SlideShare uma empresa Scribd logo
1 de 30
September 27, 2015
Music Recommendations
@
Spotify
Vidhya Murali
@vid052
Vidhya Murali
Areas of Interest: Machine Learning & Big Data
Data Science Engineer @ Spotify
Grad Student from the University of Wisconsin Madison
aka Happy Badger for life!
Who Am I?
2
Spotify’s Big Data
Started in 2006, now available in 58 countries
70+ million active users, 20+ million paid subscribers
30+ million songs in our catalog, ~20K added every day
1.5 billion playlists so far and counting
1 TB of user data logged every day
Hadoop cluster with 1500 nodes
~20,000 Hadoop jobs per day
3
Music Recommendations at Spotify
Features:
Discover
Discover Weekly
Right Now
Radio
Related Artists
4
30 million tracks…
What to recommend?
5
Approaches 6
•Manual curation by Experts
•Editorial Tagging
•Metadata (e.g. Label Provided data, NLP over News,
Blogs)
•Audio Signals
•Collaborative Filtering Model
Collaborative Filtering Model 7
•Find patterns from user’s past behavior to generate
recommendations
•Domain independent
•Scalable
•Accuracy(Collaborative Model) >= Accuracy(Content
Based Model)
Definition of CF
8
Hey,
I like tracks P, Q, R, S!
Well,
I like tracks Q, R, S, T!
Then you should check out
track P!
Nice! Btw try track T!
Legacy Slide of Erik Bernhardsson
The YoLo Problem
9
•YoLo Problem: “You Only Listen Once” to judge recommendations
•Goal: Predict if users will listen to new music (new to user)
•Challenges
•Scale of catalog (30M songs + ~20K added every day)
•Repeated consumption of music is not very uncommon
•Music is niche
•Strong correlation between music consumption and user’s context
•Input: Feedback is implicit through streaming behavior, collection adds,
browse history, search history etc
Big Matrix! 10
Tracks(n)
Users(m)
Vidhya
Burn by Ellie Goulding
Order of 70M x 30M!
Latent Factor Models 11
Vidhya
Burn
.. . . . .
.. . . . .
.. . . . .
.. . . . .
.. . . . .
•Use a “small” representation for each user and items(tracks): f-dimensional
vectors
.. .
.. .
.. .
.. .
. .
...
...
...
...
..
(here, f = 2)
m m
n
m n
User Vector Matrix:
X: (m x f)
Track Vector Matrix:
Y: (n x f)
User Track Matrix:
(m x n)
Equation(s) Alert!
12
Implicit Matrix Factorization
8 0 0 0 22 0 0 54
0 0 22 0 0 47 0 0
3 0 76 0 0 0 4 55
0 212 0 0 0 1 0 0
0 0 29 0 0 43 0 0
18 0 0 0 2 0 0 36
•Aggregate all (user, track) streams into a large matrix
•Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by
minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight
•Why?: Once learned, the top recommendations for a user are the top inner products between
their latent factor vector in X and the track latent factor vectors in Y.
X YUsers
Tracks
• = bias for user
• = bias for item
• = regularization parameter
• = 1 if user streamed track else 0
•
• = user latent factor vector
• = item latent factor vectoryi
Implicit Matrix Factorization 14
1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1
•Aggregate all (user, track) streams into a large matrix
•Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by
minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight
•Why?: Once learned, the top recommendations for a user are the top inner products between
their latent factor vector in X and the track latent factor vectors in Y.
X YUsers
Tracks
• = bias for user
• = bias for item
• = regularization parameter
• = 1 if user streamed track else 0
•
• = user latent factor vector
• = item latent factor vectoryi
Alternating Least Squares 15
1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1
X YUsers
Tracks
• = bias for user
• = bias for item
• = regularization parameter
• = 1 if user streamed track else 0
•
• = user latent factor vector
• = item latent factor vector
Fix tracks
•Aggregate all (user, track) streams into a large matrix
•Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by
minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight
•Why?: Once learned, the top recommendations for a user are the top inner products between
their latent factor vector in X and the track latent factor vectors in Y.
yi
16
1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1
X YUsers
• = bias for user
• = bias for item
• = regularization parameter
• = 1 if user streamed track else 0
•
• = user latent factor vector
• = item latent factor vector
Fix tracks
Solve for users
•Aggregate all (user, track) streams into a large matrix
•Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by
minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight
•Why?: Once learned, the top recommendations for a user are the top inner products between
their latent factor vector in X and the track latent factor vectors in Y.
Alternating Least Squares
yi
Tracks
17
1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1
X YUsers
• = bias for user
• = bias for item
• = regularization parameter
• = 1 if user streamed track else 0
•
• = user latent factor vector
• = item latent factor vector
