SlideShare uma empresa Scribd logo
1 de 23
http://lawrencekok.blogspot.com
Prepared by
Lawrence Kok
Tutorial on Acid/Base Dissociation Constant, Ka,
pKa, pKb and pH
Strong/Weak Acid and Base
Strong Acid/Weak Acid
Strong acid - HI, HBr, HCI, HNO3, H2SO4, HCIO3, HCIO4
Weak Acid - CH3COOH, HF, HCN, H2CO3, H3BO3, H3PO4
Strong Base/ Weak Base
Strong base - LiOH, KOH, NaOH, CsOH, Ca(OH)2
Weak Base - NH3, C2H5NH2, (CH3)2NH, C3H5O2NH2
Distinguish bet strong and weak acid
Electrical conductivityRate of rxn pH
Strong acid
Strong acid → High ionization → High conc H+ → High conductivity → High rate rxn → Lower pH
Strong acid
Oxoacid
O atom > number ionizable proton
HNO3, H2SO4, HCIO3, HCIO4
Hydrohalic acid
HI, HBr, HCI
Weak acid
Hydrohalic acid
HF
Oxoacid
O atom ≥ number ionizable proton by 1
HCIO, HNO2, H3PO4
Carboxylic acid
COOH
Strong base – contain OH- or O2-
LiOH, NaOH, CaO, K2O Ca(OH)2, Ba(OH)2
Weak base – contain electron rich nitrogen, N
NH3, C2H5NH2, (CH3)2NH, C3H5O2NH2
Strong base Weak base
1 2 3
Weak acid
0.1 M HCI 0.1 M CH3COOH
H+ 0.1 mole 0.0013 mole
pH 1 (Low) 2.87 (High)
Electrical conductivity High (Ionize completely) Low (Ionize partially)
Rate with magnesium Fast Slow
Rate with calcium
carbonate
Fast Slow
Weaker acid → Low ionization → Low conc H+ → Low conductivity → Low rate rxn → High pH
Strong acid
HA A-H+
H+ H+
H+
H+ H+
H+
H+A-
A-
A-
A- A-
A-
Ionizes completely
Weak acid
HA
HA
H+ A-
H+
H+
A-
A-
HA
HA
HA
HA
HA
HA
Ionizes partially
Easier using pH scale than Conc [H+]
• Conc H+ increase 10x from 0.0001(10-4) to 0.001(10-3)
- pH change by 1 unit from pH 4 to 3
• pH 3 is (10x) more acidic than pH 4
• 1 unit change in pH is 10 fold change in Conc [H+]
Conc OH-
increase ↑ by 10x
pH increase ↑ by 1 unit
pOH with Conc OH-
pOH = -log [OH-
]
[OH-
] = 0.0000001M
pOH = -log [0.0000001]
pOH = -log1010-7
pOH = 7
pH + pOH = 14
pH + 7 = 14
pH = 7 (Neutral)
pH with Conc H+
pH = -log [H+
]
[H+
] = 0.0000001M
pH = -log [0.0000001]
pH = -log1010-7
pH = 7 (Neutral)
Conc H+
increase ↑ by 10x
pH decrease ↓ by 1 unit
pH measurement of Acidity of solution
• pH is the measure of acidity of solution in logarithmic scale
• pH = power of hydrogen or minus logarithm to base ten of hydrogen ion concentration
← Acidic – pH < 7 Alkaline – pH > 7 →
pOH with Conc OH-
pOH = -log [OH-
]
[OH-
] = 0.1M
pOH = -log[0.1]
pOH = 1
pH + pOH = 14
pH + 1 = 14
pH = 13 (Alkaline)
pH with Conc H+
pH = -log [H+
]
[H+
] = 0.01M
pH = -log [0.01]
pH = -log1010-2
pH = 2 (Acidic)
Easier pH scaleConc H+
Conc [H+
] = 1 x 10-12
pH = -lg[H+
]
pH = -lg[10-12
]
pH = 12
Conc [OH-
]= 1 x 10-2
pOH = -log10[OH-]
pOH = -log1010-2
= pOH = 2
pH + pOH = 14
pH + 2 = 14
pH = 12
Conc [H+
] = 1 x 10-2
pH = -lg[H+
]
pH = -lg[10-2
]
pH = 2
Alkaline
Alkaline
Acidic
Acidic
Kw - Ionic product constant water
Using conc [H+]
pH = -log10[H+]
pH = -log10[H+] pOH = -log10[OH-] pH + pOH = 14 Kw = [H+][OH-]
Using conc [OH-]
pOH = -log10[OH-]
Conc [OH-
]= 1 x 10-12
pOH = -log10[OH-]
pOH= -log1010-12
=pOH = 12
pH + pOH = 14
pH + 12 = 14
pH = 2
Formula for acid/base calculation
  
 OH
OHOH
Kc
2
3


    
 OHOHOHKc 32
  
 OHOHKw 3
  
 OHOH3
14
100.1
  7714
101101100.1 

  7
101 
OH
  
 OHOHOHOH 322
H2O dissociate forming H3O+ and OH-
(equilibrium exist)
14
100.1 
wK
Dissociation water small [H2O] is constant
Kw = 1.0 x 10-14 Ionic Product constant water at -25C
Kc - Dissociation constant water
  7
3 101 
OH
Number sig fig in log calculation
Significant number in log calculation
log10(3575)=3.55327 = 3.5532
log10(3.000x104) = 4.477121 = 4.4771
log10(3.3 x 104) = 4.5185 = 4.51
Calculation involve pH = -log10[H+]
Conc H+ = 1.9 x 10-4
pH= -log10[1.9 x 10-4] = 3.721 = 3.72
Measurement scale not linear
• Simple average CANNOT be used
• Average of pH 7, pH 8, pH 9
pH scale is logarithmic, pH = -log[H+]
Correct average = convert to H+ conc
pH 7 = -log10[H+] → H+ = 10-7
pH 8 = -log10[H+] → H+ = 10-8
pH 9 = -log10[H+] → H+ = 10-9
pH pH= -lg10H+ Conc H+
0 0 = -lg10100 1.0
1 1 = -lg1010-1 0.1
2 2 = -lg1010-2 0.01
3 3 = -lg1010-3 0.001
4 4 = -lg1010-4 0.0001
5 5 = -lg1010-5 0.00001
6 6 = -lg1010-6 0.000001
7 7 = -lg1010-7 0.0000001
8 8 = -lg1010-8 0.00000001
9 9 = -lg1010-9 0.000000001
10 10= -lg1010-10 0.0000000001
11 11= -lg1010-11 0.00000000001
12 12= -lg1010-12 0.000000000001
13 13= -lg1010-13 0.0000000000001
14 14= -lg1010-14 0.00000000000001
Easier using pH scale than Conc [H+]
• Low pH – High H+ conc – More acidic
• High pH – Low H+ conc – Less acidic
• pH 3 (10x) more acidic > than pH 4
• 1 unit change in pH is 10 fold
change in Conc [H+]
Relationship between pH and Conc H+
Uncertainty involving pH
8
3
987


Average
Uncertainty involving pH
4 sig fig 5 sig fig/4 decimal place
4 sig fig 5 sig fig/4 decimal place
Conc H+ = 3.2 x 10-5 M
pH = - log10[3.2 x 10-5]= 4.4948 = 4.49
2 sig fig 3 sig fig/2 decimal place
2 sig fig3 sig fig/2 decimal place
2 sig fig3 sig fig/2 decimal place
2 sig fig 3 sig fig
2 sig fig3 sig fig
2 sig fig 3 sig fig
pH solution = 7.40. Cal conc of H+ ions
7.40 = -log10 [H+]
[H+] = 10-7.40
= 4.0 x 10-8
3 sig fig 2 sig fig
2 sig fig
4.7
]107.3lg[
107.3
3
101010
8
8
987








pH
pH
Average
Average
pH weak acid at various concentration

 OHCOOCHOHCOOHCH 3323
Extend of dissociation depend on initial concentration acid
Conc of acid Observed pH CH3COOH Calculated pH HCI
0.10 2.7 1.0
0.010 3.0 2.0
0.0010 3.5 3.0
0.00010 4.2 4.0

 CIHHCI
Weak acid Strong acid
Dissociate partially Dissociate completely
At same acid concentration
• HCI has HIGHER [H+] > CH3COOH
• HCI has LOWER pH < CH3COOH
• HCI dissociate completely- Strong acid
• CH3COOH dissociate partially- Weak acid
At decreasing acid concentration
• Extend of dissociation for CH3COOH increase
• pH weak acid closer to strong acid
• Dilution increase the extend of dissociation
Conc decrease

 OHCOOCHOHCOOHCH 3323
Trends
Addition Water
Dilution shift equilibrium to right
Decrease conc of CH3COOH, CH3COO- and H+
Conc on left side is more effected due to CH3COO- and H+
Equilibrium shift to right to increase
conc of CH3COO- and H+ again
Extend of dissociation for acid increase (shift to right)
О
О
Concept Map
[H+] [OH-]
pH pOH
Kw = [H+] x [OH-] = 1 x 10-14
pH + pOH = 14
pH = -lg [H+] [H+] = 10-pH pOH = -lg [OH-] [OH-] = 10-pOH
  
 OHOH3
14
100.1   7714
101101100.1 


 OHOHOHOH 322
H2O dissociate forming H3O+ and OH-
(equilibrium exist)
14
100.1 
wK
Kw = 1.0 x 10-14 Ionic Product constant water at -25C
Kc – Ionic Product Constant Water
H+ OH-
Ionic Product Water, Kw, is Temperature dependent
Temp/
C
Kw [H+] [OH-] pH
0 1.5 x 10-15 0.39 x 10-7 0.39 x 10-7 7.47
10 3.0 x 10-15 0.55 x 10-7 0.55 x 10-7 7.27
20 6.8 x 10-15 0.82 x 10-7 0.82 x 10-7 7.08
25 1.0 x 10-14 1.00 x 10-7 1.00 x 10-7 7.00
30 1.5 x 10-14 1.22 x 10-7 1.22 x 10-7 6.92
40 3.0 x 10-14 1.73 x 10-7 1.73 x 10-7 6.77
50 5.5 x 10-14 2.35 x 10-7 2.35 x 10-7 6.63

