SlideShare uma empresa Scribd logo
1 de 57
王 俊 鑫 (Chun-Hsin Wang)
中華大學 資訊工程系
Fall 2002
Chap 1 First-Order
Differential Equations
Page 2
Outline
 Basic Concepts
 Separable Differential Equations
 substitution Methods
 Exact Differential Equations
 Integrating Factors
 Linear Differential Equations
 Bernoulli Equations
Page 3
Basic Concepts
 Differentiation
x
e
x
x
x
a
a
a
e
e
nx
x
a
a
x
x
x
x
n
n
log
)
(log
1
)
(ln
ln
)
(
)
(
)
( 1









 
x
x
x
x
x
x
x
x
x
x
x
x
x
x
cot
csc
)
(csc
tan
sec
)
(sec
csc
)
(cot
sec
)
(tan
sin
)
(cos
cos
)
(sin
2
2















Page 4
Basic Concepts
 Differentiation
x
x
x
x
sinh
)
(cosh
cosh
)
(sinh




2
1
2
1
2
1
2
1
1
1
)
(cot
1
1
)
(tan
1
1
)
(cos
1
1
)
(sin
x
x
x
x
x
x
x
x


















Page 5
Basic Concepts
 Integration
c
a
a
dx
a
c
e
dx
e
c
x
dx
x
dx
x
c
n
x
dx
x
x
x
x
x
n
n

















ln
ln
1
1
1
1



















vdx
u
uv
dx
v
u
vdu
uv
udv
udx
c
cudx
vdx
udx
dx
v
u )
(
Page 6
Basic Concepts
 Integration
c
x
x
xdx
c
x
x
xdx
c
x
xdx
c
x
xdx
c
x
xdx
c
x
xdx






















cot
csc
ln
csc
tan
sec
ln
sec
sin
ln
cot
cos
ln
tan
sin
cos
cos
sin
Page 7
Basic Concepts
 Integration
c
a
x
dx
a
x
c
a
x
dx
a
x
c
a
x
dx
x
a
c
a
x
a
dx
a
x




















1
2
2
1
2
2
1
2
2
1
2
2
cosh
1
sinh
1
sin
1
tan
1
1
Page 8
Basic Concepts
 ODE vs. PDE
 Dependent Variables vs. Independent
Variables
 Order
 Linear vs. Nonlinear
 Solutions
Page 9
Basic Concepts
 Ordinary Differential Equations
 An unknown function (dependent variable) y
of one independent variable x
x
dx
dy
y cos



0
4 


 y
y
2
2
2
)
2
(
2 y
x
y
e
y
y
x x









Page 10
Basic Concepts
 Partial Differential Equations
 An unknown function (dependent variable)
z of two or more independent variables
(e.g. x and y)
y
x
x
z
4
6 



y
x
y
x
z





2
2
Page 11
Basic Concepts
 The order of a differential equation is
the order of the highest derivative that
appears in the equation.
0
)
( 2
2
3






 y
n
x
y
x
y
x Order 2
2
2
1
y
x
dx
dy

 Order 1
1
)
( 4
3
2
2

 y
dx
y
d
Order 2
Page 12
Basic Concept
 The first-order differential equation contain only y’
and may contain y and given function of x.
 A solution of a given first-order differential equation
(*) on some open interval a<x<b is a function
y=h(x) that has a derivative y’=h(x) and satisfies
(*) for all x in that interval.
)
,
(
'
0
)
'
,
,
(
y
x
F
y
y
y
x
F


or (*)
Page 13
Basic Concept
 Example : Verify the solution
x
2
y
2y
xy'


Page 14
Basic Concepts
 Explicit Solution
 Implicit Solution
)
(x
h
y 
0
)
,
( 
y
x
H
Page 15
Basic Concept
 General solution vs. Particular solution
 General solution
 arbitrary constant c
 Particular solution
 choose a specific c
,....
2
,
3
'






c
c
sinx
y
cosx
y
Page 16
Basic Concept
 Singular solutions
 Def : A differential equation may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular
solution.
 Example
The general solution : y=cx-c2
A singular solution : y=x2/4
0
' 

 y
xy
y'
2
Page 17
Basic Concepts
 General Solution
 Particular Solution for y(0)=2 (initial condition)
kt
ce
t
y 
)
(
kt
e
t
y 2
)
( 
ky
y 

