SlideShare uma empresa Scribd logo
1 de 23
Baixar para ler offline
Optimal Mutualistic Ecological Networks: 
Emergent Structural & Dynamical Properties 
Samir 
Suweis, 
Filippo 
Simini, 
Jayanth 
Banavar 
and 
Amos 
Maritan 
suweis@pd.infn.it 
Post 
Doc 
Researcher, 
Physics 
and 
Astronomy 
Department, 
University 
of 
Padova 
Welcome to Amos Maritan Lab 
!!!!!!!!!!!!!!!!!!!!! 
J-.% K%&%'$() L%-*1% L#?10('/0-+& F%'()0+2 6-11'?-$'/-$& "**-$/#+0/0%& 6-+/'(/& 
<+!/)%!&*0$0/!-,!/)%!.-//-!=0+/%$70&(0*10+'$0/4!0&!70'1-2=!/)%!'0.!-,!/)%!>'?!0&!/- 
,'(%!?0-1-20('1!'+7!%(-1-20('1!*$-?1%.&!0+!(-11'?-$'/0-+!80/)!%@*%$/&!-,!/)%!,0%175 
A-/!.0@0+2!-#$!%@*%$/0&%&B!?#/!&#..0+2!/)%.!#*5!
Ecological 
Networks 
Aphid 
Ladybug 
Mouse 
Caterpillar Beetle 
Grasshopper 
Towhee 
Louse 
Owl 
Sunflower 
MUTALISTIC 
FOOD 
WEB 
A = 
 
aPP 
n1×n1 aPA 
n1×n2 
aAP 
n2×n1 aAA 
n2×n2 
 
W= 
 
ΩPP 
n1×n1 ΓPA 
n1×n2 
ΓAP 
n2×n1 ΩAA 
n2×n2
Architecture 
of 
MutualisLc 
Networks 
Avian 
fruit 
web 
in 
Puerto 
Rico 
Carlo, 
et 
al. 
Plant 
Pollinator 
web 
in 
Chile 
Arroyo, 
et 
al. 
1 
5 
10 
15 
20 
1 10 20 32 
1 
5 
10 
15 
20 
25 
1 10 20 30 36 
NODF=0.424 NODF=0.192 
1 
5 
10 
15 
20 
25 
NODF=0.072 
1 10 20 30 36 
1 10 20 32 
1 
5 
10 
15 
20 NODF=0.133 
Random 
same 
S,C 
Random 
same 
S,C
nestedness 
Pollinator 
Pollinator 
Pollinator 
Pollinator 
Plant 
Plant 
Plant 
Plant 
Pollinator 
Plants 
The number of common the i-th 
and the j-th plant have oP 
ij ≡ 
 
k 
aPA 
ik aPA 
jk 
NODF = 
 
ij: i,j∈P TP 
ij + 
 
ij: i,j∈A TA 
 ij 
P(P−1) 
2 
 
+ 
 
A(A−1) 
2 
 , 
TX 
ij = 0 if kX 
i = kX 
j 
oX 
TX 
= 
ij 
ij min(kX 
i , kX 
j ) 
“Triangular” shape
# Species [S] 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
hMp://www.nceas.ucsb.edu/interacLonweb/resources.html 
hMp://ieg.ebd.csic.es/JordiBascompte/ 
Nestedness [NODF] 
20 40 60 80 100 120 140 160 180 200 
0 
Random 
Data 
56 
Networks 
Network 
data 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
NODF Data 
NODF CM 
Null 
model 
1 
We 
keep 
fixed 
S 
and 
C 
and 
k1, k2,…,kS 
Null 
model 
0 
We 
keep 
fixed 
S 
and 
C, 
and 
place 
at 
random 
the 
edges
Are 
nested 
architecture 
more 
stable? 
Random 
Structure 
MutualisLc 
(nested) 
Structure 
Φij ∼ N(0,σ2) Φij ,Φji ∼ |N(0,σ2)| 
Real 
Imaginary 
x˙ = Φx 
A 
B 
−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 
0.5 
1.0 
−0.5 
0.5 
1.0 
−0.5 
4 
2 
0 
2 
4 
4 3 2 1 0 1 2 
(Allesina, 
Nature 
2012)
Unifying 
framework 
to 
explain 
the 
emergent 
structural 
and 
dynamical 
properLes 
of 
mutualisLc 
ecological 
networks. 
RelaLonship 
between 
species 
abundances 
in 
the 
community, 
nestedness 
of 
the 
interacLon 
network 
and 
stability 
of 
the 
system.
TheoreLcal 
Framework 
• Abundances 
= 
{x1,x2,...,xS} 
• σΩ , σΓ so 
that 
x* 
γij ∼ −|N(0,σΓ)| 
ωij ∼ |N(0,σΩ)| 
is 
stable 
• Community 
populaLon 
dynamics 
(HTI 
or 
HTII) 
dxi 
dt 
= xi 
 
