SlideShare uma empresa Scribd logo
1 de 117
Baixar para ler offline
p-Median Cluster Analysis Based
  on General-Purpose Solvers


Boris Goldengorin, Dmitry Krushinsky
       University of Groningen, The Netherlands

Joint work with
Bader F. Albdaiwi and Viktor Kuzmenko
Outline of the talk
• Two Main PMP formulations
• Pseudo-Boolean polynomial
• Mixed Boolean pseudo-Boolean Model
  (MBpBM)
• Experimental results
• Concluding Remarks
• Directions for Future Research
                                       2
The p-Median Problem (PMP)
                  I = {1,…,m} – a set of m facilities (location points),
                  J = {1,…,n} – a set of n users (clients, customers or demand points)
                  C = [cij] – a m×n matrix with distances (measures of similarities or
                  dissimilarities) travelled (costs incurred)

                           Costs Matrix
                    c11     ... c1 j ... ... c1n
location points




                    ...     ... ... ... ... ...
                    ci1     ... cij ... ... cin
                    ...     ... ... ... ... ...
                    c n1    ... c nj ... ... c nm
                              clients

                                - location point (cluster center)
                                - Client (cluster points)
                                                                                         3
The PMP: combinatorial formulation
The p-Median Problem (PMP) consists of determining p locations
(the median points) such that 1 ≤ p ≤ m and the sum of distances (or
transportation costs) over all clients is minimal.

               p       m!
        C      m
                   p!(m p )!
  complexity




               1        m
                    p


   - opened facility
   - location point
   - client
p=3                                                                    4
The PMP: combinatorial formulation


    f C (S )              min cij                    min
                           i S                   S I, |S| p
                    j J


        I      – set of locations
        J      – set of clients
        cij    – costs for serving j-th client from i-th location
        p      – number of facilities to be opened




                                                                    5
The PMP: Applications
• Facilty location
• Cluster analysis
• Quantitative psychology
• Telecommunications industry
• Sales force territories design
• Political and administrative districting
• Optimal diversity management
• Cell formation in group technology
• Vehicle routing
• Topological design of computer and communication networks
                                                              6
Similarities and dissimilarities
 Proc Natl Acad Sci U S A. 1996 Jun
 11;93(12):5854-9.
 Similarities and dissimilarities of phage
 genomes.
 Blaisdell BE, Campbell AM, Karlin S.
 Department of Mathematics, Stanford
 University, CA 94305-2125, USA.

                                         7
A comparative study of similarity measures for manufacturing cell
                           formation
               S. Oliveira a, J.F.F. Ribeiro, S.C. Seok
      Journal of Manufacturing Systems 27 (2008) 19--25

However, the similarity measure uses only
limited information between machines and parts:
either the number of parts producedby the pair
of machines or the number of machines
producing the pair of parts. Various similarity
measures (coefficients) have been introduced to
measure the similarities between machines and
parts for manufacturing cells problems.



                                                                    8
The PMP: Applications
• Facility location




      - consumer (client)
      - possible location of supplier (server)
                                                                     9
      - supplier (server), e.g. supermarket, bakery, laundry, etc.
The PMP: Applications
• Facility location




      - consumer (client)
      - possible location of supplier (server)
                                                                     10
      - supplier (server), e.g. supermarket, bakery, laundry, etc.
The PMP: Applications
• Cluster analysis                        Output
Input:
                            cluster   cluster   cluster   cluster
- finite set of objects        1         2         3         4
- measure of similarity




                                                                11
                          ―best‖ representatives – p-medians
The PMP: Applications
• Quantitative psychology

patients         symptoms
            (behavioural patterns)                                 type 1
                                                                   mentality
                                                                   features




                                                                   type 2
                                                                   mentality
                                                                   features

                                                                          12
                                ―leaders‖ or typical representatives
The PMP: Applications
• Telecommunications industry




                                13
The PMP: Applications
• Sales force territories design
                            customers
                       (groups of customers)
                       1   2   3 ... n
                                                     entries of the costs
                 1                                   matrix account for
                                                     customers’ attitudes
   possible       2                                  and spatial distance
   outlets for
   some           3            ...
   product
                 ...
                 m


          Goal: select p best outlets for promoting the product             14
The PMP: Applications
• Political and administrative districting
                              districts,
                              cities,
                              regions
                      1   2      3 ... n
                                           degree of relationship:
                1                          political, cultural,
                                           infrastructural
   districts,    2                         connectedness
   cities,
   regions
                 3               ...
                ...
                m

                                                                     15
The PMP: Applications
• Optimal diversity management
  – given a variety of products (each having some
    demand, possibly zero)
  – select p products such that:
    • every product with a nonzero demand can be
      replaced by one of the p selected products
    • replacement overcosts are minimized




                                                   16
The PMP: Applications
• Optimal diversity management
  – Example: wiring designs, p=3
    configurations
      with zero
      demand




                                   17
The PMP: Applications
• Cell formation in group technology
   functional layout                  cellular layout

         drilling




                                    cell 1              cell 2


  thermal processing
                       see also video at
                       http://www.youtube.com/watch?v=q_m0_bVAJbA
  - machines
                                                                 18
  - products routes
The PMP: Applications
• Vehicle routing



  - clients
  / storage           depot

  - vehicle
  routes




                                  19
The PMP: Applications
• Topological design of computer and
  communication networks




                                       20
The PMP: Applications
• Topological design of computer and
  communication networks




                                       21
The PMP: Applications
• Topological design of computer and
  communication networks




                                       22
Publications, more than 500
Elloumi, 2010;
Brusco and K¨ohn, 2008;
Belenky, 2008;
Church, 2003; 2008;
Avella et al, 2007;
Beltran et al, 2006;
Reese, 2006 (Overview, NETWORKS)
ReVelle and Swain, 1970;
Senne et al, 2005.

                                   23
The PMP: Boolean Linear Programming
      Formulation (ReVelle and Swain, 1970)
                                 m   n
                                         cij xij     min
                             i 1 j 1


m
                                            s.t.
      xij    1, j       J                     - each client is served by exactly one facility
i 1
 m
      yi      p                               - p opened facilities
i 1

xij         yi i      I, j   J                - prevents clients from being served
                                              by closed facilities
xij , yi      {0,1}

       xij = 1, if j-th client is served by i-th facility; xij = 0, otherwise
                                                                                           24
The PMP:    alternative formulation, Cornuejols et al. 1980

                                           Kj
        Let for each client j   D1 ,..., D j
                                 j              - sorted (distinct) distances (Kj – number
                                                        of distinct distances for j-th client)
                                           1                2              3
          1 6 5 3 4             client1 : D1         1     D1      2      D1      4
          2 1 2 3 5
    C
          1 2 3 3 3
          4 3 1 8 2




                                                                                                 25
The PMP: alternative formulation, Cornuejols et al. 1980

                                       Kj
    Let for each client j   D1 ,..., D j
                             j              - sorted (distinct) distances (Kj – number
                                                    of distinct distances for j-th client)
                                       1
      1 6 5 3 4             client1 : D1         1     D12      2      3
                                                                      D1       4
                                       1                 2              3              4
      2 1 2 3 5             client2 : D2         1      D2      2      D2      3      D2          6
C
      1 2 3 3 3                        1                2               3             4
                            client3 : D3         1     D3       2      D3      3     D3           5
      4 3 1 8 2                        1                 2
                            client4 : D4         3      D4      8
                                       1                 2              3              4
                            client5 : D5         2      D5      3      D5      4      D5          5




                                                                                             26
The PMP: alternative formulation, Cornuejols et al. 1980

                                        Kj
     Let for each client j   D1 ,..., D j
                              j              - sorted (distinct) distances (Kj – number
                                                     of distinct distances for j-th client)
                                        1
       1 6 5 3 4             client1 : D1         1      D12     2      3
                                                                       D1       4
                                        1                 2              3              4
       2 1 2 3 5             client2 : D2         1      D2      2      D2      3      D2          6
C
       1 2 3 3 3                        1                 2              3             4
                             client3 : D3         1      D3      2      D3      3     D3           5
       4 3 1 8 2                        1                 2
                             client4 : D4         3      D4      8
                                        1                 2              3              4
                             client5 : D5         2      D5      3      D5      4      D5          5
Decision variables
       0, if at least one site within distance D k is opened
                                                 j
zk
 j
       1, if all sites within distance D k are closed
                                         j


                                                            Kj         Kj 1 Kj 1
          min cij       D1
                         j    (D 2
                                 j    D1 ) z1
                                       j    j      ...   (D j        D j )z j
           i S
             S - set of opened plants                                                         27
The PMP: alternative formulation, Cornuejols et al. 1980

                                   n               Ki 1
                  f (z, y )                Di1            ( Dik   1
                                                                      Dik ) zik     min
                               j 1                  k 1


   m                                                      s.t.
        yi         p                                       - p opened facilities
  i 1
                                                           - either at least one facility is open within Dik
 zik                   yj     1,           i 1,..., n
                                           k 1,..., K i    or zi
                                                                 k
                                                                     1
         j:d ij Dik
                                                           - for every client it is an opened facility in some
 ziKi        0,                        i     1,..., n      neighbourhood
 z ik    0,                                i 1,..., n      - zi
                                                                k
                                                                    1 iff all the sites within Dik are
                                           k 1,..., K i    closed
  yj     {0,1},                        j      1,..., m
 for each client i      Di1 ,..., DiK i           - sorted distances                                     28
The PMP: alternative formulation, Cornuejols et al. 1980

Example, p=2
(Elloumi,2010)                               1
                        1 6 5 3 4 client1 : D1                  1        D12   2        3
                                                                                       D1    4
                                             1                            2             3           4
                        2 1 2 3 5 client2 : D2 1                         D2    2       D2     3    D2          6
               C
                                             1
                        1 2 3 3 3 client3 : D3 1                          2             3           4
                                                                         D3    2       D3    3     D3          5
                        4 3 1 8 2 client4 : D1 3                          2
                                                                         D4    8
                                             4
                                                        1                 2             3            4
                                             client5 : D5       2        D5    3       D5     4     D5         5
     Objective:
     client1 : 1 ( 2 1) z11       (4      2) z 21
 +




     client2 : 1 ( 2 1) z12           (3 2) z 22    (6 3) z 32                     only distinct (in a
 +




     client3 : 1 ( 2 1) z13       (3 2) z 23        (5 3) z 33                         column)
                                                                                    distances are
 +




     client4 : 3 (8 3) z14                                                            meaningful
 +




     client5 : 2    (3 2) z15         ( 4 3) z 25      (5   4) z 35


     8   z11   2 z 21    z12   z 22     3 z 32   z13    z 23    2 z 33     5 z14     z15    z 25   z 35
                                            13 coefficients                                               29
The PMP: alternative formulation, Cornuejols et al. 1980

       Example             1 6 5 3 4             Objective:
                           2 1 2 3 5         8      z11        2 z 21     z12        z 22    3z32             z13
                  C
                           1 2 3 3 3                z 23        2 z33     5 z14        z15        z 25        z35
                           4 3 1 8 2
  Constraints:
y1 y 2 y3 y 4               p   z 22   y2   y3     1                    z 35    y1     y3      y4        1
z11     y1   y3       1         z 23   y2   y4     1                    z 42    y1     y2        y3      y4       1
z12     y2   1                  z 24   y1   y2     y3      y4     1     z 43    y1     y2        y3      y4       1
z13     y4   1                  z 25   y3   y4     1                    z 45    y1     y2        y3      y4       1
z14     y1   y2       y3    1   z 31   y1   y2     y3      y4     1     z 31    0, z 42      0, z 43          0
z15     y4   1                  z 32   y2   y3     y4      1            z 24    0, z 45      0
z 21    y1   y2       y3    1   z 33   y2   y3     y4      1            z jk 0 j 1,..., 5; k     1,..., K j
                                                                        yi {0,1}i 1,..., 4
 13 coefficients, 23 linear constr., 12 non-negativity constr., 4 Boolean                                         30
The p-Median Problem:
               a tighter formulation, Elloumi 2010
        Let V j k    set of facilities within D j k : V j k          {i : cij       Djk}

Rule R1 : For any client j , if V j1 is a singleton { yi } then z j1 1 yi holds for any
feasible solution. Variable z j1 can be substituted by (1 yi ) and constraint z j1 yi             1
that defines variable z j1 can be eliminated .
                                        1                  2          3                 3
     1 6 5 3 4              client 2 : D2        1        D2    2    D2         3      D2    6
     2 1 2 3 5                            some facility
C                                                                               facility 2
     1 2 3 3 3                                    1
                                          within D2 is open                     is open
     4 3 1 8 2
                                          ( z1
                                             2       0)                         ( y2   1)
Informally:
if for client j some neighbourhood
k contains only one facility i then
there is a simple relation between
                            k
                                                           z1
                                                            2       1 y2
corresponding variables z j 1 yi                                                             31
The p-Median Problem:
                 a tighter formulation, Elloumi 2010
Rule R2 : If for any j, k, j', k', V j k Vi' k' then z j k z j' k' holds for any feasible solution.
Variable z j' k' can be replaced by z j k and constraint z j' k'               k' y j z j' k'-1 that
                                                                           i:cij' D j'
defines variable z j' k' can be eliminated .
                                           1
          1 6 5 3 4            client 1 : D1       1        D12        2                  3
                                                                                         D1   4
          2 1 2 3 5                        V11    {1,3}     V12     {1,2 ,3} V13              {1,2 ,3,4}
   C
          1 2 3 3 3
                                           1                       2
          4 3 1 8 2            client 4 : D4        3             D4       8
                                            1
                                           V4     {1,2,3}         V42       {1,2,3,4}
 Informally:
 if two clients have equal
 neighbourhoods then the
 corresponding z-variables are
                                                        2
 equivalent and in the objective                       z1      z1
                                                                4
 function terms containing them
                                                                                                     32
 can be added.
The p-Median Problem:
                a tighter formulation, Elloumi 2010
                               Kj 1         K j' 1
Rule R3 : If for any j, j', V j        V j'            then Rule R2 can be applied to deduce
       Kj 1     K   1                                                                                      Kj
that z j      z j' j' . Further, in this case, the set of facilities i such that cij                      Dj
                                                                        K                  Kj     K
is equal to the sets of facilities i such that cij'                D j' j' . Finally, as z j    z j' j'    0, we
                              K
can eliminate constraint z j' j'                      K       yi    z j' K j' -1 .
                                           i:cij'   D j' j'

                  1                2                             3         3
     client 2 : D2 1              D2    2                      D2 3       D2 6
               V21 {2}        V22      {2,3}                  V23 {2,3,4} V23 {1,2,3,4}
                  1               2                             3          3
     client 3 : D3 1            D3 2                          D3 3        D3 5
                 1
                V3 {4}         V32 {2,4}                      V33 {2,3,4} V33 {1,2,3,4}


                                       4                            3
                                      z3            y1             z3
                            after applying Rule R2 becomes
                            redundant and can be eliminated                                                33
The PMP: a tighter formulation, Elloumi 2010

A possible definition of variables          :     zk
                                                   j



zk
 j              (1   yi ),            j   1,..., n; k   1,..., K j
        i:cij D k
                j


Or recursively:
z1
 j             (1    yi ),            j   1,..., n;
        i:cij D1 j

zk
 j       zk 1
           j          (1     yi ),          j   1,..., n; k    2,...,K j
               i:cij D k
                       j


Thus:
       z11    y1     y3      1                          z11     y1    y3 1
e.g.                                   is equivalent to
       z 21   y1     y2      y3      1                  z 21    y2     z11
                                                                             34
The PMP: a tighter formulation, Elloumi 2010

                               n                   Kj 1
             f ( z, y )                    D1
                                            j             (Dk
                                                            j
                                                                  1
                                                                      Dk )z k
                                                                       j    j          min
                               j 1                 k 1


  m                                                       s.t.
       yi        p
 i 1
                                                                                                  j 1,..., n
z1
 j               yi       1,           j 1,..., n                zk
                                                                  j             yi     z k 1,
                                                                                         j        k 2,..., K j
       i:cij D k
               j                                                      i:cij D k
                                                                              j
  Kj
zj          0,                         j        1,..., n
                                                                                                  j 1,..., n
                                           j 1,..., n                   zk              yi   1,
zk
 j      0,                                 k 1,..., K j
                                                                         j                        k 1,..., K j
                                                                                i:cij D k
                                                                                        j

 yi    {0,1},                      i        1,..., m                         Cornuejols et al. 1980
                                           Kj
for each client j     D1 ,..., D j
                       j                          - sorted distances                                         35
PMP Example with p=2 borrowed from S. Elloumi,
       J Comb Optim 2010,19:69–83
                                           1 6 5 3 4
                                           2 1 2 3 5
                                   C
                                           1 2 3 3 3
                                           4 3 1 8 2
   Objective:
   8      (1        y2 )   2(1     y4 )     z11     7 z 21     z 22        5 z32   z 23   z 25      z35
   Constraints:
   y1      y2         y3      y4       p     y1      z 32
   z11     y1         y3      1              z 23     y2     1        y4     10 (13) coefficients
   z 21    y2          z11                   z 25     y3     1        y4     11 (23) linear constr.
   y4      z 21                              z 35     y1     z 25             7 (12) non-negativity
                                                                             constr.
   z 22        y3      1      y2             y2      z 35
                                                                              4 Boolean constr.
   z 32        y4      z 22                  z ki    0
                                             yj      {0,1} j   1,..., 4                             36
The PMP: pseudo-Boolean formulation
                       (Historical remarks)

• Hammer, 1968 for the Simple Plant Location Problem (SPLP) called
  also Uncapacitated Faciltiy Location Problem. His formulation
  contains both literals and their complements, but at the end of this
  paper Hammer has considered an inversion of literals;
• Beresnev, 1971 for the SPLP applied to the so called standardi-
  zation (unification) problem. He has changed the definition of
  decision variables, namely for an opened site a Boolean variable is
  equal to 0, and for a closed site a Boolean variable is equal to 1.
  This is exactly what is done by Cornuejols et al. 1980 and later on
  by Elloumi 2010 but as we will show by means of computational
  experiments with a larger number of decision variables and
  constraints. Beresnev’s formulation contains complements only for
  linear terms and all nonlinear terms are without complements.


