SlideShare uma empresa Scribd logo
1 de 30
Reduced Order Observers
for Linear Systems
SOLO HERMELIN
Updated: 08.12.08
Table of Content
SOLO
Reduced Order Observers for Linear Systems
SOLO
Reduced Order Observers for Linear Systems




∈∈∈+=
∈∈∈∈+=
pxmpxnpx
nxmnxnmxnx
RDRCRyuDxCy
RBRARuRxuBxAx
1
11
Plant:
We want to construct a Observer such that it’s output will asymptotically converge
to .x
xˆ
SOLO
Reduced Order Observers for Linear Systems




∈∈∈+=
∈∈∈∈+=
pxmpxnpx
nxmnxnmxnx
RDRCRyuDxCy
RBRARuRxuBxAx
1
11
Plant:
Assume: npCrank pxn ≤=
Find:
( )xnpn
RC −
⊥ ∈ such that:
nxn
C
C






⊥
is nonsingular.
Solution: Find the Singular Value Decomposition (SVD) of C
( )[ ] H
CpnpxCCpxn nxnpxppxp
VUC −Σ= 0
where H means Transpose of a matrix and complex conjugate of it’s elements, and:
nC
H
C
H
CCpC
H
C
H
CC IVVVVIUUUU ==== ;
( )
( ) ( )nxnnpxpp
ppC
diagIdiagI
diagpxp
1,,1,1,1,,1,1
0,,,, 2121


==
>≥≥≥=Σ σσσσσσ
( ) ( ) ( ) ( ) ( ) ( )
[ ] H
CCxppnCxnpn nxnpnxpnpnxpn
VUC −−⊥−−⊥
Σ= −−⊥ 0Then:
UC is any orthogonal matrix and ΣC is any non-zero diagonal matrix.
SOLO
Reduced Order Observers for Linear Systems
Define:
We have : x
C
C
p
uDy






=




 −
⊥
( ) 1
: xpn
RpxCp −
⊥ ∈=
( ) 




 −
=




 −






= ⊥
−
⊥ p
uDy
CC
p
uDy
C
C
x ††
1

or : ( ) pCuDyCx
††
⊥+−=
where:
( ) nxpTT
RCCCC ∈=
−1† is the Right Pseudo-Inverse of C or pICC =†
( ) ( )pnnxTT
RCCCC −−
⊥⊥⊥⊥ ∈=
1† is the Right Pseudo-Inverse of C or pnICC −⊥⊥ =†
Then:
( ) ( )
( ) ( )








=








=





−−
−
⊥⊥⊥
⊥
⊥
⊥ pnxppn
pnpxp
I
I
CCCC
CCCC
CC
C
C





0
0
††
††
††
( ) nICCCC
C
C
CC =+=





⊥⊥
⊥
⊥
††††

SOLO
Reduced Order Observers for Linear Systems
We have:



+=
+=
uDxCy
uBxAx
( ) pCuDyCx
††
⊥+−=and:xCp ⊥=
( ) ( )[ ]{ }uBpCuDyCACuBxACxCp ++−=+== ⊥⊥⊥⊥
††
or:
( ) uBCuDyCACpCACp ⊥⊥⊥⊥ +−+= ††
We want to obtain an estimation of . If we add we can see that:ppˆ ( )uBxCyL −−
( )[ ]
 ( )
( )
0ˆ
ˆˆ
0
††
††
=−−−−=
−+−−=−−
−
⊥
⊥
uDpCCuDyCCy
uDpCuDyCCyuDxCy
pnpxpI

Apparently does not contain any information on , but let compute .py y
( ) ( )[ ]{ } uDuBpCuDyCACuDuBxACuDxCy  +++−=++=+= ⊥
ˆ††
SOLO
Reduced Order Observers for Linear Systems
We have:
Therefore contains the information on .py
( ) ( )[ ]{ } uDuBpCuDyCACuDuBxACuDxCy  +++−=++=+= ⊥
ˆ††
( ) uDuBCpCACuDyCACy  +++−= ⊥
ˆ††
Let estimate by using:p
( )
( )[ ]uDuBCpCACuDyCACyL
uBCuDyCACpCACp


−−−−−+
+−+=
⊥
⊥⊥⊥⊥
ˆ
ˆˆ
††
††
or:
( )[ ] ( ) ( )[ ]uBuDyCApCACLCuDyLp
td
d
+−+−=−− ⊥⊥
†† ˆˆ
( ) pCuDyCx
††
⊥+−=
SOLO
Reduced Order Observers for Linear Systems
We have:
( )[ ] ( ) ( )[ ]uBuDyCApCACLCuDyLp
td
d
+−+−=−− ⊥⊥
†† ˆˆ
( ) pCuDyCx ˆˆ ††
⊥+−=
SOLO
Reduced Order Observers for Linear Systems
We also have:
( )[ ] ( ) [ ]uBxACLCuDyLp
td
d
+−=−− ⊥
ˆˆ
( ) pCuDyCx ˆˆ ††
⊥+−=
SOLO
Reduced Order Observers for Linear Systems
One other
form: ( )[ ] ( )
( ) ( ) ( ) uBCLCuDyCACLC
pCACLCuDyLp
td
d
−+−−+
−=−−
⊥⊥
⊥⊥
†
† ˆˆ
( ) pCuDyCx ˆˆ ††
⊥+−=
SOLO
Reduced Order Observers for Linear Systems
And
another
form:
( )[ ] ( ) ( )[ ]
( ) ( )( ) ( ) uBCLCuDyLCCACLC
uDyLpCACLCuDyLp
td
d
−+−+−+
−−−=−−
⊥⊥⊥
⊥⊥
††
† ˆˆ
( )[ ] ( )( )uDyLCCuDyLpCx −++−−= ⊥⊥
††† ˆˆ
SOLO
Reduced Order Observers for Linear Systems
We have:
( )
( )[ ]uDuBCpCACuDyCACyL
uBCuDyCACpCACp


−−−−−+
+−+=
⊥
⊥⊥⊥⊥
ˆ
ˆˆ
††
††
Subtract those equations:
Define the estimation error:
( )
( )[ ]uDuBCpCACuDyCACyL
uBCuDyCACpCACp


−−−−−+
+−+=
⊥
⊥⊥⊥⊥
††
††
( ) ( )ppCACLppCACpp ˆˆˆ ††
−−−=− ⊥⊥⊥

ppp ˆ:~ −=
( ) pCACLCp ~~ †
⊥⊥ −=
p~We can see that ( the estimation error) is uncontrollable and is stable iff.
( )[ ] iCACLCi ∀<− ⊥⊥ 0Real
†
λ ppp →→ ˆ&0~
SOLO
Reduced Order Observers for Linear Systems
Note:
Define:
( )
( )
( ) ( ) ( )
( )
( ) ( ) ( )
H
C
pnxpnCxppn
pnpxC
pnxpnCxppn
pnpxC
xnpn
pxn
nxn
pxppxp
V
U
U
C
C








Σ
Σ








=








−−−
−
−−−
−
−⊥ ⊥⊥




0
0
0
0
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) 







