Matched filter

Receiver Structure
   Matched filter: match source impulse and maximize SNR
    – grx to maximize the SNR at the sampling time/output
   Equalizer: remove ISI
   Timing
    – When to sample. Eye diagram
   Decision
    – d(i) is 0 or 1                                   Figure 7.20
                             Noise na(t)
                                                    i ⋅T

d(i)         gTx(t)                        gRx(t)             r (iT ) = r0 (iT ) + n(iT )

                                                                      S
                                                                        → max
                                             ?                        N
          EE 541/451 Fall 2006
Matched Filter
   Input signal s(t)+n(t)




   Maximize the sampled SNR=s(T0)/n(T0) at time T0




          EE 541/451 Fall 2006
Matched filter example
      Received SNR is maximized at time T0
                                                                  S
             Matched Filter: optimal receive filter for maximized
                                                                  N


example:

  gTx (t )                                 gTx (−t )       gTx (T0 − t ) = g Rx (t )




                     T0 t             T0               t                         T0    t
      transmit filter                                              receive filter
                                                                    (matched)
               EE 541/451 Fall 2006
Equalizer
   When the channel is not ideal, or when signaling is not Nyquist,
    There is ISI at the receiver side.
   In time domain, equalizer removes ISR.
   In frequency domain, equalizer flat the overall responses.
   In practice, we equalize the channel response using an equalizer




          EE 541/451 Fall 2006
Zero-Forcing Equalizer
   The overall response at the detector input must satisfy Nyquist’s
    criterion for no ISI:




   The noise variance at the output of the equalizer is:




    – If the channel has spectral nulls, there may be significant noise
      enhancement.

          EE 541/451 Fall 2006
Transversal Transversal Zero-Forcing Equalizer




   If Ts<T, we have a fractionally-spaced equalizer




   For no ISI, let:



          EE 541/451 Fall 2006
Zero-Forcing Equalizer continue
   Zero-forcing equalizer, figure 7.21 and example 7.3


   Example: Consider a baud-rate sampled equalizer for a system
    for which




   Design a zero-forcing equalizer having 5 taps.




          EE 541/451 Fall 2006
MMSE Equalizer
   In the ISI channel model, we need to estimate data input
    sequence xk from the output sequence yk
   Minimize the mean square error.




          EE 541/451 Fall 2006
Adaptive Equalizer
   Adapt to channel changes; training sequence




          EE 541/451 Fall 2006
Decision Feedback Equalizer
   To use data decisions made on the basis of precursors to take
    care of postcursors
   Consists of feedforward, feedback, and decision sections
    (nonlinear)
   DFE outperforms the linear equalizer when the channel has
    severe amplitude distortion or shape out off.




          EE 541/451 Fall 2006
Different types of equalizers
   Zero-forcing equalizers ignore the additive noise and may
    significantly amplify noise for channels with spectral nulls
   Minimum-mean-square error (MMSE) equalizers minimize the mean-
    square error between the output of the equalizer and the transmitted
    symbol. They require knowledge of some auto and cross-correlation
    functions, which in practice can be estimated by transmitting a known
    signal over the channel
   Adaptive equalizers are needed for channels that are time-varying
   Blind equalizers are needed when no preamble/training sequence is
    allowed, nonlinear
   Decision-feedback equalizers (DFE’s) use tentative symbol decisions
    to eliminate ISI, nonlinear
   Ultimately, the optimum equalizer is a maximum-likelihood sequence
    estimator, nonlinear
           EE 541/451 Fall 2006
Timing Extraction
   Received digital signal needs to be sampled at precise instants.
    Otherwise, the SNR reduced. The reason, eye diagram
   Three general methods
    – Derivation from a primary or a secondary standard. GPS, atomic
      closk
        x   Tower of base station
        x   Backbone of Internet
    – Transmitting a separate synchronizing signal, (pilot clock, beacon)
        x   Satellite
    – Self-synchronization, where the timing information is extracted
      from the received signal itself
        x   Wireless
        x   Cable, Fiber

            EE 541/451 Fall 2006
Example
   Self Clocking, RZ




   Contain some clocking information. PLL




         EE 541/451 Fall 2006
Timing/Synchronization Block Diagram
   Figure 2.3
   After equalizer, rectifier and clipper
   Timing extractor to get the edge and then amplifier
   Train the phase shifter which is usually PLL
   Limiter gets the square wave of the signal
   Pulse generator gets the impulse responses