Page 18
Basic Concept
 Def: A differential equation together
with an initial condition is called an
initial value problem
0
0)
(
),
,
(
' y
x
y
y
x
f
y 

Page 19
Separable Differential Equations
 Def: A first-order differential equation of
the form
is called a separable differential
equation
dx
x
f
dy
y
g
f(x)
g(y)y
)
(
)
(
'


Page 20
Separable Differential Equations
 Example :
Sol:
0
4
9 

 x
y
y
Page 21
Separable Differential Equations
 Example :
Sol:
2
1 y
y 


Page 22
Separable Differential Equations
 Example :
Sol:
ky
y 

Page 23
Separable Differential Equations
 Example :
Sol:
1
)
0
(
,
2 


 y
xy
y
Page 24
Separable Differential Equations
 Substitution Method:
A differential equation of the form
can be transformed into a separable
differential equation
)
(
x
y
g
y 

Page 25
Separable Differential Equations
 Substitution Method:
ux
y  u
x
u
y 



x
dx
u
u
g
du
u
u
g
x
u
u
g
u
x
u










)
(
)
(
)
(
Page 26
Separable Differential Equations
 Example :
Sol:
2
2
2 x
y
y
xy 


cx
y
x
x
c
x
y
x
c
u
c
x
c
x
u
x
dx
u
udu
u
u
u
x
u
y
x
x
y
xy
x
xy
y
y
x
y
y
xy








































2
2
2
2
1
1
2
2
2
2
2
2
1
1
1
ln
ln
)
1
ln(
1
2
)
1
(
2
1
)
(
2
1
2
2
2
Page 27
Separable Differential Equations
 Exercise 1
2
01
.
0
1 y
y 


2
/
xy
y 

y
y
y
x 

 2
2
)
2
(
,
0
' 


 y
y
xy
Page 28
Exact Differential Equations
 Def: A first-order differential equation of
the form
is said to be exact if
0
)
,
(
)
,
( 
 dy
y
x
N
dx
y
x
M
x
y
x
N
y
y
x
M



)
,
(
)
,
(
Page 29
Exact Differential Equations
 Proof:
0
)
,
(
)
,
(
0
)
,
(









dy
y
x
N
dx
y
x
M
dy
y
u
dx
x
u
y
x
du
x
y
x
N
y
y
x
M
y
x
y
x
u






 )
,
(
)
,
(
)
,
(
Page 30
Exact Differential Equations
 Example :
Sol:
0
)
3
(
)
3
( 3
2
2
3



 dy
y
y
x
dx
xy
x
Exact
xy
x
N
y
M
xy
x
y
y
x
xy
y
xy
x
,
6
6
3
6
3
3
2
2
3













Page 31
Exact Differential Equations
Sol:
)
(
2
3
4
1
)
(
)
3
(
)
(
2
2
4
2
3
y
k
y
x
x
y
k
dx
xy
x
y
k
Mdx
u










1
4
3
2
2
4
)
(
3
)
(
3
c
y
y
k
y
y
x
N
dy
y
dk
y
x
y
u










Page 32
Exact Differential Equations
Sol:
c
y
y
x
x
y
x
u 


 )
6
(
4
1
)
,
( 4
2
2
4
Page 33
Exact Differential Equations
 Example
3
)
0
(
0
)
sinh
(cos
)
cosh
(sin



y
dy
y
x
dx
y
x
Page 34
Non-Exactness
 Example : 0


 xdy
ydx
Page 35
Integrating Factor
 Def: A first-order differential equation of the form
is not exact, but it will be exact if multiplied by
F(x, y)
then F(x,y) is called an integrating factor of this
equation
0
)
,
(
)
,
( 
 dy
y
x
Q
dx
y
x
P
0
)
,
(
)
,
(
)
,
(
)
,
( 
 dy
y
x
Q
y
x
F
dx
y
x
P
y
x
F
Page 36
Exact Differential Equations
 How to find integrating factor
 Golden Rule
x
x
y
y FQ
Q
F
FP
P
F
Exact
x
FQ
y
FP
FQdy
FPdx