−
=
















−
=








−−⊥−⊥−−−
−
− pxnxppnxnpn
pxn
xnpn
pxn
pnxpnxppn
pnpx
xnpn
pxn
CLC
C
C
C
IL
I
T
C pxp

 0
:
Since:
( )
[ ]
( ) ( ) 







=






















− −−
⊥
⊥− pn
p
pn
p
pn
p
I
I
IL
I
CC
C
C
IL
I
0
000 ††

Define:
[ ] [ ]
( )
[ ]†††††
0
: ⊥⊥
−
⊥ +=








= CLCC
IL
I
CCMH
pn
p

SOLO
Reduced Order Observers for Linear Systems
Note (continue – 1):
Define: CLCT −= ⊥:
Then:
( )[ ] ( ) ( )[ ]
( ) ( )( ) ( ) uBCLCuDyLCCACLC
uDyLpCACLCuDyLp
td
d
−+−+−+
−−−=−−
⊥⊥⊥
⊥⊥
††
† ˆˆ
( )[ ] ( )( )uDyLCCuDyLpCx −++−−= ⊥⊥
††† ˆˆ
[ ] [ ]†††
: ⊥⊥+= CLCCMH 
( )uDyLpz −−= ˆ:
( )
( )




−+=
+−+=
uDyHzMx
uBTuDyHATzMAT
td
zd
KF
ˆ

( )
( )
( )
( ) AT
C
T
HMAT
C
T
HATMAT
I
T
C
MH
I
I
MH
T
C
KF
n
pn
p
=





=













=













=





−





0
0
Those are the well known
Reduced Order Observer
Equations
SOLO
Reduced Order Observers for Linear Systems
Note (continue – 2):
Then:
( )
( )




−+=
+−+=
uDyHzMx
uBTuDyHATzMAT
td
zd
GF
ˆ

( )
( )
( )
( ) AT
C
T
HMAT
C
T
HATMAT
I
T
C
MH
I
I
MH
T
C
GF
n
pn
p
=





=













=













=





−





0
0
( ) CGCHATTMIAT
TMATATTFAT
DHSuSyHzMx
DGBTJuJyGzF
td
zd
n ==−=
−=−





−=++=
−=++=
:ˆ
:








=+
=+
−=
=−
−
0DHS
ITMCH
DGBTJ
CGTFAT
valueseigenstablehasF
n
nxpnxmnxq
qxpqxmqxq
nq
HSM
GJF
xz
xx
yHuSzMx
yGuJzFz
RRR
RRR
RR
∈∈∈
∈∈∈
∈∈
→




++=
++=
,,
,,
,ˆ,
ˆ
ˆ

SOLO
Observers
Generic Observer for a Linear Time Invariant (LTI) System
pxmpxnnxmnxn
pmn
DCBA
yux
uDxCy
uBxAx
RRRR
RRR
∈∈∈∈
∈∈∈



+=
+=
,,,
,,

Observer
nxpnxmnxq
qxpqxmqxq
nq
RSM
GJF
xz
xx
yRuSzMx
yGuJzFz
RRR
RRR
RR
∈∈∈
∈∈∈
∈∈
→




++=
++=
,,
,,
,ˆ,
ˆ
ˆ

A Necessary Condition for obtaining an Observer is that (A,C) is Observable.
The Observer will achieve
if and only if:
xx →ˆ








=+
=+
−=
=−
−
0DRS
ITGCR
DGBTJ
CGTFAT
valueseigenstablehasF
n
L.T.I. System
[ ] [ ]†††
: ⊥⊥+= CLCCMH CLCT −= ⊥:
HATGMATF == :&:
SOLO
Reduced Order Observers for Linear Systems
Let use a constant feedback from the
Reduced Order Observer to control the plant:
xK ˆ
The control is
xKrpCKxKru ˆ~†
−=+−= ⊥
( )[ ]
( ) ( )[ ]ppCpCuDyCKr
pCuDyCKrxKru
ˆ
ˆˆ
†††
††
−−+−−=
+−−=−=
⊥⊥
⊥
The augmented system is
( )
[ ]
[ ]










+





−=+=






−+=+−=






+











−
=








⊥
⊥⊥
⊥⊥
rD
p
x
CKKDCuDxCy
p
x
CKKrpCKxKru
u
B
p
x
CACLC
A
p
x
†
††
†
~
00
0
~




SOLO
Reduced Order Observers for Linear Systems
The augmented system is
( )
[ ]
[ ]






+





−=






+













−





+





−
=








⊥
⊥
⊥⊥
rD
p
x
CKKDCy
r
B
p
x
CKK
B
CACLC
A
p
x
†
†
†
000
0
~




or
The poles of the closed loop system are given by:
( )
[ ]






+





−=






+













−
−
=








⊥
⊥⊥
⊥
rD
p
x
CKKDCy
r
B
p
x
CACLC
CKBKBA
p
x
†
†
†
00~



( ) ( )
[ ] ( ) ( )[ ]    
ObservertheofPoles
pn
ControllertheofPoles
n
pn
n
CACLCIsKBAIs
CACLCIs
CKBKBAIs †
†
†
detdet
0
det ⊥⊥−
⊥⊥−
⊥
−−⋅+−=








−−
−+−
Hence the Reduced Order Controller has the “Separation Property” of the Controller and
Observer.
SOLO
Reduced Order Observers for Linear Systems
Compensator Transfer Function
By tacking the Laplace Transform of the compensator dynamics we obtain:
( )[ ] ( ) [ ]uBxACLCuDyLp
td
d
+−=−− ⊥
ˆˆ
( ) pCuDyCx ˆˆ ††
⊥+−=
xKu ˆ−=
( ) ppCCuDyCCxC
I
ˆˆˆ †
0
†
=+−= ⊥⊥⊥⊥

( )[ ] ( ) ( ) xKBACLCuDyLxCs ˆˆ −−=−− ⊥⊥
( ) ( ) ( )[ ]( ) xKBACLCKDLCsyLs xnpn
ˆ
−⊥⊥ −−−−=
( ) ( ) ( )[ ] ( ) ( ) 1
†ˆ mxxmpnpnnx yLsKBACLCKDLCsx −−⊥⊥ −−−−=
where
Therefore
( ) ( ) ( )[ ]( ) ( ) ( ) ( )[ ] ( ) ( )pnpnnxxnpn
IKBACLCKDLCsKBACLCKDLCs −−⊥⊥−⊥⊥ =−−−−−−−−
†
( ) ( ) ( )[ ] ( ) ( ) 1
†
mxxmpnpnnx yLsKBACLCKDLCsKu −−⊥⊥ −−−−−=
SOLO
Reduced Order Observers for Linear Systems
How to Find K & L For a Stable Closed Loop
This can be done by solving the following
Asymptotic Minimum Variance Control Problem:
xKu ˆ−=
( ) ( ){ } ( ) ( ) ( ){ }



