SlideShare uma empresa Scribd logo
1 de 23
Baixar para ler offline
Updated at Jan 14 2011 
DirectLiNGAM: 
A direct estimation method for 
LiNGAM 
Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Osaka Univ. 
Aapo Hyvarinen, Univ. Helsinki 
Yoshinobu Kawahara, Takashi Washio, Osaka Univ. 
Patrik O. Hoyer, Univ. Helsinki 
Kenneth Bollen, Univ. North Carolina
2 
Abstract 
• Structural equation models (SEMs) are widely 
used in many empirical sciences (Bollen, 1989) 
• A non-Gaussian framework has been shown to 
be useful for discovering SEMs (Shimizu, et al. 2006) 
• Propose a new non-Gaussian estimation method 
– No algorithmic parameters 
– Guaranteed convergence in a fixed number of steps 
if the data strictly follows the model
Background
4 
Linear Non-Gaussian Acyclic Model 
(LiNGAM model) (Shimizu et al. 2006) 
• A SEM model, identifiable using non-Gaussianity 
• Continuous observed random variables 
x 
i • Directed acyclic graph (DAG) 
• Linearity 
• Disturbances are independent and non-Gaussian 
x = Bx + e i 
i e 
i ij j e x b x + = Σ< 
k j k i 
( ) ( ) 
or 
i x 
– k(i) denotes an order of 
– B can be permuted to be lower triangular by simultaneous equal 
row and column permutations
5 
⎤ 
x 
1 
2 
x 
-1.3 
Example 
• A three-variable model 
x = 
e 
1 1 
x = 1.5 
x + 
e 
2 1 2 
x = − 1.3 
x + 
e 
3 2 3 
• Orders of variables: 
⎡ 
⎤ 
⎡ 
x 
1 
2 
0 0 0 
1.5 0 0 
x 
– 
– x2 can be influenced by x1, but never by x3 
• External influences: 
– x1 is equal to e1 and is exogenous 
– e2 and e3 are errors 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
+ 
⎢ ⎢ ⎢ 
⎣ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎢ ⎢ ⎢ 
⎣ 
− 
= 
⎥ ⎥ ⎥ 
⎦ 
⎢ ⎢ ⎢ 
⎣ 
e 
1 
e 
2 
3 
3 
3 
0 1.3 0 
e 
x 
x 
1442443 
k(1) =1, k(2) = 2, k(3) = 3 
x3 
x1 
x2 
1.5 
e1 
e2 e3 
B
6 
Our goal 
• We know 
– Data X is generated by 
• We do NOT know 
x = Bx + e 
ij b 
– Connection strengths: 
– Orders: k(i) 
– Disturbances: 
• What we observe is data X only 
• Goal 
i e 
– Estimate B and k using data X only!
Previous work
8 Independent Component Analysis 
(Comon 1994; Hyvarinen et al., 2001) 
x = As 
• A is an unknown square matrix 
• are independent and non-Gaussian 
i s 
• Identifiable including the rotation (Comon, 1994) 
• Many estimation methods 
– e.g., FastICA (Hyvarinen,99), Amari (99) and Bach & Jordan (02)
9 Key idea 
i x 
• Observed variables are linear combinations of 
non-Gaussian independent disturbances 
• ICA gives 
x = Bx + 
e 
( )−1 
x I B e 
⇒ = − 
Ae 
= 
-- ICA! 
W= PDA−1 = PD(I −B) 
– P: Permutation matrix, D: scaling matrix 
i e 
• Permutation indeterminacy in ICA can be solved 
– Can be shown that the correct permutation is the only one which 
has no zeros in the diagonal (Shimizu et al., UAI2005)
ICA-LiNGAM algorithm 10 
(Shimizu et al., 2006) 
1. Do ICA (here, FastICA) and get W = PD(I-B) 
2. Find a permutation that gives no zeros on the 
diagonal. Then we obtain D(I-B). 
ˆ min 1 