,
0
)
(
1
1
0
Let
x
y
x
y
Q
P
Q
dx
dF
F
FQ
Q
dx
dF
FP
P
F(x)
F








Page 37
Exact Differential Equations
 Example :
Sol:
0


 xdy
ydx
Exact
x
N
x
y
M
dy
x
dx
x
y
x
xdy
ydx
x
F
,
1
1
1
2
2
2
2













Page 38
Exact Differential Equations
Sol:
cx
y
c
x
y
x
y
d
dy
x
dx
x
y







 0
)
(
1
2
Page 39
Exact Differential Equations
 Example :
2
)
2
(
0
)
cos(
)
sin(
2 2
2




y
dy
y
xy
dx
y
Page 40
Exact Differential Equations
 Exercise 2
0
2 2

 dy
x
xydx 0
)
( 2
2





d
r
rdr
e
x
e
F
ydy
ydx 

 ,
0
cos
sin
b
a
y
x
F
xdy
b
ydx
a 



 ,
0
)
1
(
)
1
(
0
)
1
(
)
1
( 


 dy
x
dx
y
Page 41
Linear Differential Equations
 Def: A first-order differential equation is
said to be linear if it can be written
 If r(x) = 0, this equation is said to be
homogeneous
)
(
)
( x
r
y
x
p
y 


Page 42
Linear Differential Equations
 How to solve first-order linear homogeneous
ODE ?
Sol:
0
)
( 

 y
x
p
y




 















dx
x
p
c
dx
x
p
c
dx
x
p
ce
e
e
e
y
c
dx
x
p
y
dx
x
p
y
dy
y
x
p
dx
dy
)
(
)
(
)
(
1
1
1
)
(
ln
)
(
0
)
(
Page 43
Linear Differential Equations
 Example :
Sol:
0


 y
y
x
c
x
c
x
dx
dx
x
p
e
c
e
ce
ce
ce
ce
x
y
2
)
1
(
)
(
1
1
)
(











Page 44
Linear Differential Equations
 How to solve first-order linear nonhomogeneous
ODE ?
Sol:
)
(
)
( x
r
y
x
p
y 


)
(
))
(
)
(
(
)
(
1
1
0
))
(
)
(
(
)
(
)
(
x
p
x
r
y
x
p
y
Q
P
Q
dx
dF
F
dy
dx
x
r
y
x
p
x
r
y
x
p
dx
dy
x
y 













Page 45
Linear Differential Equations
Sol:


dx
x
p
e
x
F
)
(
)
(





 




















c
dx
r
e
e
x
y
c
dx
r
e
y
e
r
e
y
e
py
y
e
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
Page 46
Linear Differential Equations
 Example :
Sol:
x
e
y
y 2



 
 
x
x
x
x
x
x
x
x
dx
dx
dx
x
p
dx
x
p
e
ce
c
e
e
c
dx
e
e
e
c
dx
e
e
e
c
dx
r
e
e
x
y
2
2
2
)
1
(
)
1
(
)
(
)
(
)
(











 








 











Page 47
Linear Differential Equations
 Example :
)
2
cos
2
2
sin
3
(
2 x
x
e
y
y x
'



Page 48
Bernoulli, Jocob
Bernoulli, Jocob
1654-1705
Page 49
Linear Differential Equations
 Def: Bernoulli equations
 If a = 0, Bernoulli Eq. => First Order
Linear Eq.
 If a <> 0, let u = y1-a
a
y
x
g
y
x
p
y )
(
)
( 


g
a
pu
a
u )
1
(
)
1
( 




Page 50
Linear Differential Equations
 Example :
Sol:
2
By
Ay
y 



 
A
B
ce
u
y
A
B
ce
c
dx
e
A
B
e
c
dx
Be
e
u
B
Au
u
Ay
B
Ay
By
y
y
y
u
y
y
y
u
Ax
Ax
Ax
Ax
Ax
Ax
a














































