SlideShare uma empresa Scribd logo
1 de 51
EIGHT RULES OF AROMATICITY
Miquel Solà
Institute of Computational Chemistry and Catalysis
Universitat de Girona
EIGHT RULES OF AROMATICITY5/2/2015
3
1825
1900
Benzene synthesis
Polycyclic Aromatic
Hydrocarbons
Heterocycles
1938 Aromatic Transition States
1959 Homoaromaticity
1964Möbius Aromaticity
1972
Triplet Aromaticity
4n Baird rule
1978 Three-dimensional
Aromaticity
1979-Aromaticity
1872
Kekulé
Benzene Structure
1855Chemical
Aromaticity
1931
1959
4n+2 Hückel rule
p-sextets
150 YEARS OF AROMATICITY
5/2/2015 EIGHT RULES OF AROMATICITY
4
Aromaticity is and old concept that is still very useful!
1985
1991
2001
Fullerenes
2007
All-metal Aromaticity
2005d-orbital Aromaticity
Nanotubes
2008
-Aromaticity
f-Aromaticity
1982
Metallabenzenes
2000 2(N+1)2 Hirsch’s rule
…and more recently
5/2/2015 EIGHT RULES OF AROMATICITY
What is aromaticity?
“Aromaticity is a manifestation of electron delocalization in closed
circuits, either in two or three dimensions, which results in
energy lowering, often quite substantial, and a variety of unusual
chemical and physical properties. These include a tendency
toward bond length equalization, unusual reactivity, and
characteristic spectroscopic features as well as distinctive
magnetic properties related to strong induced ring currents”
Chen and Schleyer et al. Chem. Rev. 2005, 105, 3842.
In 2014, in every 42 minutes appeared a paper in which the
word “aromatic*” was in the title, keywords or the abstract!
5/2/2015 EIGHT RULES OF AROMATICITY
What is aromaticity?
5/2/2015 EIGHT RULES OF AROMATICITY
R. Hoffmann, V.I. Minkin, B.K. Carpenter, Hyle, Int. J. Philos. Chem. 1997, 3, 3
“Widely applied for the characterization of specific features of
conjugated cyclic molecular systems, the notion of
aromaticity lacks a secure physical basis. Not that this has
stopped aromaticity from being a wonderful source of
creative activity in chemistry. We can think of no other
concept that has led to so much exciting chemistry! Yet,
although numerous indices of aromaticity have been
designed, based on energetic, geometrical and magnetic
criteria, no single property exists whose measurement could
be taken as a direct, unequivocal measure of aromaticity.”
What is aromaticity?
Aromaticity is not an observable. Consequently, it is not well
defined and there is not a unique and generally accepted
measure of aromaticity.
5/2/2015
Many criteria have been used to develop indices of aromaticity:
– Energetic (ASEs)
– Structural or Geometrical (HOMA,…)
– Magnetic (NICS, ring currents, 1H NMR…)
– Electronic (hardness, electron delocalization…)
EIGHT RULES OF AROMATICITY
5/2/2015
Indices of aromaticity
 

bondsn
1i
2
iopt RR
n
α
1HOMA
Ropt = 1,388 Å
a = 257,7
 
3
1
, 3
3
n
n n
PDI





Symmetry Delocalization
1.389
0.074
0.100
Magnetic shielding tensor
DI or 2c-ESI
QTAIM partition
E. Matito, M. Duran and MS, J. Chem. Phys. 2005, 122, 014109
J. Poater, X. Fradera, M. Duran and MS, Chem. Eur. J. 2003, 9, 400
EIGHT RULES OF AROMATICITY
5/2/2015
Indices of aromaticity
Multicenter delocalization indices
 For monodeterminantal WFs:
M. Giambiagi, M. S. de Giambiagi, C. D. dos Santos Silva and A. P. de Figuereido, Phys. Chem.
Chem. Phys. 2000, 2, 3381
P. Bultinck, R. Ponec and S. van Damme, J. Phys. Org. Chem. 2005, 18, 706
A = {A1, A2, …, AN}
     Nii
iii
iiiiiiring ASASASnnI N
N
N 1
21
32211
,,,
21)( A
)(
2
1
)(
)(
AA
A