= Σ ( ) 
i ii PW 
P 
P 
1 
1 
1 
3. Divide each row by its corresponding diagonal 
element. Then we get I-B, i.e., B 
4. Find a simultaneous row and column permutation Q so 
that the permuted B is as close as possible to be 
strictly lower triangular. Then we get k(i). 
( ) Σ≤ 
ˆ = 
min 
i j 
ij 
Q QBQT 
Q 
1 P
11 Potential problems of 
ICA-LiNGAM algorithm 
1. ICA is an iterative search method 
– May stuck in a local optimum if the initial 
guess or step size is badly chosen 
2. The permutation algorithms are not 
scale-invariant 
– May provide different variable orderings for 
different scales of variables
A new method
13 
DirectLiNGAM algorithm 
(Shimizu et al., UAI2009; Shimizu et al., 2011) 
• Alternative estimation method without ICA 
– Estimates an ordering of variables that makes path-coefficient 
matrix B to be lower-triangular. 
perm perm perm e x x + ⎥⎦ ⎤ 
⎡ 
= 
123 
⎢⎣ 
O 
perm B 
A full DAG 
x1 x3 
x2 
Redundant edges 
• Many existing (covariance-based) methods can 
do further pruning or finding significant path 
coefficients (Zou, 2006; Shimizu et al., 2006; Hyvarinen et al. 2010)
Basic idea (1/2) : 14 
An exogenous variable can be at the 
top of a right ordering 
• An exogenous variable is a variable with no 
parents (Bollen, 1989), here . 
– The corresponding row of B has all zeros. 
• So, an exogenous variable can be at the top of 
such an ordering that makes B lower-triangular 
with zeros on the diagonal. 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
+ 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
0 0 0 
1.5 0 ⎣ 
− 
= 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
e 
3 
e 
1 
2 
x 
3 
x 
1 
2 
x 
3 
x 
1 
2 
0 1.3 0 
e 
x 
x 
0 
0 
0 
0 
0 0 
x3 x1 x2 
j x 
3 x
Basic idea (2/2): 15 
3 x 
Regress exogenous out 
r(3) (i =1,2) i 
• Compute the residuals regressing the other 
variables on exogenous : 
3 x (i =1,2) x i 
( ) (3) 
3 
1 r and r 
– The residuals form a LiNGAM model. 
– The ordering of the residuals is equivalent to that of 
corresponding original variables. 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
+ 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
2 
e 
3 
e 
1 
e 
2 
x 
3 
x 
1 
2 
0 0 
x 
0 
0 
0 
0 
1 r 1 x 
x ⎡ 
0 
⎢ ⎢ ⎢ 
1.5 0 ⎣ 
0 
0 − 
1.3 = 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
3 
x 
1 
2 
x 
⎡ 
+ ⎥⎦ 
⎡ 
r 0 0 
⎤ 
⎡ 
− 
⎤ 
⎡ 
(3) 
1 
(3) 
1 
r 
• Exogenous ( 3 ) implies ` can be at the second top’. 
⎤ 
⎥⎦ 
⎢⎣ 
⎤ 
⎢⎣ 
⎥⎦ 
⎢⎣ 
= ⎥⎦ 
⎢⎣ 
e 
1 
2 
(3) 
2 
(3) 
2 
1.3 e 
r 
r 
(3) 
2 (3) r 
1 x3 x1 x2 r 
0
16 
Outline of DirectLiNGAM 
• Iteratively find exogenous variables until all the 
variables are ordered: 
1. Find an exogenous variable . 
– Put at the top of the ordering. 
– Regress out. 
2. Find an exogenous residual, here . 
– Put at the second top of the ordering. 
– Regress out. 
3. Put at the third top of the ordering and terminate. 
The estimated ordering is 
3 x 
(3) 
1 r 
3 x 