          EE 541/451 Fall 2006
Timing Jitter
   Random forms of jitter: noise, interferences, and mistuning of
    the clock circuits.
   Pattern-dependent jitter results from clock mistuning and,
    amplitude-to-phase conversion in the clock circuit, and ISI,
    which alters the position of the peaks of the input signal
    according to the pattern.
   Pattern-dependent jitter propagates
   Jitter reduction
    – Anti-jitter circuits
    – Jitter buffers
    – Dejitterizer



          EE 541/451 Fall 2006
Bit Error Probability
                                Noise na(t)
                                                         i ⋅T

  d(i)             gTx(t)                     gRx(t)                   r0 (i T ) + n(iT )


We assume:            • binary transmission with d (i ) ∈ {d 0 , d1}
                      • transmission system fulfills 1st Nyquist criterion
                      • noise   n(iT), independent of data source
                                                                       p N (n )


  Probability density function (pdf) of        n(iT)
  Mean and variance

                                                                                      n
         EE 541/451 Fall 2006
Conditional pdfs
The transmission system induces two conditional pdfs depending on d (i )

  • if d (i ) = d 0                           • if d (i ) = d1
    p0 ( x ) = p N ( x − d 0 )                   p1 ( x) = p N ( x − d1 )

    p0 ( x )                                     p1 ( x)




                                         x
                d0                                                          d1   x



               EE 541/451 Fall 2006
Probability of wrong decisions
                                                 Placing a threshold             S
         p0 ( x )                                                      p1 ( x)
                                                Probability of
                                                wrong decision


                                                                   x                                                 x
                        d0           S                                                        S       d1
                    ∞                                                                     S

          Q0 = ∫ p0 ( x) dx                                                    Q1 =
                                                                                          ∫ p ( x)dx
                                                                                              1
                    S                                                                    −∞

When we define P0 and P1 as equal a-priori probabilities of d 0 and d1
                                                          (P0 = P = 1 )
we will get the bit error probability                             1  2
                                 ∞                        S                    S
Pb = P0Q0 + P Q1 =
             1
                             1
                             2   ∫s p ( x)dx + ∫ p ( x)dx =
                                 S
                                       0
                                                      1
                                                      2
                                                          −∞
                                                               1
                                                                       1
                                                                       2   +   ∫[
                                                                               −∞
                                                                                     1
                                                                                     2   p1 ( x) − 1 p0 ( x ) ] dx
                                                                                                   2
                                 1 24
                                   4 3
                                      S
                                 1−   ∫ p0 ( x ) dx
                                      −∞



          EE 541/451 Fall 2006
Conditions for illustrative solution
                                1                                                                  d 0 + d1
         With    P1 = P0 =       and        pN (− x) = pN ( x)                         ⇒    S=
                                                                                                       2
                                2
                                                                                     S
                                            1                                 
                                                   S

                                        Pb = 1 + ∫ p1 ( x) dx − ∫ p0 ( x ) dx 
                                            2  −∞              −∞             
                                                                d 0 − d1
               d +d                                      S ′=
 S           S= 0 1                        S                        2
                 2

 ∫ p ( x) dx = ∫ p
     1               N   ( x − d1 )dx      ∫ p ( x) dx
                                               1          =      ∫p        N   ( x ′ )d x ′        equivalently
−∞             −∞                         −∞                    −∞                                 S
                               with 
substituting x −d1 = x ′            d −d                 d −d                 ∫ p0 ( x ) dx =
              d +d
                                               0   1                             1       0
                                                           2                 −∞
 for x =S = 0 1                  1 2                   1
                2              = + ∫ p N ( x ′ )d x ′ = − ∫ p N ( x ′ )d x ′     d1 − d 0

       d 0 + d1       d 0− d 1   2 0                   2 0                   1      2
⇒S ′ =          − d1=                                                           + ∫ p N ( x ' ) dx '
           2             2                      d −d     1       0           2      0
                                        1         2
                                                             
