Page 3
Basic Concepts
Differentiation
x
e
x
x
x
a
a
a
e
e
nx
x
a
a
x
x
x
x
n
n
log
)
(log
1
)
(ln
ln
)
(
)
(
)
( 1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
cot
csc
)
(csc
tan
sec
)
(sec
csc
)
(cot
sec
)
(tan
sin
)
(cos
cos
)
(sin
2
2
Page 4
Basic Concepts
Differentiation
x
x
x
x
sinh
)
(cosh
cosh
)
(sinh
2
1
2
1
2
1
2
1
1
1
)
(cot
1
1
)
(tan
1
1
)
(cos
1
1
)
(sin
x
x
x
x
x
x
x
x
Page 5
Basic Concepts
Integration
c
a
a
dx
a
c
e
dx
e
c
x
dx
x
dx
x
c
n
x
dx
x
x
x
x
x
n
n
ln
ln
1
1
1
1
vdx
u
uv
dx
v
u
vdu
uv
udv
udx
c
cudx
vdx
udx
dx
v
u )
(
Page 6
Basic Concepts
Integration
c
x
x
xdx
c
x
x
xdx
c
x
xdx
c
x
xdx
c
x
xdx
c
x
xdx
cot
csc
ln
csc
tan
sec
ln
sec
sin
ln
cot
cos
ln
tan
sin
cos
cos
sin
Page 7
Basic Concepts
Integration
c
a
x
dx
a
x
c
a
x
dx
a
x
c
a
x
dx
x
a
c
a
x
a
dx
a
x
1
2
2
1
2
2
1
2
2
1
2
2
cosh
1
sinh
1
sin
1
tan
1
1
Page 8
Basic Concepts
ODE vs. PDE
Dependent Variables vs. Independent
Variables
Order
Linear vs. Nonlinear
Solutions
Page 9
Basic Concepts
Ordinary Differential Equations
An unknown function (dependent variable) y
of one independent variable x
x
dx
dy
y cos
0
4
y
y
2
2
2
)
2
(
2 y
x
y
e
y
y
x x
Page 10
Basic Concepts
Partial Differential Equations
An unknown function (dependent variable)
z of two or more independent variables
(e.g. x and y)
y
x
x
z
4
6
y
x
y
x
z
2
2
Page 11
Basic Concepts
The order of a differential equation is
the order of the highest derivative that
appears in the equation.
0
)
( 2
2
3
y
n
x
y
x
y
x Order 2
2
2
1
y
x
dx
dy
Order 1
1
)
( 4
3
2
2
y
dx
y
d
Order 2
Page 12
Basic Concept
The first-order differential equation contain only y’
and may contain y and given function of x.
A solution of a given first-order differential equation
(*) on some open interval a<x<b is a function
y=h(x) that has a derivative y’=h(x) and satisfies
(*) for all x in that interval.
)
,
(
'
0
)
'
,
,
(
y
x
F
y
y
y
x
F
or (*)
Page 15
Basic Concept
General solution vs. Particular solution
General solution
arbitrary constant c
Particular solution
choose a specific c
,....
2
,
3
'
c
c
sinx
y
cosx
y
Page 16
Basic Concept
Singular solutions
Def : A differential equation may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular
solution.
Example
The general solution : y=cx-c2
A singular solution : y=x2/4
0
'
y
xy
y'
2
Page 17
Basic Concepts
General Solution
Particular Solution for y(0)=2 (initial condition)
kt
ce
t
y
)
(
kt
e
t
y 2
)
(
ky
y
Page 18
Basic Concept
Def: A differential equation together
with an initial condition is called an
initial value problem
0
0)
(
),
,
(
' y
x
y
y
x
f
y
Page 19
Separable Differential Equations
Def: A first-order differential equation of
the form
is called a separable differential
equation
dx
x
f
dy
y
g
f(x)
g(y)y
)
(
)
(
'
Page 24
Separable Differential Equations
Substitution Method:
A differential equation of the form
can be transformed into a separable
differential equation
)
(
x
y
g
y
Page 25
Separable Differential Equations
Substitution Method:
ux
y u
x
u
y
x
dx
u
u
g
du
u
u
g
x
u
u
g
u
x
u
)
(
)
(
)
(
Page 26
Separable Differential Equations
Example :
Sol:
2
2
2 x
y
y
xy
cx
y
x
x
c
x
y
x
c
u
c
x
c
x
u
x
dx
u
udu
u
u
u
x
u
y
x
x
y
xy
x
xy
y
y
x
y
y
xy
2
2
2
2
1
1
2
2
2
2
2
2
1
1
1
ln
ln
)
1
ln(
1
2
)
1
(
2
1
)
(
2
1
2
2
2
Page 27
Separable Differential Equations
Exercise 1
2
01
.
