SlideShare uma empresa Scribd logo
1 de 10
PROFESOR: ALUMNA:
ING. ALCIDES CADIZ GÉNESIS VELASCO CI: 19. 905.639
CUIDAD GUAYANA, NOVIEMBRE DEL 2015
REPUBLICA BOLIVARIANA DE VENEZUELA
INSTITUTO UNIVERSIDAD POLITENICO
“SANTIAGO MARIÑO”
EXTENSION PUERTO ORDAZ
ESCUELA: INGENIERIA INDUSTRIAL
MATERIA: PROCESOS DE MANUFACTURA
INTRODUCCION
El objetivo fundamental de este trabajo tiene como finalidad investigar y adquirir
conocimientos del Procesos de cortes de metales por Arranque de Viruta y a que
es de vital importancia en el proceso de fabricación y terminación de una pieza de
configuración geométrica que requiere un acabado deseado, tanto como para el
fabricante como para el consumidor final. En el desarrollo del trabajo nos
toparemos con diferentes puntos relacionados a este tema como lo son los tipos
de virutas, sus características, sobre el proceso de corte, variables entre otros.
Para desprender viruta se requiere de la acción de la deformación de un material
dicha acción requiere de variables de energía, temperatura, calor para poder
realizar el desprendimiento de viruta. En muchos procesos de manufactura las
variables ya antes mencionadas son de gran importancia, puesto que para
completar cualquier proceso se requieren de altas cantidades de energía si
deseamos concretar la operación que indique el proceso, bien sea torneado,
colados, entre otros. Como en todo proceso industrial, donde se trabajen como
cualquier tipos de maquinas la persona estará expuesta si no se toman las
precauciones adecuadas, por tal se razón se definieron algunas generalidades de
seguridad industrial al momento de trabajar con virutas.
1. La termodinámica en el corte de metales, mediante el uso de
herramientas de corte, donde existe desprendimiento de viruta.
El desprendimiento de viruta es un proceso de manufactura en el que una
herramienta de corte se utiliza para remover el exceso de material de una pieza de
forma que el material que quede tenga la forma deseada. La acción principal de
corte consiste en aplicar deformación en corte para formarla viruta y exponer la
nueva superficie.
Tipos de viruta
Continua
Característica en materiales dúctiles:
 Presenta problemas de control de viruta.
Característica en materiales quebradizos:
 Presenta problemas de control de calidad
 Acelera el desgaste en la cuchilla.
Continúa con protuberancia:
 Representa el corte de materiales dúciles a bajas velocidades en donde
existe una alta fricción sobre la cara de la herramienta.
 Esta alta friccion es causa de una delada capa de viruta quede cortada de
la parte inferior y se adhiera a la cara de la herramienta.
2. Importancia de las variables de corte, calor, energía y temperatura en
el proceso de manufactura.
Hay diferentes tipos de herramientas de corte, en función de su uso. Las cuales
podríamos clasificar en dos categorías:
 Herramienta hecha de un único material (generalmente acero).
 Herramienta con plaquetas de corte industrial.
Sobre los procesos de corte:
Podeos cortar
 Metales
 Madera
 Plásticos
 Compuestos
 Cerámicas
Podemos lograr tolerancia menores de 0.001” y tolerancia mejores que 16
micropulg.
Requieren el uso de una cuchilla para remover el material.
Ejemplos de algunos procesos de corte:
 Torneado cilíndrico
 Corte en fresadora
 Taladrado
Variables:
Independiente
 Material, condición y geometría de la cuchilla
 Material, condición y temperatura de la pieza de trabajo
 Uso de fluidos de corte
 Características de la maquina
 Condiciones de corte
Dependiente
Existen dos clasificaciones básicas para los tipos de corte:
 Corte ortogonal
 Corte oblicuo
Durante el proceso normal de mecanizado la mayor parte de trabajo se consume
en la formación de viruta en el corte de plano, la temperatura y el calor dependen
de la fuerza de corte la energía mecánica introducida en el sistema produce un
aumento de temperatura. Algunas características importantes son:
1. Una temperatura excesiva afecta adversamente a la resistencia y dureza.
2. El calor puede inducir daños térmicos a las superficies de la máquina y está
causando daño al material.
3. La energía térmica es trasmitida parcialmente a la viruta y la pieza.
4. El calor se propaga desde la zona de origen hasta la herramienta a través de la
conducción. Si bien cierto los procesos de manufactura se puede definir como la
forma en que transformar la materia prima que hallamos, para darle un uso
práctico en nuestra sociedad y así disfrutar la vida con mayor comodidad. La
manufactura es el proceso de coordinación de personal, herramientas y máquinas
para convertir materia prima en productos útiles.
Ahora para convertir materia prima en diferentes productos se requiere de
variables que ayuden y la finalización de proceso que se esté radicalizando.
Calor: El calor está definido como la forma de energía que se transfiere entre
diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a
distintas temperaturas, sin embargo en termodinámica generalmente el término
calor significa simplemente transferencia de energía.
el calor dentro de un proceso de manufactura es de gran importancia, puesto que
se requieren para realizar diferentes procesos por ejemplo si tenemos piezas
metálicas , o termoplásticas que puedan soldarse para construir una estructura
mediante la unión de piezas, se aplica calor en la cual las piezas son soldadas
fundiendo ambas y pudiendo agregar un material de relleno fundido (metal o
plástico), para conseguir un baño de material fundido (el baño de soldadura) que,
al enfriarse, se convierte en una unión fija.
Existe otro proceso muy común en las áreas de producción donde se usa
trasferencia de calor, este proceso se conoce como radiación, que consiste en la
trasferencia de calor a través de las ondas electromagnéticas, y se aplican en la
iniciación de productos quimios.
Otro proceso de manufactura que se define como el arte de elaborar productos
comerciales a partir de polvos metálicos se conoce como pulvimetalurgia.
En este proceso no siempre se utiliza el calor, pero cuando se utiliza este debe
mantenerse debajo de la temperatura de fusión de los metales a trabajar. Cuando
se aplica calor en el proceso subsecuente de la metalurgia de los polvos se le
conoce como sinterizado, este proceso genera la unión de partículas finas con lo
que se mejora la resistencia de los productos y otras de sus propiedades. Las
piezas metálicas producto de los procesos de la metalurgia de los polvos son
producto de la mezcla de diversos polvos de metales que se complementan en
sus características. Así se pueden obtener metales con cobalto, tungsteno o
grafito según para qué va a ser utilizado el material que se fabrica.
El metal en forma de polvo es más caro que en forma sólida y el proceso es sólo
recomendable para la producción en masa de los productos, en general el costo