1 x3 x1 x2 r (3,1) 
2 r 
(3) 
2 (3) r 
3 x 
1 x 
(3) 
1 r 
2 x 
. 3 1 2 x < x < x 
Step. 1 Step. 2 Step. 3
17 
Identification of an exogenous 
variable (two variable cases) 
i) is exogenous. ii) is NOT exogenous. 
( ) 
1 e 
x b x b 
= 
1 = 12 2 + 12 ≠ 
0 
x e 
x b var 
x 
12 2 
var( ) 
x x 
( ) 1 1 x = e 1 x 
Regressing on , 
r x x x 
cov( , ) 
2 1 
var( ) 
= − 
b x x 
1 12 cov( 2 , 1 
) 
var( ) 
1 
2 
1 
1 
1 
2 
(1) 
2 
2 1 
x 
x 
x 
x 
− 
⎭ ⎬ ⎫ 
⎩ ⎨ ⎧ 
= − 
x e 
= 
x b x e b 
1 1 
= + ≠ 
( 0) 2 21 1 2 21 
x x 
Regressing on , 
r x x x 
cov( , ) 
= − 
x b x 
= − 
2 21 1 
2 
1 
2 1 
1 
2 
(1) 
2 
2 1 
var( ) 
e 
x 
x 
= 
( ) 
2 2 
1 e 
and (1) are NOT independent. 
1 2 and (1) are independent. x r 
1 2 x r
Need to use Darmois-Skitovitch’ 18 
theorem (Darmois, 1953; Skitovitch, 1953) 
( ) 
1 
x b x e b 
= 
1 = 12 2 + ⋅ 1 12 ≠ 
0 
x e 
x x 
1 
2 
2 
x x 
Regressing on , 
r x x x 
cov( , ) 
2 1 
var( ) 
= − 
b x x 
1 12 cov( 2 , 1 
) 
1 
1 
1 
2 
(1) 
2 
1 2 
var 
var( ) 
var( ) 
e 
x 
x 
x 
x 
− 
⎭ ⎬ ⎫ 
⎩ ⎨ ⎧ 
= − 
( ) 
2 2 
Darmois-Skitovitch’ theorem: 
Define two variables and as 
ii) 1 is NOT exogenous. x 
and (1) are NOT independent. 
1 2 x r 
Σ Σ 
= = 
x 1 = a 1 j e j , 
x = 
a e 
p 
2 2 
j 
j j 
p 
j 
1 
1 
1 x 
j e 
where are independent 
random variables. 
If there exists a non-Gaussian 
for which , 
and are dependent. 
i e 
0 1 2 ≠ i i a a 
1 x 2 x 
1 
12 b 
2 x
19 
Identification of an exogenous 
variable (p variable cases) 
( ) 
cov( ) x 
j = − , x x 
i j 
j 
i x 
r x 
• Lemma 1: and its residual 
are independent for all is exogenous 
j 
var( ) 
j 
i 
x 
i ≠ j j ⇔ x 
• In practice, we can identify an exogenous variable 
by finding a variable that is most independent of 
its residuals
20 Independence measures 
• Evaluate independence between a variable and a 
residual by a nonlinear correlation: 
corr{x , g(r( j) )} (g = tanh) 
j i 
• Taking the sum over all the residuals, we get: 
{ ( j 
Σ≠ 
) } { ( ) } T = corr x ) ) 
j , g i r( + 
corr g x , r( i j 
j 
j i 
• Can use more sophisticated measures as well 
(Bach & Jordan, 2002; Gretton et al., 2005; Kraskov et al., 2004). 
– Kernel-based independence measure (Bach & Jordan, 2002) 
often gives more accurate estimates (Sogawa et al., IJCNN10)
Real-world data example (1/2) 21 
• Status attainment model 
– General Social Survey (U.S.A.) 
– Sample size = 1380 
• Non-farm, ages 35-45, white, male, in the labor force, years 1972-2006 
Domain knowledge 
(Duncan et al. 1972) 
DirectLiNGAM
Real-world data example (2/2) 
ICA-LiNGAM 
PC algorithm GES 
22
23 
Summary 
• DirectLiNGAM repeats: 
– Least squares simple linear regression 
– Evaluation of pairwise independence between each 
variable and its residuals 
• No algorithmic parameters like stepsize, initial 
guesses, convergence criteria 
• Guaranteed convergence to the right solution in 
a fixed number of steps (the number of 
variables) if the data strictly follows the model

