SlideShare uma empresa Scribd logo
1 de 102
2015
Supervisor:
Dr. Imad Ibrik
Preparedby:
Woroudturabi
Ahmadnasralla
4/28/2015
Tulkarim governorate network
& Sarra connection point
2
AN-Najah National University
Faculty of Engineering
Electrical Engineering Department
Introduction to Graduation Project
Optimum Performance of Tulkarim Governorate network
& Sarra Connection Point
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
Supervisor:
Dr. Imad Ibrik
Prepared by:
Woroud turabi
Ahmad nasralla
3
Acknowledgment:
Our first and greatest thanks are to Allah. He above all was, is,
and will be the source of help and guidance that counts. His help kept us
going through many frustrations and His guidance brought us back on track
when our frustrations tended to drive us astray.
Next, we would like to express our deep gratitude to our
supervisor Dr. Imad Ibrik for his effort and encouragement throughout the
preparation of this project.His Knowledge and endless support was a great
asset from which we learned plenty. He was very enthusiastic about the
project, which gave us a motive to work harder and harder.
We would like to thank friends who did their best whenever we
needed or asked for anything. No matter what the task was or how busy
they were, they always found the time.
Also we would like to thank our families that help us very much and
they were very generous with us.
It is difficult to acknowledge everyone who was involved in
preparation of this project by name. Nevertheless we appreciate their help
no matter how simple it might have been.
Finally, we owe our colleagues great thanks for supporting us
through our college years and for making those years the best years of our
life.
4
DISCLAIMER
This report was written by students at the Electrical and
Telecommunication Engineering Department, Faculty of
Engineering, An-Najah National University. It has not been
altered or corrected, other than editorial corrections, as a result of
assessment and it may contain language as well as content
errors. The views expressed in it together with any outcomes and
recommendations are solely those of the students. An-Najah
National University accepts no responsibility or liability for the
consequences of this report being used for a purpose other than
the purpose for which it was commissioned.
5
Contents:
List of tables and figures …………………………………………………………
IEC standards………………………………………………………………………………………..
Nomenclature or list of symbols………………………………………………
Abstract…………………………………………………………………………………..
Introduction ……………………………………………………………………………
Chapter 1: Tulkarim networks & Sarra connection point
Description of the networks………………………………………………………
Sourceof information……………………………………………………………….
Chapter 2: Transmission lines…
Electrical power transmission………………………………………
Type of transmission line…………………………………………….
Chapter 3: analysis for the existing networks
One line diagramfor networks…………………………………………………
Analysis of the networks……………………………………………………………
Problems in the networks…………………………………………………………
Chapter4: analysis of supply sarra connection point and
tulkarim from central substation
Improving thenetworkes …………………………………………………………………………
1. Tap changing
6
2. Power factor improvement
3. Changing over load transformer
Chapter5: Mechanical design of the network
Main Components of overhead lines…………………………………………………….
1. Conductors
2. Supports
3. Insulators
ImportantPoint………………………………………………………………………………………
Sag in Overhead Lines……………………………………………………………………………..
Calculation of Sag………………………………………………………………………………….
References………………………………………………………………………………...
Appendix…………………………………………………………………………………..
List of tables:
Table 1.1A: transformersof University station………………………………………………………….
1.2A: transformersof al karakonstation…….…………………………………………………..
1.1B: transformersof tulkarim1……………………………………………….…………………..
1.2B: transformersof tulkarim2…………………………………………..……………………….
1.3: R & X of transformers…………………………………………………………………………...
1.4A: the loadandpowerfactor of each transformer…………………………………………
1.4B: the loadand powerfactorof each transformer…………………………………………
Table 2.1: R&X of the ACSR ………………………………………………………………
2.2: R&X of the XLPE Cu……………………………………………………………….
7
2.3: R&X of the XLPE Al…………………………………………………………………..
Table 3.1A: rated powerof eachtransformer…………………………………………………..
3.1B: ratedpowerof each transformer…………………………………………………..