de producción de piezas producto de polvo metálico es más alto que el de la
fundición, sin embargo es justificable y rentable por las propiedades excepcionales
que se obtienen con este procedimiento. Existen productos que no pueden ser
fabricados y otros no compiten por las tolerancias que se logran con este método
de fabricación.
Al estudiar este los diferentes procesos de manufactura donde se usa calor
podemos decir que esta variable proporciona una utilidad para poder completar el
proceso que se está realizando.
Corte: Durante el proceso de maquinado se genera fricción y con ello calor, lo que
puede dañar a los materiales de las herramientas de corte por lo que es
recomendable utilizar fluidos que disminuyan la temperatura de las herramientas.
Con la aplicación adecuada de los fluidos de corte se disminuye la fricción y la
temperatura de corte con lo que se logran las siguientes:
Ventajas económicas
1. Reducción de costos
2. Aumento de velocidad de producción
3. Reducción de costos de mano de obra
4. Reducción de costos de potencia y energía
5. Aumento en la calidad de acabado de las piezas producidas
Características de los líquidos para corte
1. Buena capacidad de enfriamiento
2. Buena capacidad lubricante
3. Resistencia a la herrumbre
4. Estabilidad (larga duración sin descomponerse)
5. Resistencia al enranciamiento
6. No tóxico
7. Transparente (permite al operario ver lo que está haciendo)
8. Viscosidad relativa baja (permite que los cuerpos extraños la sedimentación)
9. No inflamable
Temperatura y energía: estas variables se pueden relación de manera muy
significativa puesto que la temperatura es considerada como una fuente de
energía en diferentes procesos de manufactura, esta se emplea en las acerías
donde se requiere de una fuerte concentración de energía calórica que permita
realizar diferentes tipos de aleaciones, y la temperatura aplicada será conforma a
las característica de los materiales que se requiera fundir.
Uso de tablas físicas y químicas asociadas a la termodinámica de corte de
metales.
Las características de cualquier material pueden ser de naturaleza muy variada
tales como la forma, la densidad, la resistencia, el tamaño o la estética. Las cuales
se realizan en el ámbito de la industria Es difícil establecer relaciones que definan
cuantitativamente la maquinabilidad de un material, pues las operaciones de
mecanizado tienen una naturaleza compleja. Una operación de proceso utiliza
energía para alterar la forma, propiedades físicas o el aspecto de una pieza de
trabajo y agregar valor al material. Se distinguen 3 categorías de operaciones de
proceso; Formado, para mejorar propiedades y de tratamiento de superficies.
A veces, sobre todo para los no metales, estos factores auxiliares son más
importantes. Por ejemplo, los materiales blandos como los plásticos pueden ser
difíciles de mecanizar a causa de su mala conductividad térmica.
3. Seguridad industrial y el desprendimiento de virutas en el proceso de
manufactura.
Es todo aquel conjunto de normas, reglamentos, principios, legislación que se
establecen a objeto de evitar los accidentes laborales y enfermedades
profesionales en un ambiente de trabajo. Por ende en todo proceso de
manufactura donde exista desprendimiento de viruta no se está exento de sufrir
algún accidente ocupacional. Uno de los equipos comunes en los procesos de
manufactura es el torno y al este ser utilizados se debe tomar en cuenta las
siguientes generalidades.
1. Los interruptores y las palancas de embrague de los tornos, se han de asegurar
para que no sean accionados involuntariamente; las arrancadas involuntarias han
producido muchos accidentes.
2. Las ruedas dentadas, correas de transmisión, acoplamientos, e incluso los ejes
lisos, deben ser protegidos por cubiertas.
3. El circuito eléctrico del torno debe estar conectado a tierra. El cuadro eléctrico
al que esté conectado el torno debe estar provisto de un interruptor diferencial de
sensibilidad adecuada. Es conveniente que las carcasas de protección de los
engranes y transmisiones vayan provistas de interruptores instalados en serie, que
impidan la puesta en marcha del torno cuando las protecciones no están cerradas.
4. Las comprobaciones, mediciones, correcciones, sustitución de piezas,
herramientas, etc. deben ser realizadas con el torno completamente parado.
Protección personal
1. Para el torneado se utilizarán gafas de protección contra impactos, sobre todo
cuando se mecanizan metales duros, frágiles o quebradizos.
2. Asimismo, para realizar operaciones de afilado de cuchillas se deberá utilizar
protección ocular. Para evitar en contacto con la viruta.
4. Las virutas producidas durante el mecanizado, nunca deben retirarse con la
mano.
5. Para retirar las virutas largas se utilizará un gancho provisto de una cazoleta
que proteja la mano. Las cuchillas con romper virutas impiden formación de virutas
largas y peligrosas, y facilita el trabajo de retirarlas.
6. Las virutas menudas se retirarán con un cepillo o rastrillo adecuado.
7. La persona que vaya a tornear deberá llevar ropa bien ajustada, sin bolsillos en
el pecho y sin cinturón. Las mangas deben ceñirse a las muñecas, con elásticos
en vez de botones, o llevarse arremangadas hacia adentro.
8. Se usará calzado de seguridad que proteja contra los pinchazos y cortes por
virutas y contra la caída de piezas pesadas.
9. Es muy peligroso trabajar en el torno con anillos, relojes, pulseras, cadenas al
cuello, corbatas, bufandas o cualquier prenda que cuelgue.
10. Asimismo es peligroso llevar cabellos largos y sueltos, que deben recogerse
bajo un gorro o prenda similar. Lo mismo puede decirse de la barba larga, que
debe recogerse con una redecilla.
CONCLUSION
El corte de metales es un proceso termo-mecánico durante el cual la generación
de calor ocurre como resultado de la deformación plástica y la fricción a través de
las herramienta-viruta y herramienta-material de trabajo, es decir poder trasformar
algún material, este primero deberá pasar por el un proceso térmico , para poder
deformarlo obteniendo asa el resultado del proceso. En la ingeniería de los
diferentes procesos de manufactura se basan en las trasformación de los
materiales para obtener otro con las mismas o diferentes características de
fabricación. Al usar un proceso térmico- mecánico para los cortes de metales se
logra: Reducir los costó de fabricación puesto que el proceso será continuo y la
maquinaria es la misma. Al usar calor, como fuente de energía para la
deformación la producción de proceso aumenta.
BIBIOGRAFIA
http://www.wikillerato.org/Variables_termodin%C3%A1micas.html
http://www.ing.uc.edu.ve/mecanica/materias/07/procesos%20de%20fabricacion%2
0ii.pdf
http://www.monografias.com/trabajos104/mecanizado-fundamentos-y-
herramientas/mecanizado-fundamentos-y-herramientas.shtml
http://www.ecured.cu/Corte_de_metales