Mais conteúdo relacionado

Mais procurados

「傾向スコア分析」 報告事例
「傾向スコア分析」 報告事例「傾向スコア分析」 報告事例
「傾向スコア分析」 報告事例Sayuri Shimizu
 
ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎Tomoshige Nakamura
 
Logistic regression
Logistic regressionLogistic regression
Logistic regressionDrZahid Khan
 
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-Koichiro Gibo
 
Linear regression
Linear regressionLinear regression
Linear regressionSreerajVA
 
統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333Issei Kurahashi
 
Presentation on Probability Genrating Function
Presentation on Probability Genrating FunctionPresentation on Probability Genrating Function
Presentation on Probability Genrating FunctionMd Riaz Ahmed Khan
 
Tokyo r12 - R言語による回帰分析入門
Tokyo r12 - R言語による回帰分析入門Tokyo r12 - R言語による回帰分析入門
Tokyo r12 - R言語による回帰分析入門Yohei Sato
 
Rで学ぶ観察データでの因果推定
Rで学ぶ観察データでの因果推定Rで学ぶ観察データでの因果推定
Rで学ぶ観察データでの因果推定Hiroki Matsui
 
Chapter 2 part3-Least-Squares Regression
Chapter 2 part3-Least-Squares RegressionChapter 2 part3-Least-Squares Regression
Chapter 2 part3-Least-Squares Regressionnszakir
 
傾向スコアの概念とその実践
傾向スコアの概念とその実践傾向スコアの概念とその実践
傾向スコアの概念とその実践Yasuyuki Okumura
 
傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装takehikoihayashi
 
Regression analysis algorithm
Regression analysis algorithm Regression analysis algorithm
Regression analysis algorithm Sammer Qader
 
一般線形モデル
一般線形モデル一般線形モデル
一般線形モデルMatsuiRyo
 
クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論Hiroshi Nakagawa
 
観察データを用いた因果推論に共変量選択
観察データを用いた因果推論に共変量選択観察データを用いた因果推論に共変量選択
観察データを用いた因果推論に共変量選択Jaehyun Song
 
星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章Shuyo Nakatani
 

Mais procurados (20)

「傾向スコア分析」 報告事例
「傾向スコア分析」 報告事例「傾向スコア分析」 報告事例
「傾向スコア分析」 報告事例
 
ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎
 
Logistic regression
Logistic regressionLogistic regression
Logistic regression
 
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
Rubinの論文(の行間)を読んでみる-傾向スコアの理論-
 
Linear regression
Linear regressionLinear regression
Linear regression
 
統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333統計的因果推論 勉強用 isseing333
統計的因果推論 勉強用 isseing333
 
Presentation on Probability Genrating Function
Presentation on Probability Genrating FunctionPresentation on Probability Genrating Function
Presentation on Probability Genrating Function
 
Tokyo r12 - R言語による回帰分析入門
Tokyo r12 - R言語による回帰分析入門Tokyo r12 - R言語による回帰分析入門
Tokyo r12 - R言語による回帰分析入門
 
Rで学ぶ観察データでの因果推定
Rで学ぶ観察データでの因果推定Rで学ぶ観察データでの因果推定
Rで学ぶ観察データでの因果推定
 
因子分析
因子分析因子分析
因子分析
 
Diagnostic in poisson regression models
Diagnostic in poisson regression modelsDiagnostic in poisson regression models
Diagnostic in poisson regression models
 
Chapter 2 part3-Least-Squares Regression
Chapter 2 part3-Least-Squares RegressionChapter 2 part3-Least-Squares Regression
Chapter 2 part3-Least-Squares Regression
 