3.2A: full loaddescription……………………………………………………………………
3.2B: full loaddescription……………………………………………………………………
3.3A: summaryof total generation,loading&demand……………………
3.3B: summaryof total generation, loading&demand……………………
Table 4.1A : summaryof total generation,loading&demand……………………
4.1B: summaryof total generation,loading&demand……………………
4.2A(TAPCHANGE) : summaryof total generation,loading&demand…………….
4.2B(TAP CHANGE) : summaryof total generation,loading&demand…………….
4.3: The penaltiesof powerfactor………………………………………………………………………..
4.4A(POWERFACTOR) : summaryof total generation,loading&demand…………
4.4B(POWER FACTOR) : summaryof total generation,loading& demand…………
4.5 showsthe transformerswhichare neededtobe bought……………………………………
4.6 summarizesthe analysisresultsafterchangingtransformers………………………………….
Table 5.1: Numberof steel towersandtrusswhichwe need…………………………………………………
5.2: Numberof insulatorsthatwe needineachtype……………………………………………………
8
List of figures:
Figure a. a: the growthpatternin WestBank,Gaza Stripand the total Palestine forecast………….
3.1A: distributionof transformersanddistance betweenthem……………
3.1B: distributionof transformersanddistance betweenthem…………………………….
3.2A: one line diagramforSarra connectionpoint’stransformer………..
3.2B: one line diagramforTulkarimnetworks…………………………………
3.3A: firstrun for the network shows(s,v & pf)………………………………
3.3B: firstrun forthe networkshows(s,v & pf)………………………………
4.1 : 5% tap changer………………………………………………………………………………………………………..
5.1:steel cordaluminumconductor……………………………………………………………………………………..
5.2: pintype insulators……………………………………………………………………………………………………….
5.3: suspensioninsulators…………………………………………………………………………………………………..
5.4: straininsulator……………………………………………………………………………………………………………..
5.5: trusswitharm in front…………………………………………………………………………………………………….
5.6: tower……………………………………………………………………………………………………………………………..
5.7: sag inoverheadlines……………………………………………………………………………………………………….
5.8: sag whensupportsare at equal levels…………………………………………………………………………….
5.9: sag whensupportsare at unequal levels………………………………………………………………………….
5.10: Effectof windand ice loading……………………………………………………………………………………..
9
All units’ mentions in the
report are based on IEC
standards [1]
10
IEC standards
This is an incomplete list of standards published by the
International Electrotechnical Commission(IEC) 1]:
 IEC 60038 IEC StandardVoltages
 IEC 60044 Instrumenttransformers
 IEC 60028 International standardof resistance forcopper
 IEC 60076 Powertransformers
 IEC 60085 Electrical insulation
 IEC60228Conductorsofinsulated[2]
 IEC209 Aluminumstrandedconductorsteelreinforced [3]
 IEC 60871 capacitorbank [4]
11
Nomenclature or list of symbols:
A ampere(s)
V volt(s)
W watt(s)
KA kiloampere(s)
KV kilovolt(s)
Km kilometer(s)
MVA megavolt ampere(s)
MVAR megavolt-ampere(s) reactive
MW megawatt
ACCR aluminum conductor composite reinforced
Xlpe cross-linked polyethylene power cable
m meter
mm2 millimeter square
mm millimeter
12
{Abstract}:
The important aspects to be covered in this project are preparing the initial data
for Tulkarim Governoratenetwork & Sarra Connection Point and subjectto a load
flow study using modern softwarelike ETAP to improvethe voltage level and the
power factor and reduce the electrical losses by Reconnection the two networks
with Sarra electricity converter station which converts from33Kv to 11Kv instead
of (336.6) KV.
 The objectives of the project are:
 To be familiar with TulkarimGovernoratenetwork & Sarra
Connection Point
 To improvethe voltage level and decreasethe real power losses
 To increase the reliability of the networks
 To connect the two networks( Tulkarimand Sarra connection point)
to Sarra electricity converter station (16133 KV) directly without
relying on Israelinational electricity company
 Giving recommendation for the best systemto be used in Sarra
connection point and in Tulkarim (e.g reconnection, change
transformers).