+=
−===++=
uDxCy
tWwtwEtwExwuBxAx T
τδτ 0,0,00
( ) ( ) ( ) ( ){ } )(0lim definitepositiveRtuRtutxQtxEJ TT
t
>+=
∞→
System with no output noise to allow us to use a Reduced Order Observer.
The solution to this problem is:
where: PBRK T1−
=
and P is the solution of the Algebraic Riccati Equation:
01
=−++ −
PBRBPQAPPA TT or:
HT
T
ARic
AQ
BRBA
RicP =








−−
−
=
−1
Minimize:
A stabilizing solution (and unique) exists iff:
1 (A,B) is stabilizable
2 AH has no jω axis eigenvalues
If Q ≥ 0 then P ≥ 0
SOLO
Reduced Order Observers for Linear Systems
How to Find K & L For a Stable Closed Loop (continue – 1)
( ) wCuBCuDyCACpCACp
inputknown
⊥⊥⊥⊥⊥ ++−+=
  

1
††
( ) pCuDyCx
††
⊥+−=and:xCp ⊥=
and
( )wuBxACxCp ++== ⊥⊥

( ) ( )[ ]{ }
( ) wCuDuBCuDyCACpCAC
uDwuBpCuDyCACuDwuBxACuDxCy
inputknown
+++−+=
++++−=+++=+=
⊥
⊥
  


2
††
†† ˆ
The measurements are given by (instead of )y y
Let define:
†*†*
****
:,:
:,:,:,:
⊥⊥⊥
⊥
==
====
CACCCACA
wCvwCwyypx 
SOLO
Reduced Order Observers for Linear Systems
How to Find K & L For a Stable Closed Loop (continue – 2)
( ) wCuBCuDyCACpCACp
inputknown
⊥⊥⊥⊥⊥ ++−+=
  

1
††
( ) wCuDuBCuDyCACpCACy
inputknown
+++−+= ⊥   

2
††
Define:
†*†*
****
:,:
:,:,:,:
⊥⊥⊥
⊥
==
====
CACCCACA
wCvwCwyypx 
The Estimation Problem becomes:
( ) ∗∗∗∗
++= winputknownxAx 1
( ) ∗∗∗∗
++= vinputknownxCy 2
[ ] 







=








=
















⊥
⊥⊥⊥
**
**
00
00**
*
*
:
RS
SP
CWCCWC
CWCCWC
vw
v
w
E TTT
TT
TT

SOLO
Reduced Order Observers for Linear Systems
How to Find K & L For a Stable Closed Loop (continue – 3)
The Estimation Problem:
( ) ∗∗∗∗
++= winputknownxAx 1
( ) ∗∗∗∗
++= vinputknownxCy 2
[ ] 







=








=
















⊥
⊥⊥⊥
**
**
00
00**
*
*
:
RS
SP
CWCCWC
CWCCWC
vw
v
w
E TTT
TT
TT

The Solution to the Estimation Problem is:
( )( ) ( )[ ]( ) 1
0
†
0
1 −
⊥⊥
−∗∗∗
+=+= TTTT
CWCCACYCWCRCYSL
or
( )[ ] ( ) 1
0
†
0
−
⊥⊥ += TTT
CWCCCAYWCL
where
( )[ ] ( )
( )( ) ( )[ ]







−−−−
−−
=
∗−∗∗∗∗−∗∗∗
∗−∗∗∗−∗∗∗
CRSASRSP
CRCCRSA
RicY
T
TT
11
11
SOLO
Reduced Order Observers for Linear Systems
How to Find K & L For a Stable Closed Loop (continue – 4)
In explicit form (the Algebraic Riccati Equation) is:
But
( )[ ] ( )[ ] ( ) ( )( ) 0
1111
=−+−−+− ∗−∗∗∗∗−∗∗∗−∗∗∗∗−∗∗∗ TTT
SRSPYCRCYCRSAYYCRSA
( ) ( )
( ) ( )[ ] ( )pnnx
TT
nxnpn
TT
CACCWCCWIC
CACCWCCWCCACCRSA
−⊥
−
−⊥
⊥
−
⊥⊥⊥
∗−∗∗∗
−=
−=−
†1
00
†1
00
†1
( ) ( ) ( )
( ) ( ) †1
0
†
†1
0
†1
⊥
−
⊥
⊥
−
⊥
∗−∗∗
=
=
CACCWCCAC
CACCWCCACCRC
TTTT
TT
( ) ( )( ) ( )
( )[ ] TTT
n
TTTTT
CWCCWCCWIC
CWCCWCCWCCWCSRSP
⊥
−
⊥
−
⊥⊥⊥
∗−∗∗∗
−=
−=−
0
1
00
0
1
000
1
SOLO
Reduced Order Observers for Linear Systems
How to Find K & L For a Stable Closed Loop (continue – 5)
Therefore Y(n-p)x(n-p) is given by the following (n-p) Algebraic Riccati Equation:
( )[ ] ( )[ ]{ }T
TT
n
TT
n CACCWCCWICYYCACCWCCWIC
†1
00
†1
00 ⊥
−
⊥⊥
−
⊥ −+−
( ) ( ) YCACCWCCACY TTTT †1
0
†
⊥
−
⊥− ( )[ ] 00
1
00 =−+ ⊥
−
⊥
TTT
n CWCCWCCWIC
Note:
1 ( )[ ] ( ) ( ) ( )
( ) PCCWCCWI
CCWCCCWCWCCWCCWCCWICCWCCWIP
TT
n
T
I
TTTTT
n
TT
n
=−=
+−=−=
−
−−−−
1
00
1
00
1
00
1
00
21
00
2
2:
  
This is a Projection, since P2
= P, but oblique because P is
not symmetrical.
2 For W0 = In we get: ( ) ( ) ⊥⊥
−−
=−=−=− CCCCICCCCICCWCCWI n
TT
n
TT
n
††11
00
( ) ( ) ( ) ††††1
0
†
⊥⊥⊥
−
⊥ = CACCACCACCWCCAC TTTTTT
( )[ ] ††††1
00 ⊥⊥⊥⊥⊥⊥⊥
−
⊥ ==−
−
CACCACCCCACCWCCWIC
pnI
TT
n

( )[ ] TT
I
TTT
n CCCCCCCWCCWCCWIC ⊥⊥⊥⊥⊥⊥⊥
−
⊥ ==−

†
0
1
00
SOLO
Reduced Order Observers for Linear Systems
How to Find K & L For a Stable Closed Loop (continue – 6)
Hence, for W0=In, Y(n-p)x(n-p) is given by the following (n-p) Algebraic Riccati Equation:
Notice (continue – 1):
3 With this L , A*- L C* will have stable eigenvalues, but
2
( ) ( ) ( )  0
†††††
†
=+−+ ⊥⊥⊥
−
⊥⊥⊥⊥⊥
⊥⊥
T
CCI
TTT
CCYCACCACYCACYYCAC
n
( )[ ] ( ) ( ) ††
0
1†
†
†
CACYCCCCAYCL TTCC
C
TTT
⊥
=
−
⊥⊥
⊥⊥
=+=