                                                                    37
The PMP and SPLP differ in the following details

• SPLP involves fixed cost for location a facility at the given site, while
  the PMP does not;
• Unlike the PMP, SPLP does not have a constraint on the number of
  opened facilities;
• Typical SPLP formulations separate the set of potential facilities
  (sites location, cluster centers) from the set of demand points
  (clients);
• In the PMP the sets of sites location and demand points are
  identical, i.e. I=J;
• The SPLP with a constraint on the number of opened facilities is
  called either Capacitated SPLP or Generalized PMP.




                                                                         38
The PMP: pseudo-Boolean formulation
              Numerical Example: m=5, n=4, p=2



          1 6 5 3 4                          5 clients
          2 1 2 3 5
      C                                      4 locations
          1 2 3 3 3
                                             2 facilities
          4 3 1 8 2

      If two locations are opened at sites 1 and 3, i.e S ={1,3}

          1 6 5 3 4           1
                                              5
          2 1 2 3 5           2   f C (S )         min{cij : i   S}
  C
          1 2 3 3 3           3              j 1

          4 3 1 8 2           4     1 1 3 3 3 11
          1   2   3   4   5



                                                                      39
PMP: pseudo-Boolean formulation
                        BC (y)              min
                                         y, yi m p
                                          i I
     C1
     1 6 5 3 4                                  5

     2 1 2 3 5                 BC (y )              min cij
                                                    i S
C                                           j 1
     1 2 3 3 3
                               min ci1     1 0 y1 1y1 y3      2 y1 y 2 y3
     4 3 1 8 2                 i S
                           +

                               min ci 2
                               i S
                           +




          C1   1   C1          min ci 3
                               i S
                           +




          1    1   1
                               min ci 4
          2    3   0           i S
                           +




          1    2   1           min ci 5
                               i S
          4    4   2
                                                                            40
PMP: pseudo-Boolean formulation
                        BC (y)              min
                                         y, yi m p
                                          i I
     C1
     1 6 5 3 4                                  5

     2 1 2 3 5                 BC (y )              min cij
                                                     i S
C                                           j 1
     1 2 3 3 3
                               min ci1     1 0 y1 1y1 y3           2 y1 y 2 y3
     4 3 1 8 2                 i S
                           +

                               min ci 2                    equal distances lead to
                               i S
                           +



                                                    C1     terms with zero coefficients
          C1       C1          min ci 3                    that can be dropped
               1
                               i S                  1
                           +




          1    1   1                                2
                               min ci 4                    i.e. only distinct distances
          2    3   0           i S                  1      are meaningful (like in
                           +




          1    2   1           min ci 5             4      Cornuejols’ and Elloumi’s
                               i S                         model)
          4    4   2
                                                                                    41
PMP: pseudo-Boolean formulation
                        BC (y)              min
                                         y, yi m p
                                          i I
     C1
     1 6 5 3 4                                  5

     2 1 2 3 5                 BC (y )              min cij
                                                    i S
C                                           j 1
     1 2 3 3 3
                               min ci1     1 0 y1 1y1 y3      2 y1 y 2 y3
     4 3 1 8 2                 i S
                           +

                               min ci 2
                               i S
                           +




          C1   1   C1          min ci 3
                               i S
                           +




          1    1   1
                               min ci 4
          2    3   0           i S
                           +




          1    2   1           min ci 5
                               i S
          4    4   2
                                                                            42
PMP: pseudo-Boolean formulation
                        BC (y)              min
                                         y, yi m p
                                          i I
     C1
     1 6 5 3 4                                  5

     2 1 2 3 5                 BC (y )              min cij
                                                    i S
C                                           j 1
     1 2 3 3 3
                               min ci1     1 0 y1 1y1 y3      2 y1 y 2 y3
     4 3 1 8 2                 i S
                           +

                               min ci 2
                               i S
                           +




          C1   1   C1          min ci 3
                               i S
                           +




          1    1   1
                               min ci 4
          2    3   0           i S
                           +




          1    2   1           min ci 5
                               i S
          4    4   2
                                                                            43
PMP: pseudo-Boolean formulation
                    BC (y)              min
                                     y, yi m p
                                      i I
      C2
     1 6 5 3 4                              5

     2 1 2 3 5             BC (y )              min cij
                                                i S
C                                       j 1
     1 2 3 3 3
                           min ci1     1 0 y1 1y1 y3      2 y1 y 2 y3
     4 3 1 8 2             i S
                       +

                           min ci 2    1 1 y 2 1 y 2 y3 3 y 2 y3 y 4
                           i S
                       +




      C2   2   C2          min ci 3
                           i S
                       +




      6    2   1
                           min ci 4
      1    3   1           i S
                       +




      2    4   1           min ci 5
                           i S
      3    1   3
                                                                        44
PMP: pseudo-Boolean formulation
                     BC (y)              min
                                      y, yi m p
                                       i I
           C3
     1 6 5 3 4                               5

     2 1 2 3 5              BC (y )              min cij
                                                 i S
C                                        j 1
     1 2 3 3 3
                            min ci1     1 0 y1 1y1 y3      2 y1 y 2 y3
     4 3 1 8 2              i S
                        +

                            min ci 2    1 1 y 2 1 y 2 y3 3 y 2 y3 y 4
                            i S
                        +




      C3    3   C3          min ci 3    1 1y 4 1y 2 y 4    2 y 2 y3 y 4
                            i S
                        +




      5     4   1
                            min ci 4
      2     2   1           i S
                        +




      3     3   1           min ci 5
                            i S
      1     1   2
                                                                          45
PMP: pseudo-Boolean formulation
                         BC (y)              min
                                          y, yi m p
                                           i I
               C4
     1 6 5 3 4                                   5

     2 1 2 3 5                  BC (y )              min cij
                                                     i S
C                                            j 1
     1 2 3 3 3
                                min ci1     1 0 y1 1y1 y3      2 y1 y 2 y3
     4 3 1 8 2                  i S
                            +

                                min ci 2    1 1 y 2 1 y 2 y3 3 y 2 y3 y 4
                                i S
                            +




      C4   4        C4          min ci 3    1 1y 4 1y 2 y 4    2 y 2 y3 y 4
                                i S
                            +




      3    1        3
                                min ci 4     3 0 y1 0 y1 y 2    5 y1 y 2 y3
      3    2        0           i S
                            +




      3    3        0           min ci 5
                                i S
      8    4        5
                                                                              46
PMP: pseudo-Boolean formulation
                    BC (y)              min
                                     y, yi m p
                                      i I
               C5
     1 6 5 3 4                              5

     2 1 2 3 5             BC (y )              min cij
                                                i S
C                                       j 1
     1 2 3 3 3
                           min ci1     1 0 y1 1y1 y3      2 y1 y 2 y3
     4 3 1 8 2             i S
                       +

                           min ci 2    1 1 y 2 1 y 2 y3 3 y 2 y3 y 4
                           i S
                       +




      C5   5   C5          min ci 3    1 1y 4 1y 2 y 4    2 y 2 y3 y 4
                           i S
                       +




      4    4   2
                           min ci 4     3 0 y1 0 y1 y 2    5 y1 y 2 y3
      5    3   1           i S
                       +




      3    1   1           min ci 5     2 1y 4 1y3 y 4 1y1 y3 y 4
                           i S
      2    2   1
                                                                         47
PMP: pseudo-Boolean formulation
               5
    BC (y )          min cij
                     i S
               j 1

    min ci1    1 0 y1 1y1 y3      2 y1 y 2 y3    BC(y) can be constructed
    i S
+




    min ci 2   1 1 y 2 1 y 2 y3 3 y 2 y3 y 4     in polynomial time
    i S
+




    min ci 3   1 1y 4 1y 2 y 4    2 y 2 y3 y 4
    i S
                                                 BC(y) has polynomial size
+




    min ci 4    3 0 y1 0 y1 y 2    5 y1 y 2 y3   (number of terms)
    i S
+




    min ci 5    2 1y 4 1y3 y 4 1y1 y3 y 4
    i S



                                                                       48
PMP: pseudo-Boolean formulation
                                                   1 6 5 3 4
                                                   2 1 2 3 5
                                               C
                                                   1 2 3 3 3
                 1    2    3     4    5            4 3 1 8 2                                1      2     3     4      5
                1 2 4           1 4                                                       3 2 4              1 4
                3 3 2 2 3                          two possible                           1 3 2 3 3
          1
                2 4 3 3 1                          permutation                       1
                                                                                          2 4 3 2 1
                4 2       1 4 2                      matrices                             4 2           1 4 2
                                                       but
          1 0 y1 1 y1 y3        2 y1 y 2 y3                                     1 0 y3 1 y1 y3         2 y1 y 2 y3
                                               a unique polynomial




                                                                      + + + +
+ + + +




          1 1 y 2 1 y 2 y3      3 y 2 y3 y 4                                    1 1 y 2 1 y 2 y3       3 y 2 y3 y 4
                                                                                1 1y4 1y2 y4           2 y 2 y3 y 4
          1 1y4 1y2 y4
          3 0 y1     0 y1 y 2
                                2 y 2 y3 y 4
                                 5 y1 y 2 y3
                                               =    BC (y)        =             3 0 y1    0 y1 y3      5 y1 y 2 y3
          2 1 y 4 1 y3 y 4 1 y1 y3 y 4                                          2 1 y 4 1 y3 y 4 1 y1 y3 y 4




                                                                                                                          49
PBP: combining similar terms
                        1 0 y1 1 y1 y3 2 y1 y 2 y3




                      +
                        1 1 y 2 1 y 2 y3 3 y 2 y3 y 4
                                                                20 terms

                      +
                        1 1 y 4 1 y 2 y 4 2 y 2 y3 y 4
                                                                17 nonzero terms
                      +
                          3 0 y1 0 y1 y 2 5 y1 y 2 y3
                      +
                          2 1 y 4 1 y3 y 4 1 y1 y3 y 4




                                         =
8 1y 2   2 y 4 1y1 y3 1y 2 y3 1y 2 y 4 1y3 y 4           7 y1 y 2 y3 1y1 y3 y 4   5 y 2 y3 y 4


                                   10 terms


    This procedure is equivalent to application of Elloumi’s Rule R2

    PBP formulation allows compact representation of the problem !
             In the given example 50% reduction is achieved!
                                                                                                 50
PBP: combining similar terms




                               51
PBP: truncation
                                     p=2
 Initial polynomial BC (y) (10 terms):
 8 1y 2 2 y 4 1y1 y3 1y 2 y3 1y 2 y 4 1y3 y 4 7 y1 y 2 y3 1y1 y3 y 4 5 y 2 y3 y 4


                                                  If p=2 each cubic term
 Observation:
                                                  contains at least one zero
 The degree of the pseudo-Boolean                 variable
 polynomial is at most m-p


Truncated polynomial BC,p=2 (y) (7 terms):
8 1y 2 2 y 4 1y1 y3 1y 2 y3 1y 2 y 4 1y3 y 4

                                            Truncation allows further
                                            reduction of the problem size!


                                                                                    52
PBP: truncation
1 0 y1 1 y1 y3 2 y1 y 2 y3
                                   If p=m/2+1 then memory
+




1 1 y 2 1 y 2 y3 3 y 2 y3 y 4      needed to store the polynomial
+




1 1 y 4 1 y 2 y 4 2 y 2 y3 y 4     is halved!
+




    3 0 y1 0 y1 y 2 5 y1 y 2 y3
                                         full polynomial
+




    2 1 y 4 1 y3 y 4 1 y1 y3 y 4

                        p=2
                                           MEMORY
               p=3

        p=4                          truncated
                                    polynomial
                                                  p = m/2+1

                                                                    53
PMP: pseudo-Boolean formulation
                     BC (y)              min
                                      y, yi m p
                                       i I
           C3
     1 6 5 3 4                               5

     2 1 2 3 5              BC (y )              min cij
                                                 i S
C                                        j 1
     1 2 3 3 3
                            min ci1     1 0 y1 1y1 y3      2 y1 y 2 y3
     4 3 1 8 2              i S
                        +

                            min ci 2    1 1 y 2 1 y 2 y3 3 y 2 y3 y 4
                            i S
                        +




      C3    3   C3          min ci 3    1 1y 4 1y 2 y 4    2 y 2 y3 y 4
                            i S
                        +




      5     4   1
                            min ci 4
      2     2   1           i S
                        +




      3     3   1           min ci 5
                            i S
      1     1   2
                                                                          54
Truncation and preprocessing
        Initial matrix                  p-truncated matrix, p=3
        1   6   5   3    4   1                1   2   2   3   3
        2   1   2   3    5   2                1   1   2   3   3
  C                                     C3
        1   2   3   3    3   3                1   2   2   3   3    y3=1
        4   3   1   8    2   4                1   2   1   3   2

 If i-th row contains all maximum
 elements, then corresponding                In truncated matrix
 location can be excluded from               this is more likely
 consideration ( yi can be set to 0).        to happen

Thus, truncation allows reduction of search space!

Corollary
Instances with p=p0>m/2 are easier to solve then those with
p=m-p0<m/2, even though the numbers of feasible solutions are the
same for both cases.
                                                                          55
Pseudo-Boolean formulation:
              outcomes
• Compact but nonlinear problem
• Equivalent to a nonlinear knapsack (NP-
  hard)
• Goal: obtain a model suitable for general-
  purpose MILP solvers, e.g.:
  –   CPLEX
  –   XpressMP
  –   MOSEK
  –   LPSOL
  –   CLP
                                               56
MBpBM: linearization
                                                     1 6 5 3 4
                                                     2 1 2 3 5
                                                C                     p=2
                                                     1 2 3 3 3
 Example of the pseudo-Boolean                       4 3 1 8 2
 polynomial:
 8      y2       2 y4       y1 y3           y 2 y3         y2 y4       y3 y 4


 8        y2          2 y4             z5           z6       z7             z8
 Linear function of new variables:
  y1 , y2 , y3 , y4 ,
  z5    y1 y3 , z6      y 2 y3 , z 7        y 2 y 4 , z8     y3 y 4
Compare: in Elloumi’s model variables y2 and y4 were introduced into
objective via Rule R1.                                                           57
MBpBM: constraints
                       l                           l
Simple fact: z              yk              z           yk    l 1,     yk   {0,1}
                      k 1                         k 1


Example:
                 z5        y1 y3                 z5 1        y1   y3
                 z6        y 2 y3                z6 1        y2   y3
                 z7        y2 y4                 z7 1        y2   y4
                 z8        y3 y 4                z8 1        y3   y4
                 yk        {0,1}k        1...4
                                                   nonnegativity is
                 zk        0k    5...8               sufficient !
                                                                                    58
MBpBM: reduction

Lema:
Let    Ø            be a pair of embedded sets of Boolean variables yi.
Then, the two following systems of inequalities are equivalent:




Obtained reduced constraints are similar to Elloumi’s constraints
derived from recursive definition of his z-variables.
                                                                          59
MBpBM: reduction
• set covering problem
         y y y       y1 y3 y5                    y1 y3 y 6
          1 3 4


                      y1 y3 y 4 y5 y6 y9

        y1 y 3                             y1 y3 y9
                 y 4 y5       y 6 y9
                                                             60
MBpBM: reduction
• set covering problem
         y y y       y1 y3 y5                          y1 y3 y 6
              1 3 4


 NP-hard!                 y1 y3 y 4 y5 y6 y9

            y1 y 3                              y1 y3 y9
                     y 4 y5       y 6 y9
       y1 y3 y 4 y5 y6 y9      y1 y3   y 4 y5     y 6 y9   2       61
Example, p=2; S. Elloumi, J Comb Optim 2010,19:69–83

                                             1 6 5 3 4
                                             2 1 2 3 5
                                    C
                                             1 2 3 3 3
                                             4 3 1 8 2
       Objective:
                                8       y2    2 y4     z5         z6    z7   z8
       Constraints:
        y1    y2      y3    y4      2
        z5   1      y1     y3                                                 7 coefficients.
        z6   1      y2     y3                                                 5 linear constr.
        z7   1      y2     y4                zi   0i   5,..., 8                4 non-negativity
                                                                             constr.
        z8   1      y3     y4                yi   {0,1}i     1,..., 4
                                                                              4 Boolean constr.