P
ringI
N
MCI
EIGHT RULES OF AROMATICITY
Rules of aromaticity. Where do they come from?
Aromatic compounds are usually symmetric and they have
degenerate orbitals.
5/2/2015
In this case only some special numbers of electrons leads to a
closed-shell or half-filled same spin open-shell structures.
Closed-shell or half-filled same spin open-shell structures
provide an extra stabilization of the system (aromatic
stabilization) and justifies the existence of a series of aromaticity
rules.
EIGHT RULES OF AROMATICITY
1. 4n+2 Hückel’s rule
5/2/2015
It strictly holds for monocyclic systems like benzene and
cyclooctatetraene (annulenes with Dnh symmetry)
Dnh
Stability comes from the closed-shell electronic configuration
(equivalent to the octet rule)
even n
EIGHT RULES OF AROMATICITY
1. 4n+2 Hückel’s rule
5/2/2015
Cyclohexene
1.828
1.008
0.976
0.978
1.389
Benzene
 Symmetry and significant delocalization
(C,C’)m=0.074
(C,C’)p=0.100
1.008
0.976
1.389
1.3891.389
1.389
1.389
 meta vs para-delocalization
Electronic delocalization in aromatic species
(C,C’)m=0.043
(C,C’)p=0.009
(C,C’)m=0.059
(C,C’)p=0.014
EIGHT RULES OF AROMATICITY
1. 4n+2 Hückel’s rule
5/2/2015
1-2
1-3
1-4
1-2
1-3
1
2
3
4
5
6
Sp(A) = 0
1-2
1-3
1-41-5
EIGHT RULES OF AROMATICITY
1. 4n+2 Hückel’s rule
5/2/2015
N-2 N N+2 D1 D2 diff
(1-2) 1.270 1.390 1.353 0.120 -0.037 -0.157
p
(1-2) 0.300 0.425 0.387 0.125 -0.038 -0.163
(1-3) 0.148 0.073 0.121 -0.075 0.048 0.123
p
(1-3) 0.107 0.036 0.083 -0.071 0.047 0.118
(1-4) 0.050 0.103 0.062 0.054 -0.042 -0.095
p
(1-4) 0.039 0.094 0.052 0.054 -0.041 -0.096
AROMATIC
4N+2
ANTIAROMATIC
4N
AROMATIC
4N+2
ANTIAROMATIC
4N
(1-2)  (1-3)  (1-4)  (1-2)  (1-3)  (1-4) 
1-2
1-31-4
C6H6
+2e-
C6H6
+2
4p-e antiaromatic
C6H6
6p-e aromatic
C6H6
-2
8p-e antiaromatic
+2e-
D1 D2
D1=[N] - [N-2], D2=[N+2] – [N] diff=D2 - D1
EIGHT RULES OF AROMATICITY
1. 4n+2 Hückel’s rule
5/2/2015
ANTIAROMATIC
(N)
C8H8 N-2 N N+2 D1 D2 diff
(1-2) 1.332 1.401 1.361 0.069 -0.040 -0.109
p
(1-2) 0.344 0.430 0.409 0.087 -0.022 -0.108
(1-3) 0.113 0.064 0.094 -0.048 0.030 0.078
p
(1-3) 0.074 0.029 0.060 -0.046 0.031 0.077
(1-4) 0.020 0.043 0.026 0.023 -0.017 -0.040
p
(1-4) 0.016 0.040 0.023 0.023 -0.016 -0.040
(1-5) 0.056 0.008 0.042 -0.048 0.034 0.082
p
(1-5) 0.054 0.007 0.041 -0.047 0.034 0.082
AROMATIC
(N+2)
ANTIAROMATIC
(N)
AROMATIC
(N-2)
(1-2)  (1-3)  (1-4)  (1-2)  (1-3)  (1-4)  (1-5) (1-5) 
1-2
1-3
1-41-5
C8H8
+2e-+2e-
8p-e antiaromatic
C8H8
10p-e aromatic
C8H8
2-
6p-e aromatic
C8H8
2+
D1 D2
1
5
4
dC-C(1-5) > dC-C(1-4)
(1-5) > (1-4)
planar
EIGHT RULES OF AROMATICITY
1. 4n+2 Hückel’s rule
5/2/2015
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
-0.03
-0.01
0.01
0.03
0.05
0.07
0.09
0.11
0.13
0.15
0.17
1-2 1-3 1-4 1-2 1-3 1-4 1-5
4,5-MR 6,7-MR 8,9-MR
1-2 Decrease Increase Decrease
1-3 Increase Decrease Increase
1-4 Increase Decrease
1-5 Increase
AROMATIC
4N2
ANTIAROMATIC
4N
C8H8
2-
C8H8
2+
C8H8
C6H6
2-
C6H6
2+
C6H6
4,5-MR 6,7-MR 8,9-MR
1-2 Increase Decrease Increase
1-3 Decrease Increase Decrease
1-4 Decrease Increase
1-5 Decrease
AROMATIC
4N2
ANTIAROMATIC
4N
F. Feixas, E. Matito, M. Solà and J. Poater Phys. Chem. Chem. Phys. 2010, 12, 7126
EIGHT RULES OF AROMATICITY
1. 4n+2 Hückel’s rule
5/2/2015 EIGHT RULES OF AROMATICITY
a2ub2ga1g
HOMO ( pocc)HOMO-1 (occ)HOMO-2 (occ) LUMO+
eu
LUMO (  unocc)
N-2(2p e-) N-2(0p e-) N-2(2p e-) N(2p e-)
Al4 (a1g)a Al4 (a2u)a Al4 (b2g)a Al4
2-
MCI 0.197 0.182 0.325 0.356
MCI 0.010 0.182 0.138 0.169
MCIp 0.187 0.000 0.187 0.187
Aromaticity p  p p
a Orbital from which two electrons have been removed
  p
radial tangential
F. Feixas, E. Matito, J. Poater and M. Solà WIREs Comput. Mol. Sci. 2013, 3, 105
2. Clar’s p-sextet rule
5/2/2015
The 4n+2 Hückel rule strictly holds for monocyclic
systems like benzene and cyclooctatetraene
Coronene
24 p electrons / 4n
Pyrene
16 p electrons / 4n
EIGHT RULES OF AROMATICITY
The Clar’s p-sextet rule is a generalization of the 4n+2
Hückel rule to polycyclic aromatic hydrocarbons
(PAH)
2. Clar’s p-sextet rule
5/2/2015 EIGHT RULES OF AROMATICITY
“Aromatic p-sextets are defined as six p-electrons localized to
a single benzene ring separated from adjacent benzene rings
by formal CC single bonds”
“Clar’s valence structure of a benzenoid hydrocarbon is a
valence structure having the maximal number of disjoint p-
aromatic sextets”
phenanthrene
2. Clar’s p-sextet rule
5/2/2015 EIGHT RULES OF AROMATICITY
chrysene
Migrating p-sextets
Reactions in
anthracene occur over
9,10-positions
Picene
Anthracene
2. Clar’s p-sextet rule
5/2/2015 EIGHT RULES OF AROMATICITY
Acenes more reactive than phenacenes
coronene pyrene
4n+2 rule fails
For n larger than ca. 7
acenes become biradicals
2. Clar’s p-sextet rule
5/2/2015 EIGHT RULES OF AROMATICITY
The fewer the Clar sextets the deeper the color
More stable, larger
HOMO-LUMO gaps
A. T. Balaban and D. J. Klein J. Phys. Chem. C 2009, 113, 19123
2. Clar’s p-sextet rule
5/2/2015 EIGHT RULES OF AROMATICITY
One isomer reacts with maleic anhydride affording a Diels-Alder adduct while
the other is unreactive. Can you make an educated guess?
Two isomeric tribenzoperylenes
2. Clar’s p-sextet rule
5/2/2015 EIGHT RULES OF AROMATICITY
cis and trans-dibenzapentalene
Clararomatic PAH
With the Clar structures drawn it is clear that isomer 1 is the one that reacts
with maleic anhydride affording a Diels-Alder adduct while 2 is unreactive.
2. Clar’s p-sextet rule
5/2/2015 EIGHT RULES OF AROMATICITY
I. Gutman et al. Chem. Phys. Lett. 2004, 397, 412
2. Clar’s p-sextet rule
5/2/2015 EIGHT RULES OF AROMATICITY
A
A
A
A A
A
A A
A A
B
B B
B B
B
B B
B
B
C
C
C
C C
C C
D
D
E
D E F
Mol. 1
Mol. 2 Mol. 3
Mol. 4
Mol. 5
Mol. 6
Mol. 7
Mol. 8
Mol. 9 Mol. 10
Molecule
Param. Ring 1 2 3 4 5 6 7 8 9 10
A 0.080 0.069 0.086 0.084 0.083 0.080 0.084 0.068 0.058 0.071
B 0.047 0.043 0.026 0.034 0.041 0.051 0.034 0.044 0.051 0.045
C 0.044 0.068 0.059 0.031 0.045 0.082 0.031
D 0.073 0.045 0.033
E 0.071 0.029
PDI
F 0.055
A 0.856 0.834 0.889 0.811 0.872 0.847 0.807 0.840 0.749 0.721
B 0.435 0.553 -0.030 0.383 0.356 0.520 -0.518 0.550 0.686 0.477
C 0.518 0.788 0.640 -0.496 0.570 0.853 -0.511
D 0.838 0.479 0.341
E 0.723 0.510
HOMA
F 0.732
A -10.06 -12.74 -8.63 -9.44 -9.93 -9.80 -9.30 -12.63 -10.97 -12.22
B -6.82 -5.07 -1.18 -4.13 -5.38 -7.15 -3.74 -4.82 -9.33 -5.88
C -5.47 -11.27 -8.35 -2.29 -13.04 -9.77 -1.83
D -11.58 -6.04 -5.86
E -12.38 0.05
NICS
F -11.39
PAHs with a unique Clar structure
2. Clar’s p-sextet rule
5/2/2015 EIGHT RULES OF AROMATICITY
Mol. 11
Mol. 12
Mol. 13
a a
a
b b
b
c
c
A A
A
B
B
Mol. 14 Mol. 15
Mol. 16
Mol. 17
a
a
a
a
b
b
b
b
c
c
A
A
A
A
B
B
B
B
C
C
C
C
D
D
D
E
E F
Molecule
Param. Ring 11 12 13 14 15 16 17
A 0.076 0.066 0.080 0.069 0.079 0.036 0.083
B 0.066 0.053 0.066 0.057 0.048 0.040
C 0.038 0.031 0.064 0.067
D 0.084 0.085 0.047
E 0.085 0.054
PDI
F 0.079
A 0.769 0.619 0.829 0.697 0.749 0.447 0.877
B 0.696 0.542 0.730 0.305 0.666 0.333
C 0.266 -0.097 0.783 0.783
D 0.883 0.820 0.464
E 0.883 0.568
HOMA
F 0.824
A -9.98 -8.84 -9.94 -9.30 -10.19 -1.90 -9.83
B -12.60 -7.69 -11.69 -7.68 -10.06 -5.06
C -4.58 -3.91 -12.70 -11.36
D -9.81 -9.55 -6.42
E -8.99 -7.81
NICS
F -9.84
G. Portella, J. Poater and M. Solà J. Phys. Org. Chem. 2005, 18, 785.
3. Glidewell-Lloyd extension of Clar’s p-sextet rule