 Giving recommendation for the design to be used in Sarra connection
point and in Tulkarim
 In order to do these objectives these method will be followed :
 Built the one line diagramfor ETAP program
 Collect the data for the networks including all parameters
 Load flow analysis and study for networks by Detect problems in
networks
13
Energy sector in Palestine
Energy sector in Palestine faced many difficulties becauseof occupation. Till now
there is no unified power systemin Palestine. Most of electrical energy depends
on IEC Company except Jericho which connected with Jordan and Gaza to Egypt
(17MW) through the interconnection project. The only generation plant is in Gaza
with generating capacity of 140MW. Distribution companies take the role of
distributing electricity in the different regions of Palestine.
The average annual growth rate of energy demand in westbank is 6.4%, and in
Gaza is 10% from1999 to 2005. [5]
Figure a. a: the growth patterninWestBank, Gaza Stripand the total Palestineforecast
14
 Introduction
15
Power system
The power system is complicated electrical networks used to supply, transmit, and use
electrical energy .the networks supply s towns containing houses hospitals industrial
region called CRID. the grid is contains generators that supply the power ,the
transmission system that carries the power from the generating center to the load center
and the distribution system that feeds the power to the nearby home and industries . the
majority of these system rely upon three-phase AC power –the standard for large-
scale power transmission and distribution across the modern world .specialized power
systems that do not always rely three-phase AC power are found in aircraft ,electric rail
systems , ocean linear and automobiles 1]
Power flow study:
In power engineering, the power flow study (also known as load-flow study) is an
important tool involving numerical analysis applied to a power system. Unlike traditional
circuit analysis, a power flow study usually uses simplified notation such as a one-line
diagram and per-unit system, and focuses on various forms of AC power (ie: reactive,
real, and apparent) rather than voltage and current. It analyzes the power systems in
normal steady-state operation. There exist a number of software implementations of
power flow studies. In addition to a power flow study itself, sometimes called the base
case, many software implementations perform other types of analysis, such as short-
circuit fault analysis and economic analysis. In particular, some programs use linear
programming to find the optimal power flow, the conditions which give the lowest cost
per kilowatt generated.
The great importance of power flow or load-flow studies is in the planning the future
expansion of power systems as well as in determining the best operation of existing
systems. The principal information obtained from the power flow study is the magnitude
and phase angle of the voltage at each bus and the real and reactive power flowing in
each line. Commercial power systems are usually too large to allow for hand solution of
the power flow. the first step in the load flow study is simulate the power system by the
one line diagram and collect the data and specification of all power system contents and
then translate this system to per unit circuit in order simplifies it ,this happened by
choose abases value in the power system .[6]
16
Bus classification:
Load bus: In these buses no generators are connected and hence the generated
real power PGi and reactive power QGi are taken as zero. The load drawn by these
buses are defined by real power -PLi and reactive power -QLi in which the negative
sign accommodates for the power flowing out of the bus. This is why these buses
are sometimes referred to as P-Q bus. The objective of the load flow is to find the
bus voltage magnitude |Vi| and its angle δi.[7]
Generator bus or voltage controlledbus:Theseare the buses wheregenerators
are connected. Thereforethe power generation in such buses is controlled
through a prime mover while the terminal voltage is controlled through the
generator excitation. Keeping the input power constant through turbine-governor
control and keeping the bus voltage constant using automatic voltage regulator,
we can specify constant PGi and | Vi | for these buses. This is why such buses are
also referred to as P-V buses. Itis to be noted that the reactive power supplied by
the generator QGi depends on the systemconfiguration and cannot be specified in
advance. Furthermorewe haveto find the unknown angle δi of the bus voltage.
[7]
Slack (swing) bus:Usually this bus is numbered 1 for the load flow studies. This
bus sets the angular reference for all the other buses. Sinceit is the angle
difference between two voltage sources that dictates the real and reactive power
flow between them, the particular angle of the slack bus is not important.
However it sets the reference against which angles of all the other bus voltages
are measured. For this reason the angle of this bus is usually chosen as 0°.