In Elloumi’s model these figures are, correspondingly, 10 (13), 11 (23), 7(12)                    62
and 4
Comparison of the models
          our MBpBM                                                    Elloumi’s NF
8    y2    2 y4         z5       z6   z7   z8   8 (1 y 2 ) 2(1 y4 ) z11 7 z 21 z 22 5 z32 z 23 z 25 z35

y1    y2       y3           y4   2              y1     y2     y3      y4   2
                                                z11    y1     y3      1
z5   1      y1        y3
                                                z 21   y2      z11
z6   1      y2        y3                        y4     z 21
z7    1     y2        y4                        z 22    y3    1       y2
                                                z 32    y4     z 22
z8   1      y3        y4
                                                y1     z 32
zi    0i   5,..., 8                             z 23    y2    1       y4
                                                z 25    y3    1       y4
yi    {0,1}i     1,..., 4
                                                z 35   y1     z 25             z kj    0j   1,..., 5 ; k 1,..., 3

                                                y2     z 35                    yi     {0,1}i   1,..., 4


                                                                                                            63
MBpBM: preprocessing
• every term (product of variables)
  corresponds to a subspace of solutions
  with all these variables equal to 1
• like in Branch-and-Bound:
  – compute an upper bound by some heuristic
  – for each subspace define a procedure for
    computing a lower bound (over a subspace)
  – if the constrained lower bound exceeds global
    upper bound then exclude the subspace from
    consideration
                                                64
PMP: pseudo-Boolean formulation implies a decomposition
  of the search space into at most n(m-p) subspaces
                    BC (y)              min
                                     y, yi m p
                                      i I
          C3
    1 6 5 3 4                               5

    2 1 2 3 5              BC (y )              min cij
                                                i S
C                                       j 1
    1 2 3 3 3
                           min ci1     1 0 y1 1y1 y3      2 y1 y 2 y3
    4 3 1 8 2              i S
                       +

                           min ci 2    1 1 y 2 1 y 2 y3 3 y 2 y3 y 4
                           i S
                       +




     C3    3   C3          min ci 3    1 1y 4 1y 2 y 4    2 y 2 y3 y 4
                           i S
                       +




     5     4   1
                           min ci 4
     2     2   1           i S
                       +




     3     3   1           min ci 5
                           i S
     1     1   2
                                                                         65
MBpBM: preprocessing (example)
   1 6 5 3 4 z5               y1 y 3   Objective:
   2 1 2 3 5 z6               y 2 y3   8   y2       2 y4     z5        z6   z7   z8
C
   1 2 3 3 3 z7               y2 y4
   4 3 1 8 2 z8               y3 y 4
  p 2
                                       Constraints:
     UB
 f        9 (by greedy heuristic)
                                             y1       y2     y3        y4   2
                                             z5      1     y1         y3
                                             z6      1     y2         y3
                                             z7      1     y2         y4
                                             z8      1     y3         y4
                                             zj       0j   5,..., 8

                                             yj       {0,1} j    1,..., 4
                                                                                      66
MBpBM: preprocessing (example)
   1 6 5 3 4 z5                         y1 y 3       Objective:            consider some term
   2 1 2 3 5 z6                         y 2 y3       8   y2       2 y4      z5       z6   z7   z8
C
   1 2 3 3 3 z7                         y2 y4
   4 3 1 8 2 z8                         y3 y 4       8   y2       2 y4      z5       z6   z7   z8
  p 2
                                                     Constraints:
     UB
 f               9 (by greedy heuristic)
                                                           y1      y2      y3        y4   2
 f (y 34 ) 11               f UB   z8   y3 y 4   0         z5     1      y1         y3
                       thus, z8 can be deleted             z6     1      y2         y3
                       from the model
                                                           z7     1      y2         y4
                                                           z8     1      y3         y4
                                                           zj      0j    5,..., 8

                                                           yj      {0,1} j     1,..., 4

      Tr
           def                                                                                      67
 yi              1 iff yi    Tr
MBpBM: preprocessing (example)
   1 6 5 3 4 z5                         y1 y 3    Objective:            consider next term
   2 1 2 3 5 z6                         y 2 y3    8   y2       2 y4      z5       z6   z7   z8
C
   1 2 3 3 3 z7                         y2 y4
   4 3 1 8 2 z8                         y3 y 4    8   y2       2 y4      z5       z6   z7   z8
  p 2
                                                  Constraints:
      UB
  f              9 (by greedy heuristic)                y1      y2      y3        y4   2
  f (y 34 ) 11 f UB                z8   y2 y3 0         z5     1      y1         y3
  f (y 24 ) 12              f UB   z7   y2 y4 0         z6     1      y2         y3
                       thus, z7 can be deleted          z7     1      y2         y4
                       from the model
                                                        z8     1      y3         y4
                                                        zj      0j    5,..., 7

                                                        yj      {0,1} j     1,..., 4

      Tr
           def                                                                                   68
 yi              1 iff yi    Tr
MBpBM: preprocessing (example)
   1 6 5 3 4 z5                         y1 y 3       Objective:            and so on …
   2 1 2 3 5 z6                         y 2 y3       8   y2       2 y4      z5       z6   z7   z8
C
   1 2 3 3 3 z7                         y2 y4
   4 3 1 8 2 z8                         y3 y 4       8   y2       2 y4      z5       z6   z7   z8
  p 2
                                                     Constraints:
     UB
 f               9 (by greedy heuristic)                   y1      y2      y3        y4   2
 f (y 34 ) 11               f UB   z8   y3 y 4   0         z5     1      y1         y3
 f (y 24 ) 12               f UB   z7   y2 y4    0         z6     1      y2         y3
 f (y 23 ) 10               f UB   z6   y 2 y3   0         z7     1      y2         y4
                                                           z8     1      y3         y4
                                                           zj      0j    5,..., 6

                                                           yj      {0,1} j     1,..., 4

      Tr
           def                                                                                      69
 yi              1 iff yi     Tr
MBpBM: preprocessing (example)
   1 6 5 3 4 z5                         y1 y 3       Objective:           and so on …
   2 1 2 3 5 z6                         y 2 y3       8   y2       2 y4    z5        z6   z7   z8
C
   1 2 3 3 3 z7                         y2 y4
   4 3 1 8 2 z8                         y3 y 4       8   y2       2 y4    z5        z6   z7   z8
  p 2
                                                     Constraints:
     UB
 f               9 (by greedy heuristic)                   y1      y2     y3       y4    2
 f (y 34 ) 11               f UB   z8   y3 y 4   0         z5     1      y1     y3
 f (y 24 ) 12               f UB   z7   y2 y4    0         z6     1      y2      y3
 f (y 23 ) 10               f UB   z6   y 2 y3   0         z7     1      y2      y4
 f (y13 ) 9                                                z8     1      y3     y4
                                                           z5      0
                                                           yj      {0,1} j    1,..., 4

      Tr
           def                                                                                     70
 yi              1 iff yi     Tr
MBpBM: preprocessing (example)
   1 6 5 3 4 z5                           y1 y 3       Objective:           and so on …
   2 1 2 3 5 z6                           y 2 y3       8   y2       2 y4    z5        z6   z7   z8
C
   1 2 3 3 3 z7                           y2 y4
   4 3 1 8 2 z8                           y3 y 4       8   y2       2 y4    z5        z6   z7   z8
  p 2
                                                       Constraints:
     UB
 f               9 (by greedy heuristic)
                                                             y1      y2     y3       y4    2
           34                   UB
 f (y ) 11                  f        z8   y3 y 4   0
                                                             z5     1      y1     y3
 f (y 24 ) 12               f UB     z7   y2 y4    0         z6     1      y2      y3
 f (y 23 ) 10               f UB     z6   y 2 y3   0         z7     1      y2      y4
 f (y13 ) 9                                                  z8     1      y3     y4
 f (y 4 ) 10                f UB     y4   0                  z5      0
                                                             yj      {0,1} j    1,..., 4

      Tr
           def                                                                                       71
 yi              1 iff yi       Tr
MBpBM: preprocessing (example)
   1 6 5 3 4 z5                           y1 y 3       Objective:           and so on …
   2 1 2 3 5 z6                           y 2 y3       8   y2       2 y4    z5        z6   z7   z8
C
   1 2 3 3 3 z7                           y2 y4
   4 3 1 8 2 z8                           y3 y 4       8   y2       2 y4    z5        z6   z7   z8
  p 2
                                                       Constraints:
     UB
 f               9 (by greedy heuristic)
                                                             y1      y2     y3       y4    2
           34                   UB
 f (y ) 11                  f        z8   y3 y 4   0
                                                             z5     1      y1     y3
           24                   UB
 f (y ) 12                  f        z7   y2 y4    0
                                                             z6     1      y2      y3
 f (y 23 ) 10               f UB     z6   y 2 y3   0         z7     1      y2      y4
 f (y13 ) 9                                                  z8     1      y3     y4
 f (y 4 ) 10                f UB     y4   0                  z5      0
 f (y 2 ) 9                                                  yj      {0,1} j    1,..., 4

      Tr
           def                                                                                       72
 yi              1 iff yi       Tr
MBpBM: preprocessing (example)
   1 6 5 3 4 z5                 y1 y 3       Objective:
   2 1 2 3 5 z6                 y 2 y3       8   y2       2 y4    z5        z6   z7    z8
C
   1 2 3 3 3 z7                 y2 y4
   4 3 1 8 2 z8                 y3 y 4       8   y2       2 y4    z5        z6   z7    z8
  p 2
                                             Constraints:
     UB
 f         9 (by greedy heuristic)
                                                   y1      y2     y3       y4    2
 f (y 34 ) 11     f UB     z8   y3 y 4   0
                                                   z5     1      y1     y3
      24              UB
 f (y ) 12        f        z7   y2 y4    0         z6     1      y2      y3
 f (y 23 ) 10     f UB     z6   y 2 y3   0         z7     1      y2      y4      unnecessary
      13
 f (y ) 9                                          z8     1      y3     y4       restrictions !
 f (y 4 ) 10      f UB     y4   0                  z5      0
 f (y 2 ) 9                                        yj      {0,1} j    1,..., 4

                                                                                            73
MBpBM: preprocessing (example)
   1 6 5 3 4 z5               y1 y 3       Objective:
   2 1 2 3 5 z6               y 2 y3       8   y2       2 y4       z5        z6   z7   z8
C
   1 2 3 3 3 z7               y2 y4
   4 3 1 8 2 z8               y3 y 4                         8     y2        z5
  p 2
                                           Constraints:
     UB
 f        9 (by greedy heuristic)
                                                 y1      y2        y3        0    2
 f (y 34 ) 11    f UB    z8   y3 y 4   0        0 1           y1    y3
 f (y 24 ) 12    f UB    z7   y2 y4    0        0 1           y2        y3
 f (y 23 ) 10    f UB    z6   y 2 y3   0
 f (y13 ) 9
 f (y 4 ) 10     f UB   y4    0                  z5      0
 f (y 2 ) 9                                      yj      {0,1} j    1,..., 4

                                                                                            74
MBpBM: preprocessing (example)
   1 6 5 3 4 z5         y1 y 3    Objective:
   2 1 2 3 5 z6         y 2 y3                     8        y2        z5
C
   1 2 3 3 3 z7         y2 y4     Constraints:
   4 3 1 8 2 z8         y3 y 4                 y1       y2        y3         2
  p 2
                                               1       y1        y3
                                               1       y2        y3
      3 (10) coefficients
                                               z5       0
      3 (11) linear constr.
                                               yj       {0,1} j        1,..., 4
      1 (7) non-negativity constr.
      3 Boolean (1 fixed to 0)                 y4       0



   Note: the number of Boolean variables was 4 in all considered
                  models and in MBpBM it is 3.
                                                                                  75
Preprocessing from linear to
          nonlinear terms

• The preprocessing should be done
  starting from linear terms...

• ... as cutting some term T cuts also all
  terms for which T was embedded



                                             76
MBpBM: preprocessing (impact)




results from P. Avella and A. Sforza, Logical reduction tests
for the p-median problem, Ann. Oper. Res. 86, 1999, pp. 105–115.
our results                                                     77
Computational results
                                                  OR-library instances




[3]   Avella P., Sassano A., Vasil’ev I.: Computational study of large-scale p-median problems. Math. Prog., Ser. A, 109, 89-114 (2007)
[12] Church R.L.: BEAMR: An exact and approximate model for the p-median problem. Comp. & Oper. Res., 35, 417-426 (2008)
[15] Elloumi S.: A tighter formulation of the p-median problem. J. Comb. Optim., 19, 69–83 (2010)

                                                                                                                                    78
Computational results, m=900
Results for different number of medians for two OR instances




                                                               79
Computational results
             Results for different numbers of medians in BN1284




[3] Avella P., Sassano A., Vasil’ev I.: Computational study of large-scale p-median
problems. Math. Prog., Ser. A, 109, 89-114 (2007)                                   80
Computational results
Running times (sec.) for 15 largest OR-library instances




                                                           81
Computational results
  Running times (sec.) for RW instances




                                          82
Results for
   our
 complex
instances


              83
Concluding remarks
• a new Mixed Boolean Pseudo-Boolean
  linear programming Model (MBpBM) for
  the p-median problem (PMP):
    instance specific
    optimal within the class of mixed
     Boolean LP models
    allows solving previously unsolved
     instances with general purpose software

                                               84
Future research directions
• compact models for other location
  problems (e.g. SPLP or generalized PMP)
• revised data-correcting approach
• implementation and computational
  experiments with preprocessed MBpBM
  based on lower and upper bounds


                                        85
Next two lectures
• How many instances do we really solve
  when solving a PMP instance

• Why some data lead to more complex
  problems than other

• Two applications in details

                                          86
Literature
•   B. F. AlBdaiwi, B. Goldengorin, G. Sierksma. Equivalent instances of the simple
    plant location problem. Computers and Mathematics with Applications, 57 812—
    820 (2009).
•   B. F. AlBdaiwi, D. Ghosh, B. Goldengorin. Data Aggregation for p-Median
    Problems. Journal of Combinatorial Optimization 2010 (open access, in press)
    DOI: 10.1007/s10878-009-9251-8.
•   Avella, P., Sforza, A.: Logical reduction tests for the p-median problem. Annals
    of Operations Research, 86, 105-115 (1999).
• Avella, P., Sassano, A., Vasil'ev, I.: Computational study of large-scale
  p-median problems. Mathematical Programming, Ser. A, 109, 89-114
    (2007).
•   Beresnev, V.L. On a Problem of Mathematical Standardization Theory,
    Upravliajemyje Sistemy, 11, 43–54 (1973), (in Russian).
•   Church, R.L.: BEAMR: An exact and approximate model for the p-median
    problem. Computers & Operations Research, 35, 417-426 (2008).
•   Cornuejols, G., Nemhauser, G., Wolsey, L.A.: A canonical representation of
    simple plant location problems and its applications. SIAM Journal on Matrix
    Analysis and Applications (SIMAX), 1(3), 261-272 (1980).
                                                                                  87
Literature (contd.)
•   Elloumi, S.: A tighter formulation of the p-median problem. Journal of
    Combinatorial Optimization, 19, 69-83 (2010).
•   Goldengorin, B., Krushinsky, D.: Towards an optimal mixed-Boolean LP
    model for the p-median problem (submitted to Annals of Operations
    Research).
•   Goldengorin, B., Krushinsky, D.: Complexity evaluation of benchmark
    instances for the p-median problem (submitted to Mathematical and
    Computer Modelling ).
•   Hammer, P.L.: Plant location -- a pseudo-Boolean approach. Israel
    Journal of Technology, 6, 330-332 (1968).
•   Reese, J.: Solution Methods for the p-Median Problem: An Annotated
    Bibliography. Networks 48, 125-142 (2006)
•   ReVelle, C.S., Swain, R.: Central facilities location. Geographical Analysis,
    2, 30-42 (1970)



                                                                                88
Thank you!




Questions?


             89
Application to Cell Formation
                                                                             parts
                                                                     1   2    3      4   5
Example 1:                                                           0 1 0 1 1




                                                                 1
                          Machine-part




                                                      machines
functional                                                           1 0 1 0 0




                                                                 2
                          incidence matrix
grouping                                                             0 1 1 1 0




                                                                 3
                                                                 4
                                                                     1 0 1 0 0




                                                                 5
                                                                     0 1 0 0 1


The task is to group machines into clusters (manufacturing cells)
such that to to minimize intercell communication.


