SlideShare uma empresa Scribd logo
1 de 70
MODELING TRANSFORMATION

1
Modeling
Transformations
2D Transformations
3D Transformations
OpenGL Transformation

2
2D-Transformations
Basic Transformations
Homogeneous coordinate system
Composition of transformations

3
Translation – 2D
Y

Y

(4,5)

(7,5)

(7,1)
Before Translation

x’ = x + dx
y’ = y + dy

X

Translation by (3,-4)

d x 
 x
 x′ 
P =   P′ =   T =  
 y
 y ′
d y 
Homogeniou s Form
 x ′  1 0 d x   x 
 y ′ =  0 1 d  *  y 
y  
  
 1  0 0 1   1 
  
  

(10,1)
X

P′ = P + T

4
Scaling – 2D
Y

Y

(4,5)

Types of Scaling:
Differential ( sx != sy )
Uniform ( sx = sy )

(7,5)
(2,5/4)
X

Before Scaling

(7/2,5/4)
Scaling by (1/2, 1/4)

X

x′ = s x * x
y′ = s y * y
S

* P =

P′

Homogeniou s Form

⇓

⇓

⇓

 x′   s x
 y ′ =  0
  
1 0
  

sx
0


0   x   x * sx 
*  = y*s 
sy   y 
y

0
sx
0

0  x 
0 *  y 
  
1  1 
  

5
te d
rota

Rotation – 2D
r cos φ 
v=
r sin φ 


r cos( φ + θ ) 
v′ = 
r sin ( φ + θ ) 



 x′ = r cos φ cosθ − r sinφ sinθ
expand (φ + θ ) ⇒ 
 y ′ = r cos φ sinθ − r sinφ cosθ
x = r cos φ
x′ = x cos θ − y sinθ
but
⇒
y = r sinθ
y ′ = x sinθ + y cosθ

or

l
i na
ig
Rotation – 2D
Y

Y

Before Rotation

Rotation of 45 deg. w.r.t. origin

(4.9,7.8)
(2.1,4.9)
(5,2)

(9,2)
X

X

x * cosθ − y * sin θ = x′
x * sin θ + y * cosθ = y′
R

*P=

P′

 cosθ − sin θ   x   x * cosθ − y * sin θ 
 sin θ cosθ  *  y  =  x * sin θ + y * cosθ 

   


Homogenious Form
 x ′   cosθ
 y ′ =  sin θ
  
1  0
  

− sin θ
cosθ
0

0  x 
0 *  y 
  
1  1 7
  
Mirror Reflection
Y

Y
(1,1)

(-1,1)

(1,1)

X

X

(1,-1)

Reflection about X - axis
x′ = x y′ = − y

Reflection about Y - axis
x′ = − x y ′ = y

1 0 0
M x = 0 − 1 0 


0 0 1 



 − 1 0 0
M y =  0 1 0


 0 0 1



8
Shearing Transformation

1 a 0
SH x = 0 1 0


0 0 1 



unit cube

Sheared in X
direction

1 0 0 
SH y = b 1 0


0 0 1 



Sheared in Y
direction

SH xy

1 a 0
= b 1 0


0 0 1 



Sheared in both X
and Y direction

9
Inverse 2D - Transformations
-1
(dx,dy)

Translaiton : T
Rotation
Sclaing

-1
(θ )

: R
: S

= R(-θ )

-1
(sx,sy)

Mirror Ref : M
M

-1
x

-1
y

= T(-dx,-dy)
= S ( 1 sx , 1 sy )

= Mx
= My
10
Homogeneous Co-ordinates
 Translation, scaling and rotation are expressed

(non-homogeneously) as:
– translation: P′ = P + T
– Scale: P′ = S · P
– Rotate: P′ = R · P

 Composition is difficult to express, since

translation not expressed as a matrix
multiplication
 Homogeneous coordinates allow all three to be
expressed homogeneously, using multiplication
by 3 × 3 matrices
 W is 1 for affine transformations in graphics

11
Homogeneous Co-ordinates
 P2d is a projection of Ph onto the w = 1 plane
 So an infinite number of points correspond to :

they constitute the whole line (tx, ty, tw)

w

Ph(x,y,w)

w=1
P2d(x,y,1)

y
x
12
Classification of Transformations
1. Rigid-body Transformation
 Preserves parallelism of lines
 Preserves angle and length
 e.g. any sequence of R(θ) and T(dx,dy)

2. Affine Transformation
 Preserves parallelism of lines
 Doesn’t preserve angle and length
 e.g. any sequence of R(θ), S(sx,sy) and T(dx,dy)

unit cube

45 deg rotaton

Scale in X not in Y

13
Properties of rigid-body transformation
The following Matrix is Orthogonal if the upper left 2X2 matrix has the
following properties
1. A) Each row are unit vector.
sqrt(r11* r11 + r12* r12) = 1
B) Each column are unit vector.
sqrt(c11* c11 + c12* c12) = 1
2. A) Rows will be perpendicular to each other
(r11 , r12 ) . ( r21 , r22) = 0

 r11
r
 21
0


cosθ
 sin θ

 0


r12
r22
0

− sin θ
cos θ
0

tx 
ty 

1

0
0

1


B) Columns will be perpendicular to each other
(c11 , c12 ) . (c21 ,c22) = 0
e.g. Rotation matrix is orthogonal
• Orthogonal Transformation ⇒ Rigid-Body
Transformation
• For any orthogonal matrix B ⇒ B -1 = B T

14
Commutativity of Transformation Matrices
• In general matrix multiplication is not commutative
• For the following special cases commutativity holds i.e.
M1.M2 = M2.M1

M1

M2

Translate

Translate

Scale

Scale

Rotate

Rotate

Uniform Scale

Rotate

• Some non-commutative
Compositions:
 Non-uniform scale, Rotate
 Translate, Scale
 Rotate, Translate

Original
Transitional
Final

15
Associativity of Matirx Multiplication
Create new affine transformations by multiplying sequences of
the above basic transformations.
q = CBAp
q = ( (CB) A) p = (C (B A))p = C (B (Ap) ) etc.
matrix multiplication is associative.
To transform just a point, better to do

q = C(B(Ap))

But to transform many points, best to do
M = CBA
then do

q = Mp

for any point p to be rendered.

For geometric pipeline transformation, define M and set it up
with the model-view matrix and apply it to any vertex
subsequently defined to its setting.