Furthermoreit is assumed that the magnitude of the voltage of this bus is
known.[7]
17
LLooaadd FFllooww eeqquuaattiioonnss::
11--GGaauussss--SSeeiiddeell mmeetthhoodd..
....22--NNeewwttoonn--RRaapphhssoonn mmeetthhoodd
GGaauussss--SSeeiiddeell mmeetthhoodd::
WWee aarree ccoonnssiiddeerriinngg aann iitteerraattiivvee ssoolluuttiioonn ttoo tthhee lliinneeaarr ssyysstteemm
wwhheerree iiss aann ssppaarrssee mmaattrriixx,, xx aanndd bb aarree vveeccttoorrss ooff lleennggtthh nn,, aanndd wwee aarree
ssoollvviinngg ffoorr xx.. IItteerraattiivvee ssoollvveerrss aarree aann aalltteerrnnaattiivvee ttoo ddiirreecctt mmeetthhooddss tthhaatt aatttteemmpptt ttoo
ccaallccuullaattee aann eexxaacctt ssoolluuttiioonn ttoo tthhee ssyysstteemm ooff eeqquuaattiioonnss.. IItteerraattiivvee mmeetthhooddss aatttteemmpptt
ttoo ffiinndd aa ssoolluuttiioonn ttoo tthhee ssyysstteemm ooff lliinneeaarr eeqquuaattiioonnss bbyy rreeppeeaatteeddllyy ssoollvviinngg tthhee
lliinneeaarr ssyysstteemm uussiinngg aapppprrooxxiimmaattiioonnss ttoo tthhee vveeccttoorr.. IItteerraattiioonnss ccoonnttiinnuuee uunnttiill tthhee
ssoolluuttiioonn iiss wwiitthhiinn aa pprreeddeetteerrmmiinneedd aacccceeppttaabbllee bboouunndd oonn tthhee eerrrroorr..
CCoommmmoonn iitteerraattiivvee mmeetthhooddss ffoorr ggeenneerraall mmaattrriicceess iinncclluuddee tthhee GGaauussss--JJaaccoobbii aanndd
GGaauussss--SSeeiiddeell,, wwhhiillee ccoonnjjuuggaattee ggrraaddiieenntt mmeetthhooddss eexxiisstt ffoorr ppoossiittiivvee ddeeffiinniittee
mmaattrriicceess.. CCrriittiiccaall iinn tthhee cchhooiiccee aanndd uussee ooff iitteerraattiivvee mmeetthhooddss iiss tthhee ccoonnvveerrggeennccee ooff
tthhee tteecchhnniiqquuee.. GGaauussss--JJaaccoobbii uusseess aallll vvaalluueess ffrroomm tthhee pprreevviioouuss iitteerraattiioonn,, wwhhiillee
GGaauussss--SSeeiiddeell rreeqquuiirreess tthhaatt tthhee mmoosstt rreecceenntt vvaalluueess bbee uusseedd iinn ccaallccuullaattiioonnss.. TThhee
GGaauussss--SSeeiiddeell mmeetthhoodd ggeenneerraallllyy hhaass bbeetttteerr ccoonnvveerrggeennccee tthhaann tthhee GGaauussss--JJaaccoobbii
mmeetthhoodd,, aalltthhoouugghh ffoorr ddeennssee mmaattrriicceess,, tthhee GGaauussss--SSeeiiddeell mmeetthhoodd iiss iinnhheerreennttllyy
sseeqquueennttiiaall.. BBeetttteerr ccoonnvveerrggeennccee mmeeaannss lleessss iitteerraattiioonn,, aanndd aa ffaasstteerr oovveerraallll
aallggoorriitthhmm,, aass lloonngg aass tthhee ssttrriicctt pprreecceeddeennccee rruulleess ccaann bbee oobbsseerrvveedd.. TThhee
ccoonnvveerrggeennccee ooff tthhee iitteerraattiivvee mmeetthhoodd mmuusstt bbee eexxaammiinneedd ffoorr tthhee aapppplliiccaattiioonn aalloonngg
wwiitthh aallggoorriitthhmm ppeerrffoorrmmaannccee ttoo eennssuurree tthhaatt aa uusseeffuull ssoolluuttiioonn ttoo ccaann bbee
ffoouunndd..