 OHOHOHOH 322
  
 OHOHKw 3
molkJH /57 Temp increase ↑ → Equilibrium shift right → Reduce Temp ↓ → More ion form
Kw increase ↑
Temp ↑ - shift right – more H+
/OH-
– Kw ↑ Temp ↑ - Kw ↑ – H+
ion ↑ - pH ↓
At 25C, Kw - 1.0 x 10-14
Conc [H+] = [OH−]= 1.0 x 10-7
Neutral pH = 7
At 50C, Kw - 5.5 x 10-14
Conc [H+]= [OH−]= 2.35 x 10-7
Neutral pH = 6.63
  
 OHOHKw 3
At 25C, Kw - 1.0 x 10-14
•Kw = [H+][OH−]
• 1.0 x 10-14 = [H+][OH−]
• [H+][OH−] = [10-7][10-7]
• pH = -lg[H+
]
• pH = -lg [1.0 x 10-7]
• Neutral pH = 7
At 50C, Kw - 9.3 x 10-14
•Kw = [H+][OH−]
•9.3 x 10-14 = [H+][OH−]
•[H+]2 = 9.3 x 10-14
•[H+] = 3.05 x 10-7
• pH = -lg[3.05 x 10-7]
• Neutral pH = 6.5
Amount same
Amount same
Ionic Product Water, Kw, is Temperature dependent
Temp/
C
Kw [H+] [OH-] pH
0 1.5 x 10-15 0.39 x 10-7 0.39 x 10-7 7.47
10 3.0 x 10-15 0.55 x 10-7 0.55 x 10-7 7.27
20 6.8 x 10-15 0.82 x 10-7 0.82 x 10-7 7.08
25 1.0 x 10-14 1.00 x 10-7 1.00 x 10-7 7.00
30 1.5 x 10-14 1.22 x 10-7 1.22 x 10-7 6.92
40 3.0 x 10-14 1.73 x 10-7 1.73 x 10-7 6.77
50 5.5 x 10-14 2.35 x 10-7 2.35 x 10-7 6.63

 OHOHOHOH 322
  
 OHOHKw 3
molkJH /57
Temp increase ↑→ Equilibrium shift right → Reduce Temp ↓→ More ion form
Kw increase ↑
Temp ↑ - shift right – more H+
/OH-
– Kw ↑ Temp ↑ - Kw ↑ – H+
ion ↑ - pH ↓
At 25C, Kw - 1.0 x 10-14
Conc [H+] = [OH−]= 1.0 x 10-7
Neutral pH = 7
At 50C, Kw - 5.5 x 10-14
Conc [H+]= [OH−]= 2.35 x 10-7
Neutral pH = 6.63
Kc ionization water = 1.80 x 10-16. Based on magnitude of Kc which direction does it lies?
Calculate Kw for water assume [H2O] is constant = 55.6 mol/dm3
  
 OH
OHH
Kc
2


Kw = 1.0 x 10-14 Ionic Product constant water at -25C
• Direction to the left
• Mostly undissociated water molecules
 
 treac
product
Kc
tan

  
 
  
   14
16
16
100.1
1080.155
55
1080.1







OHH
OHH
OHH
14
100.1 
wK

 OHHOH2
    
 OHHOHKK cw 2
Fraction of ionized = Amt ionized = 1.00 x 10-7 = 18 x 10-10
Initial amt 55.6
  7714
101101100.1 

Kc small
18 molecule ionized in 10 000 000 000
Amount same Amount same
Formula for acid/base calculation
[OH-][H+]
Kw = [H+] x [OH-] = 1 x 10-14
[OH-] = 10-pOHpOH = -lg [OH-]
pOHpH
pH = -lg [H+] [H+] = 10-pH
pH + pOH = 14
Formula for acid/base calculation
Dissociation Constant for Weak Acid
pH = -log10[H+]
pOH = -log10[OH-]
pH + pOH = 14
pH + pOH = pKw
Kw = [H+][OH-]
Ka x Kb = Kw
Ka x Kb = 1 x 10-14
pKa = - lg10Ka
pKb = - lg10Kb
pKa + pKb = pKw
pKa + pKb = 14

 AHHA
  
 HA
AH
Ka



 HCOOCHCOOHCH 33
  
 
 
 COOHCH
H
COOHCH
HCOOCH
Ka
3
2
3
3


Dissociation Constant for Weak Base

 OHBHOHB 2
  
 B
OHBH
Kb



 OHNHOHNH 423
  
 
 
 3
2
3
4
NH
OH
NH
OHNH
Kb



 OHCOOCHOHCOOHCH 3323

 OHCOOCHOHCOOHCH 3323
  
 COOHCH
OHCOOCH
Ka
3
33



 OHCOOHCHOHCOOCH 323
  
 


COOCH
OHCOOHCH
Kb
3
3
Derive Ka x Kb = Kw
Relationship bet Weak acid and its conjugate base
Weak acid Conjugate Base
  
 
  
 


COOCH
OHCOOHCH
COOHCH
OHCOOCH
3
3
3
33
  
 
  
    


 OHOH
COOCH
OHCOOHCH
COOHCH
OHCOOCH
3
3
3
3
33
wba KKK 
Formula for acid/base calculation
Ka /Kb measure equilibrium position
Ka/Kb large ↑ – ↑ dissociation – shift to right – favour product
Ka/Kb large ↑ – pKa /pKb small ↓ – Stronger acid/base
Strong acid
Large ↑ Ka
Weak acid
Small ↓ Ka
Strong base
Large ↑ Kb
Weak base
Small ↓Kb
↑ Ka → ↓ pKa
Ka /Kb measure equilibrium position
Ka /Kb small ↓ – ↓ dissociation – shift to left – reactant favour
Ka /Kb small ↓ – pKa /pKb high ↑– Weak acid/base
↑ Kb → ↓ pKb
↓ Ka → ↑ pKa
↓ Kb →↑ pKb
For weak acid/ base

 CIHHCI 
 OHNHOHNH 423
Shift right Shift left
CH3COOH + H2O ↔ CH3COO- + H3O+
CH3COOH CH3COO-CH3COOH ↔ CH3COO-
Strong Acid Weak conjugate BaseConjugate acid base pair
Small dissociation
constant
Strong Acid Weak base
ba KK /
Strongacid
Strongbase
Formula for acid/base calculation
[OH-][H+]
Kw = [H+] x [OH-] = 1 x 10-14
[OH-] = 10-pOHpOH = -lg [OH-]
pOHpH
pH = -lg [H+] [H+] = 10-pH
pH + pOH = 14
Formula for acid/base calculation
Dissociation Constant for Weak Acid
pH = -log10[H+]
pOH = -log10[OH-]
pH + pOH = 14
pH + pOH = pKw
Kw = [H+][OH-]
Ka x Kb = Kw
Ka x Kb = 1 x 10-14
pKa = - lg10Ka
pKb = - lg10Kb
pKa + pKb = pKw
pKa + pKb = 14

 AHHA
  
 HA
AH
Ka



 HCOOCHCOOHCH 33
  
 
 
 COOHCH
H
COOHCH
HCOOCH
Ka
3
2
3
3


Dissociation Constant for Weak Base

 OHBHOHB 2
  
 B
OHBH
Kb



 OHNHOHNH 423
  
 
 
 3
2
3
4
NH
OH
NH
OHNH
Kb


Dissociate partially ↔ used
Weak acid/base
Ka /Kb value pKa /pKb value easier!
Click here weak acid dissociation Click here weak acid dissociation Click here CH3COOH dissociation Click here strong acid ionization
Weak acid/base Animation
What is pH for [H+
] = 1 x 10-12
M
pH = -lg [10-12
]
pH = 12
What is conc of H+
of pH 3.20?
3.20 = -lg [H+
]
[H+
] = 10 –2.20
[H+
] = 6.3 x 10-4
pH = -log10[H+] pOH = -log10[OH-] pH + pOH = 14 Kw = [H+][OH-]
Formula acid/base calculation
2 sig fig 1 sig fig 3 sig fig 2 sig fig
What is pH for [OH-
] = 0.15M
pOH = -lg [0.15]
pOH = 0.823
pH + pOH = 14
pH = 14 – 0.823 = 13.2
pOH = -log[OH-]
3 sig fig 2 sig fig
Calculate conc of H+, OH-
and pH for 0.001 M HCI.
1 2 3
4

 CIHHCI
0.001 ↔ 0.001 0.001

 OHHOH2
HCIH2O
  
 OHHKw
Assuming H+ all from HCI = 0.0010
)()( 2OHHHCIHH 

= 0.001 Negligible / too little
  
 OHH14
100.1
 
 
0.3
001.0log
log
10
10


 
pH
pH
HpH
  
 
0.31114
11
101
001.0
100.1
001.0100.1
11
14
14










pH
pOH
OH
OH
or
Cal conc OH-
/pH when 3.o x 10-4
H+
add water
HCI
H2O

 CIHHCI
 OHHOH2
  
 OHHKw
  
 OHH14
100.1
  
  11
4
14
414
103.3
100.3
100.1
100.3100.1










OH
OH
3x10-4 ↔ 3x10-4
 
 
52.3
100.3log
log
4
10
10





pH
pH
HpH
5
  
 
   
11
10loglog
101
001.0
100.1
001.0100.1
11
11
14
14











pH
HpH
H
H
 
 
00.1
10.0log
log
10
10


 
pH
pH
HpH
Cal pH of 0.10 M HCI
H2O
Assuming H+ all from HCI = 0.10
)()( 2OHHHCIHH 


 CIHHCI
0.10 mol 0.10 mol
= 0.10
Strong Acid/Base calculation
Strong acid
• 100% dissociation (complete)
Strong base
• 100% dissociation (complete)

 CIHHCI 
 OHKKOHShift right
Shift right
2 sig fig3 sig fig
Cal pH of 0.10M H2SO4
H2O


2
442 2 SOHSOH
0.10 mol 0.20 mol
Assuming H+ all from H2SO4 = 0.20
 
 
700.0
20.0log
log
10
10


 
pH
pH
HpH
)()( 242 OHHSOHHH 

= 0.20
2 sig fig3 sig fig

 OHKKOH
0.001 mol 0.001 mol
Cal pH of 0.001 M KOH
H2O
Assume OH- from KOH = 0.10
)()( 2OHOHKOHOHOH 

