is liquid. Lower Heating Value (LHV) - is the heating value obtained when the water in the products is vapor.
  • 30. or Solid Fuels with the presence of Fuel’s ULTIMATE ANALYSIS kg KJ S9304 8 O H212,144C820,33HHV 2 2 +      −+= where: C, H2 , O2 , and S are in decimals from the ultimate analysis
  • 31. HHV = 31 405C + 141 647H KJ/kg HHV = 43 385 + 93(Be - 10) KJ/kg For Liquid Fuels where: Be - degrees Baume For Coal and Oils with the absence of Ultimate Analysis fuelofkg airofKg 3041 HHV F A t =     
  • 34. For Fuel Oils (From Bureau of Standard Formula) ).t(.St@S 561500070 API131.5 141.5 S −−= °+ = HHV = 51,716 – 8,793.8 (S)2 KJ/kg LHV = HHV - QL KJ/kg QL = 2442.7(9H2 ) KJ/kg H2 = 0.26 - 0.15(S) kg of H2 / kg of fuel
  • 35. Where S - specific gravity of fuel oil at 15.56 °C H2 - hydrogen content of fuel oil QL - heat required to evaporate and superheat the water vapor formed bythe combustion of hydrogen in the fuel S @ t - specific gravity of fuel oil at any temperature t Oxygen Bomb Calorimeter - instrument used in measuring heating value of solid and liquid fuels. Gas Calorimeter - instrument used for measuring heating value of gaseous fuels.
  • 36. Properties of Fuels and Lubricants a)Viscosity - a measure of the resistance to flow that a lubricant offers when it is subjected to shear stress. b) Absolute Viscosity - viscosity which is determined by direct measurement of shear resistance. c) Kinematics Viscosity - the ratio of the absolute viscosity to the density d) Viscosity Index - the rate at which viscosity changes with temperature. e) Flash Point - the temperature at which the vapor above a volatile liquid forms a combustible mixture with air. f) Fire Point - The temperature at which oil gives off vapor that burns continuously when ignited.
  • 37. g) Pour Point - the temperature at which oil will no longer pour freely. h) Dropping Point - the temperature at which grease melts. i) Condradson Number(carbon residue) - the percentage amount by mass of the carbonaceous residue remaining after destructive distillation. j) Octane Number - a number that provides a measure of the ability of a fuel to resist knocking when it is burnt in a gasoline engine. It is the percentage by volume of iso-octane in a blend with normal heptane that matches the knocking behavior of the fuel.
  • 38. k) Cetane Number - a number that provides a measure of the ignition characteristics of a diesel fuel when it is burnt in a standard diesel engine. It is the percentage of cetane in the standard fuel. Prepared By: ENGR YURI G. MELLIZA, RME

Notas do Editor

  1. THEORETICAL AIR and EXCESS AIR