                                  Pb = 1 − 2 ∫ p N ( x )dx 
                                        2        0          


              EE 541/451 Fall 2006
Special Case: Gaussian distributed noise

  Motivation: • many independent interferers
                   • central limit theorem
                   • Gaussian distribution
                                                                  d1− d 0
                                   n   2
                                                                  x 
                                                                    2 −
                                                                                2
                         −
                  1                              1     2             
                        e 2σ                                  ∫
                                       2
                                                                  2σ
      pN ( n ) =
                                                                            2
                                       N
                                            Pb = 1 −          e    dx
                                                                      
                                                                            N

                 2π σ N                          2     2π σ N 0 0
                                                   
                                                             1 24 
                                                                4 3
                                            no closed solution

  Definition of Error Function and Error Function Complement

                           x
                 2    − x′
                               2

       erf( x) =   ∫ e d x′
                 π 0
                                                 erfc( x) = 1 − erf( x )



    EE 541/451 Fall 2006
Error function and its complement
   function y = Q(x)
    y = 0.5*erfc(x/sqrt(2));
                            2.5
                                                           erf(x)
                                                           erfc(x)
                              2


                            1.5
          erf(x), erfc(x)




                              1


                            0.5


                              0


                            -0.5


                              -1


                            -1.5
                                -3   -2   -1   0   1   2             3
                                               x

                EE 541/451 Fall 2006
Bit error rate with error function complement
                                          d1 − d 0
                                                               x2       
              1    2             1           2           −
                                                                                  1     d − d0 
                                              ∫
                                                                 2
                                                              2σ N
          Pb = 1 −                                   e              d x     Pb = erfc 1      
              2
                
                    π            2σ N         0                         
                                                                                   2     2 2σ N 
                                                                       
                                 Expressions with E S and N 0
antipodal: d1 = + d ; d 0 = − d                                         unipolar d1= + d ; d 0 = 0
    1      d −d      1       d                                           1      d         1       d2     
Pb = erfc  1 0       = erfc                                          Pb = erfc 
                                                                                    2 2σ      = erfc 
                                                                                               2               
    2      2 2σ      2       2σ                                          2                          8σ N
                                                                                                            2   
                N               N                                                    N                   
   1      d2      1       SNR                                           1      d2 / 2  1       SNR 
  = erfc          = erfc 
                                                                         = erfc          = erfc      
   2      2σ N
         
              2    2
                            2                                           2      4σ N  2
                                                                                        2           
                                                                                                      4 
                                                                                          
     d2              ES                                                       d2 / 2        ES
SNR = 2       =                                                          SNR = 2     =
     σN     matched N / 2
                     0                                                         σ N matched N 0 / 2

                1     ES                                                             1      ES          
            Pb = erfc
                      N                            Q function                   Pb = erfc              
                2      0                                                             2      2 N0        
                                                                                                          

          EE 541/451 Fall 2006
Bit error rate for unipolar and antipodal transmission

   BER vs. SNR

                                                                     theoretical
                   -1
              10                                                     simulation
                                                     unipolar


                   -2
              10
        BER




                                 antipodal
                   -3
              10



                   -4
              10
                   -2     0      2           4   6        8     10
                                      ES
                                         in dB
                                      N0
          EE 541/451 Fall 2006
1 de 23

Recomendados

Introduction to equalization por
Introduction to equalizationIntroduction to equalization
Introduction to equalizationHarshit Srivastava
6K visualizações20 slides
Lecture13 por
Lecture13Lecture13
Lecture13INDHULEKSHMI M.C
945 visualizações30 slides
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN) por
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)
ADDITTIVE WHITE GAUSIAN NOIS ( AWGN)mohammedalimahdi
5.3K visualizações68 slides
Digital communication unit II por
Digital communication unit IIDigital communication unit II
Digital communication unit IIGangatharan Narayanan
7.5K visualizações77 slides
Equalization por
EqualizationEqualization
Equalization@zenafaris91
26.5K visualizações18 slides
Companding & Pulse Code Modulation por
Companding & Pulse Code ModulationCompanding & Pulse Code Modulation
Companding & Pulse Code ModulationYeshudas Muttu
3.2K visualizações42 slides