( ) †††
** ⊥⊥⊥⊥⊥ −=−=− CACLCCACLCACCLA
Therefore has stable eigenvalues, and the
Reduced Order Estimator is stable
( ) †
⊥⊥ − CACLC
SOLO
Reduced Order Observers for Linear Systems
How to Find K & L For a Stable Closed Loop (continue – 7)
Notice (continue – 2):
4 Following P.J. Blanvillain and T.L. Johnson
(IEEE Tr. AC., Vol. AC-23, No.1, June 1978) this
Problem is equivalent to the following
( ) ( )



=
+=
xCy
WNxuBxAx 0,0~0
Given
Find the Dynamic Compensator Parameters (F, G, H, M)



+=
+=
yMzHu
yGzFz
Compensator
Which minimizes the Quadratic Performance Index:
( ) ( ) ( ) ( ) ( )[ ]






+= ∫
∞
0
,,, dttuRtutxQtxEMHGFJ TT
SOLO
Reduced Order Observers for Linear Systems
Let append to the Reduced Order Observer the Stable Transfer Matrix
( ) ( )








=+−=
−
DC
BA
DBAIsCsQ
ˆˆ
ˆˆ
:ˆˆˆˆ 1


=−−− uBCpCACyCACy ˆ††
The input to the Stable Transfer Function will be the same
as for the Reduced Order Observer.
References
SOLO
Kwakernaak, H., Sivan, R., “Linear Optimal Control Systems”, Wiley Inter-science,
1972, pg.335
Reduced Order Observers for Linear Systems
Gelb A. Ed, “Applied Optimal Estimation”, The Analytic Science Corporation, 1974,
pg.320
August 13, 2015 30
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 –2013
Stanford University
1983 – 1986 PhD AA

Mais conteúdo relacionado

Mais procurados

Discrete state space model 9th &10th lecture
Discrete  state space model   9th  &10th  lectureDiscrete  state space model   9th  &10th  lecture
Discrete state space model 9th &10th lectureKhalaf Gaeid Alshammery
 
Realimentacion del estado
Realimentacion del estadoRealimentacion del estado
Realimentacion del estadoAdan Aguirre
 
Routh hurwitz stability criterion
Routh hurwitz stability criterionRouth hurwitz stability criterion
Routh hurwitz stability criterionSouvik Dutta
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical SystemPurnima Pandit
 
Transient response analysis
Transient response analysisTransient response analysis
Transient response analysisasari_dear
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997JOAQUIN REA
 
State space analysis.pptx
State space analysis.pptxState space analysis.pptx
State space analysis.pptxRaviMuthamala1
 
Chapter 5 root locus analysis
Chapter 5 root locus analysisChapter 5 root locus analysis
Chapter 5 root locus analysisBin Biny Bino
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systemsAmr E. Mohamed
 
State equations for physical systems
State equations for physical systemsState equations for physical systems
State equations for physical systemsSarah Krystelle
 
Week 16 controllability and observability june 1 final
Week 16 controllability and observability june 1 finalWeek 16 controllability and observability june 1 final
Week 16 controllability and observability june 1 finalCharlton Inao
 
Ingeniería de control: Tema 3. El método del espacio de estados
Ingeniería de control: Tema 3. El método del espacio de estadosIngeniería de control: Tema 3. El método del espacio de estados
Ingeniería de control: Tema 3. El método del espacio de estadosSANTIAGO PABLO ALBERTO
 
Servosistemas 2º Bto
Servosistemas 2º BtoServosistemas 2º Bto
Servosistemas 2º Btorlopez33
 
Z transform
Z transformZ transform
Z transformnirav34
 
LYAPUNOV STABILITY PROBLEM SOLUTION
LYAPUNOV STABILITY PROBLEM SOLUTIONLYAPUNOV STABILITY PROBLEM SOLUTION
LYAPUNOV STABILITY PROBLEM SOLUTIONrohit kumar
 
Chapter1 - Signal and System
Chapter1 - Signal and SystemChapter1 - Signal and System
Chapter1 - Signal and SystemAttaporn Ninsuwan
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformNimithaSoman
 

Mais procurados (20)

Root Locus
Root Locus Root Locus
Root Locus
 
Discrete state space model 9th &10th lecture
Discrete  state space model   9th  &10th  lectureDiscrete  state space model   9th  &10th  lecture
Discrete state space model 9th &10th lecture
 
Realimentacion del estado
Realimentacion del estadoRealimentacion del estado
Realimentacion del estado
 
Routh hurwitz stability criterion
Routh hurwitz stability criterionRouth hurwitz stability criterion
Routh hurwitz stability criterion
 
State space analysis
State space analysisState space analysis
State space analysis
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
Transient response analysis
Transient response analysisTransient response analysis
Transient response analysis
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
 
State space analysis.pptx
State space analysis.pptxState space analysis.pptx
State space analysis.pptx
 
Chapter 5 root locus analysis
Chapter 5 root locus analysisChapter 5 root locus analysis
Chapter 5 root locus analysis
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
State equations for physical systems
State equations for physical systemsState equations for physical systems
State equations for physical systems
 
Z transform
 Z transform Z transform
Z transform
 
Week 16 controllability and observability june 1 final
Week 16 controllability and observability june 1 finalWeek 16 controllability and observability june 1 final
Week 16 controllability and observability june 1 final
 
Ingeniería de control: Tema 3. El método del espacio de estados
Ingeniería de control: Tema 3. El método del espacio de estadosIngeniería de control: Tema 3. El método del espacio de estados
Ingeniería de control: Tema 3. El método del espacio de estados
 
Servosistemas 2º Bto
Servosistemas 2º BtoServosistemas 2º Bto
Servosistemas 2º Bto
 
Z transform
Z transformZ transform
Z transform
 
LYAPUNOV STABILITY PROBLEM SOLUTION
LYAPUNOV STABILITY PROBLEM SOLUTIONLYAPUNOV STABILITY PROBLEM SOLUTION
LYAPUNOV STABILITY PROBLEM SOLUTION
 
Chapter1 - Signal and System
Chapter1 - Signal and SystemChapter1 - Signal and System
Chapter1 - Signal and System
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 

Destaque

Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles iiSolo Hermelin
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachSolo Hermelin
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iiiSolo Hermelin
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode ObserversSolo Hermelin
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutawaySolo Hermelin
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part iiSolo Hermelin
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Solo Hermelin
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part iSolo Hermelin
 

Destaque (14)

Anti ballistic missiles ii
Anti ballistic missiles iiAnti ballistic missiles ii
Anti ballistic missiles ii
 
Stabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization ApproachStabilization of linear time invariant systems, Factorization Approach
Stabilization of linear time invariant systems, Factorization Approach
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Aerodynamics part iii
Aerodynamics   part iiiAerodynamics   part iii
Aerodynamics part iii
 
Color theory
Color theoryColor theory
Color theory
 
Sliding Mode Observers
Sliding Mode ObserversSliding Mode Observers
Sliding Mode Observers
 
Aerodynamics part i
Aerodynamics   part iAerodynamics   part i
Aerodynamics part i
 
3 modern aircraft cutaway
3 modern aircraft cutaway3 modern aircraft cutaway
3 modern aircraft cutaway
 
Aerodynamics part ii
Aerodynamics   part iiAerodynamics   part ii
Aerodynamics part ii
 
Diffraction
Diffraction Diffraction
Diffraction
 
1 tracking systems1
1 tracking systems11 tracking systems1
1 tracking systems1
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)Slide Mode Control (S.M.C.)
Slide Mode Control (S.M.C.)
 