Fix users
•Aggregate all (user, track) streams into a large matrix
•Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by
minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight
•Why?: Once learned, the top recommendations for a user are the top inner products between
their latent factor vector in X and the track latent factor vectors in Y.
Alternating Least Squares
yi
Tracks
18
1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1
X YUsers
• = bias for user
• = bias for item
• = regularization parameter
• = 1 if user streamed track else 0
•
• = user latent factor vector
• = item latent factor vector
Fix users
Solve for tracks
•Aggregate all (user, track) streams into a large matrix
•Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by
minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight
•Why?: Once learned, the top recommendations for a user are the top inner products between
their latent factor vector in X and the track latent factor vectors in Y.
Alternating Least Squares
yi
Tracks
19
1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1
X YUsers
• = bias for user
• = bias for item
• = regularization parameter
• = 1 if user streamed track else 0
•
• = user latent factor vector
• = item latent factor vector
Fix users
Solve for tracks
Repeat until convergence…
•Aggregate all (user, track) streams into a large matrix
•Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by
minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight
•Why?: Once learned, the top recommendations for a user are the top inner products between
their latent factor vector in X and the track latent factor vectors in Y.
Alternating Least Squares
yi
Tracks
20
1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1
X YUsers
• = bias for user
• = bias for item
• = regularization parameter
• = 1 if user streamed track else 0
•
• = user latent factor vector
• = item latent factor vector
Fix users
Solve for tracks
Repeat until convergence…
•Aggregate all (user, track) streams into a large matrix
•Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by
minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight
•Why?: Once learned, the top recommendations for a user are the top inner products between
their latent factor vector in X and the track latent factor vectors in Y.
Alternating Least Squares
yi
Tracks
21
Alternating Least Squares
• the same for all users so compute only once per iteration
• weighted sum of outer products for item vectors the user
streamed
• weighted sum of item vectors the user streamed
•Key takeaways: requires O(f^2) memory, time complexity linear in number of
unique items the user streamed
f x f f x f f x 1f x f
Vectors
•“Compact” representation for users and items(tracks)
Why Vectors? 23
•Compact musical representation of users’ taste, tracks’ genome
•Vectors encode higher order dependencies so even if users who listen to Rihanna
and don’t necessarily listen to Beyonce, the vectors will understand this dependency
(based on some higher order dependency down the line)
•Item-Item and User-Item scores computed using cosine distance
•Linear complexity based on the number of latent factors
• Easy to scale up
Recommendations via Dot Product!
24
70 Million users x 30
Million tracks. How to
scale?
25
Matrix Factorization with MapReduce
26
Reduce stepMap step
u % K = 0
i % L = 0
u % K = 0
i % L = 1
...
u % K = 0
i % L = L-1
u % K = 1
i % L = 0
u % K = 1
i % L = 1
... ...
... ... ... ...
u % K = K-1
i % L = 0
... ...
u % K = K-1
i % L = L-1
item vectors
item%L=0
item vectors
item%L=1
item vectors
i % L = L-1
user vectors
u % K = 0
user vectors
u % K = 1
user vectors
u % K = K-1
all log entries
u % K = 1
i % L = 1
u % K = 0
u % K = 1
u % K = K-1
•Split the matrix up into K x L blocks.
•Each mapper gets a different block, sums up intermediate terms, then key by
user (or item) to reduce final user (or item) vector.
Matrix Factorization with MapReduce
27
One map task
Distributed
cache:
All user vectors
where u % K = x
Distributed
cache:
All item vectors
where i % L = y
Mapper Emit contributions
Map input:
tuples (u, i, count)
where
u % K = x
and
i % L = y
Reducer New vector!
•Input to Mapper is a list of (user, item, count) tuples
– user modulo K is the same for all users in block
– item modulo L is the same for all items in the block
– Mapper aggregates intermediate contributions for each user (or item)
– Eg: K=4, Mapper #1 gets user 1, 5, 9, 13 etc
– Reducer keys by user (or item), aggregates intermediate mapper sums and solves closed form for final user
(or item) vector
Annoy
70 million users, at least 4 million
tracks for recommendations.
Given user vector and track
vector, still tricky to find recs
Brute force approach: O(70M x
4M x 40) = 0(12 peta-operations)!
Approximate Nearest Neighbor
Oh Yeah! : Local Sensitive
Hashing
https://github.com/spotify/annoy
28
29
Thank You!
You can reach me @
Email: vidhya@spotify.com
Twitter: @vid052