16
Rotation of θ about P(h,k): Rθ,P
Step 1: Translate P(h,k) to origin
Step 2: Rotate θ w.r.t to origin

Q3(x’+h, y’ +k)

Step 3: Translate (0,0) to P(h,k0)
R θ,P = T(h ,k) * R θ * T(-h ,-k)

P3(h,k)

Q(x,y)
P(h,k)

Q1(x’,y’)

P1 (0,0)

Q2(x’,y’)

P2 (0,0)

17
Scaling w.r.t. P(h,k): Ssx,sy,p
Step 1: Translate P(h,k) to origin
Step 2: Scale S(sx,sy) w.r.t origin

(7,2)

Step 3: Translate (0,0) to P(h,k)
S sx,sy,P = T(h ,k) * S(s x ,s y )* T(-h ,-k)

(4,3)
(1,1)

(1,1)
T(1,1)

(4,2)

(6,1)

(4,1)

S 3/2,1/2,(1,1)

(0,0)

(4,0)

T(-1,-1)

(7,1)

(0,0)

(6,0)

S(3/2,1/2)

18
Reflection about line L, ML
Y

Step 1: Translate (0,b) to origin
Step 2: Rotate -θ degrees
Step 3: Mirror reflect about X-axis
Step 4: Rotate θ degrees

(0,b)
t
O

X

Step 5: Translate origin to (0,b)
M L = T(0 ,b) * R(θ) * M x * R(-θ) * T(0 ,-b)
19
Problems to be solved:
Schaum’s outline series:
Problems:
 4.1
 4.2
 4.3, 4.4, 4.5

=> Rθ,P

 4.6, 4.7, 4.8

=> S sx,sy,,P

 4.9, 4.10, 4.11, 4.21 => ML
 4.12
=> Shearing
 Pg-281(1.24), Pg-320(5.19)
=> Circular view-port

20
3D Transformations
Basics of 3D geometry
Basic 3D Transformations
Composite Transformations

21
Orientation
Thumb points to +ve Z-axis
Fingers show +ve rotation from X to Y

axis

Y

Y

Z (larger z are
away from viewer)

X

X
Z (out of page)
Right-handed orentation

Left-handed orentation
22
Vectors in 3D
Have length and direction
V = [xv , yv , zv]
Length is given by the Euclidean Norm
||V|| = √( xv2 + yv2 + zv2 )
Dot Product
V • U = [xv, yv, zv]•[xu, yu, zu]
= xv*xu + yv*yu + zv*zu
= ||V|| || U|| cos ß
Cross Product
V×U
= [yv*zu - zv yu , -xv*zu + zv*xu , xv*yu – yv*xu ]
= η ||V|| || U|| sin ß
V × U = - ( U x V)

z

K
J+c
b
aI+
V=
(xv,yv,zv)

y
x

23
3D Equation of Curve & Line
 Parametric equations of Curve & Line
 Curve

 Line

x = f (t)

C : y = g(t )
z = h( t )

z
C

a≤t ≤b

y
x

V = P0 P1 = P − P0
1

x = x0 + ( x1 − x0 ) × t

t =1

L : y = y0 + ( y1 − y0 ) × t 0 ≤ t ≤ 1
z = z0 + ( z1 − z0 ) × t
L = P0 + t ( P − P0 ) = P0 + tV
1

t

t=
<0

0

1
t<
0< V

P0(x0,y0,z0)

t>

1

P1(x1,y1,z1)
24
3D Equation of Surface & Plane
 Parametric equations of Surface & Plane
 Surface

x = f ( s, t )

S : y = g ( s, t )
z = h( s , t )

a≤s≤b
c≤t ≤d

 Plane : with Normal, N

Ax + By + Cz + D = 0
ˆ
ˆ
N = Ai + Bˆ + Ck
j

N

P0

25
3D Plane
 Ways of defining a plane

1. 3 points P0, P1, P2 on the plane
2. Plane Normal N & P0 on plane
3. Plane Normal N & a vector V on the plane
N
Plane Passing through P0, P1, P2
ˆ
ˆ
N = P0 P × P0 P2 = Ai + Bˆ + Ck
j
1

P0

if P(x, y, z) is on the plane
N • P0 P = 0

[

P1

P2
V

]

ˆ
ˆ
ˆ
ˆ
⇒ ( Ai + Bˆ + Ck ) • ( x − x0 )i + ( y − y0 ) ˆ + ( z − z0 )k = 0
j
j
⇒ Ax + By + Cz + D = 0
where D = −( Ax0 + By0 + Cz0 )
26
Affine Transformation
 Transformation – is a function that takes a point (or vector) and

maps that point (or vector) into another point (or vector).
 A coordinate transformation of the form:
x’ = axx x + axy y + axz z + bx ,
y’ = ayx x + ayy y + ayz z + by ,
z’ = azx x + azy y + azz z + bz ,

 x'   a xx
  
 y '   a yx
 z'  =  a
   zx
 w  0
  

a xy

a xz

a yy
a zy

a yz
a zz

0

0

bx  x 
 
b y  y 
bz  z 
 
1  1 
 

is called a 3D affine transformation.
 The 4th row for affine transformation is always [0 0 0 1].
 Properties of affine transformation:
– translation, scaling, shearing, rotation (or any combination of them) are
examples affine transformations.
– Lines and planes are preserved.
– parallelism of lines and planes are also preserved, but not angles and
length.
27
Translation – 3D
x′ = x + d x
y′ = y + d y
z′ = z + d z

1
0

0

0

0 0 dx   x  x + dx 
1 0 d y   y  y + d y 
*  = 

0 1 dz   z   z + dz 
   

0 0 1  1   1 

⇓
⇓
T (d x , d y , d z ) * P =

⇓
P′

28
Scaling – 3D
x′ = s x * x
y′ = s y * y
Original

scale Y axis

S (sx , s y , sz )
⇓

scale all axes

z′ = sz * z

sx
0

0

0

* P =
⇓

0

0

sy
0

0
sz

0

0

P′
⇓

0  x   x * s x 
0  y   y * s y 
*  = 

0  z   z * s z 
   

29
1  1   1 
Rotation – 3D
For 3D-Rotation 2
parameters are needed

Rotation about z-axis:

 Angle of rotation
 Axis of rotation

Rθ ,k

P′

⇓
cosθ
 sin θ

 0

 0

* P =
⇓

⇓

− sin θ
cos θ
0
0

0 0  x   x * cos θ − y * sin θ 
0 0  y   x * sin θ + y * cosθ 
*  = 


1 0  z  
z
   

0 1  1  
1


30
Rotation about Y-axis & X-axis
About yaxis

Rθ , j

* P =

P′

⇓

⇓

⇓

 cos θ
 0

− sin θ

 0

About x-axis

0 sin θ
1
0
0 cosθ
0

0

0  x   x * cosθ + z * sin θ 

0  y  
y
*  = 

0  z  − x * sin θ + z * cosθ 
   

1  1  
1


* P =

P′

⇓
0
1
0 cos θ

0 sin θ

0
0

Rθ , i

⇓

⇓

0
− sin θ
cosθ
0

0  x  
x

0  y   y * cosθ − z * sin θ 
*  = 

0  z   y * sin θ + z * cosθ 
   

1  1  
1


31
Shear along Z-axis

y
x
z

SH xy ( shx , sh y ) * P =
⇓
1
0

0

0

⇓

0 shx
1 sh y
0 1
0

0

P′
⇓

0  x   x + z * shx 
  y   y + z * sh 
0   
y
*
=

0  z  
z
   

1  1  
1

32
Object Transformation
Line: Can be transformed by transforming

the end points
Plane:(described by 3-points) Can be
transformed by transforming the 3-points
Plane:(described by a point and Normal)
Point is transformed as usual. Special
treatment is needed for transforming
Normal
33
Composite Transformations – 3D
Some of the composite transformations to
be studied are:
AV,N = aligning a vector V with a vector N
Rθ,L = rotation about an axis L( V, P )
Ssx,sy,P= scaling w.r.t. point P

34
AV : aligning vector V with k
Step 1 : Rotate about x - axis by θ
b
sin θ = 
λ  λ = b2 + c2

c
cos θ = 
λ

z
( 0, 0,

λ)