Mais conteúdo relacionado

Mais procurados

Delta modulation por
Delta modulationDelta modulation
Delta modulationmpsrekha83
1.3K visualizações21 slides
Digital modulation techniques por
Digital modulation techniquesDigital modulation techniques
Digital modulation techniquessrkrishna341
47.6K visualizações53 slides
pulse shaping and equalization por
pulse shaping and equalizationpulse shaping and equalization
pulse shaping and equalizationremyard
3.9K visualizações36 slides
Communication systems v4 por
Communication systems v4Communication systems v4
Communication systems v4babak danyal
4K visualizações36 slides
Dc unit 2 por
Dc unit 2Dc unit 2
Dc unit 2kaivalyayanamadala
494 visualizações89 slides
Du binary signalling por
Du binary signallingDu binary signalling
Du binary signallingsrkrishna341
13.7K visualizações9 slides

Mais procurados(20)

Delta modulation por mpsrekha83
Delta modulationDelta modulation
Delta modulation
mpsrekha831.3K visualizações
Digital modulation techniques por srkrishna341
Digital modulation techniquesDigital modulation techniques
Digital modulation techniques
srkrishna34147.6K visualizações
pulse shaping and equalization por remyard
pulse shaping and equalizationpulse shaping and equalization
pulse shaping and equalization
remyard3.9K visualizações
Communication systems v4 por babak danyal
Communication systems v4Communication systems v4
Communication systems v4
babak danyal4K visualizações
Du binary signalling por srkrishna341
Du binary signallingDu binary signalling
Du binary signalling
srkrishna34113.7K visualizações
Adaptive equalization por Oladapo Abiodun
Adaptive equalizationAdaptive equalization
Adaptive equalization
Oladapo Abiodun11.7K visualizações
Discrete Fourier Transform por Abhishek Choksi
Discrete Fourier TransformDiscrete Fourier Transform
Discrete Fourier Transform
Abhishek Choksi20.7K visualizações
Analog communication por Preston King
Analog communicationAnalog communication
Analog communication
Preston King48.8K visualizações
Design of IIR filters por op205
Design of IIR filtersDesign of IIR filters
Design of IIR filters
op20539.8K visualizações
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals por Amr E. Mohamed
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
Amr E. Mohamed3.7K visualizações
PULSE CODE MODULATION (PCM) por vishnudharan11
PULSE CODE MODULATION (PCM)PULSE CODE MODULATION (PCM)
PULSE CODE MODULATION (PCM)
vishnudharan1163.3K visualizações
Digital Modulation Techniques ppt por Pankaj Singh
Digital Modulation Techniques pptDigital Modulation Techniques ppt
Digital Modulation Techniques ppt
Pankaj Singh15.4K visualizações
Phase Shift Keying & π/4 -Quadrature Phase Shift Keying por Naveen Jakhar, I.T.S
Phase Shift Keying & π/4 -Quadrature Phase Shift KeyingPhase Shift Keying & π/4 -Quadrature Phase Shift Keying
Phase Shift Keying & π/4 -Quadrature Phase Shift Keying
Naveen Jakhar, I.T.S26.7K visualizações
Modulation por sristykp
ModulationModulation
Modulation
sristykp14.3K visualizações
Digital communication system por babak danyal
Digital communication systemDigital communication system
Digital communication system
babak danyal88.9K visualizações
Optical Fiber Communication Part 3 Optical Digital Receiver por Madhumita Tamhane
Optical Fiber Communication Part 3 Optical Digital ReceiverOptical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital Receiver
Madhumita Tamhane11.3K visualizações

Similar a Matched filter

Quadrature amplitude modulation qam transmitter por
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterAsaad Drake
7.4K visualizações16 slides
00e isi por
00e isi00e isi
00e isijaihooo
466 visualizações12 slides
Speech signal time frequency representation por
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representationNikolay Karpov
1.5K visualizações25 slides
z transforms por
z transformsz transforms
z transformsShahbaz Goshtasebi
24.3K visualizações73 slides
Hilbert por
HilbertHilbert
Hilberthonkahonka
2.5K visualizações7 slides
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-... por
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Frank Nielsen
343 visualizações17 slides

Similar a Matched filter(20)