Mais conteúdo relacionado

Mais procurados

Termodinámica en el corte de metales
Termodinámica en el corte de metalesTermodinámica en el corte de metales
Termodinámica en el corte de metalesGMaTorres
 
Termodinamica en el proceso de mecanizado pedro perez adriana freites
Termodinamica en el proceso de mecanizado pedro perez adriana freitesTermodinamica en el proceso de mecanizado pedro perez adriana freites
Termodinamica en el proceso de mecanizado pedro perez adriana freitespeter18159
 
Importancia de la variables de corte(termodinamica)
Importancia de la variables de corte(termodinamica)Importancia de la variables de corte(termodinamica)
Importancia de la variables de corte(termodinamica)yugreidys
 
Proceso de manufactura termodinamica
Proceso de manufactura termodinamicaProceso de manufactura termodinamica
Proceso de manufactura termodinamicayoselin230891
 
Edison silva. la termodinamica en corte de metales
Edison silva. la termodinamica en corte de metalesEdison silva. la termodinamica en corte de metales
Edison silva. la termodinamica en corte de metalesedisonalexander
 
La termodinamica en el corte de metales
La termodinamica en el corte de metalesLa termodinamica en el corte de metales
La termodinamica en el corte de metalesmariaherminia_gomez
 
Procesos de manufactura la termodinamica en los metales
Procesos de manufactura la termodinamica en los metalesProcesos de manufactura la termodinamica en los metales
Procesos de manufactura la termodinamica en los metalesMario Calles
 
República bolivariana de venezuela
República bolivariana de venezuelaRepública bolivariana de venezuela
República bolivariana de venezuelaAlejandro Villalobos
 
Termodinámica en el corte de metales
Termodinámica en el corte de metalesTermodinámica en el corte de metales
Termodinámica en el corte de metalesFlor Aliendres
 
La termodinámica en el corte de metales
La termodinámica en el corte de metalesLa termodinámica en el corte de metales
La termodinámica en el corte de metalesAdaLugo14
 