5/2/2015 EIGHT RULES OF AROMATICITY
The total p-electron population in polycyclic systems tends to form the
smallest 4n+2 groups and to avoid the formation of the smallest 4n groups
C. Glidewell and D. Lloyd Tetrahedron 1984, 40, 4455.
For benzenoid systems this reduces to the Clar’s p-sextet rule
Examples:
YES NO YES NO
YES NO NOYES NO
4. 4n lowest-lying triplet excited state Baird’s rule
5/2/2015
It strictly holds for monocyclic systems like
benzene and cyclooctatetraene
Dnh
Stability comes from the half-full shell electronic configuration
even n
EIGHT RULES OF AROMATICITY
4. 4n lowest-lying triplet excited state Baird’s rule
5/2/2015
N-2(t) N-2(s) N N+2(s) N+2(t)
p 2.543 2.644 3.359 3.466 3.451
(1-2) 1.356 1.251 1.397 1.349 1.368
p
(1-2) 0.401 0.287 0.422 0.382 0.409
(1-3) 0.082 0.125 0.067 0.119 0.085
p
(1-3) 0.051 0.088 0.036 0.082 0.056
(1-4) 0.109 0.064 0.102 0.062 0.092
p
(1-4) 0.099 0.054 0.093 0.052 0.082
FLU 0.009 0.029 0.000 0.024 0.004
MCI 0.162 -0.001 0.078 0.003 0.095
AROMATIC
4N (triplet)
4N2 (singlet)
ANTIAROMATIC
4N (singlet)
(1-2)  (1-3)  (1-4) 
1-2
1-31-4
F. Feixas, E. Matito, M. Solà and J. Poater Phys. Chem. Chem. Phys. 2010, 12, 7126
EIGHT RULES OF AROMATICITY
4. 4n lowest-lying triplet excited state Baird’s rule
5/2/2015 EIGHT RULES OF AROMATICITY
Excited state intramolecular proton transfer (ESIPT) mechanism
4. 4n lowest-lying triplet excited state Baird’s rule
5/2/2015 EIGHT RULES OF AROMATICITY
5Ta3
-
MCI 0.776
MCI
orb 0.362
MCIp
orb 0.178
MCI
orb 0.235
Aromaticity p
(2e’)2(3a1’)2(1e’’)2(1e1’)4(1a2’’)2(2a1’)2(1a1’)2
5Ta3
-
3Hf3
 p  p 
F. Feixas, E. Matito, M. Duran, J. Poater and M. Solà Theor. Chem. Acc. 2011, 128, 419
 and p Baird aromatic and  Hückel aromatic
5. Soncini and Fowler generalized form of Baird’s rule
5/2/2015
The lowest-lying electronic states with even spin
(singlet, quintet,. . .) of rings with (4n+2)p-electrons and
the lowest-lying states with odd spin (triplet, septet,. . .)
of monocycles with 4np-electrons are aromatic
EIGHT RULES OF AROMATICITY
Ground state, S = 0 Quintet state, S = 2
A. Soncini and P. W. Fowler, Chem. Phys. Lett., 2008, 450, 431
5/2/2015
CASSCF(6,6)/6-311++G(d,p)
F. Feixas, J. Vandenbussche, P. Bultinck, E. Matito, and M. Solà, Phys. Chem. Chem. Phys., 2011, 13, 20690.
EIGHT RULES OF AROMATICITY
5. Soncini and Fowler generalized form of Baird’s rule
Möbius Aromaticity
5/2/2015 EIGHT RULES OF AROMATICITY
M. Rosenberg, C. Dahlstrand, K. Kilså and H. Ottosson, Chem. Rev. 2014, 114, 5379.
6. 2(n+1)2 Hirsch’s rule
Rotor rigid solution
𝐻Ψ 𝜃, 𝜑 = 𝐸Ψ 𝜃, 𝜑
𝐻 = −
1
2𝑚
𝛻2
= −
ℏ2
2𝐼
1
𝑠𝑖𝑛𝜃
𝜕
𝜕𝜃
𝑠𝑖𝑛𝜃
𝜕
𝜕𝜃
+
1
𝑠𝑖𝑛2 𝜃
𝜕2
𝜕2 𝜑
𝐻 𝑌𝑙
𝑚
𝜃, 𝜑 =
ℏ2
2𝐼
𝑙 𝑙 + 1 𝑌𝑙
𝑚
𝜃, 𝜑
2, 8, 18, 32, 50, 72, 98… = 2(n+1)2
2
8
18
32
n = 0
n = 1
n = 2
n = 3
5/2/2015 EIGHT RULES OF AROMATICITY
The 2(n+1)2 Hirsch rule is a rule for spherical aromaticity
6. 2(n+1)2 Hirsch’s rule
Z. Cheng and R. B. Bruce Chem. Rev., 2005, 105, 3613
5/2/2015 EIGHT RULES OF AROMATICITY
2(n+1)2 Hirsch’s rule
4n lowest-lying
triplet excited state
Baird’s rule
4n+2 Hückel’s rule
?OPEN-SHELL
CLOSED-SHELL
PLANAR SPHERICAL
5/2/2015 EIGHT RULES OF AROMATICITY
7. 2n2+2n+1 (S=N+½) rule
5/2/2015 EIGHT RULES OF AROMATICITY
The 2n2+2n+1 (S=N+½) rule is a rule for open-shell spherical aromaticity
2
8
18
32
1, 5, 13, 25, 41, 61, 75… = 2n2+2n+1 (S=N+½)
n = 0
n = 1
n = 2
n = 3
J. Poater and M. Solà Chem. Commun., 2011, 47, 11647
7. 2n2+2n+1 (S=N+½) rule
5/2/2015 EIGHT RULES OF AROMATICITY
J. Poater and M. Solà Chem. Commun., 2011, 47, 11647
1, 5, 13, 25, 41, 61, 75… = 2n2+2n+1 (S=n+1/2)
Systems symm. NICS(1)zz MCI r(C,C) Spin
C20
2+ Ih -7.4 0.020 1.447 S = 0
C20
7+ Ih -4.0 0.035 1.494 S = 5/2
C20
5- Ih -18.0 0.024 1.508 S = 7/2
2, 8, 18, 32, 50, 72, 98… = 2(n+1)2
7. 2n2+2n+1 (S=N+½) rule
5/2/2015 EIGHT RULES OF AROMATICITY
J. Poater and M. Solà Chem. Commun., 2011, 47, 11647
Systems symm Ring NICS(1)zz MCI BLA Spin
C60 Ih 6-MR 0.8 0.018 0.058 S = 0
5-MR 21.5 0.011
C60
1- Ih 6-MR -1.4 0.017 0.002 S = 11/2
5-MR -19.9 0.049
C60
19+ Ih 6-MR -14.9 0.019 0.013 S = 9/2
5-MR -25.3 0.041
C60
10+ Ih 6-MR -18.6 0.011 0.030 S = 0
5-MR -29.5 0.017
1, 5, 13, 25, 41, 61, 75… = 2n2+2n+1 (S=n+1/2)
2, 8, 18, 32, 50, 72, 98… = 2(n+1)2
7. 2n2+2n+1 (S=N+½) rule
5/2/2015 EIGHT RULES OF AROMATICITY
J. Poater and M. Solà Chem. Commun., 2011, 47, 11647
1, 5, 13, 25, 41, 61, 75… = 2n2+2n+1 (S=n+1/2)
2, 8, 18, 32, 50, 72, 98… = 2(n+1)2
Systems symm. Ring NICS(1)zz MCI BLA Spin
C80 S6 5-MR 10.7 0.019 S = 0
6-MR -5.2 0.012 0.025
5-MR 26.3 0.018
6-MR 11.3 0.014 0.001
6-MR -5.1 0.012 0.025
C80
8+ Ih 6-MR -7.2 0.011 0.015 S = 0
5-MR -4.0 0.017
C80
5- Ih 6-MR -20.8 0.019 0.012 S = 13/2
5-MR -5.5 0.034
7. 2n2+2n+1 (S=N+½) rule
5/2/2015 EIGHT RULES OF AROMATICITY
J. Poater and M. Solà Chem. Commun., 2011, 47, 11647
1, 5, 13, 25, 41, 61, 75… = 2n2+2n+1 (S=n+1/2)
2, 8, 18, 32, 50, 72, 98… = 2(n+1)2
Systems symm. NICS(1)zz MCI Spin
Ge12
2- Ih -5.5 0.049 S = 0
Ge12
1- Ih -405.9 0.113 S = 5/2
Ge12
4+ Ih -69.0 0.088 S = 0
8. The 2n+2 o 4n+2 Wade-Mingos rule
5/2/2015 EIGHT RULES OF AROMATICITY
• Closo, [BnHn]2-, n+1 cage electron pairs
• Nido, BnHn+4, n+2
• Arachno, BnHn+6, n+3
8. The 2n+2 o 4n+2 Wade-Mingos rule
5/2/2015 EIGHT RULES OF AROMATICITY
Closo, [BnHn]2- boron clusters
• They are very stable. For instance, Li2[B12H12] do not
decompose below 600 ºC.
• [BnHn]2- boron clusters (especially for n = 6, 7, 10 and 12)
tend to retain their molecular structure.
• Lipscomb suggested that [BnHn]2- boron clusters are aromatic.
• Rules: 2n+2 Wade’s rule and 4n+2 Mingos’ rule. Both are
equivalent because Wade’s rule refers to the skeletal electron
pairs and Mingos’ rule incorporates the exo electron pairs of the
n B-H bonds (2n electrons).
8. The 2n+2 o 4n+2 Wade-Mingos rule
5/2/2015 EIGHT RULES OF AROMATICITY
Closo [B6H6]2- boron cluster
26 VE, 13 e-pairs, 6 e-pairs for B–H bonding
7 e-pairs for the cage
8. The 2n+2 o 4n+2 Wade-Mingos rule
Hydrocarbon vs borohydride analogy
-TO DEFINE THE MODEL ORGANIC COMPOUND
-TO DRAW THE MODEL ORGANIC COMPOUND
-TO DEFINE THE CONFINED SPACE
-TO TRANSMUTE THE C ELEMENTS INTO B ELEMENTS + 1 e-
- FOR EACH B–B BOND ONE CAN ADD A SACRIFICIAL ATOM (H+ or BH4+)
-TO OBEY THE 8 ELECTRONS RULE
-TO GENERATE THE NEW STRUCTURE BY STRUCTURE RELAXATION
Procedure:
ABBREVIATIONS USED
cS CONFINED SPACE
eT ELECTRONIC TRANSMUTATION
sA SACRIFICIAL ATOM
sR STRUCTURAL RELAXATION
5/2/2015 EIGHT RULES OF AROMATICITY
8. The 2n+2 o 4n+2 Wade-Mingos rule
Hydrocarbon vs borohydride analogy
Examples:
5/2/2015 EIGHT RULES OF AROMATICITY
J. Poater, M. Solà, C. Viñas and F. Teixidor
Chem. Eur. J., 2013, 19, 4169
8. The 2n+2 o 4n+2 Wade-Mingos rule
Hydrocarbon vs borohydride analogy
5/2/2015 EIGHT RULES OF AROMATICITY
TNVE=22
8. The 2n+2 o 4n+2 Wade-Mingos rule
Hydrocarbon vs borohydride analogy
5/2/2015 EIGHT RULES OF AROMATICITY
J. Poater, M. Solà, C. Viñas and F. Teixidor Angew. Chem. Int. Ed., 2014, 53, 12191
4n+2 Wade-Mingos’ rule (3D aromaticity) is connected to the 4n+2
Hückel rule (2D aromaticity) through the hydrocarbon-borohydride
analogy. Total number of valence electrons remain the same.
TNVE=26 TNVE=30
27/3/2008
MolInfBioInf2008 Budapest
THE AROMATICITY PUZZLE 51
http://iqcc.udg.edu