1
1
)
( 1
2
2
2
1
2
1
1
Page 51
Linear Differential Equations
 Exercise 3
4


 y
y kx
e
ky
y 



2
2 y
y
y 


1



 xy
xy
y
)
2
(
,
sin
3 
y
x
y
y 


Page 52
Summary
可分離 Separable 
變換法 Substitution 
正合 Exact 
積分因子 Integrating Factor 
線性 Linear 
柏努利 Bernoulli 
dx
x
f
dy
y
g )
(
)
( 
dx
x
f
du
u
g )
(
)
( 
0
)
,
(
)
,
( 
 dy
y
x
N
dx
y
x
M
0

 FQdy
FPdx
)
(
)
( x
r
y
x
p
y 


a
y
x
g
y
x
p
y )
(
)
( 


Page 53
Orthogonal Trajectories of
Curves
 Angle of intersection of two curves is
defined to be the angle between the
tangents of the curves at the point of
intersection
 How to use differential equations for
finding curves that intersect given
curves at right angles ?
Page 54
How to find Orthogonal Trajectories
 1st Step: find a differential equation
for a given cure
 2nd Step: the differential equation of the
orthogonal trajectories to be found
 3rd step: solve the differential equation
as above ( in 2nd step)
)
,
( y
x
f
y 
)
,
( y
x
f
y' 
)
,
(
1
y
x
f
y' 

Page 55
Orthogonal Trajectories of Curves
 Example: given a curve y=cx2, where c
is arbitrary. Find their orthogonal
trajectories.
Sol:
Page 56
Existance and Uniqueness of Solution
 An initial value problem may have no
solutions, precisely one solution, or
more than one solution.
 Example
1
)
0
(
,
0
' 

 y
y
y
1
)
0
(
,
' 
 y
x
y
1
)
0
(
,
1
' 

 y
y
xy
No solutions
Precisely one solutions
More than one solutions
Page 57
Existence and uniqueness theorems
 Problem of existence
 Under what conditions does an initial
value problem have at least one
solution ?
 Existence theorem, see page 53
 Problem of uniqueness
 Under what conditions does that the
problem have at most one solution ?
 Uniqueness theorem, see page54

Mais conteúdo relacionado

Semelhante a fode1.ppt

Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transformsujathavvv
 
Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transformMohanamalar8
 
MRS EMMAH.pdf
MRS EMMAH.pdfMRS EMMAH.pdf
MRS EMMAH.pdfKasungwa
 
Unit I.pptx notes study important etc good
Unit I.pptx notes study important etc goodUnit I.pptx notes study important etc good
Unit I.pptx notes study important etc goodSanjayKumar255383
 
Differential equations
Differential equationsDifferential equations
Differential equationsDawood Aqlan
 
Differential equations
Differential equationsDifferential equations
Differential equationsCharan Kumar
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016kalpeshvaghdodiya
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation Abdul Hannan
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheetAjEcuacion
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheetHimadriBiswas10
 

Semelhante a fode1.ppt (20)

Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transform
 
Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transform
 
K12105 sharukh...
K12105 sharukh...K12105 sharukh...
K12105 sharukh...
 
160280102031 c2 aem
160280102031 c2 aem160280102031 c2 aem
160280102031 c2 aem
 
MRS EMMAH.pdf
MRS EMMAH.pdfMRS EMMAH.pdf
MRS EMMAH.pdf
 
Unit2
Unit2Unit2
Unit2
 
Unit I.pptx notes study important etc good
Unit I.pptx notes study important etc goodUnit I.pptx notes study important etc good
Unit I.pptx notes study important etc good
 
UNIT-III.pdf
UNIT-III.pdfUNIT-III.pdf
UNIT-III.pdf
 
160280102051 c3 aem
160280102051 c3 aem160280102051 c3 aem
160280102051 c3 aem
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
ME Reference.pdf
ME Reference.pdfME Reference.pdf
ME Reference.pdf
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Iq3514961502
Iq3514961502Iq3514961502
Iq3514961502
 
Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016Automobile 3rd sem aem ppt.2016
Automobile 3rd sem aem ppt.2016
 
Ch07 8
Ch07 8Ch07 8
Ch07 8
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 

Último

development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsOrtegaSyrineMay
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Servicenishacall1
 
chemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfchemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfTukamushabaBismark
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 62, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Silpa
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flyPRADYUMMAURYA1
 

Último (20)

Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
chemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfchemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdf
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 62, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 62, Noida Call girls :8448380779 Model Escorts | 100% verified
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 

fode1.ppt

  • 1. 王 俊 鑫 (Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Chap 1 First-Order Differential Equations
  • 2. Page 2 Outline  Basic Concepts  Separable Differential Equations  substitution Methods  Exact Differential Equations  Integrating Factors  Linear Differential Equations  Bernoulli Equations
  • 3. Page 3 Basic Concepts  Differentiation x e x x x a a a e e nx x a a x x x x n n log ) (log 1 ) (ln ln ) ( ) ( ) ( 1            x x x x x x x x x x x x x x cot csc ) (csc tan sec ) (sec csc ) (cot sec ) (tan sin ) (cos cos ) (sin 2 2               
  • 4. Page 4 Basic Concepts  Differentiation x x x x sinh ) (cosh cosh ) (sinh     2 1 2 1 2 1 2 1 1 1 ) (cot 1 1 ) (tan 1 1 ) (cos 1 1 ) (sin x x x x x x x x                  
  • 5. Page 5 Basic Concepts  Integration c a a dx a c e dx e c x dx x dx x c n x dx x x x x x n n                  ln ln 1 1 1 1                    vdx u uv dx v u vdu uv udv udx c cudx vdx udx dx v u ) (
  • 6. Page 6 Basic Concepts  Integration c x x xdx c x x xdx c x xdx c x xdx c x xdx c x xdx                       cot csc ln csc tan sec ln sec sin ln cot cos ln tan sin cos cos sin
  • 7. Page 7 Basic Concepts  Integration c a x dx a x c a x dx a x c a x dx x a c a x a dx a x                     1 2 2 1 2 2 1 2 2 1 2 2 cosh 1 sinh 1 sin 1 tan 1 1
  • 8. Page 8 Basic Concepts  ODE vs. PDE  Dependent Variables vs. Independent Variables  Order  Linear vs. Nonlinear  Solutions
  • 9. Page 9 Basic Concepts  Ordinary Differential Equations  An unknown function (dependent variable) y of one independent variable x x dx dy y cos    0 4     y y 2 2 2 ) 2 ( 2 y x y e y y x x         
  • 10. Page 10 Basic Concepts  Partial Differential Equations  An unknown function (dependent variable) z of two or more independent variables (e.g. x and y) y x x z 4 6     y x y x z      2 2
  • 11. Page 11 Basic Concepts  The order of a differential equation is the order of the highest derivative that appears in the equation. 0 ) ( 2 2 3        y n x y x y x Order 2 2 2 1 y x dx dy   Order 1 1 ) ( 4 3 2 2   y dx y d Order 2
  • 12. Page 12 Basic Concept  The first-order differential equation contain only y’ and may contain y and given function of x.  A solution of a given first-order differential equation (*) on some open interval a<x<b is a function y=h(x) that has a derivative y’=h(x) and satisfies (*) for all x in that interval. ) , ( ' 0 ) ' , , ( y x F y y y x F   or (*)
  • 13. Page 13 Basic Concept  Example : Verify the solution x 2 y 2y xy'  
  • 14. Page 14 Basic Concepts  Explicit Solution  Implicit Solution ) (x h y  0 ) , (  y x H
  • 15. Page 15 Basic Concept  General solution vs. Particular solution  General solution  arbitrary constant c  Particular solution  choose a specific c ,.... 2 , 3 '       c c sinx y cosx y
  • 16. Page 16 Basic Concept  Singular solutions  Def : A differential equation may sometimes have an additional solution that cannot be obtained from the general solution and is then called a singular solution.  Example The general solution : y=cx-c2 A singular solution : y=x2/4 0 '    y xy y' 2
  • 17. Page 17 Basic Concepts  General Solution  Particular Solution for y(0)=2 (initial condition) kt ce t y  ) ( kt e t y 2 ) (  ky y  