Procesos de manufactura la termodinamica en el corte de los metales
Procesos de manufactura  la termodinamica en el corte de los metalesProcesos de manufactura  la termodinamica en el corte de los metales
Procesos de manufactura la termodinamica en el corte de los metalesRichard Ramirez Rincon
 
La termodinámica En el corte de los materiales
La termodinámica  En el corte de los materialesLa termodinámica  En el corte de los materiales
La termodinámica En el corte de los materialesjmbfsucre
 
Trabajo procesos de manufactura segundo corte
Trabajo procesos de manufactura segundo corteTrabajo procesos de manufactura segundo corte
Trabajo procesos de manufactura segundo cortejmbfsucre
 
La termodinamica en el corte de los metales procesos de manufacturas
La  termodinamica en el corte de los metales  procesos de manufacturasLa  termodinamica en el corte de los metales  procesos de manufacturas
La termodinamica en el corte de los metales procesos de manufacturas20807748c
 
Procesos de manufacturas 01 01 01
Procesos de manufacturas 01 01 01Procesos de manufacturas 01 01 01
Procesos de manufacturas 01 01 01Edixon Valencia
 
La termodinámica en el corte de metales
La termodinámica en el corte de metalesLa termodinámica en el corte de metales
La termodinámica en el corte de metalesyessika88
 

Mais procurados (18)

Termodinámica en el corte de metales
Termodinámica en el corte de metalesTermodinámica en el corte de metales
Termodinámica en el corte de metales
 
Termodinamica en el proceso de mecanizado pedro perez adriana freites
Termodinamica en el proceso de mecanizado pedro perez adriana freitesTermodinamica en el proceso de mecanizado pedro perez adriana freites
Termodinamica en el proceso de mecanizado pedro perez adriana freites
 
Manufactura
ManufacturaManufactura
Manufactura
 
Importancia de la variables de corte(termodinamica)
Importancia de la variables de corte(termodinamica)Importancia de la variables de corte(termodinamica)
Importancia de la variables de corte(termodinamica)
 
Proceso de manufactura termodinamica
Proceso de manufactura termodinamicaProceso de manufactura termodinamica
Proceso de manufactura termodinamica
 
Edison silva. la termodinamica en corte de metales
Edison silva. la termodinamica en corte de metalesEdison silva. la termodinamica en corte de metales
Edison silva. la termodinamica en corte de metales
 
La termodinamica en el corte de metales
La termodinamica en el corte de metalesLa termodinamica en el corte de metales
La termodinamica en el corte de metales
 
Procesos de manufactura la termodinamica en los metales
Procesos de manufactura la termodinamica en los metalesProcesos de manufactura la termodinamica en los metales
Procesos de manufactura la termodinamica en los metales
 
República bolivariana de venezuela
República bolivariana de venezuelaRepública bolivariana de venezuela
República bolivariana de venezuela
 
Termodinámica en el corte de metales
Termodinámica en el corte de metalesTermodinámica en el corte de metales
Termodinámica en el corte de metales
 
La termodinamica
La termodinamicaLa termodinamica
La termodinamica
 
La termodinámica en el corte de metales
La termodinámica en el corte de metalesLa termodinámica en el corte de metales
La termodinámica en el corte de metales
 
Procesos de manufactura la termodinamica en el corte de los metales
Procesos de manufactura  la termodinamica en el corte de los metalesProcesos de manufactura  la termodinamica en el corte de los metales
Procesos de manufactura la termodinamica en el corte de los metales
 
La termodinámica En el corte de los materiales
La termodinámica  En el corte de los materialesLa termodinámica  En el corte de los materiales
La termodinámica En el corte de los materiales
 
Trabajo procesos de manufactura segundo corte
Trabajo procesos de manufactura segundo corteTrabajo procesos de manufactura segundo corte
Trabajo procesos de manufactura segundo corte
 
La termodinamica en el corte de los metales procesos de manufacturas
La  termodinamica en el corte de los metales  procesos de manufacturasLa  termodinamica en el corte de los metales  procesos de manufacturas
La termodinamica en el corte de los metales procesos de manufacturas
 
Procesos de manufacturas 01 01 01
Procesos de manufacturas 01 01 01Procesos de manufacturas 01 01 01
Procesos de manufacturas 01 01 01
 
La termodinámica en el corte de metales
La termodinámica en el corte de metalesLa termodinámica en el corte de metales
La termodinámica en el corte de metales
 

Semelhante a Trabajo de proceso de manufactura

Procesos de manufactura
Procesos de manufacturaProcesos de manufactura
Procesos de manufacturaAlfredobar92
 
Manufactura, termodinamica en el corte de los metales
Manufactura, termodinamica en el corte de los metalesManufactura, termodinamica en el corte de los metales
Manufactura, termodinamica en el corte de los metales19910727
 
Manufactura, termodinamica en el corte de los metales
Manufactura, termodinamica en el corte de los metalesManufactura, termodinamica en el corte de los metales
Manufactura, termodinamica en el corte de los metales19910727
 
Trabajo de proceso
Trabajo de procesoTrabajo de proceso
Trabajo de procesoOri Delgado
 
Procesos de Manufacturas
Procesos de ManufacturasProcesos de Manufacturas
Procesos de Manufacturascarlossalahe
 
corte de metales termi
corte de metales termicorte de metales termi
corte de metales termirosgelramos
 