傾向スコアの概念とその実践
傾向スコアの概念とその実践傾向スコアの概念とその実践
傾向スコアの概念とその実践
 
傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装
 
Regression analysis algorithm
Regression analysis algorithm Regression analysis algorithm
Regression analysis algorithm
 
一般線形モデル
一般線形モデル一般線形モデル
一般線形モデル
 
クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論クラシックな機械学習の入門 2.ベイズ統計に基づく推論
クラシックな機械学習の入門 2.ベイズ統計に基づく推論
 
観察研究の必須事項
観察研究の必須事項観察研究の必須事項
観察研究の必須事項
 
観察データを用いた因果推論に共変量選択
観察データを用いた因果推論に共変量選択観察データを用いた因果推論に共変量選択
観察データを用いた因果推論に共変量選択
 
星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章
 

Semelhante a A direct method for estimating linear non-Gaussian acyclic models

chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdfAliEb2
 
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra BoardMATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra BoardPooja M
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)CrackDSE
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdfanandsimple
 
Maths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K MukhopadhyayMaths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K MukhopadhyayDr. Asish K Mukhopadhyay
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxOchiriaEliasonyait
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm 2012
 
Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Japheth Muthama
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JMJapheth Muthama
 
Lesson3.2 a basicdifferentiationrules
Lesson3.2 a basicdifferentiationrulesLesson3.2 a basicdifferentiationrules
Lesson3.2 a basicdifferentiationrulesNico Reyes
 
Bounded arithmetic in free logic
Bounded arithmetic in free logicBounded arithmetic in free logic
Bounded arithmetic in free logicYamagata Yoriyuki
 

Semelhante a A direct method for estimating linear non-Gaussian acyclic models (20)

Ch02 fuzzyrelation
Ch02 fuzzyrelationCh02 fuzzyrelation
Ch02 fuzzyrelation
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdf
 
Regression Analysis.pdf
Regression Analysis.pdfRegression Analysis.pdf
Regression Analysis.pdf
 
8.5 GaussianBNs.pdf
8.5 GaussianBNs.pdf8.5 GaussianBNs.pdf
8.5 GaussianBNs.pdf
 
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra BoardMATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
 
Derivatives
DerivativesDerivatives
Derivatives
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
 
Optimization Techniques.pdf
Optimization Techniques.pdfOptimization Techniques.pdf
Optimization Techniques.pdf
 
Maths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K MukhopadhyayMaths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K Mukhopadhyay
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier Hudry
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
UNIT I_5.pdf
UNIT I_5.pdfUNIT I_5.pdf
UNIT I_5.pdf
 
Symmetrical2
Symmetrical2Symmetrical2
Symmetrical2
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Regression Analysis by Muthama JM
Regression Analysis by Muthama JM Regression Analysis by Muthama JM
Regression Analysis by Muthama JM
 
Regression analysis by Muthama JM
Regression analysis by Muthama JMRegression analysis by Muthama JM
Regression analysis by Muthama JM
 
Lesson3.2 a basicdifferentiationrules
Lesson3.2 a basicdifferentiationrulesLesson3.2 a basicdifferentiationrules
Lesson3.2 a basicdifferentiationrules
 
Course notes2summer2012
Course notes2summer2012Course notes2summer2012
Course notes2summer2012
 
Bounded arithmetic in free logic
Bounded arithmetic in free logicBounded arithmetic in free logic
Bounded arithmetic in free logic
 

Mais de Shiga University, RIKEN

統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-Shiga University, RIKEN
 
A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...Shiga University, RIKEN
 
非ガウス性を利用した 因果構造探索
非ガウス性を利用した因果構造探索非ガウス性を利用した因果構造探索
非ガウス性を利用した 因果構造探索Shiga University, RIKEN
 
Non-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discoveryNon-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discoveryShiga University, RIKEN
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説Shiga University, RIKEN
 
因果探索: 観察データから 因果仮説を探索する
因果探索: 観察データから因果仮説を探索する因果探索: 観察データから因果仮説を探索する
因果探索: 観察データから 因果仮説を探索するShiga University, RIKEN
 
構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性Shiga University, RIKEN
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展Shiga University, RIKEN
 
Linear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation ModelsLinear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation ModelsShiga University, RIKEN
 

Mais de Shiga University, RIKEN (9)

統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
 
A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...A non-Gaussian model for causal discovery in the presence of hidden common ca...
A non-Gaussian model for causal discovery in the presence of hidden common ca...
 