( 0, b,c

b

( a, 0,

λ)

)

cλ
θ

λ

|V|
θ

V = aI + bJ + cK

|V|

k
b

y

a

Av =

Rθ,i

35
x
AV : aligning vector V with k
Step 1 : Rotate about x - axis by θ
b
sin θ = 
λ  λ = b2 + c2

c
cos θ = 
λ

z

( 0, 0,

|V|)

z

a
( 0, b,c

b

( a, 0,

λ)

−a 
|V|

2
2
2
 | V |= a + b + c
λ 
cos(−φ ) =
| V |


λ

Step 2 : Rotate V about y - axis by - φ

)

c
|V|
|V|

P( a, b, c)

ϕ

sin( −φ ) =

Av = R-ϕ,j * Rθ,i

k
b

y

a

36
x
AV : aligning vector V with k
 AV-1 = AVT
 AV,N = AN-1 * AV


0
AV =  a
V

0
λ
V

- ab
λV
c
λ
b
V

- ac
λV
−b
λ
c
V

0

0

0

0
0

1

37
Rθ,L : rotation about an axis L
Let the axis L be represented by vector V and
z
passing through point P

1. Translate P to the origin

2. Align V with vector k
3. Rotate θ° about k
4. Reverse step 2
5. Reverse step 1
x

L
P

Q
V
k

Rθ,L = T-P-1 * AV-1 * Rθ,k * AV * T-P

θ
Q'

y

38
MN,P : Mirror reflection
Let the plane be represented by plane normal N
and a point P in that plane
z

N
P

x
y

39
MN,P : Mirror reflection
Let the plane be represented by plane normal N
and a point P in that plane

1. Translate P to the origin

z

N
P
x
y

MN,P =

T-P

40
MN,P : Mirror reflection
Let the plane be represented by plane normal N
and a point P in that plane

1. Translate P to the origin

z

N

2. Align N with vector k
P
x

y

MN,P =

AN * T-P

41
MN,P : Mirror reflection
Let the plane be represented by plane normal N
and a point P in that plane

1. Translate P to the origin

2. Align N with vector k
3. Reflect w.r.t xy-plane

z

N
P

x
y

MN,P =

S1,1,-1 * AN * T-P

42
MN,P : Mirror reflection
Let the plane be represented by plane normal N
and a point P in that plane

1. Translate P to the origin

z

2. Align N with vector k
3. Reflect w.r.t xy-plane
x
4. Reverse step 2
MN,P =

AN-1 * S1,1,-1 * AN * T-P

y

43
MN,P : Mirror reflection
Let the plane be represented by plane normal N
and a point P in that plane

1. Translate P to the origin

2. Align N with vector k
3. Reflect w.r.t xy-plane
x
4. Reverse step 2
5. Reverse step 1

z

N
P

MN,P = T-P-1 * AN-1 * S1,1,-1 * AN * T-P

y

44
Further Composition
 Translate points in fig. 1 into points in fig 2 such that:
– P3 is moved to yz plane
– P2 is on z-axis
– P1 is at Origin

 The Composite Transform must have
– Translation of P1 to Origin ⇒ T
– Some Combination of Rotations ⇒ R
y

y

P3
P2

P
1
x
z

Fig. 1

y

P3′

T

R

P2′
P′
1
z

P3′′

x
z

P2′′

P′′
1

Fig. 2

x
45
Finding R
Let R be
 r11 r12 r13   Rx .x Rx . y Rx .z 
R = r21 r22 r23  =  R y .x R y . y R y .z 

 

 r31 r32 r33   Rz .x Rz . y Rz .z 

 

R is Rigid - body Transform
i) Rx , R y , Rz are unit vectors
ii) Rx , R y , Rz are perpendicu lar
to each other
Note : Rx .x ⇒ x component of vextor Rx
46
Finding Rz
R aligns P1′P2′ along z - axis
⇒ R⋅

P1′P2′
P1′P2′

P′
3

ˆ
=k

ˆ = P1′P2′
⇒ R ⋅k
P1′P2′
T

 Rx . x

⇒  Rx . y
 Rx .z


y

R y .x
Ry . y
R y .z

Rz

[ R

−1

=R

T

P′
1

]

x

z

R

Rz . x  0 
P ′P ′

R z . y  0  = 1 2
 
′ ′
Rz .z  1 P1P2
 

 Rz . x 
 R . y  = P1′P2′ = R
⇒ z 
z
 Rz .z  P1′P2′



P2′

y

′
P′
3

ˆ
k
z

′
P2′

′
P′
1

x
47
Finding Rx
R aligns P1′P3′ × P1′P2′ along x - axis
⇒ R⋅

P1′P3′ × P1′P2′
P1′P3′ × P1′P2′

ˆ
⇒ R ⋅i =
−1

 Rx . x

⇒  Rx . y
 Rx .z


P′
3

ˆ
=i
P′
1

P1′P3′ × P1′P2′

P2′
x

Rx

R

R z . x  1 
P ′P ′ × P ′P ′

R z . y  0  = 1 3 1 2
 
′ ′
′ ′
Rz .z  0 P1P3 × P1P2
 

 Rx . x 
 R . y  = P1′P3′ × P1′P2′ = R
⇒ x 
x
 Rx .z  P1′P3′ × P1′P2′



Rz

z

P1′P3′ × P1′P2′
R y .x
Ry . y
R y .z

y

y

′
P′
3

ˆ
k
z

′
P2′

′
P′
1
ˆ
i

x
48
Finding Ry
y

R aligns R z × R x along y - axis

(

)

P′
3

⇒ R ⋅ Rz × Rx = ˆ
j
P′
1

⇒ R ⋅ ˆ = Rz × Rx
j
R y .x
Ry . y
R y .z

Ry

x

R

Rz . x  0 

Rz . y  1 = R z × R x
 
R z . z  0 
 

 R y .x 


⇒  Ry . y  = Rz × Rx = Ry
 R y .z 



P2′

Rx

z

−1

 Rx . x

⇒  Rx . y
 Rx .z


Rz

y

′
P′
3

ˆ
k
z

′
P2′

ˆ
j
′
P′
1
ˆ
i

x
49
Problems to be solved:
Schaum’s outline series:
Problems:
 6.1
 6.2, 6.5, 6.9, 6.10, 6.11, 6.12

⇒ Av

 6.3, 6.4

⇒ Rθ,L

 6.6, 6.7, 6.8

⇒ MN,P

50
Transformations in OpenGL
OpenGL transformation commands
Transformation Order
Hierarchical Modeling

51
Transformations in OpenGL
 OpenGL uses 3 stacks to maintain transformation

matrices:
– Model & View transformation matrix stack
– Projection matrix stack
– Texture matrix stack

 You can load, push and pop the stack
 The top most matrix from each stack is applied to

all graphics primitive until it is changed
Graphics
Primitives
(P)

M
Model-View
Matrix Stack

N
Projection
Matrix Stack

Output
N•M•P
52
General Transformation Commands
 Specify current matrix (stack) :
– void glMatrixMode(GLenum mode)

I
B
A

• Mode : GL_MODELVIEW, GL_PROJECTION,
GL_TEXTURE
glLoadMatrix(M)

glLo
a

dIde
ntity

C
B
A

M
B
A

 Initialize current matrix.
– void glLoadIdentity(void)
• Sets the current matrix to 4X4 identity matirx