Quadrature amplitude modulation qam transmitter por Asaad Drake
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitter
Asaad Drake7.4K visualizações
00e isi por jaihooo
00e isi00e isi
00e isi
jaihooo466 visualizações
Speech signal time frequency representation por Nikolay Karpov
Speech signal time frequency representationSpeech signal time frequency representation
Speech signal time frequency representation
Nikolay Karpov1.5K visualizações
z transforms por Shahbaz Goshtasebi
z transformsz transforms
z transforms
Shahbaz Goshtasebi24.3K visualizações
Hilbert por honkahonka
HilbertHilbert
Hilbert
honkahonka2.5K visualizações
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-... por Frank Nielsen
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Frank Nielsen343 visualizações
Dsp U Lec06 The Z Transform And Its Application por taha25
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Application
taha256.7K visualizações
Pulse amplitude modulation por Vishal kakade
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulation
Vishal kakade6.2K visualizações
Dsp U Lec09 Iir Filter Design por taha25
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
taha255.2K visualizações
Pulse Code Modulation por ZunAib Ali
Pulse Code Modulation Pulse Code Modulation
Pulse Code Modulation
ZunAib Ali3.4K visualizações
EC8553 Discrete time signal processing por ssuser2797e4
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
ssuser2797e4403 visualizações
Isi and nyquist criterion por srkrishna341
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterion
srkrishna34127.5K visualizações
A Novel Methodology for Designing Linear Phase IIR Filters por IDES Editor
A Novel Methodology for Designing Linear Phase IIR FiltersA Novel Methodology for Designing Linear Phase IIR Filters
A Novel Methodology for Designing Linear Phase IIR Filters
IDES Editor341 visualizações
mimo por ptariann1280
mimomimo
mimo
ptariann1280661 visualizações
Fourier Analysis por Ali Osman Öncel
Fourier AnalysisFourier Analysis
Fourier Analysis
Ali Osman Öncel777 visualizações
Fourier Analysis por Ali Osman Öncel
Fourier AnalysisFourier Analysis
Fourier Analysis
Ali Osman Öncel600 visualizações
Distributions por adnan gilani
DistributionsDistributions
Distributions
adnan gilani99 visualizações
Fourier supplementals por Partha_bappa
Fourier supplementalsFourier supplementals
Fourier supplementals
Partha_bappa271 visualizações
Basics of Analogue Filters por op205
Basics of Analogue FiltersBasics of Analogue Filters
Basics of Analogue Filters
op2055.2K visualizações
Fourier transform por Naveen Sihag
Fourier transformFourier transform
Fourier transform
Naveen Sihag25K visualizações

Último

Network Source of Truth and Infrastructure as Code revisited por
Network Source of Truth and Infrastructure as Code revisitedNetwork Source of Truth and Infrastructure as Code revisited
Network Source of Truth and Infrastructure as Code revisitedNetwork Automation Forum
42 visualizações45 slides
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院 por
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院IttrainingIttraining
80 visualizações8 slides
The Research Portal of Catalonia: Growing more (information) & more (services) por
The Research Portal of Catalonia: Growing more (information) & more (services)The Research Portal of Catalonia: Growing more (information) & more (services)
The Research Portal of Catalonia: Growing more (information) & more (services)CSUC - Consorci de Serveis Universitaris de Catalunya
136 visualizações25 slides
Data Integrity for Banking and Financial Services por
Data Integrity for Banking and Financial ServicesData Integrity for Banking and Financial Services
Data Integrity for Banking and Financial ServicesPrecisely
56 visualizações26 slides
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates por
Keynote Talk: Open Source is Not Dead - Charles Schulz - VatesKeynote Talk: Open Source is Not Dead - Charles Schulz - Vates
Keynote Talk: Open Source is Not Dead - Charles Schulz - VatesShapeBlue
119 visualizações15 slides
Don’t Make A Human Do A Robot’s Job! : 6 Reasons Why AI Will Save Us & Not De... por
Don’t Make A Human Do A Robot’s Job! : 6 Reasons Why AI Will Save Us & Not De...Don’t Make A Human Do A Robot’s Job! : 6 Reasons Why AI Will Save Us & Not De...
Don’t Make A Human Do A Robot’s Job! : 6 Reasons Why AI Will Save Us & Not De...Moses Kemibaro
29 visualizações38 slides

Último(20)