非ガウス性を利用した 因果構造探索
非ガウス性を利用した因果構造探索非ガウス性を利用した因果構造探索
非ガウス性を利用した 因果構造探索
 
Non-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discoveryNon-Gaussian structural equation models for causal discovery
Non-Gaussian structural equation models for causal discovery
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
 
因果探索: 観察データから 因果仮説を探索する
因果探索: 観察データから因果仮説を探索する因果探索: 観察データから因果仮説を探索する
因果探索: 観察データから 因果仮説を探索する
 
構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性構造方程式モデルによる因果探索と非ガウス性
構造方程式モデルによる因果探索と非ガウス性
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
 
Linear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation ModelsLinear Non-Gaussian Structural Equation Models
Linear Non-Gaussian Structural Equation Models
 

Último

Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsOrtegaSyrineMay
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
chemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfchemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfTukamushabaBismark
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICEayushi9330
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑Damini Dixit
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai YoungDubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Youngkajalvid75
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
 

Último (20)

Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
chemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdfchemical bonding Essentials of Physical Chemistry2.pdf
chemical bonding Essentials of Physical Chemistry2.pdf
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai YoungDubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 

A direct method for estimating linear non-Gaussian acyclic models

  • 1. Updated at Jan 14 2011 DirectLiNGAM: A direct estimation method for LiNGAM Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Osaka Univ. Aapo Hyvarinen, Univ. Helsinki Yoshinobu Kawahara, Takashi Washio, Osaka Univ. Patrik O. Hoyer, Univ. Helsinki Kenneth Bollen, Univ. North Carolina
  • 2. 2 Abstract • Structural equation models (SEMs) are widely used in many empirical sciences (Bollen, 1989) • A non-Gaussian framework has been shown to be useful for discovering SEMs (Shimizu, et al. 2006) • Propose a new non-Gaussian estimation method – No algorithmic parameters – Guaranteed convergence in a fixed number of steps if the data strictly follows the model
  • 4. 4 Linear Non-Gaussian Acyclic Model (LiNGAM model) (Shimizu et al. 2006) • A SEM model, identifiable using non-Gaussianity • Continuous observed random variables x i • Directed acyclic graph (DAG) • Linearity • Disturbances are independent and non-Gaussian x = Bx + e i i e i ij j e x b x + = Σ< k j k i ( ) ( ) or i x – k(i) denotes an order of – B can be permuted to be lower triangular by simultaneous equal row and column permutations
  • 5. 5 ⎤ x 1 2 x -1.3 Example • A three-variable model x = e 1 1 x = 1.5 x + e 2 1 2 x = − 1.3 x + e 3 2 3 • Orders of variables: ⎡ ⎤ ⎡ x 1 2 0 0 0 1.5 0 0 x – – x2 can be influenced by x1, but never by x3 • External influences: – x1 is equal to e1 and is exogenous – e2 and e3 are errors ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ + ⎢ ⎢ ⎢ ⎣ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎣ − = ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎣ e 1 e 2 3 3 3 0 1.3 0 e x x 1442443 k(1) =1, k(2) = 2, k(3) = 3 x3 x1 x2 1.5 e1 e2 e3 B