αi − 
S 
j 
Mijxj 
 
 ≡ fi(x)
ImplementaLon 
of 
the 
OpLmizaLon 
Principle 
T T+1 
i j 
l 
k j 
l 
!#$ 
bWil 
Start 
with 
xi~ 
N(1,0.1) 
and 
random M (α, 
S, 
C 
fixed) 
AdapLve 
EvoluLon 
i 
M → M 
if x∗ 
i  x∗i 
We accept the swap
|!ij|/max{i,j=1..S}|!ij| 
normalized mutualistic strength 
1 
MAXIMIZATION OF SPECIES POPULATION ABUNDANCES 
Random Optimized 
1 5 10 15 20 25 0 
1 
5 
10 
15 
20 
25 
1 5 10 15 20 25 
1 
5 
10 
15 
20 
25 
# Plants # Plants 
# Pollinator 
# Pollinator 
a 
b 
# optimization steps 
Plants/Pollinators Population
Result 
1: 
OpLmizaLon 
of 
single 
species 
abundance 
leads 
to 
an 
average 
increase 
of 
the 
total 
number 
community 
abundance 
Steps Population [xi] 
0 T T+1 
1.15 
1.10 
1.05 
1.00 
0.95 
T 
! 
# 
!  
! 
# 
 
a!#
a!# 
T+1 
a!# 
! 
# 
a!#
!  
$%' 
: : 
0.803522 
1.08178 
1.05803 
1.05014 
0.977939 
1.01422 
0.958128 
1.13397 
1.04078 
1.0356 
0.9664 
1.02013 
1.00682 
0.67361 
1.10131 
1.07571 
1.10289 
0.959658 
0.996913 
0.918892 
1.15298 
1.03813 
1.0223 
1.01314 
0.958794 
1.00217 
x* = x* = 
δx∗tot = 
 
m 
δx∗m = δx∗k 
T T+1 
i j 
l 
k j 
l 
!#$ 
bWil
Result 
2: 
OpLmized 
Networks 
are 
nested 
null model 0 Optimization Single Species 
null model 1 
HTI HTII 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Nestedness [NODF] 
1 2 3 4 5 6 7 
Null Model 0 
Optimiz Total Pop HTI 
Null Model 1 
Optimiz Total Pop HTI 
Null Model 0 
Optimiz Total Pop HTII 
Null Model 1 
Optimiz Total Pop HTII 
0.3 0.4 0.5 0.6 0.7 0.8 
12 
10 
8 
6 
4 
2 
Nestedness [NODF] 
12 
10 
0.2 0.3 0.4 0.5 0.6 
20 
15 
10 
12 
10 
8 
6 
4 
2 
0.2 0.3 0.4 0.5 0.6 
8 
6 
4 
2 
Nestedness [NODF] 
Nestedness [NODF] 
PDF 
8 
6 
4 
PDF 
PDF 
PDF 
0.2 0.3 0.4 0.5 
5 
PDF 
Nestedness [NODF] 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 
2 
PDF 
Nestedness [NODF]
AnalyLcal 
relaLon 
between 
Nestedness 
and 
Species 
populaLon 
xtot = ¯α 
 