– void glLoadMatrix{f|d}(cost TYPE *M)
• Sets the current matrix to 4X4 matrix specified by M

Note: current matrix ⇒ Top most matrix of the current
matrix stack

53
General Transformation Commands
Concatenate Current Matrix:
– void glMultMatrix(const TYPE *M)
• Multiplies current matrix C, by M. i.e. C = C*M

– Caveat: OpenGL matrices are stored in
column major order.
 m1
m
 2
 m3

m4

m5
m6
m7
m8

m9
m10
m11
m12

m13 
m14 

m15 

m16 

– Best use utility function glTranslate, glRotate,
glScale for common transformation tasks.
54
Transformations and OpenGL®
 Each time an OpenGL transformation M is called

the current MODELVIEW matrix C is altered:
v′ = Cv

v′ = CMv

glTranslatef(1.5, 0.0, 0.0);
glRotatef(45.0, 0.0, 0.0, 1.0);

v′ = CTRv
Note: v is any vertex placed in rendering pipeline v’ is the transformed
vertex from v.
55
Sample Instance Transformation
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(...);
glRotatef(...);
glScalef(...);
gluCylinder(...);

56
Thinking About Transformations
 There is a World Coordinate System where:
 All objects are defined
 Transformations are in World Coordinate space

Two Different Views
As a Global System
 Objects moves but
coordinates stay the same
 Think of transformation
in reverse order as they
appear in code

As a Local System
 Objects moves and
coordinates move with it
 Think of transformation
in same order as they
appear in code
57
Order of Transformation T•R
Global View
 Rotate Object
 Then Translate

glLoadIdentity();
Local View
glMultiMatrixf( T);
 Translate Object
glMultiMatrixf( R);
 Then Rotate
draw_ the_ object( v);
v’ = ITRv

Effect is same, but perception is different

58
Order of Transformation R•T
Global View
 Translate Object
 Then Rotate

glLoadIdentity();
Local View
glMultiMatrixf( R);
 Rotate Object
glMultiMatrixf( T);
 Then Translate
draw_ the_ object( v);
v’ = ITRv

Effect is same, but perception is different

59
Hierarchical Modeling
 Many graphical objects are structured
 Exploit structure for
– Efficient rendering
– Concise specification of model parameters
– Physical realism

 Often we need several instances of an object
– Wheels of a car
– Arms or legs of a figure
– Chess pieces






Encapsulate basic object in a function
Object instances are created in “standard” form
Apply transformations to different instances
Typical order: scaling, rotation, translation
60
OpenGL & Hierarchical Model
Some of the OpenGL functions helpful for

hierarchical modeling are:
– void glPushMatrix(void);
– void glPoipMatrix(void);
– void glGetFloatv(GL_MODELVIEW_MATRIX, *m);
s
glPu

C
B
A

rix
Mat
h

glP
ush
Ma
trix

C
C
B
A

B
A

C
B
A

glGetFloatv

m
C

61
Scene Graph
 A scene graph is a hierarchical representation of a scene
 We will use trees for representing hierarchical objects

such that:
– Nodes represent parts of an object
– Topology is maintained using parent-child relationship
– Edges represent transformations that applies to a part and all the
subparts connected to that part
Scene

typedef struct treenode {
GLfloat m[16]; // Transformation
Sun
Star X
void (*f) ( );
// Draw function
struct treenode *sibling;
Earth
Venus
Saturn
struct treenode *child;
} treenode;
Moon
Ring

62
Example - Torso
 Initializing transformation matrix for node

treenode torso, head, ...;
/* in init function */
glLoadIdentity();
glRotatef(...);
glGetFloatv(GL_MODELVIEW_MATRIX, torso.m);
 Initializing pointers

torso.f = drawTorso;
torso.sibling = NULL;
torso.child = &head;
63
Generic Traversal
To render the hierarchy:
– Traverse the scene graph depth-first
– Going down an edge:
• push the top matrix onto the stack
• apply the edge's transformation(s)

– At each node, render with the top matrix
– Going up an edge:
• pop the top matrix off the stack

64
Generic Traversal : Torso
 Recursive definition
void traverse (treenode *root) {
if (root == NULL) return;
glPushMatrix();
glMultMatrixf(root->m);
root->f();
if (root->child != NULL) traverse(root->child);
glPopMatrix();
if (root->sibling != NULL) traverse(root->sibling);
}

 C is really not the right language for this !!

65
Viewing Transformation

66
Viewing Pipeline Revisited
Graphics
Primitives

Modeling
Transform

Po

Object
Coordinates

Pw

Viewing
Transform

Pe

World
Coordinates

Eye
Coordinates

ye

yw

xe

yo

-ze
pe

po

pw
xo

xw

zo
zw

67
Viewing Transformation in
OpenGL
 To setup the modelview matrix, OpenGL provides the

following function:
gluLookAt( eyex, eyey, eyez,
centerx, centery, centerz,
upx, upy, upz )
up
(upx, upy, upz)

eye
(eyex, eyey, eyez)

z

y

center
(centerx, centery, centerz)

x

68
Implementation
We want to construct an Orthogonal Frame such that,

(1) its origin is the point eye
(2) its -z basis vector points towards the point center
(3) the up vector projects to the up direction (+ve y-axis)
Let C (for camera) denote this frame.
Clearly,

C.O = eye

v = normalize( center − eye )


C.ez = −v

 
C.ex = normalize( v × up )



C.e y = ( C.ez × C.ex )

C.e

y

up
(upx, upy, upz)
v
center

C.O
(eye)

C.e

C.e

x

69
z
Thank You

70

Mais conteúdo relacionado

Mais procurados

The sutherland hodgeman polygon clipping algorithm
The sutherland hodgeman polygon clipping algorithmThe sutherland hodgeman polygon clipping algorithm
The sutherland hodgeman polygon clipping algorithm
Mani Kanth
 
2 d geometric transformations
2 d geometric transformations2 d geometric transformations
2 d geometric transformations
Mohd Arif
 
Two dimensional geometric transformations
Two dimensional geometric transformationsTwo dimensional geometric transformations
Two dimensional geometric transformations
Mohammad Sadiq
 
Polygon clipping
Polygon clippingPolygon clipping
Polygon clipping
Mohd Arif
 
Computer Graphics Introduction
Computer Graphics IntroductionComputer Graphics Introduction
Computer Graphics Introduction
Ghaffar Khan
 

Mais procurados (20)

Bresenham circle
Bresenham circleBresenham circle
Bresenham circle
 
3 d viewing projection
3 d viewing  projection3 d viewing  projection
3 d viewing projection
 
3D Transformation
3D Transformation3D Transformation
3D Transformation
 
Polygon filling
Polygon fillingPolygon filling
Polygon filling
 
The sutherland hodgeman polygon clipping algorithm
The sutherland hodgeman polygon clipping algorithmThe sutherland hodgeman polygon clipping algorithm
The sutherland hodgeman polygon clipping algorithm
 
2 d geometric transformations
2 d geometric transformations2 d geometric transformations
2 d geometric transformations
 
Polygon mesh
Polygon meshPolygon mesh
Polygon mesh
 
Two dimensional geometric transformations
Two dimensional geometric transformationsTwo dimensional geometric transformations
Two dimensional geometric transformations
 
2D viewing & clipping
2D viewing & clipping2D viewing & clipping
2D viewing & clipping
 
Polygon clipping
Polygon clippingPolygon clipping
Polygon clipping
 
Three dimensional graphics
Three dimensional graphicsThree dimensional graphics
Three dimensional graphics
 
Visible Surface Detection
Visible Surface DetectionVisible Surface Detection
Visible Surface Detection
 
Computer Graphics - Bresenham's line drawing algorithm & Mid Point Circle alg...
Computer Graphics - Bresenham's line drawing algorithm & Mid Point Circle alg...Computer Graphics - Bresenham's line drawing algorithm & Mid Point Circle alg...
Computer Graphics - Bresenham's line drawing algorithm & Mid Point Circle alg...
 