Mais conteúdo relacionado

Mais procurados

Reaction intermediates
Reaction intermediatesReaction intermediates
Reaction intermediatesneha jain
 
Molecular orbital theory (conjugated molecules)
Molecular orbital theory (conjugated molecules)Molecular orbital theory (conjugated molecules)
Molecular orbital theory (conjugated molecules)SantarupaThakurta
 
Aromaticity Antiaromaticity Non aromaticity
Aromaticity Antiaromaticity Non aromaticityAromaticity Antiaromaticity Non aromaticity
Aromaticity Antiaromaticity Non aromaticityPooja Thakral
 
Chapter 6 - Stereochemistry of Fused and Bridged Ring System.pdf
Chapter 6 - Stereochemistry of Fused and Bridged Ring System.pdfChapter 6 - Stereochemistry of Fused and Bridged Ring System.pdf
Chapter 6 - Stereochemistry of Fused and Bridged Ring System.pdfShotosroyRoyTirtho
 
Common named reactions
Common named reactions  Common named reactions
Common named reactions shekhar suman
 
Asymmetric synthesis
Asymmetric  synthesisAsymmetric  synthesis
Asymmetric synthesisAmal T Babu
 
Aliphatic Nucleophilic Substitution Reaction
Aliphatic Nucleophilic Substitution Reaction Aliphatic Nucleophilic Substitution Reaction
Aliphatic Nucleophilic Substitution Reaction SPCGC AJMER
 
Pinacol pinacolone rearrangement
Pinacol pinacolone rearrangementPinacol pinacolone rearrangement
Pinacol pinacolone rearrangementSavitaKumari48
 
Diastreoslectivity,chemoslectivity&;regioslectivity crams rule felkin anh m...
Diastreoslectivity,chemoslectivity&;regioslectivity   crams rule felkin anh m...Diastreoslectivity,chemoslectivity&;regioslectivity   crams rule felkin anh m...
Diastreoslectivity,chemoslectivity&;regioslectivity crams rule felkin anh m...Rajat Ghalta
 
Aromaticity in benzenoid and non-benzenoid compunds
Aromaticity in benzenoid and non-benzenoid compundsAromaticity in benzenoid and non-benzenoid compunds
Aromaticity in benzenoid and non-benzenoid compundsSPCGC AJMER
 
Photo fries rearrangement
Photo fries rearrangementPhoto fries rearrangement
Photo fries rearrangementSumeetJha12
 
Orbital symmetry and Pericyclic reaction
Orbital symmetry and Pericyclic reactionOrbital symmetry and Pericyclic reaction
Orbital symmetry and Pericyclic reactionVajiravelu Sivamurugan
 

Mais procurados (20)

Reaction intermediates
Reaction intermediatesReaction intermediates
Reaction intermediates
 
Molecular orbital theory (conjugated molecules)
Molecular orbital theory (conjugated molecules)Molecular orbital theory (conjugated molecules)
Molecular orbital theory (conjugated molecules)
 
Wagner 1
Wagner 1Wagner 1
Wagner 1
 
Aromaticity Antiaromaticity Non aromaticity
Aromaticity Antiaromaticity Non aromaticityAromaticity Antiaromaticity Non aromaticity
Aromaticity Antiaromaticity Non aromaticity
 
Aromaticity
AromaticityAromaticity
Aromaticity
 
Asymmetric synthesis ii
Asymmetric synthesis iiAsymmetric synthesis ii
Asymmetric synthesis ii
 
Chapter 6 - Stereochemistry of Fused and Bridged Ring System.pdf
Chapter 6 - Stereochemistry of Fused and Bridged Ring System.pdfChapter 6 - Stereochemistry of Fused and Bridged Ring System.pdf
Chapter 6 - Stereochemistry of Fused and Bridged Ring System.pdf
 
Aromaticity
AromaticityAromaticity
Aromaticity
 
Aromaticity
AromaticityAromaticity
Aromaticity
 
Common named reactions
Common named reactions  Common named reactions
Common named reactions
 
Carbanion organic ppt
Carbanion organic pptCarbanion organic ppt
Carbanion organic ppt
 
Asymmetric synthesis
Asymmetric  synthesisAsymmetric  synthesis
Asymmetric synthesis
 
Aliphatic Nucleophilic Substitution Reaction
Aliphatic Nucleophilic Substitution Reaction Aliphatic Nucleophilic Substitution Reaction
Aliphatic Nucleophilic Substitution Reaction
 
Pinacol pinacolone rearrangement
Pinacol pinacolone rearrangementPinacol pinacolone rearrangement
Pinacol pinacolone rearrangement
 
Diastreoslectivity,chemoslectivity&;regioslectivity crams rule felkin anh m...
Diastreoslectivity,chemoslectivity&;regioslectivity   crams rule felkin anh m...Diastreoslectivity,chemoslectivity&;regioslectivity   crams rule felkin anh m...
Diastreoslectivity,chemoslectivity&;regioslectivity crams rule felkin anh m...
 
Aromaticity in benzenoid and non-benzenoid compunds
Aromaticity in benzenoid and non-benzenoid compundsAromaticity in benzenoid and non-benzenoid compunds
Aromaticity in benzenoid and non-benzenoid compunds
 
Aromaticty
Aromaticty Aromaticty
Aromaticty
 
WACKER PROCESS
WACKER PROCESS WACKER PROCESS
WACKER PROCESS
 
Photo fries rearrangement
Photo fries rearrangementPhoto fries rearrangement
Photo fries rearrangement
 
Orbital symmetry and Pericyclic reaction
Orbital symmetry and Pericyclic reactionOrbital symmetry and Pericyclic reaction
Orbital symmetry and Pericyclic reaction
 

Destaque

Understanding Chemical Reaction Mechanisms with Quantum Chemistry
Understanding Chemical Reaction Mechanisms with Quantum ChemistryUnderstanding Chemical Reaction Mechanisms with Quantum Chemistry
Understanding Chemical Reaction Mechanisms with Quantum Chemistrywinterschool
 
How to judge approximations? Pitfalls of statistics
How to judge approximations? Pitfalls of statisticsHow to judge approximations? Pitfalls of statistics
How to judge approximations? Pitfalls of statisticswinterschool
 
Everyday Analogies to understand Aromaticity -
Everyday Analogies to understand Aromaticity - Everyday Analogies to understand Aromaticity -
Everyday Analogies to understand Aromaticity - Sílvia Simon
 
Can semiempirical methods be used for high throughput screening (for enzyme m...
Can semiempirical methods be used for high throughput screening (for enzyme m...Can semiempirical methods be used for high throughput screening (for enzyme m...
Can semiempirical methods be used for high throughput screening (for enzyme m...molmodbasics
 
Thermodynamics for Biochemists: a YouTube textbook
Thermodynamics for Biochemists: a YouTube textbookThermodynamics for Biochemists: a YouTube textbook
Thermodynamics for Biochemists: a YouTube textbookmolmodbasics
 
The 2013 Bjerrum-Brønsted-Lang Lecture: quantum biochemistry and the rise of ...
The 2013 Bjerrum-Brønsted-Lang Lecture: quantum biochemistry and the rise of ...The 2013 Bjerrum-Brønsted-Lang Lecture: quantum biochemistry and the rise of ...
The 2013 Bjerrum-Brønsted-Lang Lecture: quantum biochemistry and the rise of ...molmodbasics
 
4. aromatic compounds-students_copy
4. aromatic compounds-students_copy4. aromatic compounds-students_copy
4. aromatic compounds-students_copyChen seng fu
 
A R O M A T I C
A R O M A T I CA R O M A T I C
A R O M A T I Caldebaran4
 
нагороди та відзнаки
нагороди та відзнакинагороди та відзнаки
нагороди та відзнакиlarysaperesunko
 
علي أحمد باكثير
علي أحمد باكثيرعلي أحمد باكثير
علي أحمد باكثيرCh Idrees
 
Women and girls in Iraq
Women and girls in IraqWomen and girls in Iraq
Women and girls in IraqJoliD
 
Beskyttelse av eksisterende sportsgulv
Beskyttelse av eksisterende sportsgulvBeskyttelse av eksisterende sportsgulv
Beskyttelse av eksisterende sportsgulvMultiarena AS
 
Developer Productivity Awards
Developer Productivity AwardsDeveloper Productivity Awards
Developer Productivity AwardsPriyanka Sharma
 
Computational Photochemistry
Computational PhotochemistryComputational Photochemistry
Computational Photochemistrywinterschool
 
Women and girls in Iraq
Women and girls in IraqWomen and girls in Iraq
Women and girls in IraqJoliD
 
How to Create Exponential Growth For Your Brand/Company on Social Media
How to Create Exponential Growth For Your Brand/Company on Social MediaHow to Create Exponential Growth For Your Brand/Company on Social Media
How to Create Exponential Growth For Your Brand/Company on Social MediaEvan Boser
 
Prospera kompetansebasert frivillighet
Prospera  kompetansebasert frivillighetProspera  kompetansebasert frivillighet
Prospera kompetansebasert frivillighetProspera
 

Destaque (20)

Understanding Chemical Reaction Mechanisms with Quantum Chemistry
Understanding Chemical Reaction Mechanisms with Quantum ChemistryUnderstanding Chemical Reaction Mechanisms with Quantum Chemistry
Understanding Chemical Reaction Mechanisms with Quantum Chemistry
 
How to judge approximations? Pitfalls of statistics
How to judge approximations? Pitfalls of statisticsHow to judge approximations? Pitfalls of statistics
How to judge approximations? Pitfalls of statistics
 
Aromatic compounds
Aromatic compoundsAromatic compounds
Aromatic compounds
 
Everyday Analogies to understand Aromaticity -
Everyday Analogies to understand Aromaticity - Everyday Analogies to understand Aromaticity -
Everyday Analogies to understand Aromaticity -
 
Can semiempirical methods be used for high throughput screening (for enzyme m...
Can semiempirical methods be used for high throughput screening (for enzyme m...Can semiempirical methods be used for high throughput screening (for enzyme m...
Can semiempirical methods be used for high throughput screening (for enzyme m...
 