InteracLon 
Strength 
dependence 
i,j 
W−1 
ij W = W0 + V = 
 
I+Ω O 
O I+Ω 
 
+ 
 
O Γ 
ΓT O 
 
250 
W−1 = W−1 
0 (I +VW−1 
0 )−1 = W−1 
0 −W−1 
0 VW−1 
0 +W−1 
0 VW−1 
0 VW−1 
0 + ... 
200 
150 
o = 
1 
γ2 
 
ij 
 
k 
 
ΓkiΓkj +ΓikΓjk 
 
0.06 0.07 0.08 0.09 0.10 
100 
50 
a 
!! 
ta 
ta 
t
a 
o ∝ K + C−1(ω, γ) · xtot
Stability 
- 0.8 - 0.7 - 0.6 - 0.5 - 0.4 
25 
20 
15 
10 
 mK  
 
 
 
 
ï ï  
Max[Re( h)] 
-1.5 -1.0 0.5 0.0 
Min ! 
0.2 
0.1 
0.0 
-0.1 
-0.2 
!#h$ 
%#h$ 
Random 
Optimized 
S=50 
4321 
0 5 10 15 20 25 
5 
4 
3 
2 
1 
0 
number of connections [k] 
species abundance ‹x› 
si=|!jij| 
a 
‹x› 
0 1 2 
5 
0 
pdf 
Max[Re(!)] 
5 
λi = −x∗i 
+ o(σ2)
Conclusions 
1) Optimization of single species abundance 
increases the total population abundance 
2) Population abundance is positively correlated to the 
nestedness of the network. 
3) Population size of the rarest species in the community 
is related to community resilience. 
4) Optimized Networks are less stable with respect to 
their random counterparts.
Thanks 
for 
your 
aMenLon!
Robustness 
of 
the 
results 
a b 
HTII individual species i 
HTII total 
Random 
HTI individual species 
HTI total 
ii 
iii 
iv 
Nestedness [NODF] Relative Nestedness [NODF*] 
i 
ii 
iii 
iv 
v 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.5 1.0 1.5 
1 10 20 30 40 
1 
10 
20 
30 
40 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 
5 
10 
15 
20 
1 5 10 15 20 
1 
5 
10 
15 
20 
Random Optimization + Assembling Fully Optimized
Architecture 
of 
Ecological 
Networks 
A = 
 
0 aPA 
aPA 0 
 
Fontaine 
et 
al., 
Eco. 
LeM, 
2011
0 200 400 600 800 1000 1200 1400 1600 1800 2000 
14.5 
14 
13.5 
13 
12.5 
12 
11.5 
11 
10.5 
10 
9.5 
Attempted Swaps [T] 
Population [!] 
#$$%'(#)*+,-.%-+ 
$'(*+,-.%-+
σc ∼ 
1 
√SC 
σc ∼ 
1 
SC

Mais conteúdo relacionado

Semelhante a Emergence of Nested Architecture in Mutualistic Ecological Communities

On the Modeling of the Three Types of Non-Spiking Neurons of the Caenorhabdit...
On the Modeling of the Three Types of Non-Spiking Neurons of the Caenorhabdit...On the Modeling of the Three Types of Non-Spiking Neurons of the Caenorhabdit...
On the Modeling of the Three Types of Non-Spiking Neurons of the Caenorhabdit...
Juan Luis Jiménez Laredo
 
PosterFormatRNYF(1)
PosterFormatRNYF(1)PosterFormatRNYF(1)
PosterFormatRNYF(1)
Usman Khalid
 

Semelhante a Emergence of Nested Architecture in Mutualistic Ecological Communities (20)

On the Modeling of the Three Types of Non-Spiking Neurons of the Caenorhabdit...
On the Modeling of the Three Types of Non-Spiking Neurons of the Caenorhabdit...On the Modeling of the Three Types of Non-Spiking Neurons of the Caenorhabdit...
On the Modeling of the Three Types of Non-Spiking Neurons of the Caenorhabdit...
 