3D transformation in computer graphics
3D transformation in computer graphics3D transformation in computer graphics
3D transformation in computer graphics
 
3d transformation computer graphics
3d transformation computer graphics 3d transformation computer graphics
3d transformation computer graphics
 
Character generation
Character generationCharacter generation
Character generation
 
3D Transformation in Computer Graphics
3D Transformation in Computer Graphics3D Transformation in Computer Graphics
3D Transformation in Computer Graphics
 
06 clipping
06 clipping06 clipping
06 clipping
 
Mid point circle algorithm
Mid point circle algorithmMid point circle algorithm
Mid point circle algorithm
 
Computer Graphics Introduction
Computer Graphics IntroductionComputer Graphics Introduction
Computer Graphics Introduction
 

Semelhante a Modeling Transformations

2 d transformation
2 d transformation2 d transformation
2 d transformation
Ankit Garg
 
Open GL T0074 56 sm4
Open GL T0074 56 sm4Open GL T0074 56 sm4
Open GL T0074 56 sm4
Roziq Bahtiar
 
Matrix 2 d
Matrix 2 dMatrix 2 d
Matrix 2 d
xyz120
 
Lecture 6-1543909797
Lecture 6-1543909797Lecture 6-1543909797
Lecture 6-1543909797
Canh Le
 

Semelhante a Modeling Transformations (20)

Transforms UNIt 2
Transforms UNIt 2 Transforms UNIt 2
Transforms UNIt 2
 
Transformations computer graphics
Transformations computer graphics Transformations computer graphics
Transformations computer graphics
 
2 d transformation
2 d transformation2 d transformation
2 d transformation
 
Open GL T0074 56 sm4
Open GL T0074 56 sm4Open GL T0074 56 sm4
Open GL T0074 56 sm4
 
Matrix 2 d
Matrix 2 dMatrix 2 d
Matrix 2 d
 
2d transformations
2d transformations2d transformations
2d transformations
 
Two dimensional geometric transformation
Two dimensional geometric transformationTwo dimensional geometric transformation
Two dimensional geometric transformation
 
Three dimensional transformations
Three dimensional transformationsThree dimensional transformations
Three dimensional transformations
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
Computer Graphics - transformations in 2d
Computer Graphics - transformations in 2dComputer Graphics - transformations in 2d
Computer Graphics - transformations in 2d
 
Computer Graphic - Transformations in 2D
Computer Graphic - Transformations in 2DComputer Graphic - Transformations in 2D
Computer Graphic - Transformations in 2D
 
Computer graphics
Computer graphicsComputer graphics
Computer graphics
 
ME Reference.pdf
ME Reference.pdfME Reference.pdf
ME Reference.pdf
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
3 d transformation
3 d transformation3 d transformation
3 d transformation
 
Transformations
TransformationsTransformations
Transformations
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
2-D Transformations.pdf
2-D Transformations.pdf2-D Transformations.pdf
2-D Transformations.pdf
 
1533 game mathematics
1533 game mathematics1533 game mathematics
1533 game mathematics
 
Lecture 6-1543909797
Lecture 6-1543909797Lecture 6-1543909797
Lecture 6-1543909797
 

Mais de Tarun Gehlot

Mais de Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 

Último

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Último (20)

Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 

Modeling Transformations

  • 4. Translation – 2D Y Y (4,5) (7,5) (7,1) Before Translation x’ = x + dx y’ = y + dy X Translation by (3,-4) d x   x  x′  P =   P′ =   T =    y  y ′ d y  Homogeniou s Form  x ′  1 0 d x   x   y ′ =  0 1 d  *  y  y       1  0 0 1   1        (10,1) X P′ = P + T 4
  • 5. Scaling – 2D Y Y (4,5) Types of Scaling: Differential ( sx != sy ) Uniform ( sx = sy ) (7,5) (2,5/4) X Before Scaling (7/2,5/4) Scaling by (1/2, 1/4) X x′ = s x * x y′ = s y * y S * P = P′ Homogeniou s Form ⇓ ⇓ ⇓  x′   s x  y ′ =  0    1 0    sx 0  0   x   x * sx  *  = y*s  sy   y  y 0 sx 0 0  x  0 *  y     1  1     5
  • 6. te d rota Rotation – 2D r cos φ  v= r sin φ    r cos( φ + θ )  v′ =  r sin ( φ + θ )     x′ = r cos φ cosθ − r sinφ sinθ expand (φ + θ ) ⇒   y ′ = r cos φ sinθ − r sinφ cosθ x = r cos φ x′ = x cos θ − y sinθ but ⇒ y = r sinθ y ′ = x sinθ + y cosθ or l i na ig
  • 7. Rotation – 2D Y Y Before Rotation Rotation of 45 deg. w.r.t. origin (4.9,7.8) (2.1,4.9) (5,2) (9,2) X X x * cosθ − y * sin θ = x′ x * sin θ + y * cosθ = y′ R *P= P′  cosθ − sin θ   x   x * cosθ − y * sin θ   sin θ cosθ  *  y  =  x * sin θ + y * cosθ        Homogenious Form  x ′   cosθ  y ′ =  sin θ    1  0    − sin θ cosθ 0 0  x  0 *  y     1  1 7   
  • 8. Mirror Reflection Y Y (1,1) (-1,1) (1,1) X X (1,-1) Reflection about X - axis x′ = x y′ = − y Reflection about Y - axis x′ = − x y ′ = y 1 0 0 M x = 0 − 1 0    0 0 1     − 1 0 0 M y =  0 1 0    0 0 1   8
  • 9. Shearing Transformation 1 a 0 SH x = 0 1 0   0 0 1    unit cube Sheared in X direction 1 0 0  SH y = b 1 0   0 0 1    Sheared in Y direction SH xy 1 a 0 = b 1 0   0 0 1    Sheared in both X and Y direction 9
  • 10. Inverse 2D - Transformations -1 (dx,dy) Translaiton : T Rotation Sclaing -1 (θ ) : R : S = R(-θ ) -1 (sx,sy) Mirror Ref : M M -1 x -1 y = T(-dx,-dy) = S ( 1 sx , 1 sy ) = Mx = My 10
  • 11. Homogeneous Co-ordinates  Translation, scaling and rotation are expressed (non-homogeneously) as: – translation: P′ = P + T – Scale: P′ = S · P – Rotate: P′ = R · P  Composition is difficult to express, since translation not expressed as a matrix multiplication  Homogeneous coordinates allow all three to be expressed homogeneously, using multiplication by 3 × 3 matrices  W is 1 for affine transformations in graphics 11
  • 12. Homogeneous Co-ordinates  P2d is a projection of Ph onto the w = 1 plane  So an infinite number of points correspond to : they constitute the whole line (tx, ty, tw) w Ph(x,y,w) w=1 P2d(x,y,1) y x 12
  • 13. Classification of Transformations 1. Rigid-body Transformation  Preserves parallelism of lines  Preserves angle and length  e.g. any sequence of R(θ) and T(dx,dy) 2. Affine Transformation  Preserves parallelism of lines  Doesn’t preserve angle and length  e.g. any sequence of R(θ), S(sx,sy) and T(dx,dy) unit cube 45 deg rotaton Scale in X not in Y 13
  • 14. Properties of rigid-body transformation The following Matrix is Orthogonal if the upper left 2X2 matrix has the following properties 1. A) Each row are unit vector. sqrt(r11* r11 + r12* r12) = 1 B) Each column are unit vector. sqrt(c11* c11 + c12* c12) = 1 2. A) Rows will be perpendicular to each other (r11 , r12 ) . ( r21 , r22) = 0  r11 r  21 0  cosθ  sin θ   0  r12 r22 0 − sin θ cos θ 0 tx  ty   1  0 0  1  B) Columns will be perpendicular to each other (c11 , c12 ) . (c21 ,c22) = 0 e.g. Rotation matrix is orthogonal • Orthogonal Transformation ⇒ Rigid-Body Transformation • For any orthogonal matrix B ⇒ B -1 = B T 14
  • 15. Commutativity of Transformation Matrices • In general matrix multiplication is not commutative • For the following special cases commutativity holds i.e. M1.M2 = M2.M1 M1 M2 Translate Translate Scale Scale Rotate Rotate Uniform Scale Rotate • Some non-commutative Compositions:  Non-uniform scale, Rotate  Translate, Scale  Rotate, Translate Original Transitional Final 15
  • 16. Associativity of Matirx Multiplication Create new affine transformations by multiplying sequences of the above basic transformations. q = CBAp q = ( (CB) A) p = (C (B A))p = C (B (Ap) ) etc. matrix multiplication is associative. To transform just a point, better to do q = C(B(Ap)) But to transform many points, best to do M = CBA then do q = Mp for any point p to be rendered. For geometric pipeline transformation, define M and set it up with the model-view matrix and apply it to any vertex subsequently defined to its setting. 16
  • 17. Rotation of θ about P(h,k): Rθ,P Step 1: Translate P(h,k) to origin Step 2: Rotate θ w.r.t to origin Q3(x’+h, y’ +k) Step 3: Translate (0,0) to P(h,k0) R θ,P = T(h ,k) * R θ * T(-h ,-k) P3(h,k) Q(x,y) P(h,k) Q1(x’,y’) P1 (0,0) Q2(x’,y’) P2 (0,0) 17
  • 18. Scaling w.r.t. P(h,k): Ssx,sy,p Step 1: Translate P(h,k) to origin Step 2: Scale S(sx,sy) w.r.t origin (7,2) Step 3: Translate (0,0) to P(h,k) S sx,sy,P = T(h ,k) * S(s x ,s y )* T(-h ,-k) (4,3) (1,1) (1,1) T(1,1) (4,2) (6,1) (4,1) S 3/2,1/2,(1,1) (0,0) (4,0) T(-1,-1) (7,1) (0,0) (6,0) S(3/2,1/2) 18
  • 19. Reflection about line L, ML Y Step 1: Translate (0,b) to origin Step 2: Rotate -θ degrees Step 3: Mirror reflect about X-axis Step 4: Rotate θ degrees (0,b) t O X Step 5: Translate origin to (0,b) M L = T(0 ,b) * R(θ) * M x * R(-θ) * T(0 ,-b) 19
  • 20. Problems to be solved: Schaum’s outline series: Problems:  4.1  4.2  4.3, 4.4, 4.5 => Rθ,P  4.6, 4.7, 4.8 => S sx,sy,,P  4.9, 4.10, 4.11, 4.21 => ML  4.12 => Shearing  Pg-281(1.24), Pg-320(5.19) => Circular view-port 20
  • 21. 3D Transformations Basics of 3D geometry Basic 3D Transformations Composite Transformations 21
  • 22. Orientation Thumb points to +ve Z-axis Fingers show +ve rotation from X to Y axis Y Y Z (larger z are away from viewer) X X Z (out of page) Right-handed orentation Left-handed orentation 22
  • 23. Vectors in 3D Have length and direction V = [xv , yv , zv] Length is given by the Euclidean Norm ||V|| = √( xv2 + yv2 + zv2 ) Dot Product V • U = [xv, yv, zv]•[xu, yu, zu] = xv*xu + yv*yu + zv*zu = ||V|| || U|| cos ß Cross Product V×U = [yv*zu - zv yu , -xv*zu + zv*xu , xv*yu – yv*xu ] = η ||V|| || U|| sin ß V × U = - ( U x V) z K J+c b aI+ V= (xv,yv,zv) y x 23
  • 24. 3D Equation of Curve & Line  Parametric equations of Curve & Line  Curve  Line x = f (t) C : y = g(t ) z = h( t ) z C a≤t ≤b y x V = P0 P1 = P − P0 1 x = x0 + ( x1 − x0 ) × t t =1 L : y = y0 + ( y1 − y0 ) × t 0 ≤ t ≤ 1 z = z0 + ( z1 − z0 ) × t L = P0 + t ( P − P0 ) = P0 + tV 1 t t= <0 0 1 t< 0< V P0(x0,y0,z0) t> 1 P1(x1,y1,z1) 24