Dissimilarity measure for machines
            number of parts that need both machines i and j
d (i, j )
            number of parts that need either of the machines

                                                                                             90
Application to Cell Formation
Example 1: functional grouping (contd.)

                                                                        machines
Cost matrix for the PMP                                        0   1.00 0.50 1.00 0.33




                                                machines
is a machine-machine                                       1.00  0   0.75  0 1.00
dissimilarity matrix:                                      0.50 0.75  0   0.75 0.75
                                                           1.00     0     0.75     0   1.00
 c[i, j ] : d (i, j )
                                                           0.33 1.00 0.75 1.00           0
                                        parts
                                2   4    5      1          3            intercell communication is
                                1 1 1 0 0                               caused by only part # 3
                            1




In case of
                 machines




                                1 1 0 0 1                               that is processed in both
                            3




two cells                                                               cells
                                1 0 1 0 0
                            5




the solution
                            4




is:                             0 0 0 1 1
                            2




                                0 0 0 1 1                                                      91
Application to Cell Formation
        Example 1: functional grouping (contd.)
       0     1.00 0.50 1.00 0.33                BC (y )   0.33 y1   0.16 y1 y5     0.25 y 2 y3 y 4
      1.00  0   0.75  0 1.00                                 0 y2   0.75 y 2 y 4   0.25 y 2 y3 y 4
C     0.50 0.75  0   0.75 0.75                             0.5 y3   0.25 y1 y3         0 y1 y 2 y3
      1.00     0     0.75      0     1.00                    0 y2   0.75 y 2 y 4   0.25 y 2 y3 y 4
      0.33 1.00 0.75 1.00               0                 0.33 y5   0.42 y1 y5     0.25 y1 y3 y5
BC, p 2 (y) 0.33 y1 0.5 y3 0.33 y5 0.58 y1 y5 1.5 y2 y4 0.25 y1 y3 0.75 y1 y3 y5 0.5 y2 y3 y4
      Linearization:
              f (y, z )   0.33 y1 0.5 y3 0.33 y5 0.58 z 6 1.5 z 7 0.25 z8 0.75 z9 0.5 z10
      where:
                z6   y1 y5   z9    y1 y3 y5
                z7   y2 y4   z10   y 2 y3 y 4
                z8   y1 y3
                                                                                            92
Application to Cell Formation
        Example 1: functional grouping (contd.)
MBpBM
0.33 y1 0.5 y3 0.33 y5 0.58 z 6 1.5 z 7   0.25 z8 0.75 z9 0.5 z10                    min
s.t.
y1     y2     y3         y4    y5   5 2     MBpBM with reduction based on bounds
z 6 1 y1             y5                     0.33 y1 0.5 y3 0.33 y5                    min
z7 1 y2              y4                     s.t
z8 1 y1             y3                      y1    y2        y3        y4        y5   5 2
z9 2         y1      y3       y5            0 1 y1            y5                                  0
z10 2         y2         y3    y4           0 1 y2               y4                               1
yi {0,1}i                                   0 1 y1            y3                            y*    1
                  1..5
zi     0i                                   0 2        y1        y3        y5                     0
            6..10
                                            0 2        y2        y3        y4                     1
                                            yi {0,1}i        1..5
                                                                                                 93
Application to Cell Formation
                                                                                workers
                                                                    1   2   3    4   5    6   7    8
Example 2:                                                          1 0 0 0 1 0 1 0




                                                                1
                                                     machines
                                                                    1 1 0 0 0 1 0 0




                                                                2
workforce               Machine-worker




                                                                3
                        incidence matrix                            0 1 1 0 1 0 0 1
expences




                                                                4
                                                                    0 0 1 1 0 1 0 0




                                                                5
                                                                    0 0 0 1 0 0 1 1
The task is to group machines into clusters (manufacturing cells) such that:
1) every worker is able to operate every machine in his cell and cost of additional
cross-training is minimized;
2) if a worker can operate a machine that is not in his cell then he can ask for
additional payment for his skills; we would like to minimize such overpayment.

          Dissimilarity measure for machines
                number of workers that can operate both machines i and j
    d (i, j )
                number of workers that can operate either of the machines
                                                                                                  94
Application to Cell Formation
Example 2: workforce expences (contd.)

                                                                        machines
Cost matrix for the PMP                                     0       0.80 0.83 1.00 0.80




                                             machines
is a machine-machine                                    0.80  0   0.83 0.80 1.00
dissimilarity matrix:                                   0.83 0.83  0   0.83 0.83
                                                        1.00 0.80 0.83             0   0.80
 c[i, j ] : d (i, j )
                                                        0.80 1.00 0.83 0.80             0
                                            workers
                                2   3   5    8          1       4   6   7   1 worker needs
                                1 1 1 1 1 0 0 0
                            3




                                                                            additional training
In case of
                 machines




                                0 1 0 0 0 1 1 0
                            4




                                                                            7 non-clustered
three cells
                            2




                                1 0 0 0 1 0 1 0                             elements that
the solution                                                                represent the skills that
                            5




                                0 0 0 1 0 1 0 1
is:                                                                         are not used (potential
                            1




                                0 0 1 0 1 0 0 1                             overpayment)       95
Application to Cell Formation
     Example 2: workforce expences (contd.)
     0   0.80 0.83 1.00 0.80     BC (y )   0.80 y1   0 y1 y2   0.03 y1 y2 y5   0.17 y1 y2 y3 y5
    0.80 0 0.83 0.80 1.00                  0.80 y2   0 y1 y2   0.03 y1 y2 y4   0.17 y1 y2 y3 y4
C   0.83 0.83 0 0.83 0.83                  0.83 y3   0 y1 y3      0 y1 y2 y3      0 y1 y2 y3 y4
    1.00 0.80 0.83   0    0.80             0.80 y4   0 y2 y4   0.03 y2 y4 y5   0.17 y2 y3 y4 y5
    0.80 1.00 0.83 0.80     0              0.80 y5   0 y1 y5   0.03 y1 y4 y5   0.17 y1 y3 y4 y5


                BC, p 3 (y) 0.8 y1 0.8 y2 0.83 y3 0.8 y4 0.8 y5

                 The objective is already a linear function !




                                                                                        96
Application to Cell Formation
Example 2: workforce expences (contd.)

       MBpBM
       0.8 y1 0.8 y 2 0.83 y3 0.8 y 4 0.8 y5   min
       s.t.
       y1 y 2   y3        y4   y5    5 3
       yi {0,1}i   1..5


                                       1
                                       1
                                y*     0
                                       0
                                       0

                                                     97
Application to Cell Formation
                   Example 3: from Yang,Yang (2008)*
                                 105 parts
     45 machines




                                                               (uncapacitated)
                                                             functional grouping



                                                                   105 parts
                   grouping efficiency:
                                               45 machines
                   Yang, Yang*       87.54%
                   our result        87.57%
                   (solved within 1 sec.)

* Yang M-S., Yang J-H. (2008) Machine-part cell formation in group technology using a modified
                                                                                        98
ART1 method. EJOR, vol. 188, pp. 140-152
Thank you!
• Questions?




                            99
The PMP:    alternative formulation, Cornuejols et al. 1980

                                           Kj
        Let for each client j   D1 ,..., D j
                                 j              - sorted (distinct) distances (Kj – number
                                                        of distinct distances for j-th client)
                                           1                2              3
          1 6 5 3 4             client1 : D1         1     D1      2      D1      4
          2 1 2 3 5
    C
          1 2 3 3 3
          4 3 1 8 2




                                                                                             100
The PMP: alternative formulation, Cornuejols et al. 1980

                                       Kj
    Let for each client j   D1 ,..., D j
                             j              - sorted (distinct) distances (Kj – number
                                                    of distinct distances for j-th client)
                                       1
      1 6 5 3 4             client1 : D1         1     D12      2      3
                                                                      D1       4
                                       1                 2              3              4
      2 1 2 3 5             client2 : D2         1      D2      2      D2      3      D2       6
C
      1 2 3 3 3                        1                2               3             4
                            client3 : D3         1     D3       2      D3      3     D3        5
      4 3 1 8 2                        1                 2
                            client4 : D4         3      D4      8
                                       1                 2              3              4
                            client5 : D5         2      D5      3      D5      4      D5       5




                                                                                         101
The PMP: alternative formulation, Cornuejols et al. 1980

                                        Kj
     Let for each client j   D1 ,..., D j
                              j              - sorted (distinct) distances (Kj – number
                                                     of distinct distances for j-th client)
                                        1
       1 6 5 3 4             client1 : D1         1      D12     2      3
                                                                       D1       4
                                        1                 2              3              4
       2 1 2 3 5             client2 : D2         1      D2      2      D2      3      D2       6
C
       1 2 3 3 3                        1                 2              3             4
                             client3 : D3         1      D3      2      D3      3     D3        5
       4 3 1 8 2                        1                 2
                             client4 : D4         3      D4      8
                                        1                 2              3              4
                             client5 : D5         2      D5      3      D5      4      D5       5
Decision variables
       0, if at least one site within distance D k is opened
                                                 j
zk
 j
       1, if all sites within distance D k are closed
                                         j


                                                            Kj         Kj 1 Kj 1
          min cij       D1
                         j    (D 2
                                 j    D1 ) z1
                                       j    j      ...   (D j        D j )z j
           i S
             S - set of opened plants                                                     102
The PMP: alternative formulation, Cornuejols et al. 1980

                                   n               Ki 1
                  f (z, y )                Di1            ( Dik   1
                                                                      Dik ) zik     min
                               j 1                  k 1


   m                                                      s.t.
        yi         p                                       - p opened facilities
  i 1
                                                                                                         k
                                                                                                       D
                                                           - either at least one facility is open within i
 zik                   yj     1,           i 1,..., n
                                           k 1,..., K i    or zi
                                                                 k
                                                                     1
         j:d ij Dik
                                                           - for every client it is an opened facility in some
 ziKi        0,                        i     1,..., n      neighbourhood
 z ik    0,                                i 1,..., n      - zi
                                                                k
                                                                    1 iff all the sites within Dik are
                                           k 1,..., K i    closed
  yj     {0,1},                        j      1,..., m
 for each client i      Di1 ,..., DiK i           - sorted distances                                    103
The PMP: alternative formulation, Cornuejols et al. 1980

Example
(Elloumi,2009)                               1
                        1 6 5 3 4 client1 : D1                  1        D12    2        3
                                                                                        D1    4
                                             1                            2              3           4
                        2 1 2 3 5 client2 : D2 1                         D2     2       D2     3    D2       6
               C
                                             1
                        1 2 3 3 3 client3 : D3 1                          2              3           4
                                                                         D3     2       D3    3     D3       5
                        4 3 1 8 2 client4 : D1 3                          2
                                                                         D4     8
                                             4
                                                        1                 2              3            4
                                             client5 : D5       2        D5      3      D5     4     D5      5
     Objective:
     client1 : 1 ( 2 1) z11       (4      2) z 21
 +




     client2 : 1 ( 2 1) z12           (3 2) z 22    (6 3) z 32                 only              distinct
 +




     client3 : 1 ( 2 1) z13       (3 2) z 23        (5 3) z 33                        (in a column)
                                                                                      distances are
 +




     client4 : 3 (8 3) z14                                                             meaningful
 +




     client5 : 2    (3 2) z15         ( 4 3) z 25      (5   4) z 35


     8   z11   2 z 21    z12   z 22     3 z 32   z13    z 23    2 z 33     5 z14      z15    z 25   z 35
                                            13 coefficients                                            104
The PMP: alternative formulation, Cornuejols et al. 1980


Example          1 6 5 3 4




                               1
                 2 1 2 3 5




                               plants
                               2 3
                                                     1        2          3
            C                             client1 : D1   1   D1     2   D1        4
                 1 2 3 3 3
                 4 3 1 8 2


                               4
 Constraints:
client1 :
z11    y1   y3   1              if plants 1 and 3 are closed ( y1   0, y3    0)
z 21   y1   y3   y2   1
                                then all plants within distance D11=1 are closed
z 31   y1   y3   y2   y4   1
                                and z11     1




                                                                              105
The PMP: alternative formulation, Cornuejols et al. 1980

Example
(Elloumi,2009)                               1
                        1 6 5 3 4 client1 : D1                  1        D12    2        3
                                                                                        D1    4
                                             1                            2              3           4
                        2 1 2 3 5 client2 : D2 1                         D2     2       D2     3    D2       6
               C
                                             1
                        1 2 3 3 3 client3 : D3 1                          2              3           4
                                                                         D3     2       D3    3     D3       5
                        4 3 1 8 2 client4 : D1 3                          2
                                                                         D4     8
                                             4
                                                        1                 2              3            4
                                             client5 : D5       2        D5      3      D5     4     D5      5
     Objective:
     client1 : 1 ( 2 1) z11       (4      2) z 21
 +




     client2 : 1 ( 2 1) z12           (3 2) z 22    (6 3) z 32                 only              distinct
 +




     client3 : 1 ( 2 1) z13       (3 2) z 23        (5 3) z 33                        (in a column)
                                                                                      distances are
 +




     client4 : 3 (8 3) z14                                                             meaningful
 +




     client5 : 2    (3 2) z15         ( 4 3) z 25      (5   4) z 35


     8   z11   2 z 21    z12   z 22     3 z 32   z13    z 23    2 z 33     5 z14      z15    z 25   z 35
                                            13 coefficients                                            106
The PMP: alternative formulation, Cornuejols et al. 1980

       Example             1 6 5 3 4             Objective:
                           2 1 2 3 5         8      z11        2 z 21     z12        z 22    3z32             z13
                  C
                           1 2 3 3 3                z 23        2 z33     5 z14        z15        z 25        z35
                           4 3 1 8 2
  Constraints:
y1 y 2 y3 y 4               p   z 22   y2   y3     1                    z 35    y1     y3      y4        1
z11     y1   y3       1         z 23   y2   y4     1                    z 42    y1     y2        y3      y4       1
z12     y2   1                  z 24   y1   y2     y3      y4     1     z 43    y1     y2        y3      y4       1
z13     y4   1                  z 25   y3   y4     1                    z 45    y1     y2        y3      y4       1
z14     y1   y2       y3    1   z 31   y1   y2     y3      y4     1     z 31    0, z 42      0, z 43          0
z15     y4   1                  z 32   y2   y3     y4      1            z 24    0, z 45      0
z 21    y1   y2       y3    1   z 33   y2   y3     y4      1            z jk 0 j 1,..., 5; k     1,..., K j
                                                                        yi {0,1}i 1,..., 4
 13 coefficients, 23 linear constr., 12 non-negativity constr., 4 Boolean                                         107
The PMP: a tighter formulation, Elloumi 2009


                                          k
A possible definition of variables z j :

zk
 j              (1   yi ),            j   1,..., n; k     1,..., K j
        i:cij D k
                j


Or recursively:
z1
 j             (1    yi ),            j   1,..., n;
        i:cij D1 j

zk
 j       zk 1
           j          (1     yi ),            j   1,..., n; k   2,...,K j
               i:cij D k
                       j


Thus:
       z11    y1     y3      1                          z11       y1   y3 1
e.g.                                   is equivalent to
       z 21   y1     y2      y3      1                  z 21      y2    z11
                                                                              108
The PMP: a tighter formulation, Elloumi 2009

                               n                   Kj 1
             f ( z, y )                    D1
                                            j             (Dk
                                                            j
                                                                  1
                                                                      Dk )z k
                                                                       j    j          min
                               j 1                 k 1


  m                                                       s.t.
       yi        p
 i 1
                                                                                                  j 1,..., n
z1
 j               yi       1,           j 1,..., n                zk
                                                                  j             yi     z k 1,
                                                                                         j        k 2,..., K j
       i:cij D k
               j                                                      i:cij D k
                                                                              j
  Kj
zj          0,                         j        1,..., n
                                                                                                  j 1,..., n
                                           j 1,..., n                   zk              yi   1,
zk
 j      0,                                 k 1,..., K j
                                                                         j                        k 1,..., K j
                                                                                i:cij D k
                                                                                        j

 yi    {0,1},                      i        1,..., m                         Cornuejols et al. 1980
                                           Kj
for each client j     D1 ,..., D j
                       j                          - sorted distances                                       109
The PMP: a tighter formulation, Elloumi 2009

        Let V j k    set of facilities within D j k : V j k          {i : cij       Djk}

Rule R1 : For any client j , if V j1 is a singleton { yi } then z j1 1 yi holds for any
feasible solution. Variable z j1 can be substituted by (1 yi ) and constraint z j1 yi              1
that defines variable z j1 can be eliminated .
                                        1                  2          3                 3
     1 6 5 3 4              client 2 : D2        1        D2    2    D2         3      D2    6
     2 1 2 3 5                            some facility
C                                                                               facility 2
     1 2 3 3 3                                    1
                                          within D2 is open                     is open
     4 3 1 8 2
                                          ( z1
                                             2       0)                         ( y2   1)
Informally:
if for client j some neighbourhood
k contains only one facility i then
there is a simple relation between
                            k
                                                           z1
                                                            2       1 y2
corresponding variables z j 1 yi                                                             110
The PMP: a tighter formulation, Elloumi 2009

Rule R2 : If for any j, k, j', k', V j k Vi' k' then z j k z j' k' holds for any feasible solution.
Variable z j' k' can be replaced by z j k and constraint z j' k'               k' y j z j' k'-1 that
                                                                           i:cij' D j'
defines variable z j' k' can be eliminated    .
                                            1
          1 6 5 3 4             client 1 : D1      1        D12        2                  3
                                                                                         D1   4
          2 1 2 3 5                          V11   {1,3}    V12     {1,2 ,3} V13              {1,2 ,3,4}
   C
          1 2 3 3 3
                                            1                      2
          4 3 1 8 2             client 4 : D4       3             D4       8
                                              1
                                             V4    {1,2,3}        V42       {1,2,3,4}
 Informally:
 if two clients have equal
 neighbourhoods then the
 corresponding z-variables are
                                                        2
 equivalent and in the objective                       z1      z1
                                                                4
 function terms containing them
                                                                                                    111
 can be added.
p-Median Cluster Analysis Based on General-Purpose Solvers (1)
p-Median Cluster Analysis Based on General-Purpose Solvers (1)
p-Median Cluster Analysis Based on General-Purpose Solvers (1)
p-Median Cluster Analysis Based on General-Purpose Solvers (1)
p-Median Cluster Analysis Based on General-Purpose Solvers (1)
p-Median Cluster Analysis Based on General-Purpose Solvers (1)

Mais conteúdo relacionado

Semelhante a p-Median Cluster Analysis Based on General-Purpose Solvers (1)

Bsbmkg502 b – session i vb
Bsbmkg502 b – session i vbBsbmkg502 b – session i vb
Bsbmkg502 b – session i vbSkript
 
Service innovation for energy services: how to get from an idea to a service ...
Service innovation for energy services: how to get from an idea to a service ...Service innovation for energy services: how to get from an idea to a service ...
Service innovation for energy services: how to get from an idea to a service ...Heiko Gebauer
 
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM RecommendersYONG ZHENG
 
BUTLER project presentation
BUTLER project presentationBUTLER project presentation
BUTLER project presentationbutler-iot
 