Wireless Vehicular Networks in Emergencies: A Single Frequency Network Approach
Wireless Vehicular Networks in Emergencies: A Single Frequency Network ApproachWireless Vehicular Networks in Emergencies: A Single Frequency Network Approach
Wireless Vehicular Networks in Emergencies: A Single Frequency Network Approach
 
Multiverse Recommendation: N-dimensional Tensor Factorization for Context-awa...
Multiverse Recommendation: N-dimensional Tensor Factorization for Context-awa...Multiverse Recommendation: N-dimensional Tensor Factorization for Context-awa...
Multiverse Recommendation: N-dimensional Tensor Factorization for Context-awa...
 
Personalized PageRank based community detection
Personalized PageRank based community detectionPersonalized PageRank based community detection
Personalized PageRank based community detection
 
Phd Seminar talk
Phd Seminar talkPhd Seminar talk
Phd Seminar talk
 
A Framework for Robust Control of Uncertainty in Self-Adaptive Software Conn...
 A Framework for Robust Control of Uncertainty in Self-Adaptive Software Conn... A Framework for Robust Control of Uncertainty in Self-Adaptive Software Conn...
A Framework for Robust Control of Uncertainty in Self-Adaptive Software Conn...
 
Resilient Taunton Watershed Network: Shaping the Future of Your Community
Resilient Taunton Watershed Network: Shaping the Future of Your CommunityResilient Taunton Watershed Network: Shaping the Future of Your Community
Resilient Taunton Watershed Network: Shaping the Future of Your Community
 
Virtual Water Trade Networks and Sustainability of the Food System
Virtual Water Trade Networks and Sustainability of the Food SystemVirtual Water Trade Networks and Sustainability of the Food System
Virtual Water Trade Networks and Sustainability of the Food System
 
PosterFormatRNYF(1)
PosterFormatRNYF(1)PosterFormatRNYF(1)
PosterFormatRNYF(1)
 
応用哲学会2018『リスク分析と予防原則』
応用哲学会2018『リスク分析と予防原則』応用哲学会2018『リスク分析と予防原則』
応用哲学会2018『リスク分析と予防原則』
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Netsci 2016
Netsci 2016Netsci 2016
Netsci 2016
 
Distributed Ledger and Robust Consensus for Agreements
Distributed Ledger and Robust Consensus for AgreementsDistributed Ledger and Robust Consensus for Agreements
Distributed Ledger and Robust Consensus for Agreements
 
Is Bigger Best in Renewable Energy? Webinar Presentation
Is Bigger Best in Renewable Energy? Webinar PresentationIs Bigger Best in Renewable Energy? Webinar Presentation
Is Bigger Best in Renewable Energy? Webinar Presentation
 
A Comprehensive Review Of Datasets For Statistical Research In Probability An...
A Comprehensive Review Of Datasets For Statistical Research In Probability An...A Comprehensive Review Of Datasets For Statistical Research In Probability An...
A Comprehensive Review Of Datasets For Statistical Research In Probability An...
 
D041114862
D041114862D041114862
D041114862
 
Detectability of the spectral method for sparse graph partitioning
Detectability of the spectral method for sparse graph partitioningDetectability of the spectral method for sparse graph partitioning
Detectability of the spectral method for sparse graph partitioning
 
"Deep Learning" Chap.6 Convolutional Neural Net
"Deep Learning" Chap.6 Convolutional Neural Net"Deep Learning" Chap.6 Convolutional Neural Net
"Deep Learning" Chap.6 Convolutional Neural Net
 
Metaheuristic Tuning of Type-II Fuzzy Inference System for Data Mining
Metaheuristic Tuning of Type-II Fuzzy Inference System for Data MiningMetaheuristic Tuning of Type-II Fuzzy Inference System for Data Mining
Metaheuristic Tuning of Type-II Fuzzy Inference System for Data Mining
 