  • 25. 3D Equation of Surface & Plane  Parametric equations of Surface & Plane  Surface x = f ( s, t ) S : y = g ( s, t ) z = h( s , t ) a≤s≤b c≤t ≤d  Plane : with Normal, N Ax + By + Cz + D = 0 ˆ ˆ N = Ai + Bˆ + Ck j N P0 25
  • 26. 3D Plane  Ways of defining a plane 1. 3 points P0, P1, P2 on the plane 2. Plane Normal N & P0 on plane 3. Plane Normal N & a vector V on the plane N Plane Passing through P0, P1, P2 ˆ ˆ N = P0 P × P0 P2 = Ai + Bˆ + Ck j 1 P0 if P(x, y, z) is on the plane N • P0 P = 0 [ P1 P2 V ] ˆ ˆ ˆ ˆ ⇒ ( Ai + Bˆ + Ck ) • ( x − x0 )i + ( y − y0 ) ˆ + ( z − z0 )k = 0 j j ⇒ Ax + By + Cz + D = 0 where D = −( Ax0 + By0 + Cz0 ) 26
  • 27. Affine Transformation  Transformation – is a function that takes a point (or vector) and maps that point (or vector) into another point (or vector).  A coordinate transformation of the form: x’ = axx x + axy y + axz z + bx , y’ = ayx x + ayy y + ayz z + by , z’ = azx x + azy y + azz z + bz ,  x'   a xx     y '   a yx  z'  =  a    zx  w  0    a xy a xz a yy a zy a yz a zz 0 0 bx  x    b y  y  bz  z    1  1    is called a 3D affine transformation.  The 4th row for affine transformation is always [0 0 0 1].  Properties of affine transformation: – translation, scaling, shearing, rotation (or any combination of them) are examples affine transformations. – Lines and planes are preserved. – parallelism of lines and planes are also preserved, but not angles and length. 27
  • 28. Translation – 3D x′ = x + d x y′ = y + d y z′ = z + d z 1 0  0  0 0 0 dx   x  x + dx  1 0 d y   y  y + d y  *  =   0 1 dz   z   z + dz       0 0 1  1   1  ⇓ ⇓ T (d x , d y , d z ) * P = ⇓ P′ 28
  • 29. Scaling – 3D x′ = s x * x y′ = s y * y Original scale Y axis S (sx , s y , sz ) ⇓ scale all axes z′ = sz * z sx 0  0  0 * P = ⇓ 0 0 sy 0 0 sz 0 0 P′ ⇓ 0  x   x * s x  0  y   y * s y  *  =   0  z   z * s z       29 1  1   1 
  • 30. Rotation – 3D For 3D-Rotation 2 parameters are needed Rotation about z-axis:  Angle of rotation  Axis of rotation Rθ ,k P′ ⇓ cosθ  sin θ   0   0 * P = ⇓ ⇓ − sin θ cos θ 0 0 0 0  x   x * cos θ − y * sin θ  0 0  y   x * sin θ + y * cosθ  *  =    1 0  z   z      0 1  1   1  30
  • 31. Rotation about Y-axis & X-axis About yaxis Rθ , j * P = P′ ⇓ ⇓ ⇓  cos θ  0  − sin θ   0 About x-axis 0 sin θ 1 0 0 cosθ 0 0 0  x   x * cosθ + z * sin θ   0  y   y *  =   0  z  − x * sin θ + z * cosθ       1  1   1  * P = P′ ⇓ 0 1 0 cos θ  0 sin θ  0 0 Rθ , i ⇓ ⇓ 0 − sin θ cosθ 0 0  x   x  0  y   y * cosθ − z * sin θ  *  =   0  z   y * sin θ + z * cosθ       1  1   1  31
  • 32. Shear along Z-axis y x z SH xy ( shx , sh y ) * P = ⇓ 1 0  0  0 ⇓ 0 shx 1 sh y 0 1 0 0 P′ ⇓ 0  x   x + z * shx    y   y + z * sh  0    y * =  0  z   z      1  1   1  32
  • 33. Object Transformation Line: Can be transformed by transforming the end points Plane:(described by 3-points) Can be transformed by transforming the 3-points Plane:(described by a point and Normal) Point is transformed as usual. Special treatment is needed for transforming Normal 33
  • 34. Composite Transformations – 3D Some of the composite transformations to be studied are: AV,N = aligning a vector V with a vector N Rθ,L = rotation about an axis L( V, P ) Ssx,sy,P= scaling w.r.t. point P 34
  • 35. AV : aligning vector V with k Step 1 : Rotate about x - axis by θ b sin θ =  λ  λ = b2 + c2  c cos θ =  λ z ( 0, 0, λ) ( 0, b,c b ( a, 0, λ) ) cλ θ λ |V| θ V = aI + bJ + cK |V| k b y a Av = Rθ,i 35 x
  • 36. AV : aligning vector V with k Step 1 : Rotate about x - axis by θ b sin θ =  λ  λ = b2 + c2  c cos θ =  λ z ( 0, 0, |V|) z a ( 0, b,c b ( a, 0, λ) −a  |V|  2 2 2  | V |= a + b + c λ  cos(−φ ) = | V |  λ Step 2 : Rotate V about y - axis by - φ ) c |V| |V| P( a, b, c) ϕ sin( −φ ) = Av = R-ϕ,j * Rθ,i k b y a 36 x
  • 37. AV : aligning vector V with k  AV-1 = AVT  AV,N = AN-1 * AV  0 AV =  a V  0 λ V - ab λV c λ b V - ac λV −b λ c V 0 0 0  0 0  1 37
  • 38. Rθ,L : rotation about an axis L Let the axis L be represented by vector V and z passing through point P 1. Translate P to the origin 2. Align V with vector k 3. Rotate θ° about k 4. Reverse step 2 5. Reverse step 1 x L P Q V k Rθ,L = T-P-1 * AV-1 * Rθ,k * AV * T-P θ Q' y 38
  • 39. MN,P : Mirror reflection Let the plane be represented by plane normal N and a point P in that plane z N P x y 39
  • 40. MN,P : Mirror reflection Let the plane be represented by plane normal N and a point P in that plane 1. Translate P to the origin z N P x y MN,P = T-P 40
  • 41. MN,P : Mirror reflection Let the plane be represented by plane normal N and a point P in that plane 1. Translate P to the origin z N 2. Align N with vector k P x y MN,P = AN * T-P 41
  • 42. MN,P : Mirror reflection Let the plane be represented by plane normal N and a point P in that plane 1. Translate P to the origin 2. Align N with vector k 3. Reflect w.r.t xy-plane z N P x y MN,P = S1,1,-1 * AN * T-P 42
  • 43. MN,P : Mirror reflection Let the plane be represented by plane normal N and a point P in that plane 1. Translate P to the origin z 2. Align N with vector k 3. Reflect w.r.t xy-plane x 4. Reverse step 2 MN,P = AN-1 * S1,1,-1 * AN * T-P y 43
  • 44. MN,P : Mirror reflection Let the plane be represented by plane normal N and a point P in that plane 1. Translate P to the origin 2. Align N with vector k 3. Reflect w.r.t xy-plane x 4. Reverse step 2 5. Reverse step 1 z N P MN,P = T-P-1 * AN-1 * S1,1,-1 * AN * T-P y 44
  • 45. Further Composition  Translate points in fig. 1 into points in fig 2 such that: – P3 is moved to yz plane – P2 is on z-axis – P1 is at Origin  The Composite Transform must have – Translation of P1 to Origin ⇒ T – Some Combination of Rotations ⇒ R y y P3 P2 P 1 x z Fig. 1 y P3′ T R P2′ P′ 1 z P3′′ x z P2′′ P′′ 1 Fig. 2 x 45
  • 46. Finding R Let R be  r11 r12 r13   Rx .x Rx . y Rx .z  R = r21 r22 r23  =  R y .x R y . y R y .z       r31 r32 r33   Rz .x Rz . y Rz .z      R is Rigid - body Transform i) Rx , R y , Rz are unit vectors ii) Rx , R y , Rz are perpendicu lar to each other Note : Rx .x ⇒ x component of vextor Rx 46
  • 47. Finding Rz R aligns P1′P2′ along z - axis ⇒ R⋅ P1′P2′ P1′P2′ P′ 3 ˆ =k ˆ = P1′P2′ ⇒ R ⋅k P1′P2′ T  Rx . x  ⇒  Rx . y  Rx .z  y R y .x Ry . y R y .z Rz [ R −1 =R T P′ 1 ] x z R Rz . x  0  P ′P ′  R z . y  0  = 1 2   ′ ′ Rz .z  1 P1P2    Rz . x   R . y  = P1′P2′ = R ⇒ z  z  Rz .z  P1′P2′   P2′ y ′ P′ 3 ˆ k z ′ P2′ ′ P′ 1 x 47