0
1 y
y
2
/
xy
y
y
y
y
x
2
2
)
2
(
,
0
'
y
y
xy
Page 28
Exact Differential Equations
Def: A first-order differential equation of
the form
is said to be exact if
0
)
,
(
)
,
(
dy
y
x
N
dx
y
x
M
x
y
x
N
y
y
x
M
)
,
(
)
,
(
Page 29
Exact Differential Equations
Proof:
0
)
,
(
)
,
(
0
)
,
(
dy
y
x
N
dx
y
x
M
dy
y
u
dx
x
u
y
x
du
x
y
x
N
y
y
x
M
y
x
y
x
u
)
,
(
)
,
(
)
,
(
Page 30
Exact Differential Equations
Example :
Sol:
0
)
3
(
)
3
( 3
2
2
3
dy
y
y
x
dx
xy
x
Exact
xy
x
N
y
M
xy
x
y
y
x
xy
y
xy
x
,
6
6
3
6
3
3
2
2
3
Page 31
Exact Differential Equations
Sol:
)
(
2
3
4
1
)
(
)
3
(
)
(
2
2
4
2
3
y
k
y
x
x
y
k
dx
xy
x
y
k
Mdx
u
1
4
3
2
2
4
)
(
3
)
(
3
c
y
y
k
y
y
x
N
dy
y
dk
y
x
y
u
Page 35
Integrating Factor
Def: A first-order differential equation of the form
is not exact, but it will be exact if multiplied by
F(x, y)
then F(x,y) is called an integrating factor of this
equation
0
)
,
(
)
,
(
dy
y
x
Q
dx
y
x
P
0
)
,
(
)
,
(
)
,
(
)
,
(
dy
y
x
Q
y
x
F
dx
y
x
P
y
x
F
Page 36
Exact Differential Equations
How to find integrating factor
Golden Rule
x
x
y
y FQ
Q
F
FP
P
F
Exact
x
FQ
y
FP
FQdy
FPdx
,
0
)
(
1
1
0
Let
x
y
x
y
Q
P
Q
dx
dF
F
FQ
Q
dx
dF
FP
P
F(x)
F
Page 37
Exact Differential Equations
Example :
Sol:
0
xdy
ydx
Exact
x
N
x
y
M
dy
x
dx
x
y
x
xdy
ydx
x
F
,
1
1
1
2
2
2
2
Page 40
Exact Differential Equations
Exercise 2
0
2 2
dy
x
xydx 0
)
( 2
2
d
r
rdr
e
x
e
F
ydy
ydx
,
0
cos
sin
b
a
y
x
F
xdy
b
ydx
a
,
0
)
1
(
)
1
(
0
)
1
(
)
1
(
dy
x
dx
y
Page 41
Linear Differential Equations
Def: A first-order differential equation is
said to be linear if it can be written
If r(x) = 0, this equation is said to be
homogeneous
)
(
)
( x
r
y
x
p
y
Page 42
Linear Differential Equations
How to solve first-order linear homogeneous
ODE ?