  
 OHHKw
= 0.001
 
 
11,3
001.0log
log


 
pHpOH
pOH
OHpOH

 OHCaOHCa 2)( 2
2
0.001 mol 0.002 mol
Cal pH of 0.001M Ca(OH)2
H2O
Assume OH- from Ca(OH)2 = 0.002
)()( 2OHOHKOHOHOH 

= 0.002
 
 
3.11,7.2
002.0log
log


 
pHpOH
pOH
OHpOH
  
 OHHKw
  
 
 
3.11
105log
105
002.0
100.1
002.0100.1
12
12
14
14











pH
pH
H
H
 
 
0.2
01.0log
log
10
10


 
pH
pH
HpH
  
 OH
OHOH
Kc
2
3


    
 OHOHKOHK wc 32
  
 OHOH3
14
100.1   7714
101101100.1 


 OHOHOHOH 322
H2O dissociate forming H3O+ and OH-
(equilibrium exist)
14
100.1 
wK
Dissociation water small [H2O] is constant
Kw - Ionic product constant water
Kw = 1.0 x 10-14 Ionic Product constant water at -25C
Kc - Dissociation constant water
Cal conc of H+ ,OH- and pH of water Cal conc of H+ ,OH- and pH of 0.01M HCI

 OHHOH2
  
 OHHKw
  
 OHH14
100.1
  7714
101101100.1 

  7
101 
H
H2O H2O
HCI

 OHHOH2
H2O
  
 OHHKw
  
 OHH14
100.1
Assuming H+ all from HCI = 0.01
)()( 2OHHHCIHH 

H+ = 0.01 + 1.0x10-12
= 0.01 + 0.000000000001
≈ 0.01

 OHHOH2
H+ = 1x10-12 OH- = 1x10-12

 CIHHCI
0.01 mol 0.01 mol0.01
1 mol ↔ 1 mol 1mol
0.000000000001
0.000000000001
H+ OH-
= 0.01 = 0.000000000001
or
 
0.7
101log 7
10

 
pH
pH
  
 
0.21214
12
100.1
01.0
100.1
01.0100.1
12
14
14










pH
pOH
OH
OH
  
 OH
OHOH
Kc
2
3


    
 OHOHKOHK wc 32
  
 OHOH3
14
100.1   7714
101101100.1 


 OHOHOHOH 322
H2O dissociate forming H3O+ and OH-
(equilibrium exist)
14
100.1 
wK
Dissociation water small [H2O] is constant
Kw - Ionic product constant water
Kw = 1.0 x 10-14 Ionic Product constant water at -25C
Kc - Dissociation constant water
Cal conc of H+ ,OH- and pH of 0.01M KOH Cal conc of H+ ,OH- and pH of 0.1M H2SO4
 
 
7.0
2.0log
log
10
10


 
pH
pH
HpH
H2O
KOH
H2SO4

 OHHOH2
H2O
  
 OHHKw
  
 OHH14
100.1
Assuming H+ all from H2SO4 = 0.2
  
 
7.03.1314
3.13
100.5
2.0
100.1
2.0100.1
14
14
14










pH
pOH
OH
OH
)()( 242 OHHSOHHH 

H+ = 0.2 + 5 x 10-14
= 0.2 + 0.000000000000005
≈ 0.2

 OHHOH2
H+ = 5x10-14 OH- = 5x10-14


2
442 2 SOHSOH
0.1 mol 0.2 mol
0.2
1 mol ↔ 1 mol 1 mol
0.00000000000005
0.0000000000005
H+ OH-
= 0.2 = 0.00000000000005

 OHHOH2
1 mol ↔ 1 mol 1 mol

 OHHOH2
  
 OHHKw

 OHKKOH
0.01
Assuming OH- all from KOH = 0.01
)()( 2OHOHKOHOHOH 

= 0.01 = 0.000000000001
  
 
 
 
12
10log
log
101
01.0
100.1
01.0100.1
12
10
10
12
14
14













pH
pH
HpH
H
H
or
H+ = 1x10-12 OH- = 1x10-12
0.01 mol 0.01 mol
Approximation and Assumption
Ka very small < 10-5
Not much change acid conc
Approximation is VALID
Ionization make no diff to conc HA
SMALLKa  SMALLKa 
Find pH of 0.10 M HA, weak acid Ka - 1.8 x 10-5
- Little product form
- Initial conc reactant unchanged
Using
approximation
0.10 – x ≈ 0.10
HA ↔ H+ + A-
Initial conc 0.10 0 0
Change 0.10 - x +x +x
Eq Conc 0.10 – x +x +x
HA ↔ H+ + A-
  
 HA
AH
Ka

  
 x
x

 
10.0
108.1
2
5
 
 10.0
108.1
2
5 x
 
3
1034.1 
x
[HA] = (0.10 – 0.00134)
= 0.098 ≈ 0.10
[HA]initial ≈ [HA]eq
Calculation Weak Acid (Using ICE Method)
 
 
87.2
1034.1log
log
3
10
10





pH
pH
HpH
HA ↔ H+ + A-
Find Ka of 0.02 M HA, weak acid, [H]+ = 0.0012M
HA ↔ H+ + A-
Initial conc 0.02 0 0
Change 0.02 – 0.0012 +0.0012 +0.0012
Eq Conc ≈ 0.02 +0.0012 +0.0012
  
 HA
AH
Ka


  
 02.0
0012.00012.0
aK
Using
approximation
0.02 – 0.0012 ≈ 0.02
5
102.7 
aK
Find Ka of 0.01M HA, weak acid, pH = 5.0
HA ↔ H+ + A-
HA ↔ H+ + A-
Initial conc 0.01 0 0
Change 0.01 – 1x10-5 +1x10-5 +1x10-5
Eq Conc ≈ 0.01 +1x10-5 +1x10-5
 
  5
10
101
log0.5




H
H
  
 HA
AH
Ka


  
 01.0
101101 55 

aK
Using
approximation
0.01 – 1x10-5 ≈ 0.01
8
108.1 
aK
< 5% rule
%3.1%100
10.0
1034.1
%5
3




concInitial
x
Approximation and Assumption
SMALLKa  SMALLKa 
HA ↔ H+ + A-
  
 HA
AH
Ka

  
 HA
H
2
6
101.4



  4
104.2 
HA
Calculation Weak Acid (Using ICE Method)
 
 
  5
101.3
log50.4
log






H
H
HpH
Find pH of 0.100M HA, weak acid, pKa = 4.20
  
 HA
AH
Ka


 
600.2
1051.2log 3

 
pH
pH
Find Conc HA, weak acid, pH = 4.50, Ka = 4.1 x 10-6
 
 HA
25
6 101.3
101.4

 

HA ↔ H+ + A-
 
 100.0
1031.6
2
5



H
 
 
5
1031.6
log2.4
log




a
a
aa
K
K
KpK   3
1051.2 
H
3 sig fig4 sig fig
Find Ka of 0.01M CH3COOH, pH = 3.4
CH3COOH ↔ CH3COO- + H+
Initial conc 0.01 0 0
Change 0.01 – 0.0004 +0.0004 +0.0004
Eq Conc ≈ 0.01 +0.0004 +0.0004
  
 
 
 
 
 0004.001.0
104
24
3
2
3
3




COOHCH
H
COOHCH
HCOOCH
Ka
 
 
  4
104
log4.3
log






H
H
HpH
5
106.1 
aK
 
 01.0
104
24

aK
Using
approximation
0.01 – 0.0004 ≈ 0.01
Ka very small < 10-5
Not much change acid conc
Approximation VALID
Ionization make no diff to conc acid
Find pH of 0.75M CH3COOH, Ka = 1.8 x 10 -5
CH3COOH ↔ CH3COO- + H+
Initial conc 0.75 0 0
Change 0.75 - x +x +x
Eq Conc ≈ 0.75 +x +x
  
 
 
 x
x
COOHCH
HCOOCH
Ka



75.0
2
3
3
Using
approximation
0.75 – x ≈ 0.75
 
 75.0
108.1
2
5



H
  3
107.3 
H
 
40.2
107.3log 3

 
pH
pH
Approximation and Assumption
Kb very small < 10-5
Not much change reactant conc
Approximation is VALID
Ionization make no diff to conc B
SMALLKb  SMALLKb 
Find pH of 0.010M B, weak base Kb - 1.8 x 10-5
- Little product form
- Initial conc reactant unchanged
Using
approximation
0.01 – x ≈ 0.01
B + H2O ↔ BH+ + OH-
Initial conc 0.01 0 0
Change 0.01 - x +x +x
Eq Conc 0.01 – x +x +x
B + H2O ↔ BH+ + OH-
  
 B
OHBH
Kb


 
 x
x

 
010.0
108.1
2
5
4
102.4 
x
[B] = (0.01 – 0.00042)
≈ 0.01
[B]initial ≈ [B]eq
Calculation Weak Base (Using ICE Method)
 
 
6.10
37.314
37.3
102.4log
log
4







pH
pH
pOH
pOH
OHpOH
Find Kb of 0.030M B, weak base, pH = 10.0
Using
approximation
0.03 – 0.0001 ≈ 0.03
7
103.3 
bK
 
 010.0
108.1
2
5 x
 
B + H2O ↔ BH+ + OH-
B + H2O ↔ BH+ + OH-
Initial conc 0.03 0 0
Change 0.03 - x +x +x
Eq Conc 0.03 – x +x +x
  
 B
OHBH
Kb


 
 x
x
Kb


030.0
2
 
 
  4
100.1
log4
log
1014







OH
OH
OHpOH
pOH
 
 030.0
100.1
24

bK
Find conc of B, weak base, pH 10.8, Kb - 4.36 x 10-4
B + H2O ↔ BH+ + OH-
  
 B
OHBH
Kb


 
 B
22.3
4 100.1
1036.4

 

 
 
  2.3
100.1
log2.3
log
8.1014







OH
OH
OHpOH
pOH
  4
101.9 
B
< 5% rule
%2.4%100
01.0
102.4
%5
4




concInitial
x
 
 
 
 x
x
NH
OH



20.0
2
3
2
 
 20.0
108.1
2
5 x
 
Approximation and Assumption
SMALLKb  SMALLKb 
Calculation Weak Base (Using ICE Method)
 
 
60.11400.214
400.2
1046.4log
log
3






pH
pOH
pOH
OHpOH
  3
1046.4 
OH
  
 3
4
NH
OHNH
Kb


3
109.1 
x
Using
approximation
0.20 – 0.0019 ≈ 0.20
  4
101.9 
B
Find pH of 0.0500M B, weak base pKb - 3.40
B + H2O ↔ BH+ + OH-
  