Valtech - Behavioral Targeting
Valtech - Behavioral TargetingValtech - Behavioral Targeting
Valtech - Behavioral TargetingValtech
 
Cassandra presentation
Cassandra presentationCassandra presentation
Cassandra presentationvilabs
 
Combining Lazy Learning, Racing and Subsampling for Effective Feature Selection
Combining Lazy Learning, Racing and Subsampling for Effective Feature SelectionCombining Lazy Learning, Racing and Subsampling for Effective Feature Selection
Combining Lazy Learning, Racing and Subsampling for Effective Feature SelectionGianluca Bontempi
 
Ba4201 quantitative techniques for decision making l t p c
Ba4201 quantitative techniques for decision making l t p cBa4201 quantitative techniques for decision making l t p c
Ba4201 quantitative techniques for decision making l t p cPrasanna E
 
Building and deploying analytics
Building and deploying analyticsBuilding and deploying analytics
Building and deploying analyticsCollin Bennett
 
Planning & Scheduling - Training
Planning & Scheduling - TrainingPlanning & Scheduling - Training
Planning & Scheduling - TrainingMohammed Feroze
 
The Future of Omni-Channel Banking
The Future of Omni-Channel BankingThe Future of Omni-Channel Banking
The Future of Omni-Channel BankingBackbase
 
Informed Machine Learning for Improved Similarity Assessment in Process-Orien...
Informed Machine Learning for Improved Similarity Assessment in Process-Orien...Informed Machine Learning for Improved Similarity Assessment in Process-Orien...
Informed Machine Learning for Improved Similarity Assessment in Process-Orien...MaximilianHoffmann7
 
11.1. PPT on How to crack ML Competitions all steps explained.pptx
11.1. PPT on How to crack ML Competitions all steps explained.pptx11.1. PPT on How to crack ML Competitions all steps explained.pptx
11.1. PPT on How to crack ML Competitions all steps explained.pptxhu153574
 
A Fuzzy Logic Multi-Criteria Decision Approach for Vendor Selection Manufactu...
A Fuzzy Logic Multi-Criteria Decision Approach for Vendor Selection Manufactu...A Fuzzy Logic Multi-Criteria Decision Approach for Vendor Selection Manufactu...
A Fuzzy Logic Multi-Criteria Decision Approach for Vendor Selection Manufactu...IJMER
 
Fast Parallel Similarity Calculations with FPGA Hardware
Fast Parallel Similarity Calculations with FPGA HardwareFast Parallel Similarity Calculations with FPGA Hardware
Fast Parallel Similarity Calculations with FPGA HardwareTigerGraph
 
Ectel nods v2
Ectel nods v2Ectel nods v2
Ectel nods v2nodenot
 

Semelhante a p-Median Cluster Analysis Based on General-Purpose Solvers (1) (20)

Bsbmkg502 b – session i vb
Bsbmkg502 b – session i vbBsbmkg502 b – session i vb
Bsbmkg502 b – session i vb
 
GRAPH-BASED RECOMMENDATION SYSTEM
GRAPH-BASED RECOMMENDATION SYSTEMGRAPH-BASED RECOMMENDATION SYSTEM
GRAPH-BASED RECOMMENDATION SYSTEM
 
Service innovation for energy services: how to get from an idea to a service ...
Service innovation for energy services: how to get from an idea to a service ...Service innovation for energy services: how to get from an idea to a service ...
Service innovation for energy services: how to get from an idea to a service ...
 
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
 
BUTLER project presentation
BUTLER project presentationBUTLER project presentation
BUTLER project presentation
 
Valtech - Behavioral Targeting
Valtech - Behavioral TargetingValtech - Behavioral Targeting
Valtech - Behavioral Targeting
 
Cassandra presentation
Cassandra presentationCassandra presentation
Cassandra presentation
 
Lecture 3 GORE.pptx
Lecture 3 GORE.pptxLecture 3 GORE.pptx
Lecture 3 GORE.pptx
 
Combining Lazy Learning, Racing and Subsampling for Effective Feature Selection
Combining Lazy Learning, Racing and Subsampling for Effective Feature SelectionCombining Lazy Learning, Racing and Subsampling for Effective Feature Selection
Combining Lazy Learning, Racing and Subsampling for Effective Feature Selection
 
Ba4201 quantitative techniques for decision making l t p c
Ba4201 quantitative techniques for decision making l t p cBa4201 quantitative techniques for decision making l t p c
Ba4201 quantitative techniques for decision making l t p c
 
Building and deploying analytics
Building and deploying analyticsBuilding and deploying analytics
Building and deploying analytics
 
Planning & Scheduling - Training
Planning & Scheduling - TrainingPlanning & Scheduling - Training
Planning & Scheduling - Training
 
The Future of Omni-Channel Banking
The Future of Omni-Channel BankingThe Future of Omni-Channel Banking
The Future of Omni-Channel Banking
 
Informed Machine Learning for Improved Similarity Assessment in Process-Orien...
Informed Machine Learning for Improved Similarity Assessment in Process-Orien...Informed Machine Learning for Improved Similarity Assessment in Process-Orien...
Informed Machine Learning for Improved Similarity Assessment in Process-Orien...
 
11.1. PPT on How to crack ML Competitions all steps explained.pptx
11.1. PPT on How to crack ML Competitions all steps explained.pptx11.1. PPT on How to crack ML Competitions all steps explained.pptx
11.1. PPT on How to crack ML Competitions all steps explained.pptx
 
A Fuzzy Logic Multi-Criteria Decision Approach for Vendor Selection Manufactu...
A Fuzzy Logic Multi-Criteria Decision Approach for Vendor Selection Manufactu...A Fuzzy Logic Multi-Criteria Decision Approach for Vendor Selection Manufactu...
A Fuzzy Logic Multi-Criteria Decision Approach for Vendor Selection Manufactu...
 
Fast Parallel Similarity Calculations with FPGA Hardware
Fast Parallel Similarity Calculations with FPGA HardwareFast Parallel Similarity Calculations with FPGA Hardware
Fast Parallel Similarity Calculations with FPGA Hardware
 
Ece 5sem
Ece 5semEce 5sem
Ece 5sem
 
Philippines - stregthening institutional capacity
Philippines - stregthening institutional capacityPhilippines - stregthening institutional capacity
Philippines - stregthening institutional capacity
 
Ectel nods v2
Ectel nods v2Ectel nods v2
Ectel nods v2
 

Mais de SSA KPI

Germany presentation
Germany presentationGermany presentation
Germany presentationSSA KPI
 
Grand challenges in energy
Grand challenges in energyGrand challenges in energy
Grand challenges in energySSA KPI
 
Engineering role in sustainability
Engineering role in sustainabilityEngineering role in sustainability
Engineering role in sustainabilitySSA KPI
 
Consensus and interaction on a long term strategy for sustainable development
Consensus and interaction on a long term strategy for sustainable developmentConsensus and interaction on a long term strategy for sustainable development
Consensus and interaction on a long term strategy for sustainable developmentSSA KPI
 
Competences in sustainability in engineering education
Competences in sustainability in engineering educationCompetences in sustainability in engineering education
Competences in sustainability in engineering educationSSA KPI
 
Introducatio SD for enginers
Introducatio SD for enginersIntroducatio SD for enginers
Introducatio SD for enginersSSA KPI
 
DAAD-10.11.2011
DAAD-10.11.2011DAAD-10.11.2011
DAAD-10.11.2011SSA KPI
 
Talking with money
Talking with moneyTalking with money
Talking with moneySSA KPI
 
'Green' startup investment
'Green' startup investment'Green' startup investment
'Green' startup investmentSSA KPI
 
From Huygens odd sympathy to the energy Huygens' extraction from the sea waves
From Huygens odd sympathy to the energy Huygens' extraction from the sea wavesFrom Huygens odd sympathy to the energy Huygens' extraction from the sea waves
From Huygens odd sympathy to the energy Huygens' extraction from the sea wavesSSA KPI
 
Dynamics of dice games
Dynamics of dice gamesDynamics of dice games
Dynamics of dice gamesSSA KPI
 
Energy Security Costs
Energy Security CostsEnergy Security Costs
Energy Security CostsSSA KPI
 
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environmentsNaturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environmentsSSA KPI
 
Advanced energy technology for sustainable development. Part 5
Advanced energy technology for sustainable development. Part 5Advanced energy technology for sustainable development. Part 5
Advanced energy technology for sustainable development. Part 5SSA KPI
 
Advanced energy technology for sustainable development. Part 4
Advanced energy technology for sustainable development. Part 4Advanced energy technology for sustainable development. Part 4
Advanced energy technology for sustainable development. Part 4SSA KPI
 
Advanced energy technology for sustainable development. Part 3
Advanced energy technology for sustainable development. Part 3Advanced energy technology for sustainable development. Part 3
Advanced energy technology for sustainable development. Part 3SSA KPI
 
Advanced energy technology for sustainable development. Part 2
Advanced energy technology for sustainable development. Part 2Advanced energy technology for sustainable development. Part 2
Advanced energy technology for sustainable development. Part 2SSA KPI
 
Advanced energy technology for sustainable development. Part 1
Advanced energy technology for sustainable development. Part 1Advanced energy technology for sustainable development. Part 1
Advanced energy technology for sustainable development. Part 1SSA KPI
 
Fluorescent proteins in current biology
Fluorescent proteins in current biologyFluorescent proteins in current biology
Fluorescent proteins in current biologySSA KPI
 
Neurotransmitter systems of the brain and their functions
Neurotransmitter systems of the brain and their functionsNeurotransmitter systems of the brain and their functions
Neurotransmitter systems of the brain and their functionsSSA KPI
 

Mais de SSA KPI (20)

Germany presentation
Germany presentationGermany presentation
Germany presentation
 
Grand challenges in energy
Grand challenges in energyGrand challenges in energy
Grand challenges in energy
 
Engineering role in sustainability
Engineering role in sustainabilityEngineering role in sustainability
Engineering role in sustainability
 
Consensus and interaction on a long term strategy for sustainable development
Consensus and interaction on a long term strategy for sustainable developmentConsensus and interaction on a long term strategy for sustainable development
Consensus and interaction on a long term strategy for sustainable development
 
Competences in sustainability in engineering education
Competences in sustainability in engineering educationCompetences in sustainability in engineering education
Competences in sustainability in engineering education
 
Introducatio SD for enginers
Introducatio SD for enginersIntroducatio SD for enginers
Introducatio SD for enginers
 
DAAD-10.11.2011
DAAD-10.11.2011DAAD-10.11.2011
DAAD-10.11.2011
 
Talking with money
Talking with moneyTalking with money
Talking with money
 
'Green' startup investment
'Green' startup investment'Green' startup investment
'Green' startup investment
 
From Huygens odd sympathy to the energy Huygens' extraction from the sea waves
From Huygens odd sympathy to the energy Huygens' extraction from the sea wavesFrom Huygens odd sympathy to the energy Huygens' extraction from the sea waves
From Huygens odd sympathy to the energy Huygens' extraction from the sea waves
 
Dynamics of dice games
Dynamics of dice gamesDynamics of dice games
Dynamics of dice games
 
Energy Security Costs
Energy Security CostsEnergy Security Costs
Energy Security Costs
 
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environmentsNaturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
 
Advanced energy technology for sustainable development. Part 5
Advanced energy technology for sustainable development. Part 5Advanced energy technology for sustainable development. Part 5
Advanced energy technology for sustainable development. Part 5
 
Advanced energy technology for sustainable development. Part 4
Advanced energy technology for sustainable development. Part 4Advanced energy technology for sustainable development. Part 4
Advanced energy technology for sustainable development. Part 4
 
Advanced energy technology for sustainable development. Part 3
Advanced energy technology for sustainable development. Part 3Advanced energy technology for sustainable development. Part 3
Advanced energy technology for sustainable development. Part 3
 
Advanced energy technology for sustainable development. Part 2
Advanced energy technology for sustainable development. Part 2Advanced energy technology for sustainable development. Part 2
Advanced energy technology for sustainable development. Part 2
 
Advanced energy technology for sustainable development. Part 1
Advanced energy technology for sustainable development. Part 1Advanced energy technology for sustainable development. Part 1
Advanced energy technology for sustainable development. Part 1
 
Fluorescent proteins in current biology
Fluorescent proteins in current biologyFluorescent proteins in current biology
Fluorescent proteins in current biology
 
Neurotransmitter systems of the brain and their functions
Neurotransmitter systems of the brain and their functionsNeurotransmitter systems of the brain and their functions
Neurotransmitter systems of the brain and their functions
 

Último

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 

Último (20)

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 

p-Median Cluster Analysis Based on General-Purpose Solvers (1)