Network Source of Truth and Infrastructure as Code revisited por Network Automation Forum
Network Source of Truth and Infrastructure as Code revisitedNetwork Source of Truth and Infrastructure as Code revisited
Network Source of Truth and Infrastructure as Code revisited
Network Automation Forum42 visualizações
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院 por IttrainingIttraining
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
IttrainingIttraining80 visualizações
Data Integrity for Banking and Financial Services por Precisely
Data Integrity for Banking and Financial ServicesData Integrity for Banking and Financial Services
Data Integrity for Banking and Financial Services
Precisely56 visualizações
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates por ShapeBlue
Keynote Talk: Open Source is Not Dead - Charles Schulz - VatesKeynote Talk: Open Source is Not Dead - Charles Schulz - Vates
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates
ShapeBlue119 visualizações
Don’t Make A Human Do A Robot’s Job! : 6 Reasons Why AI Will Save Us & Not De... por Moses Kemibaro
Don’t Make A Human Do A Robot’s Job! : 6 Reasons Why AI Will Save Us & Not De...Don’t Make A Human Do A Robot’s Job! : 6 Reasons Why AI Will Save Us & Not De...
Don’t Make A Human Do A Robot’s Job! : 6 Reasons Why AI Will Save Us & Not De...
Moses Kemibaro29 visualizações
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti... por ShapeBlue
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...
ShapeBlue46 visualizações
HTTP headers that make your website go faster - devs.gent November 2023 por Thijs Feryn
HTTP headers that make your website go faster - devs.gent November 2023HTTP headers that make your website go faster - devs.gent November 2023
HTTP headers that make your website go faster - devs.gent November 2023
Thijs Feryn28 visualizações
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or... por ShapeBlue
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
ShapeBlue88 visualizações
Why and How CloudStack at weSystems - Stephan Bienek - weSystems por ShapeBlue
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsWhy and How CloudStack at weSystems - Stephan Bienek - weSystems
Why and How CloudStack at weSystems - Stephan Bienek - weSystems
ShapeBlue111 visualizações
State of the Union - Rohit Yadav - Apache CloudStack por ShapeBlue
State of the Union - Rohit Yadav - Apache CloudStackState of the Union - Rohit Yadav - Apache CloudStack
State of the Union - Rohit Yadav - Apache CloudStack
ShapeBlue145 visualizações
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... por Bernd Ruecker
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
Bernd Ruecker50 visualizações
Scaling Knowledge Graph Architectures with AI por Enterprise Knowledge
Scaling Knowledge Graph Architectures with AIScaling Knowledge Graph Architectures with AI
Scaling Knowledge Graph Architectures with AI
Enterprise Knowledge53 visualizações
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P... por ShapeBlue
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
ShapeBlue82 visualizações
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive por Network Automation Forum
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLiveAutomating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Network Automation Forum46 visualizações
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue por ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueWhat’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
ShapeBlue131 visualizações
Business Analyst Series 2023 - Week 4 Session 7 por DianaGray10
Business Analyst Series 2023 -  Week 4 Session 7Business Analyst Series 2023 -  Week 4 Session 7
Business Analyst Series 2023 - Week 4 Session 7
DianaGray1080 visualizações
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... por TrustArc
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc77 visualizações
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... por ShapeBlue
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
ShapeBlue54 visualizações
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue por ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueCloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
ShapeBlue46 visualizações