Trabajo de proceso.
Trabajo de proceso.Trabajo de proceso.
Trabajo de proceso.marihusky
 
Trabajo de proceso.
Trabajo de proceso.Trabajo de proceso.
Trabajo de proceso.Marifergon
 
Trabajo de proceso.
Trabajo de proceso.Trabajo de proceso.
Trabajo de proceso.Maury5
 
Instituto universitario politecnico santiago mariño
Instituto universitario politecnico santiago mariñoInstituto universitario politecnico santiago mariño
Instituto universitario politecnico santiago mariñojosealvarezb
 
Proceso de manufactura
Proceso de manufacturaProceso de manufactura
Proceso de manufacturaFrain Cortez
 
Manufactura daniela, yennifer
Manufactura daniela, yenniferManufactura daniela, yennifer
Manufactura daniela, yenniferdani14gil
 

Semelhante a Trabajo de proceso de manufactura (20)

Procesos de manufactura
Procesos de manufacturaProcesos de manufactura
Procesos de manufactura
 
Deurelina idrogo t1
Deurelina idrogo t1Deurelina idrogo t1
Deurelina idrogo t1
 
Manufactura, termodinamica en el corte de los metales
Manufactura, termodinamica en el corte de los metalesManufactura, termodinamica en el corte de los metales
Manufactura, termodinamica en el corte de los metales
 
Deurelina idrogo t1
Deurelina idrogo t1Deurelina idrogo t1
Deurelina idrogo t1
 
Deurelina idrogo
Deurelina idrogoDeurelina idrogo
Deurelina idrogo
 
Manufactura, termodinamica en el corte de los metales
Manufactura, termodinamica en el corte de los metalesManufactura, termodinamica en el corte de los metales
Manufactura, termodinamica en el corte de los metales
 
Proceso de Manufactura
Proceso de ManufacturaProceso de Manufactura
Proceso de Manufactura
 
La termodinamica
La termodinamicaLa termodinamica
La termodinamica
 
Trabajo de proceso
Trabajo de procesoTrabajo de proceso
Trabajo de proceso
 
Procesos de Manufacturas
Procesos de ManufacturasProcesos de Manufacturas
Procesos de Manufacturas
 
corte de metales termi
corte de metales termicorte de metales termi
corte de metales termi
 
Trabajo de proceso.
Trabajo de proceso.Trabajo de proceso.
Trabajo de proceso.
 
Trabajo de proceso.
Trabajo de proceso.Trabajo de proceso.
Trabajo de proceso.
 
Trabajo de proceso.
Trabajo de proceso.Trabajo de proceso.
Trabajo de proceso.
 
Instituto universitario politecnico santiago mariño
Instituto universitario politecnico santiago mariñoInstituto universitario politecnico santiago mariño
Instituto universitario politecnico santiago mariño
 
Proceso de manufactura
Proceso de manufacturaProceso de manufactura
Proceso de manufactura
 
Roselin Romero
Roselin RomeroRoselin Romero
Roselin Romero
 
Manufactura daniela, yennifer
Manufactura daniela, yenniferManufactura daniela, yennifer
Manufactura daniela, yennifer
 
Dorielvis (1)
Dorielvis (1)Dorielvis (1)
Dorielvis (1)
 
Omar edgar mirlenis
Omar  edgar mirlenisOmar  edgar mirlenis
Omar edgar mirlenis
 

Último

Six Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processSix Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processbarom
 
TAIICHI OHNO, historia, obras, reconocimientos
TAIICHI OHNO, historia, obras, reconocimientosTAIICHI OHNO, historia, obras, reconocimientos
TAIICHI OHNO, historia, obras, reconocimientoscuentaparainvestigac
 
Presentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potablePresentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potableFabricioMogroMantill
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGUROalejandrocrisostomo2
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxwilliam801689
 
Video sustentación GA2- 240201528-AA3-EV01.pptx
Video sustentación GA2- 240201528-AA3-EV01.pptxVideo sustentación GA2- 240201528-AA3-EV01.pptx
Video sustentación GA2- 240201528-AA3-EV01.pptxcarlosEspaaGarcia
 
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...GuillermoRodriguez239462
 
5. MATERIALES petreos para concreto.pdf.
5. MATERIALES petreos para concreto.pdf.5. MATERIALES petreos para concreto.pdf.
5. MATERIALES petreos para concreto.pdf.davidtonconi
 
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdfGustavoAdolfoDiaz3
 
Tema ilustrado 9.2.docxbbbbbbbbbbbbbbbbbbb
Tema ilustrado 9.2.docxbbbbbbbbbbbbbbbbbbbTema ilustrado 9.2.docxbbbbbbbbbbbbbbbbbbb
Tema ilustrado 9.2.docxbbbbbbbbbbbbbbbbbbbantoniolfdez2006
 
Matrices Matemáticos universitario pptx
Matrices  Matemáticos universitario pptxMatrices  Matemáticos universitario pptx
Matrices Matemáticos universitario pptxNancyJulcasumaran
 