Mais conteúdo relacionado

Mais procurados

DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...Hakka Labs
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyChris Johnson
 
Personalizing the listening experience
Personalizing the listening experiencePersonalizing the listening experience
Personalizing the listening experienceMounia Lalmas-Roelleke
 
ML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsErik Bernhardsson
 
Big data and machine learning @ Spotify
Big data and machine learning @ SpotifyBig data and machine learning @ Spotify
Big data and machine learning @ SpotifyOscar Carlsson
 
Building Data Pipelines for Music Recommendations at Spotify
Building Data Pipelines for Music Recommendations at SpotifyBuilding Data Pipelines for Music Recommendations at Spotify
Building Data Pipelines for Music Recommendations at SpotifyVidhya Murali
 
Machine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupMachine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupAndy Sloane
 
Calibrated Recommendations
Calibrated RecommendationsCalibrated Recommendations
Calibrated RecommendationsHarald Steck
 
A Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixA Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixJaya Kawale
 
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Xavier Amatriain
 
Approximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupApproximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupErik Bernhardsson
 
Déjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender SystemsDéjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender SystemsJustin Basilico
 
Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial Alexandros Karatzoglou
 
Shallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender SystemShallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender SystemAnoop Deoras
 
Scala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyScala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyNeville Li
 
Time, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender SystemsTime, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender SystemsYves Raimond
 
Collaborative Filtering with Spark
Collaborative Filtering with SparkCollaborative Filtering with Spark
Collaborative Filtering with SparkChris Johnson
 
Real-Time Recommendations with Hopsworks and OpenSearch - MLOps World 2022
Real-Time Recommendations  with Hopsworks and OpenSearch - MLOps World 2022Real-Time Recommendations  with Hopsworks and OpenSearch - MLOps World 2022
Real-Time Recommendations with Hopsworks and OpenSearch - MLOps World 2022Jim Dowling
 
Fundamentals of Deep Recommender Systems
 Fundamentals of Deep Recommender Systems Fundamentals of Deep Recommender Systems
Fundamentals of Deep Recommender SystemsWQ Fan
 
Artwork Personalization at Netflix
Artwork Personalization at NetflixArtwork Personalization at Netflix
Artwork Personalization at NetflixJustin Basilico
 

Mais procurados (20)

DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
DataEngConf: Building a Music Recommender System from Scratch with Spotify Da...
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and Spotify
 
Personalizing the listening experience
Personalizing the listening experiencePersonalizing the listening experience
Personalizing the listening experience
 
ML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive AnalyticsML+Hadoop at NYC Predictive Analytics
ML+Hadoop at NYC Predictive Analytics
 
Big data and machine learning @ Spotify
Big data and machine learning @ SpotifyBig data and machine learning @ Spotify
Big data and machine learning @ Spotify
 
Building Data Pipelines for Music Recommendations at Spotify
Building Data Pipelines for Music Recommendations at SpotifyBuilding Data Pipelines for Music Recommendations at Spotify
Building Data Pipelines for Music Recommendations at Spotify
 
Machine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data MeetupMachine learning @ Spotify - Madison Big Data Meetup
Machine learning @ Spotify - Madison Big Data Meetup
 
Calibrated Recommendations
Calibrated RecommendationsCalibrated Recommendations
Calibrated Recommendations
 
A Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixA Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at Netflix
 
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
 
Approximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupApproximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetup
 
Déjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender SystemsDéjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender Systems
 
Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial
 
Shallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender SystemShallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender System
 
Scala Data Pipelines @ Spotify
Scala Data Pipelines @ SpotifyScala Data Pipelines @ Spotify
Scala Data Pipelines @ Spotify
 
Time, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender SystemsTime, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender Systems
 
Collaborative Filtering with Spark
Collaborative Filtering with SparkCollaborative Filtering with Spark
Collaborative Filtering with Spark
 
Real-Time Recommendations with Hopsworks and OpenSearch - MLOps World 2022
Real-Time Recommendations  with Hopsworks and OpenSearch - MLOps World 2022Real-Time Recommendations  with Hopsworks and OpenSearch - MLOps World 2022
Real-Time Recommendations with Hopsworks and OpenSearch - MLOps World 2022
 
Fundamentals of Deep Recommender Systems
 Fundamentals of Deep Recommender Systems Fundamentals of Deep Recommender Systems
Fundamentals of Deep Recommender Systems
 
Artwork Personalization at Netflix
Artwork Personalization at NetflixArtwork Personalization at Netflix
Artwork Personalization at Netflix
 

Semelhante a CF Models for Music Recommendations At Spotify

A new similarity measurement based on hellinger distance for collaborating fi...
A new similarity measurement based on hellinger distance for collaborating fi...A new similarity measurement based on hellinger distance for collaborating fi...
A new similarity measurement based on hellinger distance for collaborating fi...Prabhu Kumar
 
LinearAlgebra_2016updatedFromwiki.ppt
LinearAlgebra_2016updatedFromwiki.pptLinearAlgebra_2016updatedFromwiki.ppt
LinearAlgebra_2016updatedFromwiki.pptAruneshAdarsh
 
LinearAlgebra_2016updatedFromwiki.ppt
LinearAlgebra_2016updatedFromwiki.pptLinearAlgebra_2016updatedFromwiki.ppt
LinearAlgebra_2016updatedFromwiki.pptHumayilZia
 
Recommendation Systems
Recommendation SystemsRecommendation Systems
Recommendation SystemsRobin Reni
 
Support vector machine
Support vector machineSupport vector machine
Support vector machineRishabh Gupta
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systemsNAVER Engineering
 
Recommendation system
Recommendation systemRecommendation system
Recommendation systemDing Li
 
Scalable Similarity-Based Neighborhood Methods with MapReduce
Scalable Similarity-Based Neighborhood Methods with MapReduceScalable Similarity-Based Neighborhood Methods with MapReduce
Scalable Similarity-Based Neighborhood Methods with MapReducesscdotopen
 
Recommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringRecommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringChangsung Moon
 
Machine Learning - Introduction to Convolutional Neural Networks
Machine Learning - Introduction to Convolutional Neural NetworksMachine Learning - Introduction to Convolutional Neural Networks
Machine Learning - Introduction to Convolutional Neural NetworksAndrew Ferlitsch
 
Scalable Recommendation Algorithms with LSH
Scalable Recommendation Algorithms with LSHScalable Recommendation Algorithms with LSH
Scalable Recommendation Algorithms with LSHMaruf Aytekin
 
Recsys 2018 overview and highlights
Recsys 2018 overview and highlightsRecsys 2018 overview and highlights
Recsys 2018 overview and highlightsSandra Garcia
 
Practical Deep Learning Using Tensor Flow - Sandeep Kath
Practical Deep Learning Using Tensor Flow - Sandeep KathPractical Deep Learning Using Tensor Flow - Sandeep Kath
Practical Deep Learning Using Tensor Flow - Sandeep KathSandeep Kath
 
[AFEL] Neighborhood Troubles: On the Value of User Pre-Filtering To Speed Up ...
[AFEL] Neighborhood Troubles: On the Value of User Pre-Filtering To Speed Up ...[AFEL] Neighborhood Troubles: On the Value of User Pre-Filtering To Speed Up ...
[AFEL] Neighborhood Troubles: On the Value of User Pre-Filtering To Speed Up ...Emanuel Lacić
 
Machine Learning Essentials Demystified part2 | Big Data Demystified
Machine Learning Essentials Demystified part2 | Big Data DemystifiedMachine Learning Essentials Demystified part2 | Big Data Demystified
Machine Learning Essentials Demystified part2 | Big Data DemystifiedOmid Vahdaty
 
New Directions in Mahout's Recommenders
New Directions in Mahout's RecommendersNew Directions in Mahout's Recommenders
New Directions in Mahout's Recommenderssscdotopen
 

Semelhante a CF Models for Music Recommendations At Spotify (20)

A new similarity measurement based on hellinger distance for collaborating fi...
A new similarity measurement based on hellinger distance for collaborating fi...A new similarity measurement based on hellinger distance for collaborating fi...
A new similarity measurement based on hellinger distance for collaborating fi...
 