8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i8 fighter aircraft avionics-part i
8 fighter aircraft avionics-part i
 

Semelhante a Reduced order observers

12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final PresentationAmritesh Maitra
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxAYMENGOODKid
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachYang Hong
 
The Design of Reduced Order Controllers for the Stabilization of Large Scale ...
The Design of Reduced Order Controllers for the Stabilization of Large Scale ...The Design of Reduced Order Controllers for the Stabilization of Large Scale ...
The Design of Reduced Order Controllers for the Stabilization of Large Scale ...sipij
 
Discrete control2 converted
Discrete control2 convertedDiscrete control2 converted
Discrete control2 convertedcairo university
 
vibration of machines and structures
vibration of machines and structuresvibration of machines and structures
vibration of machines and structuresAniruddhsinh Barad
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...Belinda Marchand
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...nutkoon
 
controllability-and-observability.pdf
controllability-and-observability.pdfcontrollability-and-observability.pdf
controllability-and-observability.pdfLAbiba16
 
Normal probability distribution
Normal probability distributionNormal probability distribution
Normal probability distributionNadeem Uddin
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loopsSolo Hermelin
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsAmr E. Mohamed
 
Lyapunov-type inequalities for a fractional q, -difference equation involvin...
Lyapunov-type inequalities for a fractional q, -difference equation involvin...Lyapunov-type inequalities for a fractional q, -difference equation involvin...
Lyapunov-type inequalities for a fractional q, -difference equation involvin...IJMREMJournal
 
Automated theorem proving for special functions: the next phase
Automated theorem proving for special functions: the next phaseAutomated theorem proving for special functions: the next phase
Automated theorem proving for special functions: the next phaseLawrence Paulson
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式zoayzoay
 
Consider the system.docx
Consider the system.docxConsider the system.docx
Consider the system.docxhoneyarguelles
 
Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Rediet Moges
 

Semelhante a Reduced order observers (20)

12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space Approach
 
The Design of Reduced Order Controllers for the Stabilization of Large Scale ...
The Design of Reduced Order Controllers for the Stabilization of Large Scale ...The Design of Reduced Order Controllers for the Stabilization of Large Scale ...
The Design of Reduced Order Controllers for the Stabilization of Large Scale ...
 
Discrete control2 converted
Discrete control2 convertedDiscrete control2 converted
Discrete control2 converted
 
alt klausur
alt klausuralt klausur
alt klausur
 
vibration of machines and structures
vibration of machines and structuresvibration of machines and structures
vibration of machines and structures
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
 
controllability-and-observability.pdf
controllability-and-observability.pdfcontrollability-and-observability.pdf
controllability-and-observability.pdf
 
Normal probability distribution
Normal probability distributionNormal probability distribution
Normal probability distribution
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
 
Lyapunov-type inequalities for a fractional q, -difference equation involvin...
Lyapunov-type inequalities for a fractional q, -difference equation involvin...Lyapunov-type inequalities for a fractional q, -difference equation involvin...
Lyapunov-type inequalities for a fractional q, -difference equation involvin...
 
Automated theorem proving for special functions: the next phase
Automated theorem proving for special functions: the next phaseAutomated theorem proving for special functions: the next phase
Automated theorem proving for special functions: the next phase
 
微積分定理與公式
微積分定理與公式微積分定理與公式
微積分定理與公式
 
Consider the system.docx
Consider the system.docxConsider the system.docx
Consider the system.docx
 
Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03
 
Servo systems
Servo systemsServo systems
Servo systems
 

Mais de Solo Hermelin

Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizationsSolo Hermelin
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectoriesSolo Hermelin
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles iSolo Hermelin
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polarSolo Hermelin
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part ivSolo Hermelin
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iiiSolo Hermelin
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part iiSolo Hermelin
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hmsSolo Hermelin
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systemsSolo Hermelin
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instrumentsSolo Hermelin
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft WarheadSolo Hermelin
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerabilitySolo Hermelin
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - iiSolo Hermelin
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - iSolo Hermelin
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problemsSolo Hermelin
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 

Mais de Solo Hermelin (19)

Inner outer and spectral factorizations
Inner outer and spectral factorizationsInner outer and spectral factorizations
Inner outer and spectral factorizations
 
Keplerian trajectories
Keplerian trajectoriesKeplerian trajectories
Keplerian trajectories
 
Anti ballistic missiles i
Anti ballistic missiles iAnti ballistic missiles i
Anti ballistic missiles i
 
12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar12 performance of an aircraft with parabolic polar
12 performance of an aircraft with parabolic polar
 
11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv11 fighter aircraft avionics - part iv
11 fighter aircraft avionics - part iv
 
10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii10 fighter aircraft avionics - part iii
10 fighter aircraft avionics - part iii
 
9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii9 fighter aircraft avionics-part ii
9 fighter aircraft avionics-part ii
 
6 computing gunsight, hud and hms
6 computing gunsight, hud and hms6 computing gunsight, hud and hms
6 computing gunsight, hud and hms
 
4 navigation systems
4 navigation systems4 navigation systems
4 navigation systems
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
2 aircraft flight instruments
2 aircraft flight instruments2 aircraft flight instruments
2 aircraft flight instruments
 
2Anti-aircraft Warhead
2Anti-aircraft Warhead2Anti-aircraft Warhead
2Anti-aircraft Warhead
 
1 susceptibility vulnerability
1 susceptibility vulnerability1 susceptibility vulnerability
1 susceptibility vulnerability
 
15 sky cars
15 sky cars15 sky cars
15 sky cars
 
14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii14 fixed wing fighter aircraft- flight performance - ii
14 fixed wing fighter aircraft- flight performance - ii
 
13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i13 fixed wing fighter aircraft- flight performance - i
13 fixed wing fighter aircraft- flight performance - i
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 

Último

Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyDrAnita Sharma
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 

Último (20)

Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 

Reduced order observers

  • 1. Reduced Order Observers for Linear Systems SOLO HERMELIN Updated: 08.12.08
  • 2. Table of Content SOLO Reduced Order Observers for Linear Systems
  • 3. SOLO Reduced Order Observers for Linear Systems     ∈∈∈+= ∈∈∈∈+= pxmpxnpx nxmnxnmxnx RDRCRyuDxCy RBRARuRxuBxAx 1 11 Plant: We want to construct a Observer such that it’s output will asymptotically converge to .x xˆ
  • 4. SOLO Reduced Order Observers for Linear Systems     ∈∈∈+= ∈∈∈∈+= pxmpxnpx nxmnxnmxnx RDRCRyuDxCy RBRARuRxuBxAx 1 11 Plant: Assume: npCrank pxn ≤= Find: ( )xnpn RC − ⊥ ∈ such that: nxn C C       ⊥ is nonsingular. Solution: Find the Singular Value Decomposition (SVD) of C ( )[ ] H CpnpxCCpxn nxnpxppxp VUC −Σ= 0 where H means Transpose of a matrix and complex conjugate of it’s elements, and: nC H C H CCpC H C H CC IVVVVIUUUU ==== ; ( ) ( ) ( )nxnnpxpp ppC diagIdiagI diagpxp 1,,1,1,1,,1,1 0,,,, 2121   == >≥≥≥=Σ σσσσσσ ( ) ( ) ( ) ( ) ( ) ( ) [ ] H CCxppnCxnpn nxnpnxpnpnxpn VUC −−⊥−−⊥ Σ= −−⊥ 0Then: UC is any orthogonal matrix and ΣC is any non-zero diagonal matrix.
  • 5. SOLO Reduced Order Observers for Linear Systems Define: We have : x C C p uDy       =      − ⊥ ( ) 1 : xpn RpxCp − ⊥ ∈= ( )       − =      −       = ⊥ − ⊥ p uDy CC p uDy C C x †† 1  or : ( ) pCuDyCx †† ⊥+−= where: ( ) nxpTT RCCCC ∈= −1† is the Right Pseudo-Inverse of C or pICC =† ( ) ( )pnnxTT RCCCC −− ⊥⊥⊥⊥ ∈= 1† is the Right Pseudo-Inverse of C or pnICC −⊥⊥ =† Then: ( ) ( ) ( ) ( )         =         =      −− − ⊥⊥⊥ ⊥ ⊥ ⊥ pnxppn pnpxp I I CCCC CCCC CC C C      0 0 †† †† †† ( ) nICCCC C C CC =+=      ⊥⊥ ⊥ ⊥ †††† 
  • 6. SOLO Reduced Order Observers for Linear Systems We have:    += += uDxCy uBxAx ( ) pCuDyCx †† ⊥+−=and:xCp ⊥= ( ) ( )[ ]{ }uBpCuDyCACuBxACxCp ++−=+== ⊥⊥⊥⊥ †† or: ( ) uBCuDyCACpCACp ⊥⊥⊥⊥ +−+= †† We want to obtain an estimation of . If we add we can see that:ppˆ ( )uBxCyL −− ( )[ ]  ( ) ( ) 0ˆ ˆˆ 0 †† †† =−−−−= −+−−=−− − ⊥ ⊥ uDpCCuDyCCy uDpCuDyCCyuDxCy pnpxpI  Apparently does not contain any information on , but let compute .py y ( ) ( )[ ]{ } uDuBpCuDyCACuDuBxACuDxCy  +++−=++=+= ⊥ ˆ††
  • 7. SOLO Reduced Order Observers for Linear Systems We have: Therefore contains the information on .py ( ) ( )[ ]{ } uDuBpCuDyCACuDuBxACuDxCy  +++−=++=+= ⊥ ˆ†† ( ) uDuBCpCACuDyCACy  +++−= ⊥ ˆ†† Let estimate by using:p ( ) ( )[ ]uDuBCpCACuDyCACyL uBCuDyCACpCACp   −−−−−+ +−+= ⊥ ⊥⊥⊥⊥ ˆ ˆˆ †† †† or: ( )[ ] ( ) ( )[ ]uBuDyCApCACLCuDyLp td d +−+−=−− ⊥⊥ †† ˆˆ ( ) pCuDyCx †† ⊥+−=
  • 8. SOLO Reduced Order Observers for Linear Systems We have: ( )[ ] ( ) ( )[ ]uBuDyCApCACLCuDyLp td d +−+−=−− ⊥⊥ †† ˆˆ ( ) pCuDyCx ˆˆ †† ⊥+−=
  • 9. SOLO Reduced Order Observers for Linear Systems We also have: ( )[ ] ( ) [ ]uBxACLCuDyLp td d +−=−− ⊥ ˆˆ ( ) pCuDyCx ˆˆ †† ⊥+−=
  • 10. SOLO Reduced Order Observers for Linear Systems One other form: ( )[ ] ( ) ( ) ( ) ( ) uBCLCuDyCACLC pCACLCuDyLp td d −+−−+ −=−− ⊥⊥ ⊥⊥ † † ˆˆ ( ) pCuDyCx ˆˆ †† ⊥+−=
  • 11. SOLO Reduced Order Observers for Linear Systems And another form: ( )[ ] ( ) ( )[ ] ( ) ( )( ) ( ) uBCLCuDyLCCACLC uDyLpCACLCuDyLp td d −+−+−+ −−−=−− ⊥⊥⊥ ⊥⊥ †† † ˆˆ ( )[ ] ( )( )uDyLCCuDyLpCx −++−−= ⊥⊥ ††† ˆˆ
  • 12. SOLO Reduced Order Observers for Linear Systems We have: ( ) ( )[ ]uDuBCpCACuDyCACyL uBCuDyCACpCACp   −−−−−+ +−+= ⊥ ⊥⊥⊥⊥ ˆ ˆˆ †† †† Subtract those equations: Define the estimation error: ( ) ( )[ ]uDuBCpCACuDyCACyL uBCuDyCACpCACp   −−−−−+ +−+= ⊥ ⊥⊥⊥⊥ †† †† ( ) ( )ppCACLppCACpp ˆˆˆ †† −−−=− ⊥⊥⊥  ppp ˆ:~ −= ( ) pCACLCp ~~ † ⊥⊥ −= p~We can see that ( the estimation error) is uncontrollable and is stable iff. ( )[ ] iCACLCi ∀<− ⊥⊥ 0Real † λ ppp →→ ˆ&0~
  • 13. SOLO Reduced Order Observers for Linear Systems Note: Define: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) H C pnxpnCxppn pnpxC pnxpnCxppn pnpxC xnpn pxn nxn pxppxp V U U C C         Σ Σ         =         −−− − −−− − −⊥ ⊥⊥     0 0 0 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )         − =                 − =         −−⊥−⊥−−− − − pxnxppnxnpn pxn xnpn pxn pnxpnxppn pnpx xnpn pxn CLC C C C IL I T C pxp   0 : Since: ( ) [ ] ( ) ( )         =                       − −− ⊥ ⊥− pn p pn p pn p I I IL I CC C C IL I 0 000 ††  Define: [ ] [ ] ( ) [ ]††††† 0 : ⊥⊥ − ⊥ +=         = CLCC IL I CCMH pn p 