 B
OHBH
Kb


 
 0500.0
1098.3
2
4



OH
 
 
4
1098.3
log40.3
log




b
b
bb
K
K
KpK
Find conc of B, weak base pH - 10.8, pKa = 10.64
B + H2O ↔ BH+ + OH-
  
 B
OHBH
Kb


 
 B
OH
2
4
1036.4



 
 
4
1036.4
log36.3
log
36.3
64.1014
14







b
b
bb
b
b
ba
K
K
KpK
pK
pK
pKpK
 
 
  4
103.6
log2.3
log
2.38.1014







OH
OH
OHpOH
pOH
 
 B
24
4 103.6
1036.4

 

NH3 + H2O ↔ NH4
+ + OH-
Initial conc 0.20 0 0
Change 0.20 – x +x +x
Eq Conc ≈ 0.20 +x +x
Find pH of 0.20M NH3 - Kb - 1.8 x 10-5
 
 
28.11
72.214
72.2
109.1log
log
3







pH
pH
pOH
pOH
OHpOH
Find Kb of 0.10M CH3NH2 , pH = 11.8
CH3NH2 + H2O ↔ CH3NH3
+ + OH-
Initial conc 0.10 0 0
Change 0.10 – x +x +x
Eq Conc 0.10 - x +x +x
  
 23
33
NHCH
OHNHCH
Kb


 
 x
x


10.0
2
 
  3
103.6
log20.2
20.28.1114
14






OH
OH
pOH
pOHpH
 
 3
3
103.610.0
103.6




bK
4
102.4 
bK
> 5% rule
Approximation
%7.6%100
10.0
103.6
%5
3




concInitial
x
H+ = 1 x 10-8 + 9.5 x 10-8
H+ = 10.5 x 10-8
 
 
980.6
105.10log
log
8
10
10





pH
pH
HpH
H2O HCI

 OHHOH2
H2O
  
 OHHKw
   xx  814
101100.1
Assuming H+ from HCI and H2O
)()( 2OHHHCIHH 


 OHHOH2

 CIHHCI
x
H+ = 1 x 10-8 + x
  8
105.9 
x
Cal pH of 0.10M HCI

 CIHHCI
0.10 mol 0.10 mol
Assuming H+ all from HCI = 0.10
)()( 2OHHHCIHH 

= 0.10
 
 
00.1
10.0log
log
10
10


 
pH
pH
HpH
2 sig fig3 sig fig
Cal pH of 1 x 10-8M HCI
1 x 10-8Assuming dissociation
H+ ions from water = x
1 x 10-8
pH of very STRONG CONC acid
Strong acid
• 100% dissociation (complete)

 CIHHCI
Shift right
H+ ions from water is negligible
Assume all H+ ions come from ACID
pH of very STRONG DILUTED acid
H+ ions from water is SIGNIFICANT
All H+ ions come from ACID and H2O
Assuming H+ from HCI = 1 x 10-8
 
 
0.8
101log
log
8
10
10





pH
pH
HpH
ALKALINE!!!!!!!
Click here to view
Table for Ka/KbExpt acid/base (RSC)
Click here to view
1 x 10-8
Formula for acid/base calculation
[OH-][H+]
Kw = [H+] x [OH-] = 1 x 10-14
[OH-] = 10-pOHpOH = -lg [OH-]
pOHpH
pH = -lg [H+] [H+] = 10-pH
pH + pOH = 14
pH = -log10[H+]
pOH = -log10[OH-]
pH + pOH = 14
pH + pOH = pKw
Kw = [H+][OH-]
Ka x Kb = Kw
Ka x Kb = 1 x 10-14
pKa = - lg10Ka
pKb = - lg10Kb
pKa + pKb = pKw
pKa + pKb = 14
HF + H2O ↔ F- + H3O+
STRONG BASE
WEAK BASE
Kb increase
pKb increasepKb decrease
Kb decrease
STRONG ACID
WEAK ACID
Ka increase
pKa decrease
Ka decrease
pKa increase
Ka pKa
Kb pKb
pKa = -lg [Ka]
pKb = -lg [Kb]
Ka = 10-pKa
Kb = 10-pKb
Ka x Kb = Kw
Ka x Kb = 1 x 10-14 pKa + pKb = 14
pKa + pKb = pKw
Find Kb for F- , Ka HF - 6.8 x 10-4
HF (acid) - F- (conjugate base)
4
4
14
14
1098.3
108.6
101
101
)()(












b
b
a
b
wba
K
K
K
K
KFKHFK






3
4
2
4
2
442
4243
POHHPO
HPOHPOH
POHHPOH
Successive acid dissociation constant


3
443 3 POHPOH
Polyprotic acid – dissociate releasing 1 proton each time
13
3
8
2
3
1
108.4
102.6
105.7






K
K
K


3
443 3 POHPOH
+ Less acidic
Increasing difficulty
removing H+ from
negatively charged ion
Most acidic
wba KKK 
Click here on pH calculation
Video on Acid/ Base
Click here on pKa /pKb calculation How pH = pOH = 14 derived How Ka x Kb = Kw derived
Simulation on Acid/ Base
Click here on pH animation Click here to acid/base simulation
Click here on weak base simulation Click here strong acid ionization Click here on weak acid dissociation
Acknowledgements
Thanks to source of pictures and video used in this presentation
Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/
http://4photos.net/en/image:44-225901-Water_droplets_on_blue_backdrop__images
Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

Mais conteúdo relacionado

Mais procurados

IB Chemistry on Acid Base, pH Scale and Ionic Product Water, Kw
IB Chemistry on Acid Base, pH Scale and Ionic Product Water, KwIB Chemistry on Acid Base, pH Scale and Ionic Product Water, Kw
IB Chemistry on Acid Base, pH Scale and Ionic Product Water, KwLawrence kok
 
Chapter 8 a acid-base titration
Chapter 8 a acid-base titrationChapter 8 a acid-base titration
Chapter 8 a acid-base titrationCleophas Rwemera
 
Measurement of hydrogen ion concentration (p h)
Measurement of hydrogen ion concentration (p h)Measurement of hydrogen ion concentration (p h)
Measurement of hydrogen ion concentration (p h)ECRD2015
 
Titrimetrey as analytical tool, P K MANI
Titrimetrey  as analytical tool, P K MANITitrimetrey  as analytical tool, P K MANI
Titrimetrey as analytical tool, P K MANIP.K. Mani
 
P h (titration) curves
P h (titration) curvesP h (titration) curves
P h (titration) curvesmartyynyyte
 
pH presentation
pH presentationpH presentation
pH presentationzehnerm2
 
pH by KK SAHU sir
 pH by KK SAHU sir pH by KK SAHU sir
pH by KK SAHU sirKAUSHAL SAHU
 
2012 topic 18 2 buffer solutions
2012 topic 18 2   buffer solutions2012 topic 18 2   buffer solutions
2012 topic 18 2 buffer solutionsDavid Young
 
P h scale, buffers, redox potential
P h scale, buffers, redox potentialP h scale, buffers, redox potential
P h scale, buffers, redox potentialIfraSaifi1
 
Biochemistry 304 2014 student edition acids, bases and p h
Biochemistry 304 2014 student edition acids, bases and p hBiochemistry 304 2014 student edition acids, bases and p h
Biochemistry 304 2014 student edition acids, bases and p hmartyynyyte
 

Mais procurados (20)

IB Chemistry on Acid Base, pH Scale and Ionic Product Water, Kw
IB Chemistry on Acid Base, pH Scale and Ionic Product Water, KwIB Chemistry on Acid Base, pH Scale and Ionic Product Water, Kw
IB Chemistry on Acid Base, pH Scale and Ionic Product Water, Kw
 
Acids and bases
Acids and basesAcids and bases
Acids and bases
 
Ph and POH
Ph and POHPh and POH
Ph and POH
 
Ph scale
Ph scalePh scale
Ph scale
 
Chapter 8 a acid-base titration
Chapter 8 a acid-base titrationChapter 8 a acid-base titration
Chapter 8 a acid-base titration
 
Measurement of hydrogen ion concentration (p h)
Measurement of hydrogen ion concentration (p h)Measurement of hydrogen ion concentration (p h)
Measurement of hydrogen ion concentration (p h)
 
P H Scale And Calculations
P H Scale And CalculationsP H Scale And Calculations
P H Scale And Calculations
 
Ph and buffer
Ph and bufferPh and buffer
Ph and buffer
 
Titrimetrey as analytical tool, P K MANI
Titrimetrey  as analytical tool, P K MANITitrimetrey  as analytical tool, P K MANI
Titrimetrey as analytical tool, P K MANI
 
P H Scale
P H ScaleP H Scale
P H Scale
 
P h (titration) curves
P h (titration) curvesP h (titration) curves
P h (titration) curves
 
Acid-Base Titrations
Acid-Base TitrationsAcid-Base Titrations
Acid-Base Titrations
 
pH presentation
pH presentationpH presentation
pH presentation
 
pH by KK SAHU sir
 pH by KK SAHU sir pH by KK SAHU sir
pH by KK SAHU sir
 
Acid base titration
Acid base titrationAcid base titration
Acid base titration
 
2012 topic 18 2 buffer solutions
2012 topic 18 2   buffer solutions2012 topic 18 2   buffer solutions
2012 topic 18 2 buffer solutions
 
P h scale, buffers, redox potential
P h scale, buffers, redox potentialP h scale, buffers, redox potential
P h scale, buffers, redox potential
 
Ch 18 buffers
Ch 18 buffersCh 18 buffers
Ch 18 buffers
 
pH
pHpH
pH
 
Biochemistry 304 2014 student edition acids, bases and p h
Biochemistry 304 2014 student edition acids, bases and p hBiochemistry 304 2014 student edition acids, bases and p h
Biochemistry 304 2014 student edition acids, bases and p h
 

Destaque

IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.Lawrence kok
 
thesis body final
thesis body finalthesis body final
thesis body finalKane Logue
 
Lab acid titrate
Lab acid titrateLab acid titrate
Lab acid titrateUmi Biee
 
Determination of (a) Wavelength of maximum absorbance (λmax) and (b) Absor...
 Determination of  (a) Wavelength of maximum absorbance (λmax) and  (b) Absor... Determination of  (a) Wavelength of maximum absorbance (λmax) and  (b) Absor...
Determination of (a) Wavelength of maximum absorbance (λmax) and (b) Absor...Protik Biswas
 