05 ccara vulnerability
05 ccara vulnerability05 ccara vulnerability
05 ccara vulnerability
 

Último

Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...
Sérgio Sacani
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Sérgio Sacani
 
Continuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discsContinuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discs
Sérgio Sacani
 

Último (20)

NuGOweek 2024 full programme - hosted by Ghent University
NuGOweek 2024 full programme - hosted by Ghent UniversityNuGOweek 2024 full programme - hosted by Ghent University
NuGOweek 2024 full programme - hosted by Ghent University
 
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
 
The Scientific names of some important families of Industrial plants .pdf
The Scientific names of some important families of Industrial plants .pdfThe Scientific names of some important families of Industrial plants .pdf
The Scientific names of some important families of Industrial plants .pdf
 
Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...
Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...
Ostiguy & Panizza & Moffitt (eds.) - Populism in Global Perspective. A Perfor...
 
PLANT DISEASE MANAGEMENT PRINCIPLES AND ITS IMPORTANCE
PLANT DISEASE MANAGEMENT PRINCIPLES AND ITS IMPORTANCEPLANT DISEASE MANAGEMENT PRINCIPLES AND ITS IMPORTANCE
PLANT DISEASE MANAGEMENT PRINCIPLES AND ITS IMPORTANCE
 
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
 
Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...
 
Erythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C KalyanErythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C Kalyan
 
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 RpWASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
WASP-69b’s Escaping Envelope Is Confined to a Tail Extending at Least 7 Rp
 
GBSN - Microbiology (Unit 7) Microbiology in Everyday Life
GBSN - Microbiology (Unit 7) Microbiology in Everyday LifeGBSN - Microbiology (Unit 7) Microbiology in Everyday Life
GBSN - Microbiology (Unit 7) Microbiology in Everyday Life
 
Hemoglobin metabolism: C Kalyan & E. Muralinath
Hemoglobin metabolism: C Kalyan & E. MuralinathHemoglobin metabolism: C Kalyan & E. Muralinath
Hemoglobin metabolism: C Kalyan & E. Muralinath
 
ERTHROPOIESIS: Dr. E. Muralinath & R. Gnana Lahari
ERTHROPOIESIS: Dr. E. Muralinath & R. Gnana LahariERTHROPOIESIS: Dr. E. Muralinath & R. Gnana Lahari
ERTHROPOIESIS: Dr. E. Muralinath & R. Gnana Lahari
 
Microbial bio Synthesis of nanoparticles.pptx
Microbial bio Synthesis of nanoparticles.pptxMicrobial bio Synthesis of nanoparticles.pptx
Microbial bio Synthesis of nanoparticles.pptx
 
METHODS OF TRANSCRIPTOME ANALYSIS....pptx
METHODS OF TRANSCRIPTOME ANALYSIS....pptxMETHODS OF TRANSCRIPTOME ANALYSIS....pptx
METHODS OF TRANSCRIPTOME ANALYSIS....pptx
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
 
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
 
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptxPlasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
 
Triploidy ...............................pptx
Triploidy ...............................pptxTriploidy ...............................pptx
Triploidy ...............................pptx
 
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
 
Continuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discsContinuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discs
 