LinearAlgebra_2016updatedFromwiki.ppt
LinearAlgebra_2016updatedFromwiki.pptLinearAlgebra_2016updatedFromwiki.ppt
LinearAlgebra_2016updatedFromwiki.ppt
 
LinearAlgebra_2016updatedFromwiki.ppt
LinearAlgebra_2016updatedFromwiki.pptLinearAlgebra_2016updatedFromwiki.ppt
LinearAlgebra_2016updatedFromwiki.ppt
 
Recommendation Systems
Recommendation SystemsRecommendation Systems
Recommendation Systems
 
LP.pptx
LP.pptxLP.pptx
LP.pptx
 
Support vector machine
Support vector machineSupport vector machine
Support vector machine
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systems
 
Data Mining Lecture_9.pptx
Data Mining Lecture_9.pptxData Mining Lecture_9.pptx
Data Mining Lecture_9.pptx
 
Recommendation system
Recommendation systemRecommendation system
Recommendation system
 
Scalable Similarity-Based Neighborhood Methods with MapReduce
Scalable Similarity-Based Neighborhood Methods with MapReduceScalable Similarity-Based Neighborhood Methods with MapReduce
Scalable Similarity-Based Neighborhood Methods with MapReduce
 
FitCompete
FitCompeteFitCompete
FitCompete
 
Recommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringRecommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative Filtering
 
Machine Learning - Introduction to Convolutional Neural Networks
Machine Learning - Introduction to Convolutional Neural NetworksMachine Learning - Introduction to Convolutional Neural Networks
Machine Learning - Introduction to Convolutional Neural Networks
 
Scalable Recommendation Algorithms with LSH
Scalable Recommendation Algorithms with LSHScalable Recommendation Algorithms with LSH
Scalable Recommendation Algorithms with LSH
 
CH1.ppt
CH1.pptCH1.ppt
CH1.ppt
 
Recsys 2018 overview and highlights
Recsys 2018 overview and highlightsRecsys 2018 overview and highlights
Recsys 2018 overview and highlights
 
Practical Deep Learning Using Tensor Flow - Sandeep Kath
Practical Deep Learning Using Tensor Flow - Sandeep KathPractical Deep Learning Using Tensor Flow - Sandeep Kath
Practical Deep Learning Using Tensor Flow - Sandeep Kath
 
[AFEL] Neighborhood Troubles: On the Value of User Pre-Filtering To Speed Up ...
[AFEL] Neighborhood Troubles: On the Value of User Pre-Filtering To Speed Up ...[AFEL] Neighborhood Troubles: On the Value of User Pre-Filtering To Speed Up ...
[AFEL] Neighborhood Troubles: On the Value of User Pre-Filtering To Speed Up ...
 
Machine Learning Essentials Demystified part2 | Big Data Demystified
Machine Learning Essentials Demystified part2 | Big Data DemystifiedMachine Learning Essentials Demystified part2 | Big Data Demystified
Machine Learning Essentials Demystified part2 | Big Data Demystified
 
New Directions in Mahout's Recommenders
New Directions in Mahout's RecommendersNew Directions in Mahout's Recommenders
New Directions in Mahout's Recommenders
 

Último

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 

Último (20)