Electrochemistry, electrophoresis, ise
Electrochemistry, electrophoresis, iseElectrochemistry, electrophoresis, ise
Electrochemistry, electrophoresis, iseAngelica Nhoj Gemora
 
BASIC FACTS ABOUT ACIDS AND ALKALIS
BASIC FACTS ABOUT ACIDS AND ALKALISBASIC FACTS ABOUT ACIDS AND ALKALIS
BASIC FACTS ABOUT ACIDS AND ALKALISScienceTutors
 
DETERMINATION OF THE EQUILIBRIUM CONSTANT FOR THE FORMATION OF TRI-IODIDE ION
DETERMINATION OF THE EQUILIBRIUM CONSTANT FOR THE FORMATION OF TRI-IODIDE IONDETERMINATION OF THE EQUILIBRIUM CONSTANT FOR THE FORMATION OF TRI-IODIDE ION
DETERMINATION OF THE EQUILIBRIUM CONSTANT FOR THE FORMATION OF TRI-IODIDE IONAugustine Adu
 
Chapter 21 Water, Electrolyte, and Acid-Base Balance
Chapter 21   Water, Electrolyte, and Acid-Base BalanceChapter 21   Water, Electrolyte, and Acid-Base Balance
Chapter 21 Water, Electrolyte, and Acid-Base Balance1957Hamlet
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...Lawrence kok
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldLawrence kok
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingLawrence kok
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyLawrence kok
 

Destaque (20)

Henderson Hasselbalch Equation
Henderson Hasselbalch EquationHenderson Hasselbalch Equation
Henderson Hasselbalch Equation
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
 
Acids and Bases
Acids and BasesAcids and Bases
Acids and Bases
 
thesis body final
thesis body finalthesis body final
thesis body final
 
#23 Key
#23 Key#23 Key
#23 Key
 
07. acid base disorders
07. acid base disorders07. acid base disorders
07. acid base disorders
 
Susb012
Susb012Susb012
Susb012
 
Lab acid titrate
Lab acid titrateLab acid titrate
Lab acid titrate
 
Determination of (a) Wavelength of maximum absorbance (λmax) and (b) Absor...
 Determination of  (a) Wavelength of maximum absorbance (λmax) and  (b) Absor... Determination of  (a) Wavelength of maximum absorbance (λmax) and  (b) Absor...
Determination of (a) Wavelength of maximum absorbance (λmax) and (b) Absor...
 
Electrochemistry, electrophoresis, ise
Electrochemistry, electrophoresis, iseElectrochemistry, electrophoresis, ise
Electrochemistry, electrophoresis, ise
 
BASIC FACTS ABOUT ACIDS AND ALKALIS
BASIC FACTS ABOUT ACIDS AND ALKALISBASIC FACTS ABOUT ACIDS AND ALKALIS
BASIC FACTS ABOUT ACIDS AND ALKALIS
 
DETERMINATION OF THE EQUILIBRIUM CONSTANT FOR THE FORMATION OF TRI-IODIDE ION
DETERMINATION OF THE EQUILIBRIUM CONSTANT FOR THE FORMATION OF TRI-IODIDE IONDETERMINATION OF THE EQUILIBRIUM CONSTANT FOR THE FORMATION OF TRI-IODIDE ION
DETERMINATION OF THE EQUILIBRIUM CONSTANT FOR THE FORMATION OF TRI-IODIDE ION
 
Acids And Alkali
Acids And AlkaliAcids And Alkali
Acids And Alkali
 
Potentio lab report
Potentio lab reportPotentio lab report
Potentio lab report
 
Chapter 21 Water, Electrolyte, and Acid-Base Balance
Chapter 21   Water, Electrolyte, and Acid-Base BalanceChapter 21   Water, Electrolyte, and Acid-Base Balance
Chapter 21 Water, Electrolyte, and Acid-Base Balance
 
E6 acid value
E6  acid valueE6  acid value
E6 acid value
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
 
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin couplingIB Chemistry on HNMR Spectroscopy and Spin spin coupling
IB Chemistry on HNMR Spectroscopy and Spin spin coupling
 
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
 

Semelhante a IB Chemistry on Acid Base Dissociation Constant and Ionic Product Water

Semelhante a IB Chemistry on Acid Base Dissociation Constant and Ionic Product Water (20)

ionization of water.ppt
ionization of water.pptionization of water.ppt
ionization of water.ppt
 
2012 topic 18 1 calculations involving acids and bases
2012 topic 18 1   calculations involving acids and bases2012 topic 18 1   calculations involving acids and bases
2012 topic 18 1 calculations involving acids and bases
 
Concept Attainment P H
Concept Attainment   P HConcept Attainment   P H
Concept Attainment P H
 
Ionic equilibria &amp; p h 1
Ionic equilibria &amp; p h 1Ionic equilibria &amp; p h 1
Ionic equilibria &amp; p h 1
 
Acid-Base-Equilibria.ppt
Acid-Base-Equilibria.pptAcid-Base-Equilibria.ppt
Acid-Base-Equilibria.ppt
 
Zum notes (09) acids and bases
Zum notes (09) acids and basesZum notes (09) acids and bases
Zum notes (09) acids and bases
 
Chem unit9
Chem unit9Chem unit9
Chem unit9
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Tang 03 ph & poh 2
Tang 03   ph & poh 2Tang 03   ph & poh 2
Tang 03 ph & poh 2
 
Lecture 19.2- pH
Lecture 19.2- pHLecture 19.2- pH
Lecture 19.2- pH
 
Lecture 19.2- pH
Lecture 19.2- pHLecture 19.2- pH
Lecture 19.2- pH
 
Tang 02 b equilibrium & water 2
Tang 02 b   equilibrium & water 2Tang 02 b   equilibrium & water 2
Tang 02 b equilibrium & water 2
 
CHM025-Topic-V_Acid-Base-Titrimetry_231215_154125.pdf
CHM025-Topic-V_Acid-Base-Titrimetry_231215_154125.pdfCHM025-Topic-V_Acid-Base-Titrimetry_231215_154125.pdf
CHM025-Topic-V_Acid-Base-Titrimetry_231215_154125.pdf
 
#20 Key
#20 Key#20 Key
#20 Key
 
Chem 2 - Acid-Base Equilibria III: pH, pOH, and pKw
Chem 2 - Acid-Base Equilibria III: pH, pOH, and pKwChem 2 - Acid-Base Equilibria III: pH, pOH, and pKw
Chem 2 - Acid-Base Equilibria III: pH, pOH, and pKw
 
2 p h and indicators
2 p h and indicators2 p h and indicators
2 p h and indicators
 
P h dr.surendran prambadath
P h dr.surendran prambadathP h dr.surendran prambadath
P h dr.surendran prambadath
 
Ab Lec2
Ab Lec2Ab Lec2
Ab Lec2
 
Equilibrium slideshare. WN.2011
Equilibrium slideshare. WN.2011Equilibrium slideshare. WN.2011
Equilibrium slideshare. WN.2011
 
Lect w7 152_abbrev_ intro to acids and bases_alg
Lect w7 152_abbrev_ intro to acids and bases_algLect w7 152_abbrev_ intro to acids and bases_alg
Lect w7 152_abbrev_ intro to acids and bases_alg
 