  • 1. p-Median Cluster Analysis Based on General-Purpose Solvers Boris Goldengorin, Dmitry Krushinsky University of Groningen, The Netherlands Joint work with Bader F. Albdaiwi and Viktor Kuzmenko
  • 2. Outline of the talk • Two Main PMP formulations • Pseudo-Boolean polynomial • Mixed Boolean pseudo-Boolean Model (MBpBM) • Experimental results • Concluding Remarks • Directions for Future Research 2
  • 3. The p-Median Problem (PMP) I = {1,…,m} – a set of m facilities (location points), J = {1,…,n} – a set of n users (clients, customers or demand points) C = [cij] – a m×n matrix with distances (measures of similarities or dissimilarities) travelled (costs incurred) Costs Matrix c11 ... c1 j ... ... c1n location points ... ... ... ... ... ... ci1 ... cij ... ... cin ... ... ... ... ... ... c n1 ... c nj ... ... c nm clients - location point (cluster center) - Client (cluster points) 3
  • 4. The PMP: combinatorial formulation The p-Median Problem (PMP) consists of determining p locations (the median points) such that 1 ≤ p ≤ m and the sum of distances (or transportation costs) over all clients is minimal. p m! C m p!(m p )! complexity 1 m p - opened facility - location point - client p=3 4
  • 5. The PMP: combinatorial formulation f C (S ) min cij min i S S I, |S| p j J I – set of locations J – set of clients cij – costs for serving j-th client from i-th location p – number of facilities to be opened 5
  • 6. The PMP: Applications • Facilty location • Cluster analysis • Quantitative psychology • Telecommunications industry • Sales force territories design • Political and administrative districting • Optimal diversity management • Cell formation in group technology • Vehicle routing • Topological design of computer and communication networks 6
  • 7. Similarities and dissimilarities Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5854-9. Similarities and dissimilarities of phage genomes. Blaisdell BE, Campbell AM, Karlin S. Department of Mathematics, Stanford University, CA 94305-2125, USA. 7
  • 8. A comparative study of similarity measures for manufacturing cell formation S. Oliveira a, J.F.F. Ribeiro, S.C. Seok Journal of Manufacturing Systems 27 (2008) 19--25 However, the similarity measure uses only limited information between machines and parts: either the number of parts producedby the pair of machines or the number of machines producing the pair of parts. Various similarity measures (coefficients) have been introduced to measure the similarities between machines and parts for manufacturing cells problems. 8
  • 9. The PMP: Applications • Facility location - consumer (client) - possible location of supplier (server) 9 - supplier (server), e.g. supermarket, bakery, laundry, etc.
  • 10. The PMP: Applications • Facility location - consumer (client) - possible location of supplier (server) 10 - supplier (server), e.g. supermarket, bakery, laundry, etc.
  • 11. The PMP: Applications • Cluster analysis Output Input: cluster cluster cluster cluster - finite set of objects 1 2 3 4 - measure of similarity 11 ―best‖ representatives – p-medians
  • 12. The PMP: Applications • Quantitative psychology patients symptoms (behavioural patterns) type 1 mentality features type 2 mentality features 12 ―leaders‖ or typical representatives
  • 13. The PMP: Applications • Telecommunications industry 13
  • 14. The PMP: Applications • Sales force territories design customers (groups of customers) 1 2 3 ... n entries of the costs 1 matrix account for customers’ attitudes possible 2 and spatial distance outlets for some 3 ... product ... m Goal: select p best outlets for promoting the product 14
  • 15. The PMP: Applications • Political and administrative districting districts, cities, regions 1 2 3 ... n degree of relationship: 1 political, cultural, infrastructural districts, 2 connectedness cities, regions 3 ... ... m 15
  • 16. The PMP: Applications • Optimal diversity management – given a variety of products (each having some demand, possibly zero) – select p products such that: • every product with a nonzero demand can be replaced by one of the p selected products • replacement overcosts are minimized 16
  • 17. The PMP: Applications • Optimal diversity management – Example: wiring designs, p=3 configurations with zero demand 17
  • 18. The PMP: Applications • Cell formation in group technology functional layout cellular layout drilling cell 1 cell 2 thermal processing see also video at http://www.youtube.com/watch?v=q_m0_bVAJbA - machines 18 - products routes
  • 19. The PMP: Applications • Vehicle routing - clients / storage depot - vehicle routes 19
  • 20. The PMP: Applications • Topological design of computer and communication networks 20
  • 21. The PMP: Applications • Topological design of computer and communication networks 21
  • 22. The PMP: Applications • Topological design of computer and communication networks 22
  • 23. Publications, more than 500 Elloumi, 2010; Brusco and K¨ohn, 2008; Belenky, 2008; Church, 2003; 2008; Avella et al, 2007; Beltran et al, 2006; Reese, 2006 (Overview, NETWORKS) ReVelle and Swain, 1970; Senne et al, 2005. 23
  • 24. The PMP: Boolean Linear Programming Formulation (ReVelle and Swain, 1970) m n cij xij min i 1 j 1 m s.t. xij 1, j J - each client is served by exactly one facility i 1 m yi p - p opened facilities i 1 xij yi i I, j J - prevents clients from being served by closed facilities xij , yi {0,1} xij = 1, if j-th client is served by i-th facility; xij = 0, otherwise 24
  • 25. The PMP: alternative formulation, Cornuejols et al. 1980 Kj Let for each client j D1 ,..., D j j - sorted (distinct) distances (Kj – number of distinct distances for j-th client) 1 2 3 1 6 5 3 4 client1 : D1 1 D1 2 D1 4 2 1 2 3 5 C 1 2 3 3 3 4 3 1 8 2 25
  • 26. The PMP: alternative formulation, Cornuejols et al. 1980 Kj Let for each client j D1 ,..., D j j - sorted (distinct) distances (Kj – number of distinct distances for j-th client) 1 1 6 5 3 4 client1 : D1 1 D12 2 3 D1 4 1 2 3 4 2 1 2 3 5 client2 : D2 1 D2 2 D2 3 D2 6 C 1 2 3 3 3 1 2 3 4 client3 : D3 1 D3 2 D3 3 D3 5 4 3 1 8 2 1 2 client4 : D4 3 D4 8 1 2 3 4 client5 : D5 2 D5 3 D5 4 D5 5 26
  • 27. The PMP: alternative formulation, Cornuejols et al. 1980 Kj Let for each client j D1 ,..., D j j - sorted (distinct) distances (Kj – number of distinct distances for j-th client) 1 1 6 5 3 4 client1 : D1 1 D12 2 3 D1 4 1 2 3 4 2 1 2 3 5 client2 : D2 1 D2 2 D2 3 D2 6 C 1 2 3 3 3 1 2 3 4 client3 : D3 1 D3 2 D3 3 D3 5 4 3 1 8 2 1 2 client4 : D4 3 D4 8 1 2 3 4 client5 : D5 2 D5 3 D5 4 D5 5 Decision variables 0, if at least one site within distance D k is opened j zk j 1, if all sites within distance D k are closed j Kj Kj 1 Kj 1 min cij D1 j (D 2 j D1 ) z1 j j ... (D j D j )z j i S S - set of opened plants 27
  • 28. The PMP: alternative formulation, Cornuejols et al. 1980 n Ki 1 f (z, y ) Di1 ( Dik 1 Dik ) zik min j 1 k 1 m s.t. yi p - p opened facilities i 1 - either at least one facility is open within Dik zik yj 1, i 1,..., n k 1,..., K i or zi k 1 j:d ij Dik - for every client it is an opened facility in some ziKi 0, i 1,..., n neighbourhood z ik 0, i 1,..., n - zi k 1 iff all the sites within Dik are k 1,..., K i closed yj {0,1}, j 1,..., m for each client i Di1 ,..., DiK i - sorted distances 28
  • 29. The PMP: alternative formulation, Cornuejols et al. 1980 Example, p=2 (Elloumi,2010) 1 1 6 5 3 4 client1 : D1 1 D12 2 3 D1 4 1 2 3 4 2 1 2 3 5 client2 : D2 1 D2 2 D2 3 D2 6 C 1 1 2 3 3 3 client3 : D3 1 2 3 4 D3 2 D3 3 D3 5 4 3 1 8 2 client4 : D1 3 2 D4 8 4 1 2 3 4 client5 : D5 2 D5 3 D5 4 D5 5 Objective: client1 : 1 ( 2 1) z11 (4 2) z 21 + client2 : 1 ( 2 1) z12 (3 2) z 22 (6 3) z 32 only distinct (in a + client3 : 1 ( 2 1) z13 (3 2) z 23 (5 3) z 33 column) distances are + client4 : 3 (8 3) z14 meaningful + client5 : 2 (3 2) z15 ( 4 3) z 25 (5 4) z 35 8 z11 2 z 21 z12 z 22 3 z 32 z13 z 23 2 z 33 5 z14 z15 z 25 z 35 13 coefficients 29
  • 30. The PMP: alternative formulation, Cornuejols et al. 1980 Example 1 6 5 3 4 Objective: 2 1 2 3 5 8 z11 2 z 21 z12 z 22 3z32 z13 C 1 2 3 3 3 z 23 2 z33 5 z14 z15 z 25 z35 4 3 1 8 2 Constraints: y1 y 2 y3 y 4 p z 22 y2 y3 1 z 35 y1 y3 y4 1 z11 y1 y3 1 z 23 y2 y4 1 z 42 y1 y2 y3 y4 1 z12 y2 1 z 24 y1 y2 y3 y4 1 z 43 y1 y2 y3 y4 1 z13 y4 1 z 25 y3 y4 1 z 45 y1 y2 y3 y4 1 z14 y1 y2 y3 1 z 31 y1 y2 y3 y4 1 z 31 0, z 42 0, z 43 0 z15 y4 1 z 32 y2 y3 y4 1 z 24 0, z 45 0 z 21 y1 y2 y3 1 z 33 y2 y3 y4 1 z jk 0 j 1,..., 5; k 1,..., K j yi {0,1}i 1,..., 4 13 coefficients, 23 linear constr., 12 non-negativity constr., 4 Boolean 30
  • 31. The p-Median Problem: a tighter formulation, Elloumi 2010 Let V j k set of facilities within D j k : V j k {i : cij Djk} Rule R1 : For any client j , if V j1 is a singleton { yi } then z j1 1 yi holds for any feasible solution. Variable z j1 can be substituted by (1 yi ) and constraint z j1 yi 1 that defines variable z j1 can be eliminated . 1 2 3 3 1 6 5 3 4 client 2 : D2 1 D2 2 D2 3 D2 6 2 1 2 3 5 some facility C facility 2 1 2 3 3 3 1 within D2 is open is open 4 3 1 8 2 ( z1 2 0) ( y2 1) Informally: if for client j some neighbourhood k contains only one facility i then there is a simple relation between k z1 2 1 y2 corresponding variables z j 1 yi 31
  • 32. The p-Median Problem: a tighter formulation, Elloumi 2010 Rule R2 : If for any j, k, j', k', V j k Vi' k' then z j k z j' k' holds for any feasible solution. Variable z j' k' can be replaced by z j k and constraint z j' k' k' y j z j' k'-1 that i:cij' D j' defines variable z j' k' can be eliminated . 1 1 6 5 3 4 client 1 : D1 1 D12 2 3 D1 4 2 1 2 3 5 V11 {1,3} V12 {1,2 ,3} V13 {1,2 ,3,4} C 1 2 3 3 3 1 2 4 3 1 8 2 client 4 : D4 3 D4 8 1 V4 {1,2,3} V42 {1,2,3,4} Informally: if two clients have equal neighbourhoods then the corresponding z-variables are 2 equivalent and in the objective z1 z1 4 function terms containing them 32 can be added.
  • 33. The p-Median Problem: a tighter formulation, Elloumi 2010 Kj 1 K j' 1 Rule R3 : If for any j, j', V j V j' then Rule R2 can be applied to deduce Kj 1 K 1 Kj that z j z j' j' . Further, in this case, the set of facilities i such that cij Dj K Kj K is equal to the sets of facilities i such that cij' D j' j' . Finally, as z j z j' j' 0, we K can eliminate constraint z j' j' K yi z j' K j' -1 . i:cij' D j' j' 1 2 3 3 client 2 : D2 1 D2 2 D2 3 D2 6 V21 {2} V22 {2,3} V23 {2,3,4} V23 {1,2,3,4} 1 2 3 3 client 3 : D3 1 D3 2 D3 3 D3 5 1 V3 {4} V32 {2,4} V33 {2,3,4} V33 {1,2,3,4} 4 3 z3 y1 z3 after applying Rule R2 becomes redundant and can be eliminated 33
  • 34. The PMP: a tighter formulation, Elloumi 2010 A possible definition of variables : zk j zk j (1 yi ), j 1,..., n; k 1,..., K j i:cij D k j Or recursively: z1 j (1 yi ), j 1,..., n; i:cij D1 j zk j zk 1 j (1 yi ), j 1,..., n; k 2,...,K j i:cij D k j Thus: z11 y1 y3 1 z11 y1 y3 1 e.g. is equivalent to z 21 y1 y2 y3 1 z 21 y2 z11 34
  • 35. The PMP: a tighter formulation, Elloumi 2010 n Kj 1 f ( z, y ) D1 j (Dk j 1 Dk )z k j j min j 1 k 1 m s.t. yi p i 1 j 1,..., n z1 j yi 1, j 1,..., n zk j yi z k 1, j k 2,..., K j i:cij D k j i:cij D k j Kj zj 0, j 1,..., n j 1,..., n j 1,..., n zk yi 1, zk j 0, k 1,..., K j j k 1,..., K j i:cij D k j yi {0,1}, i 1,..., m Cornuejols et al. 1980 Kj for each client j D1 ,..., D j j - sorted distances 35
  • 36. PMP Example with p=2 borrowed from S. Elloumi, J Comb Optim 2010,19:69–83 1 6 5 3 4 2 1 2 3 5 C 1 2 3 3 3 4 3 1 8 2 Objective: 8 (1 y2 ) 2(1 y4 ) z11 7 z 21 z 22 5 z32 z 23 z 25 z35 Constraints: y1 y2 y3 y4 p y1 z 32 z11 y1 y3 1 z 23 y2 1 y4 10 (13) coefficients z 21 y2 z11 z 25 y3 1 y4 11 (23) linear constr. y4 z 21 z 35 y1 z 25 7 (12) non-negativity constr. z 22 y3 1 y2 y2 z 35 4 Boolean constr. z 32 y4 z 22 z ki 0 yj {0,1} j 1,..., 4 36
  • 37. The PMP: pseudo-Boolean formulation (Historical remarks) • Hammer, 1968 for the Simple Plant Location Problem (SPLP) called also Uncapacitated Faciltiy Location Problem. His formulation contains both literals and their complements, but at the end of this paper Hammer has considered an inversion of literals; • Beresnev, 1971 for the SPLP applied to the so called standardi- zation (unification) problem. He has changed the definition of decision variables, namely for an opened site a Boolean variable is equal to 0, and for a closed site a Boolean variable is equal to 1. This is exactly what is done by Cornuejols et al. 1980 and later on by Elloumi 2010 but as we will show by means of computational experiments with a larger number of decision variables and constraints. Beresnev’s formulation contains complements only for linear terms and all nonlinear terms are without complements. 37
  • 38. The PMP and SPLP differ in the following details • SPLP involves fixed cost for location a facility at the given site, while the PMP does not; • Unlike the PMP, SPLP does not have a constraint on the number of opened facilities; • Typical SPLP formulations separate the set of potential facilities (sites location, cluster centers) from the set of demand points (clients); • In the PMP the sets of sites location and demand points are identical, i.e. I=J; • The SPLP with a constraint on the number of opened facilities is called either Capacitated SPLP or Generalized PMP. 38
  • 39. The PMP: pseudo-Boolean formulation Numerical Example: m=5, n=4, p=2 1 6 5 3 4 5 clients 2 1 2 3 5 C 4 locations 1 2 3 3 3 2 facilities 4 3 1 8 2 If two locations are opened at sites 1 and 3, i.e S ={1,3} 1 6 5 3 4 1 5 2 1 2 3 5 2 f C (S ) min{cij : i S} C 1 2 3 3 3 3 j 1 4 3 1 8 2 4 1 1 3 3 3 11 1 2 3 4 5 39
  • 40. PMP: pseudo-Boolean formulation BC (y) min y, yi m p i I C1 1 6 5 3 4 5 2 1 2 3 5 BC (y ) min cij i S C j 1 1 2 3 3 3 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 4 3 1 8 2 i S + min ci 2 i S + C1 1 C1 min ci 3 i S + 1 1 1 min ci 4 2 3 0 i S + 1 2 1 min ci 5 i S 4 4 2 40