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 

CF Models for Music Recommendations At Spotify

  • 1. September 27, 2015 Music Recommendations @ Spotify Vidhya Murali @vid052
  • 2. Vidhya Murali Areas of Interest: Machine Learning & Big Data Data Science Engineer @ Spotify Grad Student from the University of Wisconsin Madison aka Happy Badger for life! Who Am I? 2
  • 3. Spotify’s Big Data Started in 2006, now available in 58 countries 70+ million active users, 20+ million paid subscribers 30+ million songs in our catalog, ~20K added every day 1.5 billion playlists so far and counting 1 TB of user data logged every day Hadoop cluster with 1500 nodes ~20,000 Hadoop jobs per day 3
  • 4. Music Recommendations at Spotify Features: Discover Discover Weekly Right Now Radio Related Artists 4
  • 5. 30 million tracks… What to recommend? 5
  • 6. Approaches 6 •Manual curation by Experts •Editorial Tagging •Metadata (e.g. Label Provided data, NLP over News, Blogs) •Audio Signals •Collaborative Filtering Model
  • 7. Collaborative Filtering Model 7 •Find patterns from user’s past behavior to generate recommendations •Domain independent •Scalable •Accuracy(Collaborative Model) >= Accuracy(Content Based Model)
  • 8. Definition of CF 8 Hey, I like tracks P, Q, R, S! Well, I like tracks Q, R, S, T! Then you should check out track P! Nice! Btw try track T! Legacy Slide of Erik Bernhardsson
  • 9. The YoLo Problem 9 •YoLo Problem: “You Only Listen Once” to judge recommendations •Goal: Predict if users will listen to new music (new to user) •Challenges •Scale of catalog (30M songs + ~20K added every day) •Repeated consumption of music is not very uncommon •Music is niche •Strong correlation between music consumption and user’s context •Input: Feedback is implicit through streaming behavior, collection adds, browse history, search history etc
  • 10. Big Matrix! 10 Tracks(n) Users(m) Vidhya Burn by Ellie Goulding Order of 70M x 30M!
  • 11. Latent Factor Models 11 Vidhya Burn .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . •Use a “small” representation for each user and items(tracks): f-dimensional vectors .. . .. . .. . .. . . . ... ... ... ... .. (here, f = 2) m m n m n User Vector Matrix: X: (m x f) Track Vector Matrix: Y: (n x f) User Track Matrix: (m x n)
  • 13. Implicit Matrix Factorization 8 0 0 0 22 0 0 54 0 0 22 0 0 47 0 0 3 0 76 0 0 0 4 55 0 212 0 0 0 1 0 0 0 0 29 0 0 43 0 0 18 0 0 0 2 0 0 36 •Aggregate all (user, track) streams into a large matrix •Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight •Why?: Once learned, the top recommendations for a user are the top inner products between their latent factor vector in X and the track latent factor vectors in Y. X YUsers Tracks • = bias for user • = bias for item • = regularization parameter • = 1 if user streamed track else 0 • • = user latent factor vector • = item latent factor vectoryi
  • 14. Implicit Matrix Factorization 14 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 •Aggregate all (user, track) streams into a large matrix •Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight •Why?: Once learned, the top recommendations for a user are the top inner products between their latent factor vector in X and the track latent factor vectors in Y. X YUsers Tracks • = bias for user • = bias for item • = regularization parameter • = 1 if user streamed track else 0 • • = user latent factor vector • = item latent factor vectoryi
  • 15. Alternating Least Squares 15 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 X YUsers Tracks • = bias for user • = bias for item • = regularization parameter • = 1 if user streamed track else 0 • • = user latent factor vector • = item latent factor vector Fix tracks •Aggregate all (user, track) streams into a large matrix •Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight •Why?: Once learned, the top recommendations for a user are the top inner products between their latent factor vector in X and the track latent factor vectors in Y. yi
  • 16. 16 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 X YUsers • = bias for user • = bias for item • = regularization parameter • = 1 if user streamed track else 0 • • = user latent factor vector • = item latent factor vector Fix tracks Solve for users •Aggregate all (user, track) streams into a large matrix •Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight •Why?: Once learned, the top recommendations for a user are the top inner products between their latent factor vector in X and the track latent factor vectors in Y. Alternating Least Squares yi Tracks