  • 18. Page 18 Basic Concept  Def: A differential equation together with an initial condition is called an initial value problem 0 0) ( ), , ( ' y x y y x f y  
  • 19. Page 19 Separable Differential Equations  Def: A first-order differential equation of the form is called a separable differential equation dx x f dy y g f(x) g(y)y ) ( ) ( '  
  • 20. Page 20 Separable Differential Equations  Example : Sol: 0 4 9    x y y
  • 21. Page 21 Separable Differential Equations  Example : Sol: 2 1 y y   
  • 22. Page 22 Separable Differential Equations  Example : Sol: ky y  
  • 23. Page 23 Separable Differential Equations  Example : Sol: 1 ) 0 ( , 2     y xy y
  • 24. Page 24 Separable Differential Equations  Substitution Method: A differential equation of the form can be transformed into a separable differential equation ) ( x y g y  
  • 25. Page 25 Separable Differential Equations  Substitution Method: ux y  u x u y     x dx u u g du u u g x u u g u x u           ) ( ) ( ) (
  • 26. Page 26 Separable Differential Equations  Example : Sol: 2 2 2 x y y xy    cx y x x c x y x c u c x c x u x dx u udu u u u x u y x x y xy x xy y y x y y xy                                         2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 ln ln ) 1 ln( 1 2 ) 1 ( 2 1 ) ( 2 1 2 2 2
  • 27. Page 27 Separable Differential Equations  Exercise 1 2 01 . 0 1 y y    2 / xy y   y y y x    2 2 ) 2 ( , 0 '     y y xy
  • 28. Page 28 Exact Differential Equations  Def: A first-order differential equation of the form is said to be exact if 0 ) , ( ) , (   dy y x N dx y x M x y x N y y x M    ) , ( ) , (
  • 29. Page 29 Exact Differential Equations  Proof: 0 ) , ( ) , ( 0 ) , (          dy y x N dx y x M dy y u dx x u y x du x y x N y y x M y x y x u        ) , ( ) , ( ) , (
  • 30. Page 30 Exact Differential Equations  Example : Sol: 0 ) 3 ( ) 3 ( 3 2 2 3     dy y y x dx xy x Exact xy x N y M xy x y y x xy y xy x , 6 6 3 6 3 3 2 2 3             
  • 31. Page 31 Exact Differential Equations Sol: ) ( 2 3 4 1 ) ( ) 3 ( ) ( 2 2 4 2 3 y k y x x y k dx xy x y k Mdx u           1 4 3 2 2 4 ) ( 3 ) ( 3 c y y k y y x N dy y dk y x y u          
  • 32. Page 32 Exact Differential Equations Sol: c y y x x y x u     ) 6 ( 4 1 ) , ( 4 2 2 4
  • 33. Page 33 Exact Differential Equations  Example 3 ) 0 ( 0 ) sinh (cos ) cosh (sin    y dy y x dx y x
  • 34. Page 34 Non-Exactness  Example : 0    xdy ydx
  • 35. Page 35 Integrating Factor  Def: A first-order differential equation of the form is not exact, but it will be exact if multiplied by F(x, y) then F(x,y) is called an integrating factor of this equation 0 ) , ( ) , (   dy y x Q dx y x P 0 ) , ( ) , ( ) , ( ) , (   dy y x Q y x F dx y x P y x F
  • 36. Page 36 Exact Differential Equations  How to find integrating factor  Golden Rule x x y y FQ Q F FP P F Exact x FQ y FP FQdy FPdx             , 0 ) ( 1 1 0 Let x y x y Q P Q dx dF F FQ Q dx dF FP P F(x) F        
  • 37. Page 37 Exact Differential Equations  Example : Sol: 0    xdy ydx Exact x N x y M dy x dx x y x xdy ydx x F , 1 1 1 2 2 2 2             
  • 38. Page 38 Exact Differential Equations Sol: cx y c x y x y d dy x dx x y         0 ) ( 1 2
  • 39. Page 39 Exact Differential Equations  Example : 2 ) 2 ( 0 ) cos( ) sin( 2 2 2     y dy y xy dx y
  • 40. Page 40 Exact Differential Equations  Exercise 2 0 2 2   dy x xydx 0 ) ( 2 2      d r rdr e x e F ydy ydx    , 0 cos sin b a y x F xdy b ydx a      , 0 ) 1 ( ) 1 ( 0 ) 1 ( ) 1 (     dy x dx y