  • 6. 6 Our goal • We know – Data X is generated by • We do NOT know x = Bx + e ij b – Connection strengths: – Orders: k(i) – Disturbances: • What we observe is data X only • Goal i e – Estimate B and k using data X only!
  • 8. 8 Independent Component Analysis (Comon 1994; Hyvarinen et al., 2001) x = As • A is an unknown square matrix • are independent and non-Gaussian i s • Identifiable including the rotation (Comon, 1994) • Many estimation methods – e.g., FastICA (Hyvarinen,99), Amari (99) and Bach & Jordan (02)
  • 9. 9 Key idea i x • Observed variables are linear combinations of non-Gaussian independent disturbances • ICA gives x = Bx + e ( )−1 x I B e ⇒ = − Ae = -- ICA! W= PDA−1 = PD(I −B) – P: Permutation matrix, D: scaling matrix i e • Permutation indeterminacy in ICA can be solved – Can be shown that the correct permutation is the only one which has no zeros in the diagonal (Shimizu et al., UAI2005)
  • 10. ICA-LiNGAM algorithm 10 (Shimizu et al., 2006) 1. Do ICA (here, FastICA) and get W = PD(I-B) 2. Find a permutation that gives no zeros on the diagonal. Then we obtain D(I-B). ˆ min 1 = Σ ( ) i ii PW P P 1 1 1 3. Divide each row by its corresponding diagonal element. Then we get I-B, i.e., B 4. Find a simultaneous row and column permutation Q so that the permuted B is as close as possible to be strictly lower triangular. Then we get k(i). ( ) Σ≤ ˆ = min i j ij Q QBQT Q 1 P
  • 11. 11 Potential problems of ICA-LiNGAM algorithm 1. ICA is an iterative search method – May stuck in a local optimum if the initial guess or step size is badly chosen 2. The permutation algorithms are not scale-invariant – May provide different variable orderings for different scales of variables
  • 13. 13 DirectLiNGAM algorithm (Shimizu et al., UAI2009; Shimizu et al., 2011) • Alternative estimation method without ICA – Estimates an ordering of variables that makes path-coefficient matrix B to be lower-triangular. perm perm perm e x x + ⎥⎦ ⎤ ⎡ = 123 ⎢⎣ O perm B A full DAG x1 x3 x2 Redundant edges • Many existing (covariance-based) methods can do further pruning or finding significant path coefficients (Zou, 2006; Shimizu et al., 2006; Hyvarinen et al. 2010)
  • 14. Basic idea (1/2) : 14 An exogenous variable can be at the top of a right ordering • An exogenous variable is a variable with no parents (Bollen, 1989), here . – The corresponding row of B has all zeros. • So, an exogenous variable can be at the top of such an ordering that makes B lower-triangular with zeros on the diagonal. ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ + ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ 0 0 0 1.5 0 ⎣ − = ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ e 3 e 1 2 x 3 x 1 2 x 3 x 1 2 0 1.3 0 e x x 0 0 0 0 0 0 x3 x1 x2 j x 3 x
  • 15. Basic idea (2/2): 15 3 x Regress exogenous out r(3) (i =1,2) i • Compute the residuals regressing the other variables on exogenous : 3 x (i =1,2) x i ( ) (3) 3 1 r and r – The residuals form a LiNGAM model. – The ordering of the residuals is equivalent to that of corresponding original variables. ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ + ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ 2 e 3 e 1 e 2 x 3 x 1 2 0 0 x 0 0 0 0 1 r 1 x x ⎡ 0 ⎢ ⎢ ⎢ 1.5 0 ⎣ 0 0 − 1.3 = ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ 3 x 1 2 x ⎡ + ⎥⎦ ⎡ r 0 0 ⎤ ⎡ − ⎤ ⎡ (3) 1 (3) 1 r • Exogenous ( 3 ) implies ` can be at the second top’. ⎤ ⎥⎦ ⎢⎣ ⎤ ⎢⎣ ⎥⎦ ⎢⎣ = ⎥⎦ ⎢⎣ e 1 2 (3) 2 (3) 2 1.3 e r r (3) 2 (3) r 1 x3 x1 x2 r 0