TThhee GGaauussss--SSeeiiddeell mmeetthhoodd ccaann bbee wwrriitttteenn aass::
18
TThhee rreepprreesseennttaattiioonn iinn eeqquuaattiioonn 22 iiss uusseedd iinn tthhee ddeevveellooppmmeenntt ooff tthhee ppaarraalllleell
aallggoorriitthhmm,, wwhhiillee tthhee eeqquuiivvaalleenntt mmaattrriixx--bbaasseedd rreepprreesseennttaattiioonn iinn eeqquuaattiioonn 33 iiss uusseedd
bbeellooww iinn ddiissccuussssiioonnss ooff aavvaaiillaabbllee ppaarraalllleelliissmm..
IItt iiss vveerryy ddiiffffiiccuulltt ttoo ddeetteerrmmiinnee iiff oonnee--sstteepp iitteerraattiivvee mmeetthhooddss,, lliikkee tthhee GGaauussss--SSeeiiddeell
mmeetthhoodd,, ccoonnvveerrggee ffoorr ggeenneerraall mmaattrriicceess.. NNeevveerrtthheelleessss,, ffoorr ssoommee ccllaasssseess ooff
mmaattrriicceess,, iitt iiss ppoossssiibbllee ttoo pprroovvee GGaauussss--SSeeiiddeell mmeetthhooddss ddoo ccoonnvveerrggee aanndd yyiieelldd tthhee
uunniiqquuee ssoolluuttiioonn ffoorr wwiitthh aannyy iinniittiiaall ssttaarrttiinngg vveeccttoorr .. RReeffeerreennccee [[44]]
pprroovveess tthheeoorreemmss ttoo sshhooww tthhaatt tthhiiss hhoollddss ffoorr bbootthh ddiiaaggoonnaallllyy ddoommiinnaanntt aanndd
ssyymmmmeettrriicc ppoossiittiivvee ddeeffiinniittee mmaattrriicceess.. TThhee pprrooooffss ooff tthheessee tthheeoorreemmss ssttaattee tthhaatt tthhee
GGaauussss--SSeeiiddeell mmeetthhoodd wwiillll ccoonnvveerrggee ffoorr tthheessee mmaattrriixx ttyyppeess;; hhoowweevveerr,, tthheerree iiss nnoo
eevviiddeennccee aass ttoo tthhee rraattee ooff ccoonnvveerrggeennccee..
OOrrddeerriinngg aa ssyymmmmeettrriicc ssppaarrssee mmaattrriixx iiss aaccttuuaallllyy lliittttllee mmoorree tthhaann cchhaannggiinngg tthhee llaabbeellss
aassssoocciiaatteedd wwiitthh nnooddeess iinn aann uunnddiirreecctteedd ggrraapphh.. MMooddiiffyyiinngg tthhee oorrddeerriinngg ooff aa ssppaarrssee
mmaattrriixx iiss ssiimmppllee ttoo ppeerrffoorrmm uussiinngg aa ppeerrmmuuttaattiioonn mmaattrriixx ooff eeiitthheerr zzeerrooss oorr oonneess
tthhaatt ssiimmppllyy ggeenneerraatteess eelleemmeennttaarryy rrooww aanndd ccoolluummnn eexxcchhaannggeess.. AAppppllyyiinngg tthhee
ppeerrmmuuttaattiioonn mmaattrriixx ttoo tthhee oorriiggiinnaall lliinneeaarr ssyysstteemm iinn eeqquuaattiioonn 11 yyiieellddss tthhee lliinneeaarr
ssyysstteemm
TThhaatt iiss ssoollvveedd uussiinngg tthhee ppaarraalllleell GGaauussss--SSeeiiddeell aallggoorriitthhmm.. WWhhiillee oorrddeerriinngg tthhee mmaattrriixx
ggrreeaattllyy ssiimmpplliiffiieess aacccceessssiinngg ppaarraalllleelliissmm iinnhheerreenntt wwiitthhiinn tthhee mmaattrriixx ssttrruuccttuurree,,
oorrddeerriinngg ccaann hhaavvee aann eeffffeecctt oonn ccoonnvveerrggeennccee [[66]]..