Emergence of Nested Architecture in Mutualistic Ecological Communities

  • 1. Optimal Mutualistic Ecological Networks: Emergent Structural & Dynamical Properties Samir Suweis, Filippo Simini, Jayanth Banavar and Amos Maritan suweis@pd.infn.it Post Doc Researcher, Physics and Astronomy Department, University of Padova Welcome to Amos Maritan Lab !!!!!!!!!!!!!!!!!!!!! J-.% K%&%'$() L%-*1% L#?10('/0-+& F%'()0+2 6-11'?-$'/-$& "**-$/#+0/0%& 6-+/'(/& <+!/)%!&*0$0/!-,!/)%!.-//-!=0+/%$70&(0*10+'$0/4!0&!70'1-2=!/)%!'0.!-,!/)%!>'?!0&!/- ,'(%!?0-1-20('1!'+7!%(-1-20('1!*$-?1%.&!0+!(-11'?-$'/0-+!80/)!%@*%$/&!-,!/)%!,0%175 A-/!.0@0+2!-#$!%@*%$/0&%&B!?#/!&#..0+2!/)%.!#*5!
  • 2. Ecological Networks Aphid Ladybug Mouse Caterpillar Beetle Grasshopper Towhee Louse Owl Sunflower MUTALISTIC FOOD WEB A = aPP n1×n1 aPA n1×n2 aAP n2×n1 aAA n2×n2 W= ΩPP n1×n1 ΓPA n1×n2 ΓAP n2×n1 ΩAA n2×n2
  • 3. Architecture of MutualisLc Networks Avian fruit web in Puerto Rico Carlo, et al. Plant Pollinator web in Chile Arroyo, et al. 1 5 10 15 20 1 10 20 32 1 5 10 15 20 25 1 10 20 30 36 NODF=0.424 NODF=0.192 1 5 10 15 20 25 NODF=0.072 1 10 20 30 36 1 10 20 32 1 5 10 15 20 NODF=0.133 Random same S,C Random same S,C
  • 4. nestedness Pollinator Pollinator Pollinator Pollinator Plant Plant Plant Plant Pollinator Plants The number of common the i-th and the j-th plant have oP ij ≡ k aPA ik aPA jk NODF = ij: i,j∈P TP ij + ij: i,j∈A TA ij P(P−1) 2 + A(A−1) 2 , TX ij = 0 if kX i = kX j oX TX = ij ij min(kX i , kX j ) “Triangular” shape
  • 5. # Species [S] 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 hMp://www.nceas.ucsb.edu/interacLonweb/resources.html hMp://ieg.ebd.csic.es/JordiBascompte/ Nestedness [NODF] 20 40 60 80 100 120 140 160 180 200 0 Random Data 56 Networks Network data 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.6 0.5 0.4 0.3 0.2 0.1 NODF Data NODF CM Null model 1 We keep fixed S and C and k1, k2,…,kS Null model 0 We keep fixed S and C, and place at random the edges
  • 6. Are nested architecture more stable? Random Structure MutualisLc (nested) Structure Φij ∼ N(0,σ2) Φij ,Φji ∼ |N(0,σ2)| Real Imaginary x˙ = Φx A B −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 0.5 1.0 −0.5 0.5 1.0 −0.5 4 2 0 2 4 4 3 2 1 0 1 2 (Allesina, Nature 2012)
  • 7. Unifying framework to explain the emergent structural and dynamical properLes of mutualisLc ecological networks. RelaLonship between species abundances in the community, nestedness of the interacLon network and stability of the system.
  • 8. TheoreLcal Framework • Abundances = {x1,x2,...,xS} • σΩ , σΓ so that x* γij ∼ −|N(0,σΓ)| ωij ∼ |N(0,σΩ)| is stable • Community populaLon dynamics (HTI or HTII) dxi dt = xi  αi − S j Mijxj   ≡ fi(x)
  • 9. ImplementaLon of the OpLmizaLon Principle T T+1 i j l k j l !#$ bWil Start with xi~ N(1,0.1) and random M (α, S, C fixed) AdapLve EvoluLon i M → M if x∗ i x∗i We accept the swap
  • 10. |!ij|/max{i,j=1..S}|!ij| normalized mutualistic strength 1 MAXIMIZATION OF SPECIES POPULATION ABUNDANCES Random Optimized 1 5 10 15 20 25 0 1 5 10 15 20 25 1 5 10 15 20 25 1 5 10 15 20 25 # Plants # Plants # Pollinator # Pollinator a b # optimization steps Plants/Pollinators Population