Mais de Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

Mais de Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Último

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 

Último (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 

IB Chemistry on Acid Base Dissociation Constant and Ionic Product Water

  • 1. http://lawrencekok.blogspot.com Prepared by Lawrence Kok Tutorial on Acid/Base Dissociation Constant, Ka, pKa, pKb and pH
  • 2. Strong/Weak Acid and Base Strong Acid/Weak Acid Strong acid - HI, HBr, HCI, HNO3, H2SO4, HCIO3, HCIO4 Weak Acid - CH3COOH, HF, HCN, H2CO3, H3BO3, H3PO4 Strong Base/ Weak Base Strong base - LiOH, KOH, NaOH, CsOH, Ca(OH)2 Weak Base - NH3, C2H5NH2, (CH3)2NH, C3H5O2NH2 Distinguish bet strong and weak acid Electrical conductivityRate of rxn pH Strong acid Strong acid → High ionization → High conc H+ → High conductivity → High rate rxn → Lower pH Strong acid Oxoacid O atom > number ionizable proton HNO3, H2SO4, HCIO3, HCIO4 Hydrohalic acid HI, HBr, HCI Weak acid Hydrohalic acid HF Oxoacid O atom ≥ number ionizable proton by 1 HCIO, HNO2, H3PO4 Carboxylic acid COOH Strong base – contain OH- or O2- LiOH, NaOH, CaO, K2O Ca(OH)2, Ba(OH)2 Weak base – contain electron rich nitrogen, N NH3, C2H5NH2, (CH3)2NH, C3H5O2NH2 Strong base Weak base 1 2 3 Weak acid 0.1 M HCI 0.1 M CH3COOH H+ 0.1 mole 0.0013 mole pH 1 (Low) 2.87 (High) Electrical conductivity High (Ionize completely) Low (Ionize partially) Rate with magnesium Fast Slow Rate with calcium carbonate Fast Slow Weaker acid → Low ionization → Low conc H+ → Low conductivity → Low rate rxn → High pH Strong acid HA A-H+ H+ H+ H+ H+ H+ H+ H+A- A- A- A- A- A- Ionizes completely Weak acid HA HA H+ A- H+ H+ A- A- HA HA HA HA HA HA Ionizes partially
  • 3. Easier using pH scale than Conc [H+] • Conc H+ increase 10x from 0.0001(10-4) to 0.001(10-3) - pH change by 1 unit from pH 4 to 3 • pH 3 is (10x) more acidic than pH 4 • 1 unit change in pH is 10 fold change in Conc [H+] Conc OH- increase ↑ by 10x pH increase ↑ by 1 unit pOH with Conc OH- pOH = -log [OH- ] [OH- ] = 0.0000001M pOH = -log [0.0000001] pOH = -log1010-7 pOH = 7 pH + pOH = 14 pH + 7 = 14 pH = 7 (Neutral) pH with Conc H+ pH = -log [H+ ] [H+ ] = 0.0000001M pH = -log [0.0000001] pH = -log1010-7 pH = 7 (Neutral) Conc H+ increase ↑ by 10x pH decrease ↓ by 1 unit pH measurement of Acidity of solution • pH is the measure of acidity of solution in logarithmic scale • pH = power of hydrogen or minus logarithm to base ten of hydrogen ion concentration ← Acidic – pH < 7 Alkaline – pH > 7 → pOH with Conc OH- pOH = -log [OH- ] [OH- ] = 0.1M pOH = -log[0.1] pOH = 1 pH + pOH = 14 pH + 1 = 14 pH = 13 (Alkaline) pH with Conc H+ pH = -log [H+ ] [H+ ] = 0.01M pH = -log [0.01] pH = -log1010-2 pH = 2 (Acidic) Easier pH scaleConc H+
  • 4. Conc [H+ ] = 1 x 10-12 pH = -lg[H+ ] pH = -lg[10-12 ] pH = 12 Conc [OH- ]= 1 x 10-2 pOH = -log10[OH-] pOH = -log1010-2 = pOH = 2 pH + pOH = 14 pH + 2 = 14 pH = 12 Conc [H+ ] = 1 x 10-2 pH = -lg[H+ ] pH = -lg[10-2 ] pH = 2 Alkaline Alkaline Acidic Acidic Kw - Ionic product constant water Using conc [H+] pH = -log10[H+] pH = -log10[H+] pOH = -log10[OH-] pH + pOH = 14 Kw = [H+][OH-] Using conc [OH-] pOH = -log10[OH-] Conc [OH- ]= 1 x 10-12 pOH = -log10[OH-] pOH= -log1010-12 =pOH = 12 pH + pOH = 14 pH + 12 = 14 pH = 2 Formula for acid/base calculation     OH OHOH Kc 2 3         OHOHOHKc 32     OHOHKw 3     OHOH3 14 100.1   7714 101101100.1     7 101  OH     OHOHOHOH 322 H2O dissociate forming H3O+ and OH- (equilibrium exist) 14 100.1  wK Dissociation water small [H2O] is constant Kw = 1.0 x 10-14 Ionic Product constant water at -25C Kc - Dissociation constant water   7 3 101  OH
  • 5. Number sig fig in log calculation Significant number in log calculation log10(3575)=3.55327 = 3.5532 log10(3.000x104) = 4.477121 = 4.4771 log10(3.3 x 104) = 4.5185 = 4.51 Calculation involve pH = -log10[H+] Conc H+ = 1.9 x 10-4 pH= -log10[1.9 x 10-4] = 3.721 = 3.72 Measurement scale not linear • Simple average CANNOT be used • Average of pH 7, pH 8, pH 9 pH scale is logarithmic, pH = -log[H+] Correct average = convert to H+ conc pH 7 = -log10[H+] → H+ = 10-7 pH 8 = -log10[H+] → H+ = 10-8 pH 9 = -log10[H+] → H+ = 10-9 pH pH= -lg10H+ Conc H+ 0 0 = -lg10100 1.0 1 1 = -lg1010-1 0.1 2 2 = -lg1010-2 0.01 3 3 = -lg1010-3 0.001 4 4 = -lg1010-4 0.0001 5 5 = -lg1010-5 0.00001 6 6 = -lg1010-6 0.000001 7 7 = -lg1010-7 0.0000001 8 8 = -lg1010-8 0.00000001 9 9 = -lg1010-9 0.000000001 10 10= -lg1010-10 0.0000000001 11 11= -lg1010-11 0.00000000001 12 12= -lg1010-12 0.000000000001 13 13= -lg1010-13 0.0000000000001 14 14= -lg1010-14 0.00000000000001 Easier using pH scale than Conc [H+] • Low pH – High H+ conc – More acidic • High pH – Low H+ conc – Less acidic • pH 3 (10x) more acidic > than pH 4 • 1 unit change in pH is 10 fold change in Conc [H+] Relationship between pH and Conc H+ Uncertainty involving pH 8 3 987   Average Uncertainty involving pH 4 sig fig 5 sig fig/4 decimal place 4 sig fig 5 sig fig/4 decimal place Conc H+ = 3.2 x 10-5 M pH = - log10[3.2 x 10-5]= 4.4948 = 4.49 2 sig fig 3 sig fig/2 decimal place 2 sig fig3 sig fig/2 decimal place 2 sig fig3 sig fig/2 decimal place 2 sig fig 3 sig fig 2 sig fig3 sig fig 2 sig fig 3 sig fig pH solution = 7.40. Cal conc of H+ ions 7.40 = -log10 [H+] [H+] = 10-7.40 = 4.0 x 10-8 3 sig fig 2 sig fig 2 sig fig 4.7 ]107.3lg[ 107.3 3 101010 8 8 987         pH pH Average Average
  • 6. pH weak acid at various concentration   OHCOOCHOHCOOHCH 3323 Extend of dissociation depend on initial concentration acid Conc of acid Observed pH CH3COOH Calculated pH HCI 0.10 2.7 1.0 0.010 3.0 2.0 0.0010 3.5 3.0 0.00010 4.2 4.0   CIHHCI Weak acid Strong acid Dissociate partially Dissociate completely At same acid concentration • HCI has HIGHER [H+] > CH3COOH • HCI has LOWER pH < CH3COOH • HCI dissociate completely- Strong acid • CH3COOH dissociate partially- Weak acid At decreasing acid concentration • Extend of dissociation for CH3COOH increase • pH weak acid closer to strong acid • Dilution increase the extend of dissociation Conc decrease   OHCOOCHOHCOOHCH 3323 Trends Addition Water Dilution shift equilibrium to right Decrease conc of CH3COOH, CH3COO- and H+ Conc on left side is more effected due to CH3COO- and H+ Equilibrium shift to right to increase conc of CH3COO- and H+ again Extend of dissociation for acid increase (shift to right) О О Concept Map [H+] [OH-] pH pOH Kw = [H+] x [OH-] = 1 x 10-14 pH + pOH = 14 pH = -lg [H+] [H+] = 10-pH pOH = -lg [OH-] [OH-] = 10-pOH
  • 7.     OHOH3 14 100.1   7714 101101100.1     OHOHOHOH 322 H2O dissociate forming H3O+ and OH- (equilibrium exist) 14 100.1  wK Kw = 1.0 x 10-14 Ionic Product constant water at -25C Kc – Ionic Product Constant Water H+ OH- Ionic Product Water, Kw, is Temperature dependent Temp/ C Kw [H+] [OH-] pH 0 1.5 x 10-15 0.39 x 10-7 0.39 x 10-7 7.47 10 3.0 x 10-15 0.55 x 10-7 0.55 x 10-7 7.27 20 6.8 x 10-15 0.82 x 10-7 0.82 x 10-7 7.08 25 1.0 x 10-14 1.00 x 10-7 1.00 x 10-7 7.00 30 1.5 x 10-14 1.22 x 10-7 1.22 x 10-7 6.92 40 3.0 x 10-14 1.73 x 10-7 1.73 x 10-7 6.77 50 5.5 x 10-14 2.35 x 10-7 2.35 x 10-7 6.63   OHOHOHOH 322     OHOHKw 3 molkJH /57 Temp increase ↑ → Equilibrium shift right → Reduce Temp ↓ → More ion form Kw increase ↑ Temp ↑ - shift right – more H+ /OH- – Kw ↑ Temp ↑ - Kw ↑ – H+ ion ↑ - pH ↓ At 25C, Kw - 1.0 x 10-14 Conc [H+] = [OH−]= 1.0 x 10-7 Neutral pH = 7 At 50C, Kw - 5.5 x 10-14 Conc [H+]= [OH−]= 2.35 x 10-7 Neutral pH = 6.63     OHOHKw 3 At 25C, Kw - 1.0 x 10-14 •Kw = [H+][OH−] • 1.0 x 10-14 = [H+][OH−] • [H+][OH−] = [10-7][10-7] • pH = -lg[H+ ] • pH = -lg [1.0 x 10-7] • Neutral pH = 7 At 50C, Kw - 9.3 x 10-14 •Kw = [H+][OH−] •9.3 x 10-14 = [H+][OH−] •[H+]2 = 9.3 x 10-14 •[H+] = 3.05 x 10-7 • pH = -lg[3.05 x 10-7] • Neutral pH = 6.5 Amount same Amount same