Thermodynamics for Biochemists: a YouTube textbook
Thermodynamics for Biochemists: a YouTube textbookThermodynamics for Biochemists: a YouTube textbook
Thermodynamics for Biochemists: a YouTube textbook
 
The 2013 Bjerrum-Brønsted-Lang Lecture: quantum biochemistry and the rise of ...
The 2013 Bjerrum-Brønsted-Lang Lecture: quantum biochemistry and the rise of ...The 2013 Bjerrum-Brønsted-Lang Lecture: quantum biochemistry and the rise of ...
The 2013 Bjerrum-Brønsted-Lang Lecture: quantum biochemistry and the rise of ...
 
4. aromatic compounds-students_copy
4. aromatic compounds-students_copy4. aromatic compounds-students_copy
4. aromatic compounds-students_copy
 
A R O M A T I C
A R O M A T I CA R O M A T I C
A R O M A T I C
 
нагороди та відзнаки
нагороди та відзнакинагороди та відзнаки
нагороди та відзнаки
 
علي أحمد باكثير
علي أحمد باكثيرعلي أحمد باكثير
علي أحمد باكثير
 
Sunnybeancoffee
SunnybeancoffeeSunnybeancoffee
Sunnybeancoffee
 
Ou
OuOu
Ou
 
Women and girls in Iraq
Women and girls in IraqWomen and girls in Iraq
Women and girls in Iraq
 
Beskyttelse av eksisterende sportsgulv
Beskyttelse av eksisterende sportsgulvBeskyttelse av eksisterende sportsgulv
Beskyttelse av eksisterende sportsgulv
 
Developer Productivity Awards
Developer Productivity AwardsDeveloper Productivity Awards
Developer Productivity Awards
 
Computational Photochemistry
Computational PhotochemistryComputational Photochemistry
Computational Photochemistry
 
Women and girls in Iraq
Women and girls in IraqWomen and girls in Iraq
Women and girls in Iraq
 
How to Create Exponential Growth For Your Brand/Company on Social Media
How to Create Exponential Growth For Your Brand/Company on Social MediaHow to Create Exponential Growth For Your Brand/Company on Social Media
How to Create Exponential Growth For Your Brand/Company on Social Media
 
Prospera kompetansebasert frivillighet
Prospera  kompetansebasert frivillighetProspera  kompetansebasert frivillighet
Prospera kompetansebasert frivillighet
 

Semelhante a EIGHT RULES OF AROMATICITY

XXVIII Reunió Anual XRQTC
XXVIII Reunió Anual XRQTCXXVIII Reunió Anual XRQTC
XXVIII Reunió Anual XRQTCjordipoater
 
Research talk Montpellier 28 November 2013
Research talk Montpellier 28 November 2013Research talk Montpellier 28 November 2013
Research talk Montpellier 28 November 2013Samuele Staderini
 
Fragmentation rules mass spectroscopy
Fragmentation rules mass spectroscopyFragmentation rules mass spectroscopy
Fragmentation rules mass spectroscopySanthosh Kalakar dj
 
interpretation of NMR spectroscopy
interpretation of  NMR spectroscopyinterpretation of  NMR spectroscopy
interpretation of NMR spectroscopyOORATHI SASIVARDHAN
 
Electrochemical Behaviour of 3-Arylazo-1,2,4-triazole Compounds in Aqueous Bu...
Electrochemical Behaviour of 3-Arylazo-1,2,4-triazole Compounds in Aqueous Bu...Electrochemical Behaviour of 3-Arylazo-1,2,4-triazole Compounds in Aqueous Bu...
Electrochemical Behaviour of 3-Arylazo-1,2,4-triazole Compounds in Aqueous Bu...Al Baha University
 
Computational NMR Characterization of Chiral Au25(SMeBut)18
Computational NMR Characterization of Chiral Au25(SMeBut)18Computational NMR Characterization of Chiral Au25(SMeBut)18
Computational NMR Characterization of Chiral Au25(SMeBut)18Svetlana Gelpi
 
Isotope in ms (OAN MUHAMMAD SAHITO)
Isotope in ms (OAN MUHAMMAD SAHITO)Isotope in ms (OAN MUHAMMAD SAHITO)
Isotope in ms (OAN MUHAMMAD SAHITO)Oan Sahito
 
Chow Alex CHEM4900 report
Chow Alex CHEM4900 reportChow Alex CHEM4900 report
Chow Alex CHEM4900 reportAlexander Chow
 
Lanthanide shift reagents in nmr
Lanthanide shift reagents in nmrLanthanide shift reagents in nmr
Lanthanide shift reagents in nmrDongguk University
 
Synthesis Of Lidocaine Lab Report
Synthesis Of Lidocaine Lab ReportSynthesis Of Lidocaine Lab Report
Synthesis Of Lidocaine Lab ReportMichelle Singh
 
Photoisomerisation of aromaric compounds [recovered]
Photoisomerisation of aromaric compounds [recovered]Photoisomerisation of aromaric compounds [recovered]
Photoisomerisation of aromaric compounds [recovered]KANUPRIYASINGH19
 

Semelhante a EIGHT RULES OF AROMATICITY (20)

XXVIII Reunió Anual XRQTC
XXVIII Reunió Anual XRQTCXXVIII Reunió Anual XRQTC
XXVIII Reunió Anual XRQTC
 
ChengCH-Thesis
ChengCH-ThesisChengCH-Thesis
ChengCH-Thesis
 
Research talk Montpellier 28 November 2013
Research talk Montpellier 28 November 2013Research talk Montpellier 28 November 2013
Research talk Montpellier 28 November 2013
 
Fragmentation rules mass spectroscopy
Fragmentation rules mass spectroscopyFragmentation rules mass spectroscopy
Fragmentation rules mass spectroscopy
 
Research proposal.pptx
Research proposal.pptxResearch proposal.pptx
Research proposal.pptx
 
3
33
3
 
M.Sc. 13 c nmr
M.Sc. 13 c nmrM.Sc. 13 c nmr
M.Sc. 13 c nmr
 
interpretation of NMR spectroscopy
interpretation of  NMR spectroscopyinterpretation of  NMR spectroscopy
interpretation of NMR spectroscopy
 
Electrochemical Behaviour of 3-Arylazo-1,2,4-triazole Compounds in Aqueous Bu...
Electrochemical Behaviour of 3-Arylazo-1,2,4-triazole Compounds in Aqueous Bu...Electrochemical Behaviour of 3-Arylazo-1,2,4-triazole Compounds in Aqueous Bu...
Electrochemical Behaviour of 3-Arylazo-1,2,4-triazole Compounds in Aqueous Bu...
 
Computational NMR Characterization of Chiral Au25(SMeBut)18
Computational NMR Characterization of Chiral Au25(SMeBut)18Computational NMR Characterization of Chiral Au25(SMeBut)18
Computational NMR Characterization of Chiral Au25(SMeBut)18
 
2004 x ray 1 h13c 2d and 3d nmr studies of the structures
2004 x ray 1 h13c 2d and 3d nmr studies of the structures2004 x ray 1 h13c 2d and 3d nmr studies of the structures
2004 x ray 1 h13c 2d and 3d nmr studies of the structures
 
OBC
OBCOBC
OBC
 
Isotope in ms (OAN MUHAMMAD SAHITO)
Isotope in ms (OAN MUHAMMAD SAHITO)Isotope in ms (OAN MUHAMMAD SAHITO)
Isotope in ms (OAN MUHAMMAD SAHITO)
 
Chow Alex CHEM4900 report
Chow Alex CHEM4900 reportChow Alex CHEM4900 report
Chow Alex CHEM4900 report
 
Lanthanide shift reagents in nmr
Lanthanide shift reagents in nmrLanthanide shift reagents in nmr
Lanthanide shift reagents in nmr
 
Martin1981
Martin1981Martin1981
Martin1981
 
ELUSIDASI STRUKTUR.pdf
ELUSIDASI STRUKTUR.pdfELUSIDASI STRUKTUR.pdf
ELUSIDASI STRUKTUR.pdf
 
Synthesis Of Lidocaine Lab Report
Synthesis Of Lidocaine Lab ReportSynthesis Of Lidocaine Lab Report
Synthesis Of Lidocaine Lab Report
 
Photoisomerisation of aromaric compounds [recovered]
Photoisomerisation of aromaric compounds [recovered]Photoisomerisation of aromaric compounds [recovered]
Photoisomerisation of aromaric compounds [recovered]
 