  • 48. Finding Rx R aligns P1′P3′ × P1′P2′ along x - axis ⇒ R⋅ P1′P3′ × P1′P2′ P1′P3′ × P1′P2′ ˆ ⇒ R ⋅i = −1  Rx . x  ⇒  Rx . y  Rx .z  P′ 3 ˆ =i P′ 1 P1′P3′ × P1′P2′ P2′ x Rx R R z . x  1  P ′P ′ × P ′P ′  R z . y  0  = 1 3 1 2   ′ ′ ′ ′ Rz .z  0 P1P3 × P1P2    Rx . x   R . y  = P1′P3′ × P1′P2′ = R ⇒ x  x  Rx .z  P1′P3′ × P1′P2′   Rz z P1′P3′ × P1′P2′ R y .x Ry . y R y .z y y ′ P′ 3 ˆ k z ′ P2′ ′ P′ 1 ˆ i x 48
  • 49. Finding Ry y R aligns R z × R x along y - axis ( ) P′ 3 ⇒ R ⋅ Rz × Rx = ˆ j P′ 1 ⇒ R ⋅ ˆ = Rz × Rx j R y .x Ry . y R y .z Ry x R Rz . x  0   Rz . y  1 = R z × R x   R z . z  0     R y .x    ⇒  Ry . y  = Rz × Rx = Ry  R y .z    P2′ Rx z −1  Rx . x  ⇒  Rx . y  Rx .z  Rz y ′ P′ 3 ˆ k z ′ P2′ ˆ j ′ P′ 1 ˆ i x 49
  • 50. Problems to be solved: Schaum’s outline series: Problems:  6.1  6.2, 6.5, 6.9, 6.10, 6.11, 6.12 ⇒ Av  6.3, 6.4 ⇒ Rθ,L  6.6, 6.7, 6.8 ⇒ MN,P 50
  • 51. Transformations in OpenGL OpenGL transformation commands Transformation Order Hierarchical Modeling 51
  • 52. Transformations in OpenGL  OpenGL uses 3 stacks to maintain transformation matrices: – Model & View transformation matrix stack – Projection matrix stack – Texture matrix stack  You can load, push and pop the stack  The top most matrix from each stack is applied to all graphics primitive until it is changed Graphics Primitives (P) M Model-View Matrix Stack N Projection Matrix Stack Output N•M•P 52
  • 53. General Transformation Commands  Specify current matrix (stack) : – void glMatrixMode(GLenum mode) I B A • Mode : GL_MODELVIEW, GL_PROJECTION, GL_TEXTURE glLoadMatrix(M) glLo a dIde ntity C B A M B A  Initialize current matrix. – void glLoadIdentity(void) • Sets the current matrix to 4X4 identity matirx – void glLoadMatrix{f|d}(cost TYPE *M) • Sets the current matrix to 4X4 matrix specified by M Note: current matrix ⇒ Top most matrix of the current matrix stack 53
  • 54. General Transformation Commands Concatenate Current Matrix: – void glMultMatrix(const TYPE *M) • Multiplies current matrix C, by M. i.e. C = C*M – Caveat: OpenGL matrices are stored in column major order.  m1 m  2  m3  m4 m5 m6 m7 m8 m9 m10 m11 m12 m13  m14   m15   m16  – Best use utility function glTranslate, glRotate, glScale for common transformation tasks. 54
  • 55. Transformations and OpenGL®  Each time an OpenGL transformation M is called the current MODELVIEW matrix C is altered: v′ = Cv v′ = CMv glTranslatef(1.5, 0.0, 0.0); glRotatef(45.0, 0.0, 0.0, 1.0); v′ = CTRv Note: v is any vertex placed in rendering pipeline v’ is the transformed vertex from v. 55
  • 57. Thinking About Transformations  There is a World Coordinate System where:  All objects are defined  Transformations are in World Coordinate space Two Different Views As a Global System  Objects moves but coordinates stay the same  Think of transformation in reverse order as they appear in code As a Local System  Objects moves and coordinates move with it  Think of transformation in same order as they appear in code 57
  • 58. Order of Transformation T•R Global View  Rotate Object  Then Translate glLoadIdentity(); Local View glMultiMatrixf( T);  Translate Object glMultiMatrixf( R);  Then Rotate draw_ the_ object( v); v’ = ITRv Effect is same, but perception is different 58
  • 59. Order of Transformation R•T Global View  Translate Object  Then Rotate glLoadIdentity(); Local View glMultiMatrixf( R);  Rotate Object glMultiMatrixf( T);  Then Translate draw_ the_ object( v); v’ = ITRv Effect is same, but perception is different 59
  • 60. Hierarchical Modeling  Many graphical objects are structured  Exploit structure for – Efficient rendering – Concise specification of model parameters – Physical realism  Often we need several instances of an object – Wheels of a car – Arms or legs of a figure – Chess pieces     Encapsulate basic object in a function Object instances are created in “standard” form Apply transformations to different instances Typical order: scaling, rotation, translation 60
  • 61. OpenGL & Hierarchical Model Some of the OpenGL functions helpful for hierarchical modeling are: – void glPushMatrix(void); – void glPoipMatrix(void); – void glGetFloatv(GL_MODELVIEW_MATRIX, *m); s glPu C B A rix Mat h glP ush Ma trix C C B A B A C B A glGetFloatv m C 61
  • 62. Scene Graph  A scene graph is a hierarchical representation of a scene  We will use trees for representing hierarchical objects such that: – Nodes represent parts of an object – Topology is maintained using parent-child relationship – Edges represent transformations that applies to a part and all the subparts connected to that part Scene typedef struct treenode { GLfloat m[16]; // Transformation Sun Star X void (*f) ( ); // Draw function struct treenode *sibling; Earth Venus Saturn struct treenode *child; } treenode; Moon Ring 62
  • 63. Example - Torso  Initializing transformation matrix for node treenode torso, head, ...; /* in init function */ glLoadIdentity(); glRotatef(...); glGetFloatv(GL_MODELVIEW_MATRIX, torso.m);  Initializing pointers torso.f = drawTorso; torso.sibling = NULL; torso.child = &head; 63
  • 64. Generic Traversal To render the hierarchy: – Traverse the scene graph depth-first – Going down an edge: • push the top matrix onto the stack • apply the edge's transformation(s) – At each node, render with the top matrix – Going up an edge: • pop the top matrix off the stack 64
  • 65. Generic Traversal : Torso  Recursive definition void traverse (treenode *root) { if (root == NULL) return; glPushMatrix(); glMultMatrixf(root->m); root->f(); if (root->child != NULL) traverse(root->child); glPopMatrix(); if (root->sibling != NULL) traverse(root->sibling); }  C is really not the right language for this !! 65
  • 68. Viewing Transformation in OpenGL  To setup the modelview matrix, OpenGL provides the following function: gluLookAt( eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz ) up (upx, upy, upz) eye (eyex, eyey, eyez) z y center (centerx, centery, centerz) x 68
  • 69. Implementation We want to construct an Orthogonal Frame such that, (1) its origin is the point eye (2) its -z basis vector points towards the point center (3) the up vector projects to the up direction (+ve y-axis) Let C (for camera) denote this frame. Clearly, C.O = eye  v = normalize( center − eye )   C.ez = −v    C.ex = normalize( v × up )    C.e y = ( C.ez × C.ex ) C.e y up (upx, upy, upz) v center C.O (eye) C.e C.e x 69 z