3er Informe Laboratorio Quimica General (2) (1).pdf
3er Informe Laboratorio Quimica General  (2) (1).pdf3er Informe Laboratorio Quimica General  (2) (1).pdf
3er Informe Laboratorio Quimica General (2) (1).pdfSantiagoRodriguez598818
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheElisaLen4
 
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfNTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfELIZABETHCRUZVALENCI
 
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)samuelsan933
 
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOeldermishti
 
Auditoría de Sistemas de Gestión
Auditoría    de   Sistemas     de GestiónAuditoría    de   Sistemas     de Gestión
Auditoría de Sistemas de GestiónYanet Caldas
 
libro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacioneslibro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacionesRamon Bartolozzi
 
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.pptTippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.pptNombre Apellidos
 

Último (20)

Six Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processSix Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo process
 
TAIICHI OHNO, historia, obras, reconocimientos
TAIICHI OHNO, historia, obras, reconocimientosTAIICHI OHNO, historia, obras, reconocimientos
TAIICHI OHNO, historia, obras, reconocimientos
 
Presentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potablePresentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potable
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docx
 
Video sustentación GA2- 240201528-AA3-EV01.pptx
Video sustentación GA2- 240201528-AA3-EV01.pptxVideo sustentación GA2- 240201528-AA3-EV01.pptx
Video sustentación GA2- 240201528-AA3-EV01.pptx
 
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
 
422382393-Curso-de-Tableros-Electricos.pptx
422382393-Curso-de-Tableros-Electricos.pptx422382393-Curso-de-Tableros-Electricos.pptx
422382393-Curso-de-Tableros-Electricos.pptx
 
5. MATERIALES petreos para concreto.pdf.
5. MATERIALES petreos para concreto.pdf.5. MATERIALES petreos para concreto.pdf.
5. MATERIALES petreos para concreto.pdf.
 
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf
 
Tema ilustrado 9.2.docxbbbbbbbbbbbbbbbbbbb
Tema ilustrado 9.2.docxbbbbbbbbbbbbbbbbbbbTema ilustrado 9.2.docxbbbbbbbbbbbbbbbbbbb
Tema ilustrado 9.2.docxbbbbbbbbbbbbbbbbbbb
 
Matrices Matemáticos universitario pptx
Matrices  Matemáticos universitario pptxMatrices  Matemáticos universitario pptx
Matrices Matemáticos universitario pptx
 
3er Informe Laboratorio Quimica General (2) (1).pdf
3er Informe Laboratorio Quimica General  (2) (1).pdf3er Informe Laboratorio Quimica General  (2) (1).pdf
3er Informe Laboratorio Quimica General (2) (1).pdf
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
 
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfNTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
 
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)
 
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
 
Auditoría de Sistemas de Gestión
Auditoría    de   Sistemas     de GestiónAuditoría    de   Sistemas     de Gestión
Auditoría de Sistemas de Gestión
 
libro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacioneslibro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operaciones
 
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.pptTippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
 