  • 16. 16 Outline of DirectLiNGAM • Iteratively find exogenous variables until all the variables are ordered: 1. Find an exogenous variable . – Put at the top of the ordering. – Regress out. 2. Find an exogenous residual, here . – Put at the second top of the ordering. – Regress out. 3. Put at the third top of the ordering and terminate. The estimated ordering is 3 x (3) 1 r 3 x 1 x3 x1 x2 r (3,1) 2 r (3) 2 (3) r 3 x 1 x (3) 1 r 2 x . 3 1 2 x < x < x Step. 1 Step. 2 Step. 3
  • 17. 17 Identification of an exogenous variable (two variable cases) i) is exogenous. ii) is NOT exogenous. ( ) 1 e x b x b = 1 = 12 2 + 12 ≠ 0 x e x b var x 12 2 var( ) x x ( ) 1 1 x = e 1 x Regressing on , r x x x cov( , ) 2 1 var( ) = − b x x 1 12 cov( 2 , 1 ) var( ) 1 2 1 1 1 2 (1) 2 2 1 x x x x − ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ = − x e = x b x e b 1 1 = + ≠ ( 0) 2 21 1 2 21 x x Regressing on , r x x x cov( , ) = − x b x = − 2 21 1 2 1 2 1 1 2 (1) 2 2 1 var( ) e x x = ( ) 2 2 1 e and (1) are NOT independent. 1 2 and (1) are independent. x r 1 2 x r
  • 18. Need to use Darmois-Skitovitch’ 18 theorem (Darmois, 1953; Skitovitch, 1953) ( ) 1 x b x e b = 1 = 12 2 + ⋅ 1 12 ≠ 0 x e x x 1 2 2 x x Regressing on , r x x x cov( , ) 2 1 var( ) = − b x x 1 12 cov( 2 , 1 ) 1 1 1 2 (1) 2 1 2 var var( ) var( ) e x x x x − ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ = − ( ) 2 2 Darmois-Skitovitch’ theorem: Define two variables and as ii) 1 is NOT exogenous. x and (1) are NOT independent. 1 2 x r Σ Σ = = x 1 = a 1 j e j , x = a e p 2 2 j j j p j 1 1 1 x j e where are independent random variables. If there exists a non-Gaussian for which , and are dependent. i e 0 1 2 ≠ i i a a 1 x 2 x 1 12 b 2 x
  • 19. 19 Identification of an exogenous variable (p variable cases) ( ) cov( ) x j = − , x x i j j i x r x • Lemma 1: and its residual are independent for all is exogenous j var( ) j i x i ≠ j j ⇔ x • In practice, we can identify an exogenous variable by finding a variable that is most independent of its residuals
  • 20. 20 Independence measures • Evaluate independence between a variable and a residual by a nonlinear correlation: corr{x , g(r( j) )} (g = tanh) j i • Taking the sum over all the residuals, we get: { ( j Σ≠ ) } { ( ) } T = corr x ) ) j , g i r( + corr g x , r( i j j j i • Can use more sophisticated measures as well (Bach & Jordan, 2002; Gretton et al., 2005; Kraskov et al., 2004). – Kernel-based independence measure (Bach & Jordan, 2002) often gives more accurate estimates (Sogawa et al., IJCNN10)
  • 21. Real-world data example (1/2) 21 • Status attainment model – General Social Survey (U.S.A.) – Sample size = 1380 • Non-farm, ages 35-45, white, male, in the labor force, years 1972-2006 Domain knowledge (Duncan et al. 1972) DirectLiNGAM
  • 22. Real-world data example (2/2) ICA-LiNGAM PC algorithm GES 22
  • 23. 23 Summary • DirectLiNGAM repeats: – Least squares simple linear regression – Evaluation of pairwise independence between each variable and its residuals • No algorithmic parameters like stepsize, initial guesses, convergence criteria • Guaranteed convergence to the right solution in a fixed number of steps (the number of variables) if the data strictly follows the model