Matched filter

  • 1. Receiver Structure  Matched filter: match source impulse and maximize SNR – grx to maximize the SNR at the sampling time/output  Equalizer: remove ISI  Timing – When to sample. Eye diagram  Decision – d(i) is 0 or 1 Figure 7.20 Noise na(t) i ⋅T d(i) gTx(t) gRx(t) r (iT ) = r0 (iT ) + n(iT ) S → max ? N EE 541/451 Fall 2006
  • 2. Matched Filter  Input signal s(t)+n(t)  Maximize the sampled SNR=s(T0)/n(T0) at time T0 EE 541/451 Fall 2006
  • 3. Matched filter example  Received SNR is maximized at time T0 S Matched Filter: optimal receive filter for maximized N example: gTx (t ) gTx (−t ) gTx (T0 − t ) = g Rx (t ) T0 t T0 t T0 t transmit filter receive filter (matched) EE 541/451 Fall 2006
  • 4. Equalizer  When the channel is not ideal, or when signaling is not Nyquist, There is ISI at the receiver side.  In time domain, equalizer removes ISR.  In frequency domain, equalizer flat the overall responses.  In practice, we equalize the channel response using an equalizer EE 541/451 Fall 2006
  • 5. Zero-Forcing Equalizer  The overall response at the detector input must satisfy Nyquist’s criterion for no ISI:  The noise variance at the output of the equalizer is: – If the channel has spectral nulls, there may be significant noise enhancement. EE 541/451 Fall 2006
  • 6. Transversal Transversal Zero-Forcing Equalizer  If Ts<T, we have a fractionally-spaced equalizer  For no ISI, let: EE 541/451 Fall 2006
  • 7. Zero-Forcing Equalizer continue  Zero-forcing equalizer, figure 7.21 and example 7.3  Example: Consider a baud-rate sampled equalizer for a system for which  Design a zero-forcing equalizer having 5 taps. EE 541/451 Fall 2006
  • 8. MMSE Equalizer  In the ISI channel model, we need to estimate data input sequence xk from the output sequence yk  Minimize the mean square error. EE 541/451 Fall 2006
  • 9. Adaptive Equalizer  Adapt to channel changes; training sequence EE 541/451 Fall 2006
  • 10. Decision Feedback Equalizer  To use data decisions made on the basis of precursors to take care of postcursors  Consists of feedforward, feedback, and decision sections (nonlinear)  DFE outperforms the linear equalizer when the channel has severe amplitude distortion or shape out off. EE 541/451 Fall 2006
  • 11. Different types of equalizers  Zero-forcing equalizers ignore the additive noise and may significantly amplify noise for channels with spectral nulls  Minimum-mean-square error (MMSE) equalizers minimize the mean- square error between the output of the equalizer and the transmitted symbol. They require knowledge of some auto and cross-correlation functions, which in practice can be estimated by transmitting a known signal over the channel  Adaptive equalizers are needed for channels that are time-varying  Blind equalizers are needed when no preamble/training sequence is allowed, nonlinear  Decision-feedback equalizers (DFE’s) use tentative symbol decisions to eliminate ISI, nonlinear  Ultimately, the optimum equalizer is a maximum-likelihood sequence estimator, nonlinear EE 541/451 Fall 2006
  • 12. Timing Extraction  Received digital signal needs to be sampled at precise instants. Otherwise, the SNR reduced. The reason, eye diagram  Three general methods – Derivation from a primary or a secondary standard. GPS, atomic closk x Tower of base station x Backbone of Internet – Transmitting a separate synchronizing signal, (pilot clock, beacon) x Satellite – Self-synchronization, where the timing information is extracted from the received signal itself x Wireless x Cable, Fiber EE 541/451 Fall 2006
  • 13. Example  Self Clocking, RZ  Contain some clocking information. PLL EE 541/451 Fall 2006