Trabajo de proceso de manufactura

  • 1. PROFESOR: ALUMNA: ING. ALCIDES CADIZ GÉNESIS VELASCO CI: 19. 905.639 CUIDAD GUAYANA, NOVIEMBRE DEL 2015 REPUBLICA BOLIVARIANA DE VENEZUELA INSTITUTO UNIVERSIDAD POLITENICO “SANTIAGO MARIÑO” EXTENSION PUERTO ORDAZ ESCUELA: INGENIERIA INDUSTRIAL MATERIA: PROCESOS DE MANUFACTURA
  • 2. INTRODUCCION El objetivo fundamental de este trabajo tiene como finalidad investigar y adquirir conocimientos del Procesos de cortes de metales por Arranque de Viruta y a que es de vital importancia en el proceso de fabricación y terminación de una pieza de configuración geométrica que requiere un acabado deseado, tanto como para el fabricante como para el consumidor final. En el desarrollo del trabajo nos toparemos con diferentes puntos relacionados a este tema como lo son los tipos de virutas, sus características, sobre el proceso de corte, variables entre otros. Para desprender viruta se requiere de la acción de la deformación de un material dicha acción requiere de variables de energía, temperatura, calor para poder realizar el desprendimiento de viruta. En muchos procesos de manufactura las variables ya antes mencionadas son de gran importancia, puesto que para completar cualquier proceso se requieren de altas cantidades de energía si deseamos concretar la operación que indique el proceso, bien sea torneado, colados, entre otros. Como en todo proceso industrial, donde se trabajen como cualquier tipos de maquinas la persona estará expuesta si no se toman las precauciones adecuadas, por tal se razón se definieron algunas generalidades de seguridad industrial al momento de trabajar con virutas.
  • 3. 1. La termodinámica en el corte de metales, mediante el uso de herramientas de corte, donde existe desprendimiento de viruta. El desprendimiento de viruta es un proceso de manufactura en el que una herramienta de corte se utiliza para remover el exceso de material de una pieza de forma que el material que quede tenga la forma deseada. La acción principal de corte consiste en aplicar deformación en corte para formarla viruta y exponer la nueva superficie. Tipos de viruta Continua Característica en materiales dúctiles:  Presenta problemas de control de viruta. Característica en materiales quebradizos:  Presenta problemas de control de calidad  Acelera el desgaste en la cuchilla. Continúa con protuberancia:  Representa el corte de materiales dúciles a bajas velocidades en donde existe una alta fricción sobre la cara de la herramienta.  Esta alta friccion es causa de una delada capa de viruta quede cortada de la parte inferior y se adhiera a la cara de la herramienta. 2. Importancia de las variables de corte, calor, energía y temperatura en el proceso de manufactura. Hay diferentes tipos de herramientas de corte, en función de su uso. Las cuales podríamos clasificar en dos categorías:  Herramienta hecha de un único material (generalmente acero).  Herramienta con plaquetas de corte industrial. Sobre los procesos de corte: Podeos cortar
  • 4.  Metales  Madera  Plásticos  Compuestos  Cerámicas Podemos lograr tolerancia menores de 0.001” y tolerancia mejores que 16 micropulg. Requieren el uso de una cuchilla para remover el material. Ejemplos de algunos procesos de corte:  Torneado cilíndrico  Corte en fresadora  Taladrado Variables: Independiente  Material, condición y geometría de la cuchilla  Material, condición y temperatura de la pieza de trabajo  Uso de fluidos de corte  Características de la maquina  Condiciones de corte Dependiente Existen dos clasificaciones básicas para los tipos de corte:  Corte ortogonal  Corte oblicuo Durante el proceso normal de mecanizado la mayor parte de trabajo se consume en la formación de viruta en el corte de plano, la temperatura y el calor dependen de la fuerza de corte la energía mecánica introducida en el sistema produce un aumento de temperatura. Algunas características importantes son: 1. Una temperatura excesiva afecta adversamente a la resistencia y dureza. 2. El calor puede inducir daños térmicos a las superficies de la máquina y está causando daño al material.
  • 5. 3. La energía térmica es trasmitida parcialmente a la viruta y la pieza. 4. El calor se propaga desde la zona de origen hasta la herramienta a través de la conducción. Si bien cierto los procesos de manufactura se puede definir como la forma en que transformar la materia prima que hallamos, para darle un uso práctico en nuestra sociedad y así disfrutar la vida con mayor comodidad. La manufactura es el proceso de coordinación de personal, herramientas y máquinas para convertir materia prima en productos útiles. Ahora para convertir materia prima en diferentes productos se requiere de variables que ayuden y la finalización de proceso que se esté radicalizando. Calor: El calor está definido como la forma de energía que se transfiere entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintas temperaturas, sin embargo en termodinámica generalmente el término calor significa simplemente transferencia de energía. el calor dentro de un proceso de manufactura es de gran importancia, puesto que se requieren para realizar diferentes procesos por ejemplo si tenemos piezas metálicas , o termoplásticas que puedan soldarse para construir una estructura mediante la unión de piezas, se aplica calor en la cual las piezas son soldadas fundiendo ambas y pudiendo agregar un material de relleno fundido (metal o plástico), para conseguir un baño de material fundido (el baño de soldadura) que, al enfriarse, se convierte en una unión fija. Existe otro proceso muy común en las áreas de producción donde se usa trasferencia de calor, este proceso se conoce como radiación, que consiste en la trasferencia de calor a través de las ondas electromagnéticas, y se aplican en la iniciación de productos quimios. Otro proceso de manufactura que se define como el arte de elaborar productos comerciales a partir de polvos metálicos se conoce como pulvimetalurgia. En este proceso no siempre se utiliza el calor, pero cuando se utiliza este debe mantenerse debajo de la temperatura de fusión de los metales a trabajar. Cuando se aplica calor en el proceso subsecuente de la metalurgia de los polvos se le conoce como sinterizado, este proceso genera la unión de partículas finas con lo que se mejora la resistencia de los productos y otras de sus propiedades. Las piezas metálicas producto de los procesos de la metalurgia de los polvos son producto de la mezcla de diversos polvos de metales que se complementan en sus características. Así se pueden obtener metales con cobalto, tungsteno o grafito según para qué va a ser utilizado el material que se fabrica.