  • 41. PMP: pseudo-Boolean formulation BC (y) min y, yi m p i I C1 1 6 5 3 4 5 2 1 2 3 5 BC (y ) min cij i S C j 1 1 2 3 3 3 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 4 3 1 8 2 i S + min ci 2 equal distances lead to i S + C1 terms with zero coefficients C1 C1 min ci 3 that can be dropped 1 i S 1 + 1 1 1 2 min ci 4 i.e. only distinct distances 2 3 0 i S 1 are meaningful (like in + 1 2 1 min ci 5 4 Cornuejols’ and Elloumi’s i S model) 4 4 2 41
  • 42. PMP: pseudo-Boolean formulation BC (y) min y, yi m p i I C1 1 6 5 3 4 5 2 1 2 3 5 BC (y ) min cij i S C j 1 1 2 3 3 3 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 4 3 1 8 2 i S + min ci 2 i S + C1 1 C1 min ci 3 i S + 1 1 1 min ci 4 2 3 0 i S + 1 2 1 min ci 5 i S 4 4 2 42
  • 43. PMP: pseudo-Boolean formulation BC (y) min y, yi m p i I C1 1 6 5 3 4 5 2 1 2 3 5 BC (y ) min cij i S C j 1 1 2 3 3 3 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 4 3 1 8 2 i S + min ci 2 i S + C1 1 C1 min ci 3 i S + 1 1 1 min ci 4 2 3 0 i S + 1 2 1 min ci 5 i S 4 4 2 43
  • 44. PMP: pseudo-Boolean formulation BC (y) min y, yi m p i I C2 1 6 5 3 4 5 2 1 2 3 5 BC (y ) min cij i S C j 1 1 2 3 3 3 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 4 3 1 8 2 i S + min ci 2 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 i S + C2 2 C2 min ci 3 i S + 6 2 1 min ci 4 1 3 1 i S + 2 4 1 min ci 5 i S 3 1 3 44
  • 45. PMP: pseudo-Boolean formulation BC (y) min y, yi m p i I C3 1 6 5 3 4 5 2 1 2 3 5 BC (y ) min cij i S C j 1 1 2 3 3 3 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 4 3 1 8 2 i S + min ci 2 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 i S + C3 3 C3 min ci 3 1 1y 4 1y 2 y 4 2 y 2 y3 y 4 i S + 5 4 1 min ci 4 2 2 1 i S + 3 3 1 min ci 5 i S 1 1 2 45
  • 46. PMP: pseudo-Boolean formulation BC (y) min y, yi m p i I C4 1 6 5 3 4 5 2 1 2 3 5 BC (y ) min cij i S C j 1 1 2 3 3 3 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 4 3 1 8 2 i S + min ci 2 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 i S + C4 4 C4 min ci 3 1 1y 4 1y 2 y 4 2 y 2 y3 y 4 i S + 3 1 3 min ci 4 3 0 y1 0 y1 y 2 5 y1 y 2 y3 3 2 0 i S + 3 3 0 min ci 5 i S 8 4 5 46
  • 47. PMP: pseudo-Boolean formulation BC (y) min y, yi m p i I C5 1 6 5 3 4 5 2 1 2 3 5 BC (y ) min cij i S C j 1 1 2 3 3 3 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 4 3 1 8 2 i S + min ci 2 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 i S + C5 5 C5 min ci 3 1 1y 4 1y 2 y 4 2 y 2 y3 y 4 i S + 4 4 2 min ci 4 3 0 y1 0 y1 y 2 5 y1 y 2 y3 5 3 1 i S + 3 1 1 min ci 5 2 1y 4 1y3 y 4 1y1 y3 y 4 i S 2 2 1 47
  • 48. PMP: pseudo-Boolean formulation 5 BC (y ) min cij i S j 1 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 BC(y) can be constructed i S + min ci 2 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 in polynomial time i S + min ci 3 1 1y 4 1y 2 y 4 2 y 2 y3 y 4 i S BC(y) has polynomial size + min ci 4 3 0 y1 0 y1 y 2 5 y1 y 2 y3 (number of terms) i S + min ci 5 2 1y 4 1y3 y 4 1y1 y3 y 4 i S 48
  • 49. PMP: pseudo-Boolean formulation 1 6 5 3 4 2 1 2 3 5 C 1 2 3 3 3 1 2 3 4 5 4 3 1 8 2 1 2 3 4 5 1 2 4 1 4 3 2 4 1 4 3 3 2 2 3 two possible 1 3 2 3 3 1 2 4 3 3 1 permutation 1 2 4 3 2 1 4 2 1 4 2 matrices 4 2 1 4 2 but 1 0 y1 1 y1 y3 2 y1 y 2 y3 1 0 y3 1 y1 y3 2 y1 y 2 y3 a unique polynomial + + + + + + + + 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 1 1y4 1y2 y4 2 y 2 y3 y 4 1 1y4 1y2 y4 3 0 y1 0 y1 y 2 2 y 2 y3 y 4 5 y1 y 2 y3 = BC (y) = 3 0 y1 0 y1 y3 5 y1 y 2 y3 2 1 y 4 1 y3 y 4 1 y1 y3 y 4 2 1 y 4 1 y3 y 4 1 y1 y3 y 4 49
  • 50. PBP: combining similar terms 1 0 y1 1 y1 y3 2 y1 y 2 y3 + 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 20 terms + 1 1 y 4 1 y 2 y 4 2 y 2 y3 y 4 17 nonzero terms + 3 0 y1 0 y1 y 2 5 y1 y 2 y3 + 2 1 y 4 1 y3 y 4 1 y1 y3 y 4 = 8 1y 2 2 y 4 1y1 y3 1y 2 y3 1y 2 y 4 1y3 y 4 7 y1 y 2 y3 1y1 y3 y 4 5 y 2 y3 y 4 10 terms This procedure is equivalent to application of Elloumi’s Rule R2 PBP formulation allows compact representation of the problem ! In the given example 50% reduction is achieved! 50
  • 52. PBP: truncation p=2 Initial polynomial BC (y) (10 terms): 8 1y 2 2 y 4 1y1 y3 1y 2 y3 1y 2 y 4 1y3 y 4 7 y1 y 2 y3 1y1 y3 y 4 5 y 2 y3 y 4 If p=2 each cubic term Observation: contains at least one zero The degree of the pseudo-Boolean variable polynomial is at most m-p Truncated polynomial BC,p=2 (y) (7 terms): 8 1y 2 2 y 4 1y1 y3 1y 2 y3 1y 2 y 4 1y3 y 4 Truncation allows further reduction of the problem size! 52
  • 53. PBP: truncation 1 0 y1 1 y1 y3 2 y1 y 2 y3 If p=m/2+1 then memory + 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 needed to store the polynomial + 1 1 y 4 1 y 2 y 4 2 y 2 y3 y 4 is halved! + 3 0 y1 0 y1 y 2 5 y1 y 2 y3 full polynomial + 2 1 y 4 1 y3 y 4 1 y1 y3 y 4 p=2 MEMORY p=3 p=4 truncated polynomial p = m/2+1 53
  • 54. PMP: pseudo-Boolean formulation BC (y) min y, yi m p i I C3 1 6 5 3 4 5 2 1 2 3 5 BC (y ) min cij i S C j 1 1 2 3 3 3 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 4 3 1 8 2 i S + min ci 2 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 i S + C3 3 C3 min ci 3 1 1y 4 1y 2 y 4 2 y 2 y3 y 4 i S + 5 4 1 min ci 4 2 2 1 i S + 3 3 1 min ci 5 i S 1 1 2 54
  • 55. Truncation and preprocessing Initial matrix p-truncated matrix, p=3 1 6 5 3 4 1 1 2 2 3 3 2 1 2 3 5 2 1 1 2 3 3 C C3 1 2 3 3 3 3 1 2 2 3 3 y3=1 4 3 1 8 2 4 1 2 1 3 2 If i-th row contains all maximum elements, then corresponding In truncated matrix location can be excluded from this is more likely consideration ( yi can be set to 0). to happen Thus, truncation allows reduction of search space! Corollary Instances with p=p0>m/2 are easier to solve then those with p=m-p0<m/2, even though the numbers of feasible solutions are the same for both cases. 55
  • 56. Pseudo-Boolean formulation: outcomes • Compact but nonlinear problem • Equivalent to a nonlinear knapsack (NP- hard) • Goal: obtain a model suitable for general- purpose MILP solvers, e.g.: – CPLEX – XpressMP – MOSEK – LPSOL – CLP 56
  • 57. MBpBM: linearization 1 6 5 3 4 2 1 2 3 5 C p=2 1 2 3 3 3 Example of the pseudo-Boolean 4 3 1 8 2 polynomial: 8 y2 2 y4 y1 y3 y 2 y3 y2 y4 y3 y 4 8 y2 2 y4 z5 z6 z7 z8 Linear function of new variables: y1 , y2 , y3 , y4 , z5 y1 y3 , z6 y 2 y3 , z 7 y 2 y 4 , z8 y3 y 4 Compare: in Elloumi’s model variables y2 and y4 were introduced into objective via Rule R1. 57
  • 58. MBpBM: constraints l l Simple fact: z yk z yk l 1, yk {0,1} k 1 k 1 Example: z5 y1 y3 z5 1 y1 y3 z6 y 2 y3 z6 1 y2 y3 z7 y2 y4 z7 1 y2 y4 z8 y3 y 4 z8 1 y3 y4 yk {0,1}k 1...4 nonnegativity is zk 0k 5...8 sufficient ! 58
  • 59. MBpBM: reduction Lema: Let Ø be a pair of embedded sets of Boolean variables yi. Then, the two following systems of inequalities are equivalent: Obtained reduced constraints are similar to Elloumi’s constraints derived from recursive definition of his z-variables. 59
  • 60. MBpBM: reduction • set covering problem y y y y1 y3 y5 y1 y3 y 6 1 3 4 y1 y3 y 4 y5 y6 y9 y1 y 3 y1 y3 y9 y 4 y5 y 6 y9 60
  • 61. MBpBM: reduction • set covering problem y y y y1 y3 y5 y1 y3 y 6 1 3 4 NP-hard! y1 y3 y 4 y5 y6 y9 y1 y 3 y1 y3 y9 y 4 y5 y 6 y9 y1 y3 y 4 y5 y6 y9 y1 y3 y 4 y5 y 6 y9 2 61
  • 62. Example, p=2; S. Elloumi, J Comb Optim 2010,19:69–83 1 6 5 3 4 2 1 2 3 5 C 1 2 3 3 3 4 3 1 8 2 Objective: 8 y2 2 y4 z5 z6 z7 z8 Constraints: y1 y2 y3 y4 2 z5 1 y1 y3 7 coefficients. z6 1 y2 y3 5 linear constr. z7 1 y2 y4 zi 0i 5,..., 8 4 non-negativity constr. z8 1 y3 y4 yi {0,1}i 1,..., 4 4 Boolean constr. In Elloumi’s model these figures are, correspondingly, 10 (13), 11 (23), 7(12) 62 and 4
  • 63. Comparison of the models our MBpBM Elloumi’s NF 8 y2 2 y4 z5 z6 z7 z8 8 (1 y 2 ) 2(1 y4 ) z11 7 z 21 z 22 5 z32 z 23 z 25 z35 y1 y2 y3 y4 2 y1 y2 y3 y4 2 z11 y1 y3 1 z5 1 y1 y3 z 21 y2 z11 z6 1 y2 y3 y4 z 21 z7 1 y2 y4 z 22 y3 1 y2 z 32 y4 z 22 z8 1 y3 y4 y1 z 32 zi 0i 5,..., 8 z 23 y2 1 y4 z 25 y3 1 y4 yi {0,1}i 1,..., 4 z 35 y1 z 25 z kj 0j 1,..., 5 ; k 1,..., 3 y2 z 35 yi {0,1}i 1,..., 4 63
  • 64. MBpBM: preprocessing • every term (product of variables) corresponds to a subspace of solutions with all these variables equal to 1 • like in Branch-and-Bound: – compute an upper bound by some heuristic – for each subspace define a procedure for computing a lower bound (over a subspace) – if the constrained lower bound exceeds global upper bound then exclude the subspace from consideration 64
  • 65. PMP: pseudo-Boolean formulation implies a decomposition of the search space into at most n(m-p) subspaces BC (y) min y, yi m p i I C3 1 6 5 3 4 5 2 1 2 3 5 BC (y ) min cij i S C j 1 1 2 3 3 3 min ci1 1 0 y1 1y1 y3 2 y1 y 2 y3 4 3 1 8 2 i S + min ci 2 1 1 y 2 1 y 2 y3 3 y 2 y3 y 4 i S + C3 3 C3 min ci 3 1 1y 4 1y 2 y 4 2 y 2 y3 y 4 i S + 5 4 1 min ci 4 2 2 1 i S + 3 3 1 min ci 5 i S 1 1 2 65
  • 66. MBpBM: preprocessing (example) 1 6 5 3 4 z5 y1 y 3 Objective: 2 1 2 3 5 z6 y 2 y3 8 y2 2 y4 z5 z6 z7 z8 C 1 2 3 3 3 z7 y2 y4 4 3 1 8 2 z8 y3 y 4 p 2 Constraints: UB f 9 (by greedy heuristic) y1 y2 y3 y4 2 z5 1 y1 y3 z6 1 y2 y3 z7 1 y2 y4 z8 1 y3 y4 zj 0j 5,..., 8 yj {0,1} j 1,..., 4 66
  • 67. MBpBM: preprocessing (example) 1 6 5 3 4 z5 y1 y 3 Objective: consider some term 2 1 2 3 5 z6 y 2 y3 8 y2 2 y4 z5 z6 z7 z8 C 1 2 3 3 3 z7 y2 y4 4 3 1 8 2 z8 y3 y 4 8 y2 2 y4 z5 z6 z7 z8 p 2 Constraints: UB f 9 (by greedy heuristic) y1 y2 y3 y4 2 f (y 34 ) 11 f UB z8 y3 y 4 0 z5 1 y1 y3 thus, z8 can be deleted z6 1 y2 y3 from the model z7 1 y2 y4 z8 1 y3 y4 zj 0j 5,..., 8 yj {0,1} j 1,..., 4 Tr def 67 yi 1 iff yi Tr
  • 68. MBpBM: preprocessing (example) 1 6 5 3 4 z5 y1 y 3 Objective: consider next term 2 1 2 3 5 z6 y 2 y3 8 y2 2 y4 z5 z6 z7 z8 C 1 2 3 3 3 z7 y2 y4 4 3 1 8 2 z8 y3 y 4 8 y2 2 y4 z5 z6 z7 z8 p 2 Constraints: UB f 9 (by greedy heuristic) y1 y2 y3 y4 2 f (y 34 ) 11 f UB z8 y2 y3 0 z5 1 y1 y3 f (y 24 ) 12 f UB z7 y2 y4 0 z6 1 y2 y3 thus, z7 can be deleted z7 1 y2 y4 from the model z8 1 y3 y4 zj 0j 5,..., 7 yj {0,1} j 1,..., 4 Tr def 68 yi 1 iff yi Tr
  • 69. MBpBM: preprocessing (example) 1 6 5 3 4 z5 y1 y 3 Objective: and so on … 2 1 2 3 5 z6 y 2 y3 8 y2 2 y4 z5 z6 z7 z8 C 1 2 3 3 3 z7 y2 y4 4 3 1 8 2 z8 y3 y 4 8 y2 2 y4 z5 z6 z7 z8 p 2 Constraints: UB f 9 (by greedy heuristic) y1 y2 y3 y4 2 f (y 34 ) 11 f UB z8 y3 y 4 0 z5 1 y1 y3 f (y 24 ) 12 f UB z7 y2 y4 0 z6 1 y2 y3 f (y 23 ) 10 f UB z6 y 2 y3 0 z7 1 y2 y4 z8 1 y3 y4 zj 0j 5,..., 6 yj {0,1} j 1,..., 4 Tr def 69 yi 1 iff yi Tr
  • 70. MBpBM: preprocessing (example) 1 6 5 3 4 z5 y1 y 3 Objective: and so on … 2 1 2 3 5 z6 y 2 y3 8 y2 2 y4 z5 z6 z7 z8 C 1 2 3 3 3 z7 y2 y4 4 3 1 8 2 z8 y3 y 4 8 y2 2 y4 z5 z6 z7 z8 p 2 Constraints: UB f 9 (by greedy heuristic) y1 y2 y3 y4 2 f (y 34 ) 11 f UB z8 y3 y 4 0 z5 1 y1 y3 f (y 24 ) 12 f UB z7 y2 y4 0 z6 1 y2 y3 f (y 23 ) 10 f UB z6 y 2 y3 0 z7 1 y2 y4 f (y13 ) 9 z8 1 y3 y4 z5 0 yj {0,1} j 1,..., 4 Tr def 70 yi 1 iff yi Tr
  • 71. MBpBM: preprocessing (example) 1 6 5 3 4 z5 y1 y 3 Objective: and so on … 2 1 2 3 5 z6 y 2 y3 8 y2 2 y4 z5 z6 z7 z8 C 1 2 3 3 3 z7 y2 y4 4 3 1 8 2 z8 y3 y 4 8 y2 2 y4 z5 z6 z7 z8 p 2 Constraints: UB f 9 (by greedy heuristic) y1 y2 y3 y4 2 34 UB f (y ) 11 f z8 y3 y 4 0 z5 1 y1 y3 f (y 24 ) 12 f UB z7 y2 y4 0 z6 1 y2 y3 f (y 23 ) 10 f UB z6 y 2 y3 0 z7 1 y2 y4 f (y13 ) 9 z8 1 y3 y4 f (y 4 ) 10 f UB y4 0 z5 0 yj {0,1} j 1,..., 4 Tr def 71 yi 1 iff yi Tr
  • 72. MBpBM: preprocessing (example) 1 6 5 3 4 z5 y1 y 3 Objective: and so on … 2 1 2 3 5 z6 y 2 y3 8 y2 2 y4 z5 z6 z7 z8 C 1 2 3 3 3 z7 y2 y4 4 3 1 8 2 z8 y3 y 4 8 y2 2 y4 z5 z6 z7 z8 p 2 Constraints: UB f 9 (by greedy heuristic) y1 y2 y3 y4 2 34 UB f (y ) 11 f z8 y3 y 4 0 z5 1 y1 y3 24 UB f (y ) 12 f z7 y2 y4 0 z6 1 y2 y3 f (y 23 ) 10 f UB z6 y 2 y3 0 z7 1 y2 y4 f (y13 ) 9 z8 1 y3 y4 f (y 4 ) 10 f UB y4 0 z5 0 f (y 2 ) 9 yj {0,1} j 1,..., 4 Tr def 72 yi 1 iff yi Tr
  • 73. MBpBM: preprocessing (example) 1 6 5 3 4 z5 y1 y 3 Objective: 2 1 2 3 5 z6 y 2 y3 8 y2 2 y4 z5 z6 z7 z8 C 1 2 3 3 3 z7 y2 y4 4 3 1 8 2 z8 y3 y 4 8 y2 2 y4 z5 z6 z7 z8 p 2 Constraints: UB f 9 (by greedy heuristic) y1 y2 y3 y4 2 f (y 34 ) 11 f UB z8 y3 y 4 0 z5 1 y1 y3 24 UB f (y ) 12 f z7 y2 y4 0 z6 1 y2 y3 f (y 23 ) 10 f UB z6 y 2 y3 0 z7 1 y2 y4 unnecessary 13 f (y ) 9 z8 1 y3 y4 restrictions ! f (y 4 ) 10 f UB y4 0 z5 0 f (y 2 ) 9 yj {0,1} j 1,..., 4 73
  • 74. MBpBM: preprocessing (example) 1 6 5 3 4 z5 y1 y 3 Objective: 2 1 2 3 5 z6 y 2 y3 8 y2 2 y4 z5 z6 z7 z8 C 1 2 3 3 3 z7 y2 y4 4 3 1 8 2 z8 y3 y 4 8 y2 z5 p 2 Constraints: UB f 9 (by greedy heuristic) y1 y2 y3 0 2 f (y 34 ) 11 f UB z8 y3 y 4 0 0 1 y1 y3 f (y 24 ) 12 f UB z7 y2 y4 0 0 1 y2 y3 f (y 23 ) 10 f UB z6 y 2 y3 0 f (y13 ) 9 f (y 4 ) 10 f UB y4 0 z5 0 f (y 2 ) 9 yj {0,1} j 1,..., 4 74
  • 75. MBpBM: preprocessing (example) 1 6 5 3 4 z5 y1 y 3 Objective: 2 1 2 3 5 z6 y 2 y3 8 y2 z5 C 1 2 3 3 3 z7 y2 y4 Constraints: 4 3 1 8 2 z8 y3 y 4 y1 y2 y3 2 p 2 1 y1 y3 1 y2 y3 3 (10) coefficients z5 0 3 (11) linear constr. yj {0,1} j 1,..., 4 1 (7) non-negativity constr. 3 Boolean (1 fixed to 0) y4 0 Note: the number of Boolean variables was 4 in all considered models and in MBpBM it is 3. 75
  • 76. Preprocessing from linear to nonlinear terms • The preprocessing should be done starting from linear terms... • ... as cutting some term T cuts also all terms for which T was embedded 76
  • 77. MBpBM: preprocessing (impact) results from P. Avella and A. Sforza, Logical reduction tests for the p-median problem, Ann. Oper. Res. 86, 1999, pp. 105–115. our results 77
  • 78. Computational results OR-library instances [3] Avella P., Sassano A., Vasil’ev I.: Computational study of large-scale p-median problems. Math. Prog., Ser. A, 109, 89-114 (2007) [12] Church R.L.: BEAMR: An exact and approximate model for the p-median problem. Comp. & Oper. Res., 35, 417-426 (2008) [15] Elloumi S.: A tighter formulation of the p-median problem. J. Comb. Optim., 19, 69–83 (2010) 78