  • 41. Page 41 Linear Differential Equations  Def: A first-order differential equation is said to be linear if it can be written  If r(x) = 0, this equation is said to be homogeneous ) ( ) ( x r y x p y   
  • 42. Page 42 Linear Differential Equations  How to solve first-order linear homogeneous ODE ? Sol: 0 ) (    y x p y                      dx x p c dx x p c dx x p ce e e e y c dx x p y dx x p y dy y x p dx dy ) ( ) ( ) ( 1 1 1 ) ( ln ) ( 0 ) (
  • 43. Page 43 Linear Differential Equations  Example : Sol: 0    y y x c x c x dx dx x p e c e ce ce ce ce x y 2 ) 1 ( ) ( 1 1 ) (           
  • 44. Page 44 Linear Differential Equations  How to solve first-order linear nonhomogeneous ODE ? Sol: ) ( ) ( x r y x p y    ) ( )) ( ) ( ( ) ( 1 1 0 )) ( ) ( ( ) ( ) ( x p x r y x p y Q P Q dx dF F dy dx x r y x p x r y x p dx dy x y              
  • 45. Page 45 Linear Differential Equations Sol:   dx x p e x F ) ( ) (                            c dx r e e x y c dx r e y e r e y e py y e dx x p dx x p dx x p dx x p dx x p dx x p dx x p ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
  • 46. Page 46 Linear Differential Equations  Example : Sol: x e y y 2        x x x x x x x x dx dx dx x p dx x p e ce c e e c dx e e e c dx e e e c dx r e e x y 2 2 2 ) 1 ( ) 1 ( ) ( ) ( ) (                                  
  • 47. Page 47 Linear Differential Equations  Example : ) 2 cos 2 2 sin 3 ( 2 x x e y y x '   
  • 49. Page 49 Linear Differential Equations  Def: Bernoulli equations  If a = 0, Bernoulli Eq. => First Order Linear Eq.  If a <> 0, let u = y1-a a y x g y x p y ) ( ) (    g a pu a u ) 1 ( ) 1 (     
  • 50. Page 50 Linear Differential Equations  Example : Sol: 2 By Ay y       A B ce u y A B ce c dx e A B e c dx Be e u B Au u Ay B Ay By y y y u y y y u Ax Ax Ax Ax Ax Ax a                                               1 1 ) ( 1 2 2 2 1 2 1 1
  • 51. Page 51 Linear Differential Equations  Exercise 3 4    y y kx e ky y     2 2 y y y    1     xy xy y ) 2 ( , sin 3  y x y y   
  • 52. Page 52 Summary 可分離 Separable  變換法 Substitution  正合 Exact  積分因子 Integrating Factor  線性 Linear  柏努利 Bernoulli  dx x f dy y g ) ( ) (  dx x f du u g ) ( ) (  0 ) , ( ) , (   dy y x N dx y x M 0   FQdy FPdx ) ( ) ( x r y x p y    a y x g y x p y ) ( ) (   
  • 53. Page 53 Orthogonal Trajectories of Curves  Angle of intersection of two curves is defined to be the angle between the tangents of the curves at the point of intersection  How to use differential equations for finding curves that intersect given curves at right angles ?
  • 54. Page 54 How to find Orthogonal Trajectories  1st Step: find a differential equation for a given cure  2nd Step: the differential equation of the orthogonal trajectories to be found  3rd step: solve the differential equation as above ( in 2nd step) ) , ( y x f y  ) , ( y x f y'  ) , ( 1 y x f y'  
  • 55. Page 55 Orthogonal Trajectories of Curves  Example: given a curve y=cx2, where c is arbitrary. Find their orthogonal trajectories. Sol:
  • 56. Page 56 Existance and Uniqueness of Solution  An initial value problem may have no solutions, precisely one solution, or more than one solution.  Example 1 ) 0 ( , 0 '    y y y 1 ) 0 ( , '   y x y 1 ) 0 ( , 1 '    y y xy No solutions Precisely one solutions More than one solutions
  • 57. Page 57 Existence and uniqueness theorems  Problem of existence  Under what conditions does an initial value problem have at least one solution ?  Existence theorem, see page 53  Problem of uniqueness  Under what conditions does that the problem have at most one solution ?  Uniqueness theorem, see page54