  • 6. El metal en forma de polvo es más caro que en forma sólida y el proceso es sólo recomendable para la producción en masa de los productos, en general el costo de producción de piezas producto de polvo metálico es más alto que el de la fundición, sin embargo es justificable y rentable por las propiedades excepcionales que se obtienen con este procedimiento. Existen productos que no pueden ser fabricados y otros no compiten por las tolerancias que se logran con este método de fabricación. Al estudiar este los diferentes procesos de manufactura donde se usa calor podemos decir que esta variable proporciona una utilidad para poder completar el proceso que se está realizando. Corte: Durante el proceso de maquinado se genera fricción y con ello calor, lo que puede dañar a los materiales de las herramientas de corte por lo que es recomendable utilizar fluidos que disminuyan la temperatura de las herramientas. Con la aplicación adecuada de los fluidos de corte se disminuye la fricción y la temperatura de corte con lo que se logran las siguientes: Ventajas económicas 1. Reducción de costos 2. Aumento de velocidad de producción 3. Reducción de costos de mano de obra 4. Reducción de costos de potencia y energía 5. Aumento en la calidad de acabado de las piezas producidas Características de los líquidos para corte 1. Buena capacidad de enfriamiento 2. Buena capacidad lubricante 3. Resistencia a la herrumbre 4. Estabilidad (larga duración sin descomponerse) 5. Resistencia al enranciamiento 6. No tóxico 7. Transparente (permite al operario ver lo que está haciendo) 8. Viscosidad relativa baja (permite que los cuerpos extraños la sedimentación)
  • 7. 9. No inflamable Temperatura y energía: estas variables se pueden relación de manera muy significativa puesto que la temperatura es considerada como una fuente de energía en diferentes procesos de manufactura, esta se emplea en las acerías donde se requiere de una fuerte concentración de energía calórica que permita realizar diferentes tipos de aleaciones, y la temperatura aplicada será conforma a las característica de los materiales que se requiera fundir. Uso de tablas físicas y químicas asociadas a la termodinámica de corte de metales. Las características de cualquier material pueden ser de naturaleza muy variada tales como la forma, la densidad, la resistencia, el tamaño o la estética. Las cuales se realizan en el ámbito de la industria Es difícil establecer relaciones que definan cuantitativamente la maquinabilidad de un material, pues las operaciones de mecanizado tienen una naturaleza compleja. Una operación de proceso utiliza energía para alterar la forma, propiedades físicas o el aspecto de una pieza de trabajo y agregar valor al material. Se distinguen 3 categorías de operaciones de proceso; Formado, para mejorar propiedades y de tratamiento de superficies. A veces, sobre todo para los no metales, estos factores auxiliares son más importantes. Por ejemplo, los materiales blandos como los plásticos pueden ser difíciles de mecanizar a causa de su mala conductividad térmica. 3. Seguridad industrial y el desprendimiento de virutas en el proceso de manufactura. Es todo aquel conjunto de normas, reglamentos, principios, legislación que se establecen a objeto de evitar los accidentes laborales y enfermedades profesionales en un ambiente de trabajo. Por ende en todo proceso de manufactura donde exista desprendimiento de viruta no se está exento de sufrir algún accidente ocupacional. Uno de los equipos comunes en los procesos de manufactura es el torno y al este ser utilizados se debe tomar en cuenta las siguientes generalidades. 1. Los interruptores y las palancas de embrague de los tornos, se han de asegurar para que no sean accionados involuntariamente; las arrancadas involuntarias han producido muchos accidentes.
  • 8. 2. Las ruedas dentadas, correas de transmisión, acoplamientos, e incluso los ejes lisos, deben ser protegidos por cubiertas. 3. El circuito eléctrico del torno debe estar conectado a tierra. El cuadro eléctrico al que esté conectado el torno debe estar provisto de un interruptor diferencial de sensibilidad adecuada. Es conveniente que las carcasas de protección de los engranes y transmisiones vayan provistas de interruptores instalados en serie, que impidan la puesta en marcha del torno cuando las protecciones no están cerradas. 4. Las comprobaciones, mediciones, correcciones, sustitución de piezas, herramientas, etc. deben ser realizadas con el torno completamente parado. Protección personal 1. Para el torneado se utilizarán gafas de protección contra impactos, sobre todo cuando se mecanizan metales duros, frágiles o quebradizos. 2. Asimismo, para realizar operaciones de afilado de cuchillas se deberá utilizar protección ocular. Para evitar en contacto con la viruta. 4. Las virutas producidas durante el mecanizado, nunca deben retirarse con la mano. 5. Para retirar las virutas largas se utilizará un gancho provisto de una cazoleta que proteja la mano. Las cuchillas con romper virutas impiden formación de virutas largas y peligrosas, y facilita el trabajo de retirarlas. 6. Las virutas menudas se retirarán con un cepillo o rastrillo adecuado. 7. La persona que vaya a tornear deberá llevar ropa bien ajustada, sin bolsillos en el pecho y sin cinturón. Las mangas deben ceñirse a las muñecas, con elásticos en vez de botones, o llevarse arremangadas hacia adentro. 8. Se usará calzado de seguridad que proteja contra los pinchazos y cortes por virutas y contra la caída de piezas pesadas. 9. Es muy peligroso trabajar en el torno con anillos, relojes, pulseras, cadenas al cuello, corbatas, bufandas o cualquier prenda que cuelgue. 10. Asimismo es peligroso llevar cabellos largos y sueltos, que deben recogerse bajo un gorro o prenda similar. Lo mismo puede decirse de la barba larga, que debe recogerse con una redecilla.
  • 9. CONCLUSION El corte de metales es un proceso termo-mecánico durante el cual la generación de calor ocurre como resultado de la deformación plástica y la fricción a través de las herramienta-viruta y herramienta-material de trabajo, es decir poder trasformar algún material, este primero deberá pasar por el un proceso térmico , para poder deformarlo obteniendo asa el resultado del proceso. En la ingeniería de los diferentes procesos de manufactura se basan en las trasformación de los materiales para obtener otro con las mismas o diferentes características de fabricación. Al usar un proceso térmico- mecánico para los cortes de metales se logra: Reducir los costó de fabricación puesto que el proceso será continuo y la maquinaria es la misma. Al usar calor, como fuente de energía para la deformación la producción de proceso aumenta.