  • 79. Computational results, m=900 Results for different number of medians for two OR instances 79
  • 80. Computational results Results for different numbers of medians in BN1284 [3] Avella P., Sassano A., Vasil’ev I.: Computational study of large-scale p-median problems. Math. Prog., Ser. A, 109, 89-114 (2007) 80
  • 81. Computational results Running times (sec.) for 15 largest OR-library instances 81
  • 82. Computational results Running times (sec.) for RW instances 82
  • 83. Results for our complex instances 83
  • 84. Concluding remarks • a new Mixed Boolean Pseudo-Boolean linear programming Model (MBpBM) for the p-median problem (PMP):  instance specific  optimal within the class of mixed Boolean LP models  allows solving previously unsolved instances with general purpose software 84
  • 85. Future research directions • compact models for other location problems (e.g. SPLP or generalized PMP) • revised data-correcting approach • implementation and computational experiments with preprocessed MBpBM based on lower and upper bounds 85
  • 86. Next two lectures • How many instances do we really solve when solving a PMP instance • Why some data lead to more complex problems than other • Two applications in details 86
  • 87. Literature • B. F. AlBdaiwi, B. Goldengorin, G. Sierksma. Equivalent instances of the simple plant location problem. Computers and Mathematics with Applications, 57 812— 820 (2009). • B. F. AlBdaiwi, D. Ghosh, B. Goldengorin. Data Aggregation for p-Median Problems. Journal of Combinatorial Optimization 2010 (open access, in press) DOI: 10.1007/s10878-009-9251-8. • Avella, P., Sforza, A.: Logical reduction tests for the p-median problem. Annals of Operations Research, 86, 105-115 (1999). • Avella, P., Sassano, A., Vasil'ev, I.: Computational study of large-scale p-median problems. Mathematical Programming, Ser. A, 109, 89-114 (2007). • Beresnev, V.L. On a Problem of Mathematical Standardization Theory, Upravliajemyje Sistemy, 11, 43–54 (1973), (in Russian). • Church, R.L.: BEAMR: An exact and approximate model for the p-median problem. Computers & Operations Research, 35, 417-426 (2008). • Cornuejols, G., Nemhauser, G., Wolsey, L.A.: A canonical representation of simple plant location problems and its applications. SIAM Journal on Matrix Analysis and Applications (SIMAX), 1(3), 261-272 (1980). 87
  • 88. Literature (contd.) • Elloumi, S.: A tighter formulation of the p-median problem. Journal of Combinatorial Optimization, 19, 69-83 (2010). • Goldengorin, B., Krushinsky, D.: Towards an optimal mixed-Boolean LP model for the p-median problem (submitted to Annals of Operations Research). • Goldengorin, B., Krushinsky, D.: Complexity evaluation of benchmark instances for the p-median problem (submitted to Mathematical and Computer Modelling ). • Hammer, P.L.: Plant location -- a pseudo-Boolean approach. Israel Journal of Technology, 6, 330-332 (1968). • Reese, J.: Solution Methods for the p-Median Problem: An Annotated Bibliography. Networks 48, 125-142 (2006) • ReVelle, C.S., Swain, R.: Central facilities location. Geographical Analysis, 2, 30-42 (1970) 88
  • 90. Application to Cell Formation parts 1 2 3 4 5 Example 1: 0 1 0 1 1 1 Machine-part machines functional 1 0 1 0 0 2 incidence matrix grouping 0 1 1 1 0 3 4 1 0 1 0 0 5 0 1 0 0 1 The task is to group machines into clusters (manufacturing cells) such that to to minimize intercell communication. Dissimilarity measure for machines number of parts that need both machines i and j d (i, j ) number of parts that need either of the machines 90
  • 91. Application to Cell Formation Example 1: functional grouping (contd.) machines Cost matrix for the PMP 0 1.00 0.50 1.00 0.33 machines is a machine-machine 1.00 0 0.75 0 1.00 dissimilarity matrix: 0.50 0.75 0 0.75 0.75 1.00 0 0.75 0 1.00 c[i, j ] : d (i, j ) 0.33 1.00 0.75 1.00 0 parts 2 4 5 1 3 intercell communication is 1 1 1 0 0 caused by only part # 3 1 In case of machines 1 1 0 0 1 that is processed in both 3 two cells cells 1 0 1 0 0 5 the solution 4 is: 0 0 0 1 1 2 0 0 0 1 1 91
  • 92. Application to Cell Formation Example 1: functional grouping (contd.) 0 1.00 0.50 1.00 0.33 BC (y ) 0.33 y1 0.16 y1 y5 0.25 y 2 y3 y 4 1.00 0 0.75 0 1.00 0 y2 0.75 y 2 y 4 0.25 y 2 y3 y 4 C 0.50 0.75 0 0.75 0.75 0.5 y3 0.25 y1 y3 0 y1 y 2 y3 1.00 0 0.75 0 1.00 0 y2 0.75 y 2 y 4 0.25 y 2 y3 y 4 0.33 1.00 0.75 1.00 0 0.33 y5 0.42 y1 y5 0.25 y1 y3 y5 BC, p 2 (y) 0.33 y1 0.5 y3 0.33 y5 0.58 y1 y5 1.5 y2 y4 0.25 y1 y3 0.75 y1 y3 y5 0.5 y2 y3 y4 Linearization: f (y, z ) 0.33 y1 0.5 y3 0.33 y5 0.58 z 6 1.5 z 7 0.25 z8 0.75 z9 0.5 z10 where: z6 y1 y5 z9 y1 y3 y5 z7 y2 y4 z10 y 2 y3 y 4 z8 y1 y3 92
  • 93. Application to Cell Formation Example 1: functional grouping (contd.) MBpBM 0.33 y1 0.5 y3 0.33 y5 0.58 z 6 1.5 z 7 0.25 z8 0.75 z9 0.5 z10 min s.t. y1 y2 y3 y4 y5 5 2 MBpBM with reduction based on bounds z 6 1 y1 y5 0.33 y1 0.5 y3 0.33 y5 min z7 1 y2 y4 s.t z8 1 y1 y3 y1 y2 y3 y4 y5 5 2 z9 2 y1 y3 y5 0 1 y1 y5 0 z10 2 y2 y3 y4 0 1 y2 y4 1 yi {0,1}i 0 1 y1 y3 y* 1 1..5 zi 0i 0 2 y1 y3 y5 0 6..10 0 2 y2 y3 y4 1 yi {0,1}i 1..5 93
  • 94. Application to Cell Formation workers 1 2 3 4 5 6 7 8 Example 2: 1 0 0 0 1 0 1 0 1 machines 1 1 0 0 0 1 0 0 2 workforce Machine-worker 3 incidence matrix 0 1 1 0 1 0 0 1 expences 4 0 0 1 1 0 1 0 0 5 0 0 0 1 0 0 1 1 The task is to group machines into clusters (manufacturing cells) such that: 1) every worker is able to operate every machine in his cell and cost of additional cross-training is minimized; 2) if a worker can operate a machine that is not in his cell then he can ask for additional payment for his skills; we would like to minimize such overpayment. Dissimilarity measure for machines number of workers that can operate both machines i and j d (i, j ) number of workers that can operate either of the machines 94
  • 95. Application to Cell Formation Example 2: workforce expences (contd.) machines Cost matrix for the PMP 0 0.80 0.83 1.00 0.80 machines is a machine-machine 0.80 0 0.83 0.80 1.00 dissimilarity matrix: 0.83 0.83 0 0.83 0.83 1.00 0.80 0.83 0 0.80 c[i, j ] : d (i, j ) 0.80 1.00 0.83 0.80 0 workers 2 3 5 8 1 4 6 7 1 worker needs 1 1 1 1 1 0 0 0 3 additional training In case of machines 0 1 0 0 0 1 1 0 4 7 non-clustered three cells 2 1 0 0 0 1 0 1 0 elements that the solution represent the skills that 5 0 0 0 1 0 1 0 1 is: are not used (potential 1 0 0 1 0 1 0 0 1 overpayment) 95
  • 96. Application to Cell Formation Example 2: workforce expences (contd.) 0 0.80 0.83 1.00 0.80 BC (y ) 0.80 y1 0 y1 y2 0.03 y1 y2 y5 0.17 y1 y2 y3 y5 0.80 0 0.83 0.80 1.00 0.80 y2 0 y1 y2 0.03 y1 y2 y4 0.17 y1 y2 y3 y4 C 0.83 0.83 0 0.83 0.83 0.83 y3 0 y1 y3 0 y1 y2 y3 0 y1 y2 y3 y4 1.00 0.80 0.83 0 0.80 0.80 y4 0 y2 y4 0.03 y2 y4 y5 0.17 y2 y3 y4 y5 0.80 1.00 0.83 0.80 0 0.80 y5 0 y1 y5 0.03 y1 y4 y5 0.17 y1 y3 y4 y5 BC, p 3 (y) 0.8 y1 0.8 y2 0.83 y3 0.8 y4 0.8 y5 The objective is already a linear function ! 96
  • 97. Application to Cell Formation Example 2: workforce expences (contd.) MBpBM 0.8 y1 0.8 y 2 0.83 y3 0.8 y 4 0.8 y5 min s.t. y1 y 2 y3 y4 y5 5 3 yi {0,1}i 1..5 1 1 y* 0 0 0 97
  • 98. Application to Cell Formation Example 3: from Yang,Yang (2008)* 105 parts 45 machines (uncapacitated) functional grouping 105 parts grouping efficiency: 45 machines Yang, Yang* 87.54% our result 87.57% (solved within 1 sec.) * Yang M-S., Yang J-H. (2008) Machine-part cell formation in group technology using a modified 98 ART1 method. EJOR, vol. 188, pp. 140-152
  • 100. The PMP: alternative formulation, Cornuejols et al. 1980 Kj Let for each client j D1 ,..., D j j - sorted (distinct) distances (Kj – number of distinct distances for j-th client) 1 2 3 1 6 5 3 4 client1 : D1 1 D1 2 D1 4 2 1 2 3 5 C 1 2 3 3 3 4 3 1 8 2 100
  • 101. The PMP: alternative formulation, Cornuejols et al. 1980 Kj Let for each client j D1 ,..., D j j - sorted (distinct) distances (Kj – number of distinct distances for j-th client) 1 1 6 5 3 4 client1 : D1 1 D12 2 3 D1 4 1 2 3 4 2 1 2 3 5 client2 : D2 1 D2 2 D2 3 D2 6 C 1 2 3 3 3 1 2 3 4 client3 : D3 1 D3 2 D3 3 D3 5 4 3 1 8 2 1 2 client4 : D4 3 D4 8 1 2 3 4 client5 : D5 2 D5 3 D5 4 D5 5 101
  • 102. The PMP: alternative formulation, Cornuejols et al. 1980 Kj Let for each client j D1 ,..., D j j - sorted (distinct) distances (Kj – number of distinct distances for j-th client) 1 1 6 5 3 4 client1 : D1 1 D12 2 3 D1 4 1 2 3 4 2 1 2 3 5 client2 : D2 1 D2 2 D2 3 D2 6 C 1 2 3 3 3 1 2 3 4 client3 : D3 1 D3 2 D3 3 D3 5 4 3 1 8 2 1 2 client4 : D4 3 D4 8 1 2 3 4 client5 : D5 2 D5 3 D5 4 D5 5 Decision variables 0, if at least one site within distance D k is opened j zk j 1, if all sites within distance D k are closed j Kj Kj 1 Kj 1 min cij D1 j (D 2 j D1 ) z1 j j ... (D j D j )z j i S S - set of opened plants 102
  • 103. The PMP: alternative formulation, Cornuejols et al. 1980 n Ki 1 f (z, y ) Di1 ( Dik 1 Dik ) zik min j 1 k 1 m s.t. yi p - p opened facilities i 1 k D - either at least one facility is open within i zik yj 1, i 1,..., n k 1,..., K i or zi k 1 j:d ij Dik - for every client it is an opened facility in some ziKi 0, i 1,..., n neighbourhood z ik 0, i 1,..., n - zi k 1 iff all the sites within Dik are k 1,..., K i closed yj {0,1}, j 1,..., m for each client i Di1 ,..., DiK i - sorted distances 103
  • 104. The PMP: alternative formulation, Cornuejols et al. 1980 Example (Elloumi,2009) 1 1 6 5 3 4 client1 : D1 1 D12 2 3 D1 4 1 2 3 4 2 1 2 3 5 client2 : D2 1 D2 2 D2 3 D2 6 C 1 1 2 3 3 3 client3 : D3 1 2 3 4 D3 2 D3 3 D3 5 4 3 1 8 2 client4 : D1 3 2 D4 8 4 1 2 3 4 client5 : D5 2 D5 3 D5 4 D5 5 Objective: client1 : 1 ( 2 1) z11 (4 2) z 21 + client2 : 1 ( 2 1) z12 (3 2) z 22 (6 3) z 32 only distinct + client3 : 1 ( 2 1) z13 (3 2) z 23 (5 3) z 33 (in a column) distances are + client4 : 3 (8 3) z14 meaningful + client5 : 2 (3 2) z15 ( 4 3) z 25 (5 4) z 35 8 z11 2 z 21 z12 z 22 3 z 32 z13 z 23 2 z 33 5 z14 z15 z 25 z 35 13 coefficients 104
  • 105. The PMP: alternative formulation, Cornuejols et al. 1980 Example 1 6 5 3 4 1 2 1 2 3 5 plants 2 3 1 2 3 C client1 : D1 1 D1 2 D1 4 1 2 3 3 3 4 3 1 8 2 4 Constraints: client1 : z11 y1 y3 1 if plants 1 and 3 are closed ( y1 0, y3 0) z 21 y1 y3 y2 1 then all plants within distance D11=1 are closed z 31 y1 y3 y2 y4 1 and z11 1 105
  • 106. The PMP: alternative formulation, Cornuejols et al. 1980 Example (Elloumi,2009) 1 1 6 5 3 4 client1 : D1 1 D12 2 3 D1 4 1 2 3 4 2 1 2 3 5 client2 : D2 1 D2 2 D2 3 D2 6 C 1 1 2 3 3 3 client3 : D3 1 2 3 4 D3 2 D3 3 D3 5 4 3 1 8 2 client4 : D1 3 2 D4 8 4 1 2 3 4 client5 : D5 2 D5 3 D5 4 D5 5 Objective: client1 : 1 ( 2 1) z11 (4 2) z 21 + client2 : 1 ( 2 1) z12 (3 2) z 22 (6 3) z 32 only distinct + client3 : 1 ( 2 1) z13 (3 2) z 23 (5 3) z 33 (in a column) distances are + client4 : 3 (8 3) z14 meaningful + client5 : 2 (3 2) z15 ( 4 3) z 25 (5 4) z 35 8 z11 2 z 21 z12 z 22 3 z 32 z13 z 23 2 z 33 5 z14 z15 z 25 z 35 13 coefficients 106
  • 107. The PMP: alternative formulation, Cornuejols et al. 1980 Example 1 6 5 3 4 Objective: 2 1 2 3 5 8 z11 2 z 21 z12 z 22 3z32 z13 C 1 2 3 3 3 z 23 2 z33 5 z14 z15 z 25 z35 4 3 1 8 2 Constraints: y1 y 2 y3 y 4 p z 22 y2 y3 1 z 35 y1 y3 y4 1 z11 y1 y3 1 z 23 y2 y4 1 z 42 y1 y2 y3 y4 1 z12 y2 1 z 24 y1 y2 y3 y4 1 z 43 y1 y2 y3 y4 1 z13 y4 1 z 25 y3 y4 1 z 45 y1 y2 y3 y4 1 z14 y1 y2 y3 1 z 31 y1 y2 y3 y4 1 z 31 0, z 42 0, z 43 0 z15 y4 1 z 32 y2 y3 y4 1 z 24 0, z 45 0 z 21 y1 y2 y3 1 z 33 y2 y3 y4 1 z jk 0 j 1,..., 5; k 1,..., K j yi {0,1}i 1,..., 4 13 coefficients, 23 linear constr., 12 non-negativity constr., 4 Boolean 107
  • 108. The PMP: a tighter formulation, Elloumi 2009 k A possible definition of variables z j : zk j (1 yi ), j 1,..., n; k 1,..., K j i:cij D k j Or recursively: z1 j (1 yi ), j 1,..., n; i:cij D1 j zk j zk 1 j (1 yi ), j 1,..., n; k 2,...,K j i:cij D k j Thus: z11 y1 y3 1 z11 y1 y3 1 e.g. is equivalent to z 21 y1 y2 y3 1 z 21 y2 z11 108
  • 109. The PMP: a tighter formulation, Elloumi 2009 n Kj 1 f ( z, y ) D1 j (Dk j 1 Dk )z k j j min j 1 k 1 m s.t. yi p i 1 j 1,..., n z1 j yi 1, j 1,..., n zk j yi z k 1, j k 2,..., K j i:cij D k j i:cij D k j Kj zj 0, j 1,..., n j 1,..., n j 1,..., n zk yi 1, zk j 0, k 1,..., K j j k 1,..., K j i:cij D k j yi {0,1}, i 1,..., m Cornuejols et al. 1980 Kj for each client j D1 ,..., D j j - sorted distances 109
  • 110. The PMP: a tighter formulation, Elloumi 2009 Let V j k set of facilities within D j k : V j k {i : cij Djk} Rule R1 : For any client j , if V j1 is a singleton { yi } then z j1 1 yi holds for any feasible solution. Variable z j1 can be substituted by (1 yi ) and constraint z j1 yi 1 that defines variable z j1 can be eliminated . 1 2 3 3 1 6 5 3 4 client 2 : D2 1 D2 2 D2 3 D2 6 2 1 2 3 5 some facility C facility 2 1 2 3 3 3 1 within D2 is open is open 4 3 1 8 2 ( z1 2 0) ( y2 1) Informally: if for client j some neighbourhood k contains only one facility i then there is a simple relation between k z1 2 1 y2 corresponding variables z j 1 yi 110
  • 111. The PMP: a tighter formulation, Elloumi 2009 Rule R2 : If for any j, k, j', k', V j k Vi' k' then z j k z j' k' holds for any feasible solution. Variable z j' k' can be replaced by z j k and constraint z j' k' k' y j z j' k'-1 that i:cij' D j' defines variable z j' k' can be eliminated . 1 1 6 5 3 4 client 1 : D1 1 D12 2 3 D1 4 2 1 2 3 5 V11 {1,3} V12 {1,2 ,3} V13 {1,2 ,3,4} C 1 2 3 3 3 1 2 4 3 1 8 2 client 4 : D4 3 D4 8 1 V4 {1,2,3} V42 {1,2,3,4} Informally: if two clients have equal neighbourhoods then the corresponding z-variables are 2 equivalent and in the objective z1 z1 4 function terms containing them 111 can be added.