Gbondingpps
GbondingppsGbondingpps
Gbondingpps
 

Último

300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsOrtegaSyrineMay
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Silpa
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformationAreesha Ahmad
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑Damini Dixit
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICEayushi9330
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai YoungDubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Youngkajalvid75
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
Introduction to Viruses
Introduction to VirusesIntroduction to Viruses
Introduction to VirusesAreesha Ahmad
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
chemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfchemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfTukamushabaBismark
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Servicemonikaservice1
 

Último (20)

300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai YoungDubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
Introduction to Viruses
Introduction to VirusesIntroduction to Viruses
Introduction to Viruses
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
chemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfchemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdf
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 

EIGHT RULES OF AROMATICITY

  • 1.
  • 2. EIGHT RULES OF AROMATICITY Miquel Solà Institute of Computational Chemistry and Catalysis Universitat de Girona EIGHT RULES OF AROMATICITY5/2/2015
  • 3. 3 1825 1900 Benzene synthesis Polycyclic Aromatic Hydrocarbons Heterocycles 1938 Aromatic Transition States 1959 Homoaromaticity 1964Möbius Aromaticity 1972 Triplet Aromaticity 4n Baird rule 1978 Three-dimensional Aromaticity 1979-Aromaticity 1872 Kekulé Benzene Structure 1855Chemical Aromaticity 1931 1959 4n+2 Hückel rule p-sextets 150 YEARS OF AROMATICITY 5/2/2015 EIGHT RULES OF AROMATICITY
  • 4. 4 Aromaticity is and old concept that is still very useful! 1985 1991 2001 Fullerenes 2007 All-metal Aromaticity 2005d-orbital Aromaticity Nanotubes 2008 -Aromaticity f-Aromaticity 1982 Metallabenzenes 2000 2(N+1)2 Hirsch’s rule …and more recently 5/2/2015 EIGHT RULES OF AROMATICITY
  • 5. What is aromaticity? “Aromaticity is a manifestation of electron delocalization in closed circuits, either in two or three dimensions, which results in energy lowering, often quite substantial, and a variety of unusual chemical and physical properties. These include a tendency toward bond length equalization, unusual reactivity, and characteristic spectroscopic features as well as distinctive magnetic properties related to strong induced ring currents” Chen and Schleyer et al. Chem. Rev. 2005, 105, 3842. In 2014, in every 42 minutes appeared a paper in which the word “aromatic*” was in the title, keywords or the abstract! 5/2/2015 EIGHT RULES OF AROMATICITY
  • 6. What is aromaticity? 5/2/2015 EIGHT RULES OF AROMATICITY R. Hoffmann, V.I. Minkin, B.K. Carpenter, Hyle, Int. J. Philos. Chem. 1997, 3, 3 “Widely applied for the characterization of specific features of conjugated cyclic molecular systems, the notion of aromaticity lacks a secure physical basis. Not that this has stopped aromaticity from being a wonderful source of creative activity in chemistry. We can think of no other concept that has led to so much exciting chemistry! Yet, although numerous indices of aromaticity have been designed, based on energetic, geometrical and magnetic criteria, no single property exists whose measurement could be taken as a direct, unequivocal measure of aromaticity.”
  • 7. What is aromaticity? Aromaticity is not an observable. Consequently, it is not well defined and there is not a unique and generally accepted measure of aromaticity. 5/2/2015 Many criteria have been used to develop indices of aromaticity: – Energetic (ASEs) – Structural or Geometrical (HOMA,…) – Magnetic (NICS, ring currents, 1H NMR…) – Electronic (hardness, electron delocalization…) EIGHT RULES OF AROMATICITY
  • 8. 5/2/2015 Indices of aromaticity    bondsn 1i 2 iopt RR n α 1HOMA Ropt = 1,388 Å a = 257,7   3 1 , 3 3 n n n PDI      Symmetry Delocalization 1.389 0.074 0.100 Magnetic shielding tensor DI or 2c-ESI QTAIM partition E. Matito, M. Duran and MS, J. Chem. Phys. 2005, 122, 014109 J. Poater, X. Fradera, M. Duran and MS, Chem. Eur. J. 2003, 9, 400 EIGHT RULES OF AROMATICITY
  • 9. 5/2/2015 Indices of aromaticity Multicenter delocalization indices  For monodeterminantal WFs: M. Giambiagi, M. S. de Giambiagi, C. D. dos Santos Silva and A. P. de Figuereido, Phys. Chem. Chem. Phys. 2000, 2, 3381 P. Bultinck, R. Ponec and S. van Damme, J. Phys. Org. Chem. 2005, 18, 706 A = {A1, A2, …, AN}      Nii iii iiiiiiring ASASASnnI N N N 1 21 32211 ,,, 21)( A )( 2 1 )( )( AA A  P ringI N MCI EIGHT RULES OF AROMATICITY
  • 10. Rules of aromaticity. Where do they come from? Aromatic compounds are usually symmetric and they have degenerate orbitals. 5/2/2015 In this case only some special numbers of electrons leads to a closed-shell or half-filled same spin open-shell structures. Closed-shell or half-filled same spin open-shell structures provide an extra stabilization of the system (aromatic stabilization) and justifies the existence of a series of aromaticity rules. EIGHT RULES OF AROMATICITY
  • 11. 1. 4n+2 Hückel’s rule 5/2/2015 It strictly holds for monocyclic systems like benzene and cyclooctatetraene (annulenes with Dnh symmetry) Dnh Stability comes from the closed-shell electronic configuration (equivalent to the octet rule) even n EIGHT RULES OF AROMATICITY
  • 12. 1. 4n+2 Hückel’s rule 5/2/2015 Cyclohexene 1.828 1.008 0.976 0.978 1.389 Benzene  Symmetry and significant delocalization (C,C’)m=0.074 (C,C’)p=0.100 1.008 0.976 1.389 1.3891.389 1.389 1.389  meta vs para-delocalization Electronic delocalization in aromatic species (C,C’)m=0.043 (C,C’)p=0.009 (C,C’)m=0.059 (C,C’)p=0.014 EIGHT RULES OF AROMATICITY
  • 13. 1. 4n+2 Hückel’s rule 5/2/2015 1-2 1-3 1-4 1-2 1-3 1 2 3 4 5 6 Sp(A) = 0 1-2 1-3 1-41-5 EIGHT RULES OF AROMATICITY
  • 14. 1. 4n+2 Hückel’s rule 5/2/2015 N-2 N N+2 D1 D2 diff (1-2) 1.270 1.390 1.353 0.120 -0.037 -0.157 p (1-2) 0.300 0.425 0.387 0.125 -0.038 -0.163 (1-3) 0.148 0.073 0.121 -0.075 0.048 0.123 p (1-3) 0.107 0.036 0.083 -0.071 0.047 0.118 (1-4) 0.050 0.103 0.062 0.054 -0.042 -0.095 p (1-4) 0.039 0.094 0.052 0.054 -0.041 -0.096 AROMATIC 4N+2 ANTIAROMATIC 4N AROMATIC 4N+2 ANTIAROMATIC 4N (1-2)  (1-3)  (1-4)  (1-2)  (1-3)  (1-4)  1-2 1-31-4 C6H6 +2e- C6H6 +2 4p-e antiaromatic C6H6 6p-e aromatic C6H6 -2 8p-e antiaromatic +2e- D1 D2 D1=[N] - [N-2], D2=[N+2] – [N] diff=D2 - D1 EIGHT RULES OF AROMATICITY