  • 11. Result 1: OpLmizaLon of single species abundance leads to an average increase of the total number community abundance Steps Population [xi] 0 T T+1 1.15 1.10 1.05 1.00 0.95 T ! # ! ! # a!#
  • 12. a!# T+1 a!# ! # a!#
  • 13. ! $%' : : 0.803522 1.08178 1.05803 1.05014 0.977939 1.01422 0.958128 1.13397 1.04078 1.0356 0.9664 1.02013 1.00682 0.67361 1.10131 1.07571 1.10289 0.959658 0.996913 0.918892 1.15298 1.03813 1.0223 1.01314 0.958794 1.00217 x* = x* = δx∗tot = m δx∗m = δx∗k T T+1 i j l k j l !#$ bWil
  • 14. Result 2: OpLmized Networks are nested null model 0 Optimization Single Species null model 1 HTI HTII 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Nestedness [NODF] 1 2 3 4 5 6 7 Null Model 0 Optimiz Total Pop HTI Null Model 1 Optimiz Total Pop HTI Null Model 0 Optimiz Total Pop HTII Null Model 1 Optimiz Total Pop HTII 0.3 0.4 0.5 0.6 0.7 0.8 12 10 8 6 4 2 Nestedness [NODF] 12 10 0.2 0.3 0.4 0.5 0.6 20 15 10 12 10 8 6 4 2 0.2 0.3 0.4 0.5 0.6 8 6 4 2 Nestedness [NODF] Nestedness [NODF] PDF 8 6 4 PDF PDF PDF 0.2 0.3 0.4 0.5 5 PDF Nestedness [NODF] 0.2 0.3 0.4 0.5 0.6 0.7 0.8 2 PDF Nestedness [NODF]
  • 15. AnalyLcal relaLon between Nestedness and Species populaLon xtot = ¯α InteracLon Strength dependence i,j W−1 ij W = W0 + V = I+Ω O O I+Ω + O Γ ΓT O 250 W−1 = W−1 0 (I +VW−1 0 )−1 = W−1 0 −W−1 0 VW−1 0 +W−1 0 VW−1 0 VW−1 0 + ... 200 150 o = 1 γ2 ij k ΓkiΓkj +ΓikΓjk 0.06 0.07 0.08 0.09 0.10 100 50 a !! ta ta t
  • 16. a o ∝ K + C−1(ω, γ) · xtot
  • 17. Stability - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 25 20 15 10 mK ï ï Max[Re( h)] -1.5 -1.0 0.5 0.0 Min ! 0.2 0.1 0.0 -0.1 -0.2 !#h$ %#h$ Random Optimized S=50 4321 0 5 10 15 20 25 5 4 3 2 1 0 number of connections [k] species abundance ‹x› si=|!jij| a ‹x› 0 1 2 5 0 pdf Max[Re(!)] 5 λi = −x∗i + o(σ2)
  • 18. Conclusions 1) Optimization of single species abundance increases the total population abundance 2) Population abundance is positively correlated to the nestedness of the network. 3) Population size of the rarest species in the community is related to community resilience. 4) Optimized Networks are less stable with respect to their random counterparts.
  • 19. Thanks for your aMenLon!
  • 20. Robustness of the results a b HTII individual species i HTII total Random HTI individual species HTI total ii iii iv Nestedness [NODF] Relative Nestedness [NODF*] i ii iii iv v 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.5 1.0 1.5 1 10 20 30 40 1 10 20 30 40 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 5 10 15 20 1 5 10 15 20 1 5 10 15 20 Random Optimization + Assembling Fully Optimized
  • 21. Architecture of Ecological Networks A = 0 aPA aPA 0 Fontaine et al., Eco. LeM, 2011
  • 22. 0 200 400 600 800 1000 1200 1400 1600 1800 2000 14.5 14 13.5 13 12.5 12 11.5 11 10.5 10 9.5 Attempted Swaps [T] Population [!] #$$%'(#)*+,-.%-+ $'(*+,-.%-+
  • 23. σc ∼ 1 √SC σc ∼ 1 SC
  • 24.
  • 25. 50 100 200 500 0.50 0.20 0.10 0.05 0.02 C~1/S # species C ConnecLvity