Sol:
0
)
(
y
x
p
y
dx
x
p
c
dx
x
p
c
dx
x
p
ce
e
e
e
y
c
dx
x
p
y
dx
x
p
y
dy
y
x
p
dx
dy
)
(
)
(
)
(
1
1
1
)
(
ln
)
(
0
)
(
Page 43
Linear Differential Equations
Example :
Sol:
0
y
y
x
c
x
c
x
dx
dx
x
p
e
c
e
ce
ce
ce
ce
x
y
2
)
1
(
)
(
1
1
)
(
Page 44
Linear Differential Equations
How to solve first-order linear nonhomogeneous
ODE ?
Sol:
)
(
)
( x
r
y
x
p
y
)
(
))
(
)
(
(
)
(
1
1
0
))
(
)
(
(
)
(
)
(
x
p
x
r
y
x
p
y
Q
P
Q
dx
dF
F
dy
dx
x
r
y
x
p
x
r
y
x
p
dx
dy
x
y
Page 45
Linear Differential Equations
Sol:
dx
x
p
e
x
F
)
(
)
(
c
dx
r
e
e
x
y
c
dx
r
e
y
e
r
e
y
e
py
y
e
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
dx
x
p
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
Page 46
Linear Differential Equations
Example :
Sol:
x
e
y
y 2
x
x
x
x
x
x
x
x
dx
dx
dx
x
p
dx
x
p
e
ce
c
e
e
c
dx
e
e
e
c
dx
e
e
e
c
dx
r
e
e
x
y
2
2
2
)
1
(
)
1
(
)
(
)
(
)
(
Page 49
Linear Differential Equations
Def: Bernoulli equations
If a = 0, Bernoulli Eq. => First Order
Linear Eq.
If a <> 0, let u = y1-a
a
y
x
g
y
x
p
y )
(
)
(
g
a
pu
a
u )
1
(
)
1
(
Page 50
Linear Differential Equations
Example :
Sol:
2
By
Ay
y
A
B
ce
u
y
A
B
ce
c
dx
e
A
B
e
c
dx
Be
e
u
B
Au
u
Ay
B
Ay
By
y
y
y
u
y
y
y
u
Ax
Ax
Ax
Ax
Ax
Ax
a
1
1
)
( 1
2
2
2
1
2
1
1
Page 51
Linear Differential Equations
Exercise 3
4
y
y kx
e
ky
y
2
2 y
y
y
1
xy
xy
y
)
2
(
,
sin
3
y
x
y
y
Page 52
Summary
可分離 Separable
變換法 Substitution
正合 Exact
積分因子 Integrating Factor
線性 Linear
柏努利 Bernoulli
dx
x
f
dy
y
g )
(
)
(
dx
x
f
du
u
g )
(
)
(
0
)
,
(
)
,
(
dy
y
x
N
dx
y
x
M
0
FQdy
FPdx
)
(
)
( x
r
y
x
p
y
a
y
x
g
y
x
p
y )
(
)
(
Page 53
Orthogonal Trajectories of
Curves
Angle of intersection of two curves is
defined to be the angle between the
tangents of the curves at the point of
intersection
How to use differential equations for
finding curves that intersect given
curves at right angles ?
Page 54
How to find Orthogonal Trajectories
1st Step: find a differential equation
for a given cure
2nd Step: the differential equation of the
orthogonal trajectories to be found
3rd step: solve the differential equation
as above ( in 2nd step)
)
,
( y
x
f
y
)
,
( y
x
f
y'
)
,
(
1
y
x
f
y'
Page 55
Orthogonal Trajectories of Curves
Example: given a curve y=cx2, where c
is arbitrary. Find their orthogonal
trajectories.
Sol:
Page 56
Existance and Uniqueness of Solution
An initial value problem may have no
solutions, precisely one solution, or
more than one solution.
Example
1
)
0
(
,
0
'
y
y
y
1
)
0
(
,
'
y
x
y
1
)
0
(
,
1
'
y
y
xy
No solutions
Precisely one solutions
More than one solutions
Page 57
Existence and uniqueness theorems
Problem of existence
Under what conditions does an initial
value problem have at least one
solution ?
Existence theorem, see page 53
Problem of uniqueness
Under what conditions does that the
problem have at most one solution ?
Uniqueness theorem, see page54