  • 15. 1. 4n+2 Hückel’s rule 5/2/2015 ANTIAROMATIC (N) C8H8 N-2 N N+2 D1 D2 diff (1-2) 1.332 1.401 1.361 0.069 -0.040 -0.109 p (1-2) 0.344 0.430 0.409 0.087 -0.022 -0.108 (1-3) 0.113 0.064 0.094 -0.048 0.030 0.078 p (1-3) 0.074 0.029 0.060 -0.046 0.031 0.077 (1-4) 0.020 0.043 0.026 0.023 -0.017 -0.040 p (1-4) 0.016 0.040 0.023 0.023 -0.016 -0.040 (1-5) 0.056 0.008 0.042 -0.048 0.034 0.082 p (1-5) 0.054 0.007 0.041 -0.047 0.034 0.082 AROMATIC (N+2) ANTIAROMATIC (N) AROMATIC (N-2) (1-2)  (1-3)  (1-4)  (1-2)  (1-3)  (1-4)  (1-5) (1-5)  1-2 1-3 1-41-5 C8H8 +2e-+2e- 8p-e antiaromatic C8H8 10p-e aromatic C8H8 2- 6p-e aromatic C8H8 2+ D1 D2 1 5 4 dC-C(1-5) > dC-C(1-4) (1-5) > (1-4) planar EIGHT RULES OF AROMATICITY
  • 16. 1. 4n+2 Hückel’s rule 5/2/2015 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 -0.03 -0.01 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 1-2 1-3 1-4 1-2 1-3 1-4 1-5 4,5-MR 6,7-MR 8,9-MR 1-2 Decrease Increase Decrease 1-3 Increase Decrease Increase 1-4 Increase Decrease 1-5 Increase AROMATIC 4N2 ANTIAROMATIC 4N C8H8 2- C8H8 2+ C8H8 C6H6 2- C6H6 2+ C6H6 4,5-MR 6,7-MR 8,9-MR 1-2 Increase Decrease Increase 1-3 Decrease Increase Decrease 1-4 Decrease Increase 1-5 Decrease AROMATIC 4N2 ANTIAROMATIC 4N F. Feixas, E. Matito, M. Solà and J. Poater Phys. Chem. Chem. Phys. 2010, 12, 7126 EIGHT RULES OF AROMATICITY
  • 17. 1. 4n+2 Hückel’s rule 5/2/2015 EIGHT RULES OF AROMATICITY a2ub2ga1g HOMO ( pocc)HOMO-1 (occ)HOMO-2 (occ) LUMO+ eu LUMO (  unocc) N-2(2p e-) N-2(0p e-) N-2(2p e-) N(2p e-) Al4 (a1g)a Al4 (a2u)a Al4 (b2g)a Al4 2- MCI 0.197 0.182 0.325 0.356 MCI 0.010 0.182 0.138 0.169 MCIp 0.187 0.000 0.187 0.187 Aromaticity p  p p a Orbital from which two electrons have been removed   p radial tangential F. Feixas, E. Matito, J. Poater and M. Solà WIREs Comput. Mol. Sci. 2013, 3, 105
  • 18. 2. Clar’s p-sextet rule 5/2/2015 The 4n+2 Hückel rule strictly holds for monocyclic systems like benzene and cyclooctatetraene Coronene 24 p electrons / 4n Pyrene 16 p electrons / 4n EIGHT RULES OF AROMATICITY The Clar’s p-sextet rule is a generalization of the 4n+2 Hückel rule to polycyclic aromatic hydrocarbons (PAH)
  • 19. 2. Clar’s p-sextet rule 5/2/2015 EIGHT RULES OF AROMATICITY “Aromatic p-sextets are defined as six p-electrons localized to a single benzene ring separated from adjacent benzene rings by formal CC single bonds” “Clar’s valence structure of a benzenoid hydrocarbon is a valence structure having the maximal number of disjoint p- aromatic sextets” phenanthrene
  • 20. 2. Clar’s p-sextet rule 5/2/2015 EIGHT RULES OF AROMATICITY chrysene Migrating p-sextets Reactions in anthracene occur over 9,10-positions Picene Anthracene
  • 21. 2. Clar’s p-sextet rule 5/2/2015 EIGHT RULES OF AROMATICITY Acenes more reactive than phenacenes coronene pyrene 4n+2 rule fails For n larger than ca. 7 acenes become biradicals
  • 22. 2. Clar’s p-sextet rule 5/2/2015 EIGHT RULES OF AROMATICITY The fewer the Clar sextets the deeper the color More stable, larger HOMO-LUMO gaps A. T. Balaban and D. J. Klein J. Phys. Chem. C 2009, 113, 19123
  • 23. 2. Clar’s p-sextet rule 5/2/2015 EIGHT RULES OF AROMATICITY One isomer reacts with maleic anhydride affording a Diels-Alder adduct while the other is unreactive. Can you make an educated guess? Two isomeric tribenzoperylenes
  • 24. 2. Clar’s p-sextet rule 5/2/2015 EIGHT RULES OF AROMATICITY cis and trans-dibenzapentalene Clararomatic PAH With the Clar structures drawn it is clear that isomer 1 is the one that reacts with maleic anhydride affording a Diels-Alder adduct while 2 is unreactive.
  • 25. 2. Clar’s p-sextet rule 5/2/2015 EIGHT RULES OF AROMATICITY I. Gutman et al. Chem. Phys. Lett. 2004, 397, 412
  • 26. 2. Clar’s p-sextet rule 5/2/2015 EIGHT RULES OF AROMATICITY A A A A A A A A A A B B B B B B B B B B C C C C C C C D D E D E F Mol. 1 Mol. 2 Mol. 3 Mol. 4 Mol. 5 Mol. 6 Mol. 7 Mol. 8 Mol. 9 Mol. 10 Molecule Param. Ring 1 2 3 4 5 6 7 8 9 10 A 0.080 0.069 0.086 0.084 0.083 0.080 0.084 0.068 0.058 0.071 B 0.047 0.043 0.026 0.034 0.041 0.051 0.034 0.044 0.051 0.045 C 0.044 0.068 0.059 0.031 0.045 0.082 0.031 D 0.073 0.045 0.033 E 0.071 0.029 PDI F 0.055 A 0.856 0.834 0.889 0.811 0.872 0.847 0.807 0.840 0.749 0.721 B 0.435 0.553 -0.030 0.383 0.356 0.520 -0.518 0.550 0.686 0.477 C 0.518 0.788 0.640 -0.496 0.570 0.853 -0.511 D 0.838 0.479 0.341 E 0.723 0.510 HOMA F 0.732 A -10.06 -12.74 -8.63 -9.44 -9.93 -9.80 -9.30 -12.63 -10.97 -12.22 B -6.82 -5.07 -1.18 -4.13 -5.38 -7.15 -3.74 -4.82 -9.33 -5.88 C -5.47 -11.27 -8.35 -2.29 -13.04 -9.77 -1.83 D -11.58 -6.04 -5.86 E -12.38 0.05 NICS F -11.39 PAHs with a unique Clar structure
  • 27. 2. Clar’s p-sextet rule 5/2/2015 EIGHT RULES OF AROMATICITY Mol. 11 Mol. 12 Mol. 13 a a a b b b c c A A A B B Mol. 14 Mol. 15 Mol. 16 Mol. 17 a a a a b b b b c c A A A A B B B B C C C C D D D E E F Molecule Param. Ring 11 12 13 14 15 16 17 A 0.076 0.066 0.080 0.069 0.079 0.036 0.083 B 0.066 0.053 0.066 0.057 0.048 0.040 C 0.038 0.031 0.064 0.067 D 0.084 0.085 0.047 E 0.085 0.054 PDI F 0.079 A 0.769 0.619 0.829 0.697 0.749 0.447 0.877 B 0.696 0.542 0.730 0.305 0.666 0.333 C 0.266 -0.097 0.783 0.783 D 0.883 0.820 0.464 E 0.883 0.568 HOMA F 0.824 A -9.98 -8.84 -9.94 -9.30 -10.19 -1.90 -9.83 B -12.60 -7.69 -11.69 -7.68 -10.06 -5.06 C -4.58 -3.91 -12.70 -11.36 D -9.81 -9.55 -6.42 E -8.99 -7.81 NICS F -9.84 G. Portella, J. Poater and M. Solà J. Phys. Org. Chem. 2005, 18, 785.
  • 28. 3. Glidewell-Lloyd extension of Clar’s p-sextet rule 5/2/2015 EIGHT RULES OF AROMATICITY The total p-electron population in polycyclic systems tends to form the smallest 4n+2 groups and to avoid the formation of the smallest 4n groups C. Glidewell and D. Lloyd Tetrahedron 1984, 40, 4455. For benzenoid systems this reduces to the Clar’s p-sextet rule Examples: YES NO YES NO YES NO NOYES NO
  • 29. 4. 4n lowest-lying triplet excited state Baird’s rule 5/2/2015 It strictly holds for monocyclic systems like benzene and cyclooctatetraene Dnh Stability comes from the half-full shell electronic configuration even n EIGHT RULES OF AROMATICITY