  • 14. SOLO Reduced Order Observers for Linear Systems Note (continue – 1): Define: CLCT −= ⊥: Then: ( )[ ] ( ) ( )[ ] ( ) ( )( ) ( ) uBCLCuDyLCCACLC uDyLpCACLCuDyLp td d −+−+−+ −−−=−− ⊥⊥⊥ ⊥⊥ †† † ˆˆ ( )[ ] ( )( )uDyLCCuDyLpCx −++−−= ⊥⊥ ††† ˆˆ [ ] [ ]††† : ⊥⊥+= CLCCMH  ( )uDyLpz −−= ˆ: ( ) ( )     −+= +−+= uDyHzMx uBTuDyHATzMAT td zd KF ˆ  ( ) ( ) ( ) ( ) AT C T HMAT C T HATMAT I T C MH I I MH T C KF n pn p =      =              =              =      −      0 0 Those are the well known Reduced Order Observer Equations
  • 15. SOLO Reduced Order Observers for Linear Systems Note (continue – 2): Then: ( ) ( )     −+= +−+= uDyHzMx uBTuDyHATzMAT td zd GF ˆ  ( ) ( ) ( ) ( ) AT C T HMAT C T HATMAT I T C MH I I MH T C GF n pn p =      =              =              =      −      0 0 ( ) CGCHATTMIAT TMATATTFAT DHSuSyHzMx DGBTJuJyGzF td zd n ==−= −=−      −=++= −=++= :ˆ :         =+ =+ −= =− − 0DHS ITMCH DGBTJ CGTFAT valueseigenstablehasF n nxpnxmnxq qxpqxmqxq nq HSM GJF xz xx yHuSzMx yGuJzFz RRR RRR RR ∈∈∈ ∈∈∈ ∈∈ →     ++= ++= ,, ,, ,ˆ, ˆ ˆ 
  • 16. SOLO Observers Generic Observer for a Linear Time Invariant (LTI) System pxmpxnnxmnxn pmn DCBA yux uDxCy uBxAx RRRR RRR ∈∈∈∈ ∈∈∈    += += ,,, ,,  Observer nxpnxmnxq qxpqxmqxq nq RSM GJF xz xx yRuSzMx yGuJzFz RRR RRR RR ∈∈∈ ∈∈∈ ∈∈ →     ++= ++= ,, ,, ,ˆ, ˆ ˆ  A Necessary Condition for obtaining an Observer is that (A,C) is Observable. The Observer will achieve if and only if: xx →ˆ         =+ =+ −= =− − 0DRS ITGCR DGBTJ CGTFAT valueseigenstablehasF n L.T.I. System [ ] [ ]††† : ⊥⊥+= CLCCMH CLCT −= ⊥: HATGMATF == :&:
  • 17. SOLO Reduced Order Observers for Linear Systems Let use a constant feedback from the Reduced Order Observer to control the plant: xK ˆ The control is xKrpCKxKru ˆ~† −=+−= ⊥ ( )[ ] ( ) ( )[ ]ppCpCuDyCKr pCuDyCKrxKru ˆ ˆˆ ††† †† −−+−−= +−−=−= ⊥⊥ ⊥ The augmented system is ( ) [ ] [ ]           +      −=+=       −+=+−=       +            − =         ⊥ ⊥⊥ ⊥⊥ rD p x CKKDCuDxCy p x CKKrpCKxKru u B p x CACLC A p x † †† † ~ 00 0 ~    
  • 18. SOLO Reduced Order Observers for Linear Systems The augmented system is ( ) [ ] [ ]       +      −=       +              −      +      − =         ⊥ ⊥ ⊥⊥ rD p x CKKDCy r B p x CKK B CACLC A p x † † † 000 0 ~     or The poles of the closed loop system are given by: ( ) [ ]       +      −=       +              − − =         ⊥ ⊥⊥ ⊥ rD p x CKKDCy r B p x CACLC CKBKBA p x † † † 00~    ( ) ( ) [ ] ( ) ( )[ ]     ObservertheofPoles pn ControllertheofPoles n pn n CACLCIsKBAIs CACLCIs CKBKBAIs † † † detdet 0 det ⊥⊥− ⊥⊥− ⊥ −−⋅+−=         −− −+− Hence the Reduced Order Controller has the “Separation Property” of the Controller and Observer.
  • 19. SOLO Reduced Order Observers for Linear Systems Compensator Transfer Function By tacking the Laplace Transform of the compensator dynamics we obtain: ( )[ ] ( ) [ ]uBxACLCuDyLp td d +−=−− ⊥ ˆˆ ( ) pCuDyCx ˆˆ †† ⊥+−= xKu ˆ−= ( ) ppCCuDyCCxC I ˆˆˆ † 0 † =+−= ⊥⊥⊥⊥  ( )[ ] ( ) ( ) xKBACLCuDyLxCs ˆˆ −−=−− ⊥⊥ ( ) ( ) ( )[ ]( ) xKBACLCKDLCsyLs xnpn ˆ −⊥⊥ −−−−= ( ) ( ) ( )[ ] ( ) ( ) 1 †ˆ mxxmpnpnnx yLsKBACLCKDLCsx −−⊥⊥ −−−−= where Therefore ( ) ( ) ( )[ ]( ) ( ) ( ) ( )[ ] ( ) ( )pnpnnxxnpn IKBACLCKDLCsKBACLCKDLCs −−⊥⊥−⊥⊥ =−−−−−−−− † ( ) ( ) ( )[ ] ( ) ( ) 1 † mxxmpnpnnx yLsKBACLCKDLCsKu −−⊥⊥ −−−−−=
  • 20. SOLO Reduced Order Observers for Linear Systems How to Find K & L For a Stable Closed Loop This can be done by solving the following Asymptotic Minimum Variance Control Problem: xKu ˆ−= ( ) ( ){ } ( ) ( ) ( ){ }    += −===++= uDxCy tWwtwEtwExwuBxAx T τδτ 0,0,00 ( ) ( ) ( ) ( ){ } )(0lim definitepositiveRtuRtutxQtxEJ TT t >+= ∞→ System with no output noise to allow us to use a Reduced Order Observer. The solution to this problem is: where: PBRK T1− = and P is the solution of the Algebraic Riccati Equation: 01 =−++ − PBRBPQAPPA TT or: HT T ARic AQ BRBA RicP =         −− − = −1 Minimize: A stabilizing solution (and unique) exists iff: 1 (A,B) is stabilizable 2 AH has no jω axis eigenvalues If Q ≥ 0 then P ≥ 0
  • 21. SOLO Reduced Order Observers for Linear Systems How to Find K & L For a Stable Closed Loop (continue – 1) ( ) wCuBCuDyCACpCACp inputknown ⊥⊥⊥⊥⊥ ++−+=     1 †† ( ) pCuDyCx †† ⊥+−=and:xCp ⊥= and ( )wuBxACxCp ++== ⊥⊥  ( ) ( )[ ]{ } ( ) wCuDuBCuDyCACpCAC uDwuBpCuDyCACuDwuBxACuDxCy inputknown +++−+= ++++−=+++=+= ⊥ ⊥      2 †† †† ˆ The measurements are given by (instead of )y y Let define: †*†* **** :,: :,:,:,: ⊥⊥⊥ ⊥ == ==== CACCCACA wCvwCwyypx 