  • 14. Timing/Synchronization Block Diagram  Figure 2.3  After equalizer, rectifier and clipper  Timing extractor to get the edge and then amplifier  Train the phase shifter which is usually PLL  Limiter gets the square wave of the signal  Pulse generator gets the impulse responses EE 541/451 Fall 2006
  • 15. Timing Jitter  Random forms of jitter: noise, interferences, and mistuning of the clock circuits.  Pattern-dependent jitter results from clock mistuning and, amplitude-to-phase conversion in the clock circuit, and ISI, which alters the position of the peaks of the input signal according to the pattern.  Pattern-dependent jitter propagates  Jitter reduction – Anti-jitter circuits – Jitter buffers – Dejitterizer EE 541/451 Fall 2006
  • 16. Bit Error Probability Noise na(t) i ⋅T d(i) gTx(t) gRx(t) r0 (i T ) + n(iT ) We assume: • binary transmission with d (i ) ∈ {d 0 , d1} • transmission system fulfills 1st Nyquist criterion • noise n(iT), independent of data source p N (n ) Probability density function (pdf) of n(iT) Mean and variance n EE 541/451 Fall 2006
  • 17. Conditional pdfs The transmission system induces two conditional pdfs depending on d (i ) • if d (i ) = d 0 • if d (i ) = d1 p0 ( x ) = p N ( x − d 0 ) p1 ( x) = p N ( x − d1 ) p0 ( x ) p1 ( x) x d0 d1 x EE 541/451 Fall 2006
  • 18. Probability of wrong decisions Placing a threshold S p0 ( x ) p1 ( x) Probability of wrong decision x x d0 S S d1 ∞ S Q0 = ∫ p0 ( x) dx Q1 = ∫ p ( x)dx 1 S −∞ When we define P0 and P1 as equal a-priori probabilities of d 0 and d1 (P0 = P = 1 ) we will get the bit error probability 1 2 ∞ S S Pb = P0Q0 + P Q1 = 1 1 2 ∫s p ( x)dx + ∫ p ( x)dx = S 0 1 2 −∞ 1 1 2 + ∫[ −∞ 1 2 p1 ( x) − 1 p0 ( x ) ] dx 2 1 24 4 3 S 1− ∫ p0 ( x ) dx −∞ EE 541/451 Fall 2006
  • 19. Conditions for illustrative solution 1 d 0 + d1 With  P1 = P0 = and  pN (− x) = pN ( x) ⇒ S= 2 2 S 1  S Pb = 1 + ∫ p1 ( x) dx − ∫ p0 ( x ) dx  2  −∞ −∞  d 0 − d1 d +d S ′= S S= 0 1 S 2 2 ∫ p ( x) dx = ∫ p 1 N ( x − d1 )dx ∫ p ( x) dx 1 = ∫p N ( x ′ )d x ′ equivalently −∞ −∞ −∞ −∞ S with  substituting x −d1 = x ′ d −d d −d ∫ p0 ( x ) dx = d +d 0 1 1 0 2 −∞ for x =S = 0 1 1 2 1 2 = + ∫ p N ( x ′ )d x ′ = − ∫ p N ( x ′ )d x ′ d1 − d 0 d 0 + d1 d 0− d 1 2 0 2 0 1 2 ⇒S ′ = − d1= + ∫ p N ( x ' ) dx ' 2 2 d −d 1 0 2 0 1 2  Pb = 1 − 2 ∫ p N ( x )dx  2 0  EE 541/451 Fall 2006
  • 20. Special Case: Gaussian distributed noise Motivation: • many independent interferers • central limit theorem • Gaussian distribution d1− d 0 n 2  x  2 − 2 − 1 1 2  e 2σ ∫ 2 2σ pN ( n ) = 2 N  Pb = 1 − e dx  N 2π σ N 2 2π σ N 0 0   1 24  4 3 no closed solution Definition of Error Function and Error Function Complement x 2 − x′ 2 erf( x) = ∫ e d x′ π 0 erfc( x) = 1 − erf( x ) EE 541/451 Fall 2006
  • 21. Error function and its complement  function y = Q(x) y = 0.5*erfc(x/sqrt(2)); 2.5 erf(x) erfc(x) 2 1.5 erf(x), erfc(x) 1 0.5 0 -0.5 -1 -1.5 -3 -2 -1 0 1 2 3 x EE 541/451 Fall 2006
  • 22. Bit error rate with error function complement  d1 − d 0 x2  1 2 1 2 −  1  d − d0  ∫ 2 2σ N Pb = 1 − e d x  Pb = erfc 1  2  π 2σ N 0  2  2 2σ N    Expressions with E S and N 0 antipodal: d1 = + d ; d 0 = − d unipolar d1= + d ; d 0 = 0 1  d −d  1  d  1  d  1  d2  Pb = erfc  1 0  = erfc   Pb = erfc   2 2σ  = erfc   2  2  2 2σ  2  2σ  2  8σ N 2   N   N   N    1  d2  1  SNR  1  d2 / 2  1  SNR  = erfc   = erfc    = erfc   = erfc   2  2σ N  2  2   2  2  4σ N  2 2   4    d2 ES d2 / 2 ES SNR = 2 = SNR = 2 = σN matched N / 2 0 σ N matched N 0 / 2 1  ES  1  ES  Pb = erfc  N  Q function Pb = erfc   2  0  2  2 N0    EE 541/451 Fall 2006
  • 23. Bit error rate for unipolar and antipodal transmission  BER vs. SNR theoretical -1 10 simulation unipolar -2 10 BER antipodal -3 10 -4 10 -2 0 2 4 6 8 10 ES in dB N0 EE 541/451 Fall 2006