  • 30. 4. 4n lowest-lying triplet excited state Baird’s rule 5/2/2015 N-2(t) N-2(s) N N+2(s) N+2(t) p 2.543 2.644 3.359 3.466 3.451 (1-2) 1.356 1.251 1.397 1.349 1.368 p (1-2) 0.401 0.287 0.422 0.382 0.409 (1-3) 0.082 0.125 0.067 0.119 0.085 p (1-3) 0.051 0.088 0.036 0.082 0.056 (1-4) 0.109 0.064 0.102 0.062 0.092 p (1-4) 0.099 0.054 0.093 0.052 0.082 FLU 0.009 0.029 0.000 0.024 0.004 MCI 0.162 -0.001 0.078 0.003 0.095 AROMATIC 4N (triplet) 4N2 (singlet) ANTIAROMATIC 4N (singlet) (1-2)  (1-3)  (1-4)  1-2 1-31-4 F. Feixas, E. Matito, M. Solà and J. Poater Phys. Chem. Chem. Phys. 2010, 12, 7126 EIGHT RULES OF AROMATICITY
  • 31. 4. 4n lowest-lying triplet excited state Baird’s rule 5/2/2015 EIGHT RULES OF AROMATICITY Excited state intramolecular proton transfer (ESIPT) mechanism
  • 32. 4. 4n lowest-lying triplet excited state Baird’s rule 5/2/2015 EIGHT RULES OF AROMATICITY 5Ta3 - MCI 0.776 MCI orb 0.362 MCIp orb 0.178 MCI orb 0.235 Aromaticity p (2e’)2(3a1’)2(1e’’)2(1e1’)4(1a2’’)2(2a1’)2(1a1’)2 5Ta3 - 3Hf3  p  p  F. Feixas, E. Matito, M. Duran, J. Poater and M. Solà Theor. Chem. Acc. 2011, 128, 419  and p Baird aromatic and  Hückel aromatic
  • 33. 5. Soncini and Fowler generalized form of Baird’s rule 5/2/2015 The lowest-lying electronic states with even spin (singlet, quintet,. . .) of rings with (4n+2)p-electrons and the lowest-lying states with odd spin (triplet, septet,. . .) of monocycles with 4np-electrons are aromatic EIGHT RULES OF AROMATICITY Ground state, S = 0 Quintet state, S = 2 A. Soncini and P. W. Fowler, Chem. Phys. Lett., 2008, 450, 431
  • 34. 5/2/2015 CASSCF(6,6)/6-311++G(d,p) F. Feixas, J. Vandenbussche, P. Bultinck, E. Matito, and M. Solà, Phys. Chem. Chem. Phys., 2011, 13, 20690. EIGHT RULES OF AROMATICITY 5. Soncini and Fowler generalized form of Baird’s rule
  • 35. Möbius Aromaticity 5/2/2015 EIGHT RULES OF AROMATICITY M. Rosenberg, C. Dahlstrand, K. Kilså and H. Ottosson, Chem. Rev. 2014, 114, 5379.
  • 36. 6. 2(n+1)2 Hirsch’s rule Rotor rigid solution 𝐻Ψ 𝜃, 𝜑 = 𝐸Ψ 𝜃, 𝜑 𝐻 = − 1 2𝑚 𝛻2 = − ℏ2 2𝐼 1 𝑠𝑖𝑛𝜃 𝜕 𝜕𝜃 𝑠𝑖𝑛𝜃 𝜕 𝜕𝜃 + 1 𝑠𝑖𝑛2 𝜃 𝜕2 𝜕2 𝜑 𝐻 𝑌𝑙 𝑚 𝜃, 𝜑 = ℏ2 2𝐼 𝑙 𝑙 + 1 𝑌𝑙 𝑚 𝜃, 𝜑 2, 8, 18, 32, 50, 72, 98… = 2(n+1)2 2 8 18 32 n = 0 n = 1 n = 2 n = 3 5/2/2015 EIGHT RULES OF AROMATICITY The 2(n+1)2 Hirsch rule is a rule for spherical aromaticity
  • 37. 6. 2(n+1)2 Hirsch’s rule Z. Cheng and R. B. Bruce Chem. Rev., 2005, 105, 3613 5/2/2015 EIGHT RULES OF AROMATICITY
  • 38. 2(n+1)2 Hirsch’s rule 4n lowest-lying triplet excited state Baird’s rule 4n+2 Hückel’s rule ?OPEN-SHELL CLOSED-SHELL PLANAR SPHERICAL 5/2/2015 EIGHT RULES OF AROMATICITY
  • 39. 7. 2n2+2n+1 (S=N+½) rule 5/2/2015 EIGHT RULES OF AROMATICITY The 2n2+2n+1 (S=N+½) rule is a rule for open-shell spherical aromaticity 2 8 18 32 1, 5, 13, 25, 41, 61, 75… = 2n2+2n+1 (S=N+½) n = 0 n = 1 n = 2 n = 3 J. Poater and M. Solà Chem. Commun., 2011, 47, 11647
  • 40. 7. 2n2+2n+1 (S=N+½) rule 5/2/2015 EIGHT RULES OF AROMATICITY J. Poater and M. Solà Chem. Commun., 2011, 47, 11647 1, 5, 13, 25, 41, 61, 75… = 2n2+2n+1 (S=n+1/2) Systems symm. NICS(1)zz MCI r(C,C) Spin C20 2+ Ih -7.4 0.020 1.447 S = 0 C20 7+ Ih -4.0 0.035 1.494 S = 5/2 C20 5- Ih -18.0 0.024 1.508 S = 7/2 2, 8, 18, 32, 50, 72, 98… = 2(n+1)2
  • 41. 7. 2n2+2n+1 (S=N+½) rule 5/2/2015 EIGHT RULES OF AROMATICITY J. Poater and M. Solà Chem. Commun., 2011, 47, 11647 Systems symm Ring NICS(1)zz MCI BLA Spin C60 Ih 6-MR 0.8 0.018 0.058 S = 0 5-MR 21.5 0.011 C60 1- Ih 6-MR -1.4 0.017 0.002 S = 11/2 5-MR -19.9 0.049 C60 19+ Ih 6-MR -14.9 0.019 0.013 S = 9/2 5-MR -25.3 0.041 C60 10+ Ih 6-MR -18.6 0.011 0.030 S = 0 5-MR -29.5 0.017 1, 5, 13, 25, 41, 61, 75… = 2n2+2n+1 (S=n+1/2) 2, 8, 18, 32, 50, 72, 98… = 2(n+1)2
  • 42. 7. 2n2+2n+1 (S=N+½) rule 5/2/2015 EIGHT RULES OF AROMATICITY J. Poater and M. Solà Chem. Commun., 2011, 47, 11647 1, 5, 13, 25, 41, 61, 75… = 2n2+2n+1 (S=n+1/2) 2, 8, 18, 32, 50, 72, 98… = 2(n+1)2 Systems symm. Ring NICS(1)zz MCI BLA Spin C80 S6 5-MR 10.7 0.019 S = 0 6-MR -5.2 0.012 0.025 5-MR 26.3 0.018 6-MR 11.3 0.014 0.001 6-MR -5.1 0.012 0.025 C80 8+ Ih 6-MR -7.2 0.011 0.015 S = 0 5-MR -4.0 0.017 C80 5- Ih 6-MR -20.8 0.019 0.012 S = 13/2 5-MR -5.5 0.034
  • 43. 7. 2n2+2n+1 (S=N+½) rule 5/2/2015 EIGHT RULES OF AROMATICITY J. Poater and M. Solà Chem. Commun., 2011, 47, 11647 1, 5, 13, 25, 41, 61, 75… = 2n2+2n+1 (S=n+1/2) 2, 8, 18, 32, 50, 72, 98… = 2(n+1)2 Systems symm. NICS(1)zz MCI Spin Ge12 2- Ih -5.5 0.049 S = 0 Ge12 1- Ih -405.9 0.113 S = 5/2 Ge12 4+ Ih -69.0 0.088 S = 0
  • 44. 8. The 2n+2 o 4n+2 Wade-Mingos rule 5/2/2015 EIGHT RULES OF AROMATICITY • Closo, [BnHn]2-, n+1 cage electron pairs • Nido, BnHn+4, n+2 • Arachno, BnHn+6, n+3
  • 45. 8. The 2n+2 o 4n+2 Wade-Mingos rule 5/2/2015 EIGHT RULES OF AROMATICITY Closo, [BnHn]2- boron clusters • They are very stable. For instance, Li2[B12H12] do not decompose below 600 ºC. • [BnHn]2- boron clusters (especially for n = 6, 7, 10 and 12) tend to retain their molecular structure. • Lipscomb suggested that [BnHn]2- boron clusters are aromatic. • Rules: 2n+2 Wade’s rule and 4n+2 Mingos’ rule. Both are equivalent because Wade’s rule refers to the skeletal electron pairs and Mingos’ rule incorporates the exo electron pairs of the n B-H bonds (2n electrons).
  • 46. 8. The 2n+2 o 4n+2 Wade-Mingos rule 5/2/2015 EIGHT RULES OF AROMATICITY Closo [B6H6]2- boron cluster 26 VE, 13 e-pairs, 6 e-pairs for B–H bonding 7 e-pairs for the cage
  • 47. 8. The 2n+2 o 4n+2 Wade-Mingos rule Hydrocarbon vs borohydride analogy -TO DEFINE THE MODEL ORGANIC COMPOUND -TO DRAW THE MODEL ORGANIC COMPOUND -TO DEFINE THE CONFINED SPACE -TO TRANSMUTE THE C ELEMENTS INTO B ELEMENTS + 1 e- - FOR EACH B–B BOND ONE CAN ADD A SACRIFICIAL ATOM (H+ or BH4+) -TO OBEY THE 8 ELECTRONS RULE -TO GENERATE THE NEW STRUCTURE BY STRUCTURE RELAXATION Procedure: ABBREVIATIONS USED cS CONFINED SPACE eT ELECTRONIC TRANSMUTATION sA SACRIFICIAL ATOM sR STRUCTURAL RELAXATION 5/2/2015 EIGHT RULES OF AROMATICITY
  • 48. 8. The 2n+2 o 4n+2 Wade-Mingos rule Hydrocarbon vs borohydride analogy Examples: 5/2/2015 EIGHT RULES OF AROMATICITY J. Poater, M. Solà, C. Viñas and F. Teixidor Chem. Eur. J., 2013, 19, 4169
  • 49. 8. The 2n+2 o 4n+2 Wade-Mingos rule Hydrocarbon vs borohydride analogy 5/2/2015 EIGHT RULES OF AROMATICITY TNVE=22
  • 50. 8. The 2n+2 o 4n+2 Wade-Mingos rule Hydrocarbon vs borohydride analogy 5/2/2015 EIGHT RULES OF AROMATICITY J. Poater, M. Solà, C. Viñas and F. Teixidor Angew. Chem. Int. Ed., 2014, 53, 12191 4n+2 Wade-Mingos’ rule (3D aromaticity) is connected to the 4n+2 Hückel rule (2D aromaticity) through the hydrocarbon-borohydride analogy. Total number of valence electrons remain the same. TNVE=26 TNVE=30