  • 22. SOLO Reduced Order Observers for Linear Systems How to Find K & L For a Stable Closed Loop (continue – 2) ( ) wCuBCuDyCACpCACp inputknown ⊥⊥⊥⊥⊥ ++−+=     1 †† ( ) wCuDuBCuDyCACpCACy inputknown +++−+= ⊥     2 †† Define: †*†* **** :,: :,:,:,: ⊥⊥⊥ ⊥ == ==== CACCCACA wCvwCwyypx  The Estimation Problem becomes: ( ) ∗∗∗∗ ++= winputknownxAx 1 ( ) ∗∗∗∗ ++= vinputknownxCy 2 [ ]         =         =                 ⊥ ⊥⊥⊥ ** ** 00 00** * * : RS SP CWCCWC CWCCWC vw v w E TTT TT TT 
  • 23. SOLO Reduced Order Observers for Linear Systems How to Find K & L For a Stable Closed Loop (continue – 3) The Estimation Problem: ( ) ∗∗∗∗ ++= winputknownxAx 1 ( ) ∗∗∗∗ ++= vinputknownxCy 2 [ ]         =         =                 ⊥ ⊥⊥⊥ ** ** 00 00** * * : RS SP CWCCWC CWCCWC vw v w E TTT TT TT  The Solution to the Estimation Problem is: ( )( ) ( )[ ]( ) 1 0 † 0 1 − ⊥⊥ −∗∗∗ +=+= TTTT CWCCACYCWCRCYSL or ( )[ ] ( ) 1 0 † 0 − ⊥⊥ += TTT CWCCCAYWCL where ( )[ ] ( ) ( )( ) ( )[ ]        −−−− −− = ∗−∗∗∗∗−∗∗∗ ∗−∗∗∗−∗∗∗ CRSASRSP CRCCRSA RicY T TT 11 11
  • 24. SOLO Reduced Order Observers for Linear Systems How to Find K & L For a Stable Closed Loop (continue – 4) In explicit form (the Algebraic Riccati Equation) is: But ( )[ ] ( )[ ] ( ) ( )( ) 0 1111 =−+−−+− ∗−∗∗∗∗−∗∗∗−∗∗∗∗−∗∗∗ TTT SRSPYCRCYCRSAYYCRSA ( ) ( ) ( ) ( )[ ] ( )pnnx TT nxnpn TT CACCWCCWIC CACCWCCWCCACCRSA −⊥ − −⊥ ⊥ − ⊥⊥⊥ ∗−∗∗∗ −= −=− †1 00 †1 00 †1 ( ) ( ) ( ) ( ) ( ) †1 0 † †1 0 †1 ⊥ − ⊥ ⊥ − ⊥ ∗−∗∗ = = CACCWCCAC CACCWCCACCRC TTTT TT ( ) ( )( ) ( ) ( )[ ] TTT n TTTTT CWCCWCCWIC CWCCWCCWCCWCSRSP ⊥ − ⊥ − ⊥⊥⊥ ∗−∗∗∗ −= −=− 0 1 00 0 1 000 1
  • 25. SOLO Reduced Order Observers for Linear Systems How to Find K & L For a Stable Closed Loop (continue – 5) Therefore Y(n-p)x(n-p) is given by the following (n-p) Algebraic Riccati Equation: ( )[ ] ( )[ ]{ }T TT n TT n CACCWCCWICYYCACCWCCWIC †1 00 †1 00 ⊥ − ⊥⊥ − ⊥ −+− ( ) ( ) YCACCWCCACY TTTT †1 0 † ⊥ − ⊥− ( )[ ] 00 1 00 =−+ ⊥ − ⊥ TTT n CWCCWCCWIC Note: 1 ( )[ ] ( ) ( ) ( ) ( ) PCCWCCWI CCWCCCWCWCCWCCWCCWICCWCCWIP TT n T I TTTTT n TT n =−= +−=−= − −−−− 1 00 1 00 1 00 1 00 21 00 2 2:    This is a Projection, since P2 = P, but oblique because P is not symmetrical. 2 For W0 = In we get: ( ) ( ) ⊥⊥ −− =−=−=− CCCCICCCCICCWCCWI n TT n TT n ††11 00 ( ) ( ) ( ) ††††1 0 † ⊥⊥⊥ − ⊥ = CACCACCACCWCCAC TTTTTT ( )[ ] ††††1 00 ⊥⊥⊥⊥⊥⊥⊥ − ⊥ ==− − CACCACCCCACCWCCWIC pnI TT n  ( )[ ] TT I TTT n CCCCCCCWCCWCCWIC ⊥⊥⊥⊥⊥⊥⊥ − ⊥ ==−  † 0 1 00
  • 26. SOLO Reduced Order Observers for Linear Systems How to Find K & L For a Stable Closed Loop (continue – 6) Hence, for W0=In, Y(n-p)x(n-p) is given by the following (n-p) Algebraic Riccati Equation: Notice (continue – 1): 3 With this L , A*- L C* will have stable eigenvalues, but 2 ( ) ( ) ( )  0 ††††† † =+−+ ⊥⊥⊥ − ⊥⊥⊥⊥⊥ ⊥⊥ T CCI TTT CCYCACCACYCACYYCAC n ( )[ ] ( ) ( ) †† 0 1† † † CACYCCCCAYCL TTCC C TTT ⊥ = − ⊥⊥ ⊥⊥ =+=  ( ) ††† ** ⊥⊥⊥⊥⊥ −=−=− CACLCCACLCACCLA Therefore has stable eigenvalues, and the Reduced Order Estimator is stable ( ) † ⊥⊥ − CACLC
  • 27. SOLO Reduced Order Observers for Linear Systems How to Find K & L For a Stable Closed Loop (continue – 7) Notice (continue – 2): 4 Following P.J. Blanvillain and T.L. Johnson (IEEE Tr. AC., Vol. AC-23, No.1, June 1978) this Problem is equivalent to the following ( ) ( )    = += xCy WNxuBxAx 0,0~0 Given Find the Dynamic Compensator Parameters (F, G, H, M)    += += yMzHu yGzFz Compensator Which minimizes the Quadratic Performance Index: ( ) ( ) ( ) ( ) ( )[ ]       += ∫ ∞ 0 ,,, dttuRtutxQtxEMHGFJ TT
  • 28. SOLO Reduced Order Observers for Linear Systems Let append to the Reduced Order Observer the Stable Transfer Matrix ( ) ( )         =+−= − DC BA DBAIsCsQ ˆˆ ˆˆ :ˆˆˆˆ 1   =−−− uBCpCACyCACy ˆ†† The input to the Stable Transfer Function will be the same as for the Reduced Order Observer.
  • 29. References SOLO Kwakernaak, H., Sivan, R., “Linear Optimal Control Systems”, Wiley Inter-science, 1972, pg.335 Reduced Order Observers for Linear Systems Gelb A. Ed, “Applied Optimal Estimation”, The Analytic Science Corporation, 1974, pg.320
  • 30. August 13, 2015 30 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 –2013 Stanford University 1983 – 1986 PhD AA