  • 17. 17 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 X YUsers • = bias for user • = bias for item • = regularization parameter • = 1 if user streamed track else 0 • • = user latent factor vector • = item latent factor vector Fix users •Aggregate all (user, track) streams into a large matrix •Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight •Why?: Once learned, the top recommendations for a user are the top inner products between their latent factor vector in X and the track latent factor vectors in Y. Alternating Least Squares yi Tracks
  • 18. 18 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 X YUsers • = bias for user • = bias for item • = regularization parameter • = 1 if user streamed track else 0 • • = user latent factor vector • = item latent factor vector Fix users Solve for tracks •Aggregate all (user, track) streams into a large matrix •Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight •Why?: Once learned, the top recommendations for a user are the top inner products between their latent factor vector in X and the track latent factor vectors in Y. Alternating Least Squares yi Tracks
  • 19. 19 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 X YUsers • = bias for user • = bias for item • = regularization parameter • = 1 if user streamed track else 0 • • = user latent factor vector • = item latent factor vector Fix users Solve for tracks Repeat until convergence… •Aggregate all (user, track) streams into a large matrix •Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight •Why?: Once learned, the top recommendations for a user are the top inner products between their latent factor vector in X and the track latent factor vectors in Y. Alternating Least Squares yi Tracks
  • 20. 20 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 X YUsers • = bias for user • = bias for item • = regularization parameter • = 1 if user streamed track else 0 • • = user latent factor vector • = item latent factor vector Fix users Solve for tracks Repeat until convergence… •Aggregate all (user, track) streams into a large matrix •Goal: Approximate binary preference matrix by the inner product of 2 smaller matrices by minimizing the weighted RMSE (root mean squared error) using a function of total plays as weight •Why?: Once learned, the top recommendations for a user are the top inner products between their latent factor vector in X and the track latent factor vectors in Y. Alternating Least Squares yi Tracks
  • 21. 21 Alternating Least Squares • the same for all users so compute only once per iteration • weighted sum of outer products for item vectors the user streamed • weighted sum of item vectors the user streamed •Key takeaways: requires O(f^2) memory, time complexity linear in number of unique items the user streamed f x f f x f f x 1f x f
  • 23. Why Vectors? 23 •Compact musical representation of users’ taste, tracks’ genome •Vectors encode higher order dependencies so even if users who listen to Rihanna and don’t necessarily listen to Beyonce, the vectors will understand this dependency (based on some higher order dependency down the line) •Item-Item and User-Item scores computed using cosine distance •Linear complexity based on the number of latent factors • Easy to scale up
  • 24. Recommendations via Dot Product! 24
  • 25. 70 Million users x 30 Million tracks. How to scale? 25
  • 26. Matrix Factorization with MapReduce 26 Reduce stepMap step u % K = 0 i % L = 0 u % K = 0 i % L = 1 ... u % K = 0 i % L = L-1 u % K = 1 i % L = 0 u % K = 1 i % L = 1 ... ... ... ... ... ... u % K = K-1 i % L = 0 ... ... u % K = K-1 i % L = L-1 item vectors item%L=0 item vectors item%L=1 item vectors i % L = L-1 user vectors u % K = 0 user vectors u % K = 1 user vectors u % K = K-1 all log entries u % K = 1 i % L = 1 u % K = 0 u % K = 1 u % K = K-1 •Split the matrix up into K x L blocks. •Each mapper gets a different block, sums up intermediate terms, then key by user (or item) to reduce final user (or item) vector.
  • 27. Matrix Factorization with MapReduce 27 One map task Distributed cache: All user vectors where u % K = x Distributed cache: All item vectors where i % L = y Mapper Emit contributions Map input: tuples (u, i, count) where u % K = x and i % L = y Reducer New vector! •Input to Mapper is a list of (user, item, count) tuples – user modulo K is the same for all users in block – item modulo L is the same for all items in the block – Mapper aggregates intermediate contributions for each user (or item) – Eg: K=4, Mapper #1 gets user 1, 5, 9, 13 etc – Reducer keys by user (or item), aggregates intermediate mapper sums and solves closed form for final user (or item) vector
  • 28. Annoy 70 million users, at least 4 million tracks for recommendations. Given user vector and track vector, still tricky to find recs Brute force approach: O(70M x 4M x 40) = 0(12 peta-operations)! Approximate Nearest Neighbor Oh Yeah! : Local Sensitive Hashing https://github.com/spotify/annoy 28
  • 29. 29
  • 30. Thank You! You can reach me @ Email: vidhya@spotify.com Twitter: @vid052