  • 8. Ionic Product Water, Kw, is Temperature dependent Temp/ C Kw [H+] [OH-] pH 0 1.5 x 10-15 0.39 x 10-7 0.39 x 10-7 7.47 10 3.0 x 10-15 0.55 x 10-7 0.55 x 10-7 7.27 20 6.8 x 10-15 0.82 x 10-7 0.82 x 10-7 7.08 25 1.0 x 10-14 1.00 x 10-7 1.00 x 10-7 7.00 30 1.5 x 10-14 1.22 x 10-7 1.22 x 10-7 6.92 40 3.0 x 10-14 1.73 x 10-7 1.73 x 10-7 6.77 50 5.5 x 10-14 2.35 x 10-7 2.35 x 10-7 6.63   OHOHOHOH 322     OHOHKw 3 molkJH /57 Temp increase ↑→ Equilibrium shift right → Reduce Temp ↓→ More ion form Kw increase ↑ Temp ↑ - shift right – more H+ /OH- – Kw ↑ Temp ↑ - Kw ↑ – H+ ion ↑ - pH ↓ At 25C, Kw - 1.0 x 10-14 Conc [H+] = [OH−]= 1.0 x 10-7 Neutral pH = 7 At 50C, Kw - 5.5 x 10-14 Conc [H+]= [OH−]= 2.35 x 10-7 Neutral pH = 6.63 Kc ionization water = 1.80 x 10-16. Based on magnitude of Kc which direction does it lies? Calculate Kw for water assume [H2O] is constant = 55.6 mol/dm3     OH OHH Kc 2   Kw = 1.0 x 10-14 Ionic Product constant water at -25C • Direction to the left • Mostly undissociated water molecules    treac product Kc tan             14 16 16 100.1 1080.155 55 1080.1        OHH OHH OHH 14 100.1  wK   OHHOH2       OHHOHKK cw 2 Fraction of ionized = Amt ionized = 1.00 x 10-7 = 18 x 10-10 Initial amt 55.6   7714 101101100.1   Kc small 18 molecule ionized in 10 000 000 000 Amount same Amount same
  • 9. Formula for acid/base calculation [OH-][H+] Kw = [H+] x [OH-] = 1 x 10-14 [OH-] = 10-pOHpOH = -lg [OH-] pOHpH pH = -lg [H+] [H+] = 10-pH pH + pOH = 14 Formula for acid/base calculation Dissociation Constant for Weak Acid pH = -log10[H+] pOH = -log10[OH-] pH + pOH = 14 pH + pOH = pKw Kw = [H+][OH-] Ka x Kb = Kw Ka x Kb = 1 x 10-14 pKa = - lg10Ka pKb = - lg10Kb pKa + pKb = pKw pKa + pKb = 14   AHHA     HA AH Ka     HCOOCHCOOHCH 33         COOHCH H COOHCH HCOOCH Ka 3 2 3 3   Dissociation Constant for Weak Base   OHBHOHB 2     B OHBH Kb     OHNHOHNH 423         3 2 3 4 NH OH NH OHNH Kb     OHCOOCHOHCOOHCH 3323   OHCOOCHOHCOOHCH 3323     COOHCH OHCOOCH Ka 3 33     OHCOOHCHOHCOOCH 323        COOCH OHCOOHCH Kb 3 3 Derive Ka x Kb = Kw Relationship bet Weak acid and its conjugate base Weak acid Conjugate Base             COOCH OHCOOHCH COOHCH OHCOOCH 3 3 3 33                 OHOH COOCH OHCOOHCH COOHCH OHCOOCH 3 3 3 3 33 wba KKK 
  • 10. Formula for acid/base calculation Ka /Kb measure equilibrium position Ka/Kb large ↑ – ↑ dissociation – shift to right – favour product Ka/Kb large ↑ – pKa /pKb small ↓ – Stronger acid/base Strong acid Large ↑ Ka Weak acid Small ↓ Ka Strong base Large ↑ Kb Weak base Small ↓Kb ↑ Ka → ↓ pKa Ka /Kb measure equilibrium position Ka /Kb small ↓ – ↓ dissociation – shift to left – reactant favour Ka /Kb small ↓ – pKa /pKb high ↑– Weak acid/base ↑ Kb → ↓ pKb ↓ Ka → ↑ pKa ↓ Kb →↑ pKb For weak acid/ base   CIHHCI   OHNHOHNH 423 Shift right Shift left CH3COOH + H2O ↔ CH3COO- + H3O+ CH3COOH CH3COO-CH3COOH ↔ CH3COO- Strong Acid Weak conjugate BaseConjugate acid base pair Small dissociation constant Strong Acid Weak base ba KK / Strongacid Strongbase
  • 11. Formula for acid/base calculation [OH-][H+] Kw = [H+] x [OH-] = 1 x 10-14 [OH-] = 10-pOHpOH = -lg [OH-] pOHpH pH = -lg [H+] [H+] = 10-pH pH + pOH = 14 Formula for acid/base calculation Dissociation Constant for Weak Acid pH = -log10[H+] pOH = -log10[OH-] pH + pOH = 14 pH + pOH = pKw Kw = [H+][OH-] Ka x Kb = Kw Ka x Kb = 1 x 10-14 pKa = - lg10Ka pKb = - lg10Kb pKa + pKb = pKw pKa + pKb = 14   AHHA     HA AH Ka     HCOOCHCOOHCH 33         COOHCH H COOHCH HCOOCH Ka 3 2 3 3   Dissociation Constant for Weak Base   OHBHOHB 2     B OHBH Kb     OHNHOHNH 423         3 2 3 4 NH OH NH OHNH Kb   Dissociate partially ↔ used Weak acid/base Ka /Kb value pKa /pKb value easier! Click here weak acid dissociation Click here weak acid dissociation Click here CH3COOH dissociation Click here strong acid ionization Weak acid/base Animation
  • 12. What is pH for [H+ ] = 1 x 10-12 M pH = -lg [10-12 ] pH = 12 What is conc of H+ of pH 3.20? 3.20 = -lg [H+ ] [H+ ] = 10 –2.20 [H+ ] = 6.3 x 10-4 pH = -log10[H+] pOH = -log10[OH-] pH + pOH = 14 Kw = [H+][OH-] Formula acid/base calculation 2 sig fig 1 sig fig 3 sig fig 2 sig fig What is pH for [OH- ] = 0.15M pOH = -lg [0.15] pOH = 0.823 pH + pOH = 14 pH = 14 – 0.823 = 13.2 pOH = -log[OH-] 3 sig fig 2 sig fig Calculate conc of H+, OH- and pH for 0.001 M HCI. 1 2 3 4   CIHHCI 0.001 ↔ 0.001 0.001   OHHOH2 HCIH2O     OHHKw Assuming H+ all from HCI = 0.0010 )()( 2OHHHCIHH   = 0.001 Negligible / too little     OHH14 100.1     0.3 001.0log log 10 10     pH pH HpH      0.31114 11 101 001.0 100.1 001.0100.1 11 14 14           pH pOH OH OH or Cal conc OH- /pH when 3.o x 10-4 H+ add water HCI H2O   CIHHCI  OHHOH2     OHHKw     OHH14 100.1      11 4 14 414 103.3 100.3 100.1 100.3100.1           OH OH 3x10-4 ↔ 3x10-4     52.3 100.3log log 4 10 10      pH pH HpH 5
  • 13.          11 10loglog 101 001.0 100.1 001.0100.1 11 11 14 14            pH HpH H H     00.1 10.0log log 10 10     pH pH HpH Cal pH of 0.10 M HCI H2O Assuming H+ all from HCI = 0.10 )()( 2OHHHCIHH     CIHHCI 0.10 mol 0.10 mol = 0.10 Strong Acid/Base calculation Strong acid • 100% dissociation (complete) Strong base • 100% dissociation (complete)   CIHHCI   OHKKOHShift right Shift right 2 sig fig3 sig fig Cal pH of 0.10M H2SO4 H2O   2 442 2 SOHSOH 0.10 mol 0.20 mol Assuming H+ all from H2SO4 = 0.20     700.0 20.0log log 10 10     pH pH HpH )()( 242 OHHSOHHH   = 0.20 2 sig fig3 sig fig   OHKKOH 0.001 mol 0.001 mol Cal pH of 0.001 M KOH H2O Assume OH- from KOH = 0.10 )()( 2OHOHKOHOHOH       OHHKw = 0.001     11,3 001.0log log     pHpOH pOH OHpOH   OHCaOHCa 2)( 2 2 0.001 mol 0.002 mol Cal pH of 0.001M Ca(OH)2 H2O Assume OH- from Ca(OH)2 = 0.002 )()( 2OHOHKOHOHOH   = 0.002     3.11,7.2 002.0log log     pHpOH pOH OHpOH     OHHKw        3.11 105log 105 002.0 100.1 002.0100.1 12 12 14 14            pH pH H H
  • 14.     0.2 01.0log log 10 10     pH pH HpH     OH OHOH Kc 2 3         OHOHKOHK wc 32     OHOH3 14 100.1   7714 101101100.1     OHOHOHOH 322 H2O dissociate forming H3O+ and OH- (equilibrium exist) 14 100.1  wK Dissociation water small [H2O] is constant Kw - Ionic product constant water Kw = 1.0 x 10-14 Ionic Product constant water at -25C Kc - Dissociation constant water Cal conc of H+ ,OH- and pH of water Cal conc of H+ ,OH- and pH of 0.01M HCI   OHHOH2     OHHKw     OHH14 100.1   7714 101101100.1     7 101  H H2O H2O HCI   OHHOH2 H2O     OHHKw     OHH14 100.1 Assuming H+ all from HCI = 0.01 )()( 2OHHHCIHH   H+ = 0.01 + 1.0x10-12 = 0.01 + 0.000000000001 ≈ 0.01   OHHOH2 H+ = 1x10-12 OH- = 1x10-12   CIHHCI 0.01 mol 0.01 mol0.01 1 mol ↔ 1 mol 1mol 0.000000000001 0.000000000001 H+ OH- = 0.01 = 0.000000000001 or   0.7 101log 7 10    pH pH      0.21214 12 100.1 01.0 100.1 01.0100.1 12 14 14           pH pOH OH OH
  • 15.     OH OHOH Kc 2 3         OHOHKOHK wc 32     OHOH3 14 100.1   7714 101101100.1     OHOHOHOH 322 H2O dissociate forming H3O+ and OH- (equilibrium exist) 14 100.1  wK Dissociation water small [H2O] is constant Kw - Ionic product constant water Kw = 1.0 x 10-14 Ionic Product constant water at -25C Kc - Dissociation constant water Cal conc of H+ ,OH- and pH of 0.01M KOH Cal conc of H+ ,OH- and pH of 0.1M H2SO4     7.0 2.0log log 10 10     pH pH HpH H2O KOH H2SO4   OHHOH2 H2O     OHHKw     OHH14 100.1 Assuming H+ all from H2SO4 = 0.2      7.03.1314 3.13 100.5 2.0 100.1 2.0100.1 14 14 14           pH pOH OH OH )()( 242 OHHSOHHH   H+ = 0.2 + 5 x 10-14 = 0.2 + 0.000000000000005 ≈ 0.2   OHHOH2 H+ = 5x10-14 OH- = 5x10-14   2 442 2 SOHSOH 0.1 mol 0.2 mol 0.2 1 mol ↔ 1 mol 1 mol 0.00000000000005 0.0000000000005 H+ OH- = 0.2 = 0.00000000000005   OHHOH2 1 mol ↔ 1 mol 1 mol   OHHOH2     OHHKw   OHKKOH 0.01 Assuming OH- all from KOH = 0.01 )()( 2OHOHKOHOHOH   = 0.01 = 0.000000000001          12 10log log 101 01.0 100.1 01.0100.1 12 10 10 12 14 14              pH pH HpH H H or H+ = 1x10-12 OH- = 1x10-12 0.01 mol 0.01 mol
  • 16. Approximation and Assumption Ka very small < 10-5 Not much change acid conc Approximation is VALID Ionization make no diff to conc HA SMALLKa  SMALLKa  Find pH of 0.10 M HA, weak acid Ka - 1.8 x 10-5 - Little product form - Initial conc reactant unchanged Using approximation 0.10 – x ≈ 0.10 HA ↔ H+ + A- Initial conc 0.10 0 0 Change 0.10 - x +x +x Eq Conc 0.10 – x +x +x HA ↔ H+ + A-     HA AH Ka      x x    10.0 108.1 2 5    10.0 108.1 2 5 x   3 1034.1  x [HA] = (0.10 – 0.00134) = 0.098 ≈ 0.10 [HA]initial ≈ [HA]eq Calculation Weak Acid (Using ICE Method)     87.2 1034.1log log 3 10 10      pH pH HpH HA ↔ H+ + A- Find Ka of 0.02 M HA, weak acid, [H]+ = 0.0012M HA ↔ H+ + A- Initial conc 0.02 0 0 Change 0.02 – 0.0012 +0.0012 +0.0012 Eq Conc ≈ 0.02 +0.0012 +0.0012     HA AH Ka       02.0 0012.00012.0 aK Using approximation 0.02 – 0.0012 ≈ 0.02 5 102.7  aK Find Ka of 0.01M HA, weak acid, pH = 5.0 HA ↔ H+ + A- HA ↔ H+ + A- Initial conc 0.01 0 0 Change 0.01 – 1x10-5 +1x10-5 +1x10-5 Eq Conc ≈ 0.01 +1x10-5 +1x10-5     5 10 101 log0.5     H H     HA AH Ka       01.0 101101 55   aK Using approximation 0.01 – 1x10-5 ≈ 0.01 8 108.1  aK < 5% rule %3.1%100 10.0 1034.1 %5 3     concInitial x
  • 17. Approximation and Assumption SMALLKa  SMALLKa  HA ↔ H+ + A-     HA AH Ka      HA H 2 6 101.4      4 104.2  HA Calculation Weak Acid (Using ICE Method)       5 101.3 log50.4 log       H H HpH Find pH of 0.100M HA, weak acid, pKa = 4.20     HA AH Ka     600.2 1051.2log 3    pH pH Find Conc HA, weak acid, pH = 4.50, Ka = 4.1 x 10-6    HA 25 6 101.3 101.4     HA ↔ H+ + A-    100.0 1031.6 2 5    H     5 1031.6 log2.4 log     a a aa K K KpK   3 1051.2  H 3 sig fig4 sig fig Find Ka of 0.01M CH3COOH, pH = 3.4 CH3COOH ↔ CH3COO- + H+ Initial conc 0.01 0 0 Change 0.01 – 0.0004 +0.0004 +0.0004 Eq Conc ≈ 0.01 +0.0004 +0.0004             0004.001.0 104 24 3 2 3 3     COOHCH H COOHCH HCOOCH Ka       4 104 log4.3 log       H H HpH 5 106.1  aK    01.0 104 24  aK Using approximation 0.01 – 0.0004 ≈ 0.01 Ka very small < 10-5 Not much change acid conc Approximation VALID Ionization make no diff to conc acid Find pH of 0.75M CH3COOH, Ka = 1.8 x 10 -5 CH3COOH ↔ CH3COO- + H+ Initial conc 0.75 0 0 Change 0.75 - x +x +x Eq Conc ≈ 0.75 +x +x         x x COOHCH HCOOCH Ka    75.0 2 3 3 Using approximation 0.75 – x ≈ 0.75    75.0 108.1 2 5    H   3 107.3  H   40.2 107.3log 3    pH pH
  • 18. Approximation and Assumption Kb very small < 10-5 Not much change reactant conc Approximation is VALID Ionization make no diff to conc B SMALLKb  SMALLKb  Find pH of 0.010M B, weak base Kb - 1.8 x 10-5 - Little product form - Initial conc reactant unchanged Using approximation 0.01 – x ≈ 0.01 B + H2O ↔ BH+ + OH- Initial conc 0.01 0 0 Change 0.01 - x +x +x Eq Conc 0.01 – x +x +x B + H2O ↔ BH+ + OH-     B OHBH Kb      x x    010.0 108.1 2 5 4 102.4  x [B] = (0.01 – 0.00042) ≈ 0.01 [B]initial ≈ [B]eq Calculation Weak Base (Using ICE Method)     6.10 37.314 37.3 102.4log log 4        pH pH pOH pOH OHpOH Find Kb of 0.030M B, weak base, pH = 10.0 Using approximation 0.03 – 0.0001 ≈ 0.03 7 103.3  bK    010.0 108.1 2 5 x   B + H2O ↔ BH+ + OH- B + H2O ↔ BH+ + OH- Initial conc 0.03 0 0 Change 0.03 - x +x +x Eq Conc 0.03 – x +x +x     B OHBH Kb      x x Kb   030.0 2       4 100.1 log4 log 1014        OH OH OHpOH pOH    030.0 100.1 24  bK Find conc of B, weak base, pH 10.8, Kb - 4.36 x 10-4 B + H2O ↔ BH+ + OH-     B OHBH Kb      B 22.3 4 100.1 1036.4           2.3 100.1 log2.3 log 8.1014        OH OH OHpOH pOH   4 101.9  B < 5% rule %2.4%100 01.0 102.4 %5 4     concInitial x
  • 19.        x x NH OH    20.0 2 3 2    20.0 108.1 2 5 x   Approximation and Assumption SMALLKb  SMALLKb  Calculation Weak Base (Using ICE Method)     60.11400.214 400.2 1046.4log log 3       pH pOH pOH OHpOH   3 1046.4  OH     3 4 NH OHNH Kb   3 109.1  x Using approximation 0.20 – 0.0019 ≈ 0.20   4 101.9  B Find pH of 0.0500M B, weak base pKb - 3.40 B + H2O ↔ BH+ + OH-     B OHBH Kb      0500.0 1098.3 2 4    OH     4 1098.3 log40.3 log     b b bb K K KpK Find conc of B, weak base pH - 10.8, pKa = 10.64 B + H2O ↔ BH+ + OH-     B OHBH Kb      B OH 2 4 1036.4        4 1036.4 log36.3 log 36.3 64.1014 14        b b bb b b ba K K KpK pK pK pKpK       4 103.6 log2.3 log 2.38.1014        OH OH OHpOH pOH    B 24 4 103.6 1036.4     NH3 + H2O ↔ NH4 + + OH- Initial conc 0.20 0 0 Change 0.20 – x +x +x Eq Conc ≈ 0.20 +x +x Find pH of 0.20M NH3 - Kb - 1.8 x 10-5     28.11 72.214 72.2 109.1log log 3        pH pH pOH pOH OHpOH Find Kb of 0.10M CH3NH2 , pH = 11.8 CH3NH2 + H2O ↔ CH3NH3 + + OH- Initial conc 0.10 0 0 Change 0.10 – x +x +x Eq Conc 0.10 - x +x +x     23 33 NHCH OHNHCH Kb      x x   10.0 2     3 103.6 log20.2 20.28.1114 14       OH OH pOH pOHpH    3 3 103.610.0 103.6     bK 4 102.4  bK > 5% rule Approximation %7.6%100 10.0 103.6 %5 3     concInitial x
  • 20. H+ = 1 x 10-8 + 9.5 x 10-8 H+ = 10.5 x 10-8     980.6 105.10log log 8 10 10      pH pH HpH H2O HCI   OHHOH2 H2O     OHHKw    xx  814 101100.1 Assuming H+ from HCI and H2O )()( 2OHHHCIHH     OHHOH2   CIHHCI x H+ = 1 x 10-8 + x   8 105.9  x Cal pH of 0.10M HCI   CIHHCI 0.10 mol 0.10 mol Assuming H+ all from HCI = 0.10 )()( 2OHHHCIHH   = 0.10     00.1 10.0log log 10 10     pH pH HpH 2 sig fig3 sig fig Cal pH of 1 x 10-8M HCI 1 x 10-8Assuming dissociation H+ ions from water = x 1 x 10-8 pH of very STRONG CONC acid Strong acid • 100% dissociation (complete)   CIHHCI Shift right H+ ions from water is negligible Assume all H+ ions come from ACID pH of very STRONG DILUTED acid H+ ions from water is SIGNIFICANT All H+ ions come from ACID and H2O Assuming H+ from HCI = 1 x 10-8     0.8 101log log 8 10 10      pH pH HpH ALKALINE!!!!!!! Click here to view Table for Ka/KbExpt acid/base (RSC) Click here to view 1 x 10-8
  • 21. Formula for acid/base calculation [OH-][H+] Kw = [H+] x [OH-] = 1 x 10-14 [OH-] = 10-pOHpOH = -lg [OH-] pOHpH pH = -lg [H+] [H+] = 10-pH pH + pOH = 14 pH = -log10[H+] pOH = -log10[OH-] pH + pOH = 14 pH + pOH = pKw Kw = [H+][OH-] Ka x Kb = Kw Ka x Kb = 1 x 10-14 pKa = - lg10Ka pKb = - lg10Kb pKa + pKb = pKw pKa + pKb = 14 HF + H2O ↔ F- + H3O+ STRONG BASE WEAK BASE Kb increase pKb increasepKb decrease Kb decrease STRONG ACID WEAK ACID Ka increase pKa decrease Ka decrease pKa increase Ka pKa Kb pKb pKa = -lg [Ka] pKb = -lg [Kb] Ka = 10-pKa Kb = 10-pKb Ka x Kb = Kw Ka x Kb = 1 x 10-14 pKa + pKb = 14 pKa + pKb = pKw Find Kb for F- , Ka HF - 6.8 x 10-4 HF (acid) - F- (conjugate base) 4 4 14 14 1098.3 108.6 101 101 )()(             b b a b wba K K K K KFKHFK       3 4 2 4 2 442 4243 POHHPO HPOHPOH POHHPOH Successive acid dissociation constant   3 443 3 POHPOH Polyprotic acid – dissociate releasing 1 proton each time 13 3 8 2 3 1 108.4 102.6 105.7       K K K   3 443 3 POHPOH + Less acidic Increasing difficulty removing H+ from negatively charged ion Most acidic wba KKK 
  • 22. Click here on pH calculation Video on Acid/ Base Click here on pKa /pKb calculation How pH = pOH = 14 derived How Ka x Kb = Kw derived Simulation on Acid/ Base Click here on pH animation Click here to acid/base simulation Click here on weak base simulation Click here strong acid ionization Click here on weak acid dissociation
  • 23. Acknowledgements Thanks to source of pictures and video used in this presentation Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ http://4photos.net/en/image:44-225901-Water_droplets_on_blue_backdrop__images Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com