NNeewwttoonn--RRaapp ssoonn MMeetthhoodd::
IIff yyoouu''vvee eevveerr ttrriieedd ttoo ffiinndd aa rroooott ooff aa ccoommpplliiccaatteedd ffuunnccttiioonn aallggeebbrraaiiccaallllyy,, yyoouu mmaayy
hhaavvee hhaadd ssoommee ddiiffffiiccuullttyy.. UUssiinngg ssoommee bbaassiicc ccoonncceeppttss ooff ccaallccuulluuss,, wwee hhaavvee wwaayyss ooff
nnuummeerriiccaallllyy eevvaalluuaattiinngg rroooottss ooff ccoommpplliiccaatteedd ffuunnccttiioonnss.. CCoommmmoonnllyy,, wwee uussee tthhee
NNeewwttoonn--RRaapp ssoonn mmeetthhoodd.. TThhiiss iitteerraattiivvee pprroocceessss ffoolllloowwss aa sseett gguuiiddeelliinnee ttoo
aapppprrooxxiimmaattee oonnee rroooott,, ccoonnssiiddeerriinngg tthhee ffuunnccttiioonn,, iittss ddeerriivvaattiivvee,, aanndd aann iinniittiiaall xx--
vvaalluuee..[[66]]
YYoouu mmaayy rreemmeemmbbeerr ffrroomm aallggeebbrraa tthhaatt aa rroooott ooff aa ffuunnccttiioonn iiss aa zzeerroo ooff tthhee
ffuunnccttiioonn.. TThhiiss mmeeaannss tthhaatt aatt tthhee ""rroooott"" tthhee ffuunnccttiioonn eeqquuaallss zzeerroo.. WWee ccaann ffiinndd
19
tthheessee rroooottss ooff aa ssiimmppllee ffuunnccttiioonn ssuucchh aass:: ff((xx)) == xx22
--44 ssiimmppllyy bbyy sseettttiinngg tthhee ffuunnccttiioonn
ttoo zzeerroo,, aanndd ssoollvviinngg::
FF((xx)) == xx22
--44 == 00
((xx++22))((xx--22)) == 00
xx == 22 oorr xx == --22
The Newton-Rap son method uses an iterative process to approach one root of a
function. The specific root that the process locates depends on the initial,
arbitrarily chosen x-value.
Here, xn is the currentknown x-value, f(xn) represents the value of the function at
xn, and f'(xn) is the derivative (slope) at xn. xn+1 representthe next x-value that you
are trying to find. Essentially, f'(x), the derivative represents f(x)/dx(dx = delta-x).
Therefore, the term f(x)/f'(x) represents a value of dx.
TThhee mmoorree iitteerraattiioonn tthhaatt aarree rruunn,, tthhee cclloosseerr ddxx wwiillll bbee ttoo zzeerroo ((00))..
The Newton-Raphson method does not always work, however. Itruns into
problems in several places. First, consider the above example. Whatwould
happen if we chosean initial x-valueof x=0? We would have a "division by zero"
error, and would not be able to proceed. You may also consider operating the
process on the function f(x) = x1/3
, using an initial x-valueof x=1. Do the x-values
converge? Does the delta-x decrease toward zero (0)? 1
So, how does this relate to chemistry? Consider the van der Waals equation found
in the Gas Laws section of this text. Assuming that we have a set number of moles
of a set gas, not under ideal conditions, we can use the Newton-Raphson method
to solve for one of the three variables (temperature, pressure, or volume), based
on the other two. To do this, we need to use the van der Waals equation, and the
derivative of this equation, both seen below [6].
20
As you can see, the Van der Waals equation is quite complex. It is not possibleto
solveit algebraically, so a numerical method must be used. The Newton-Raphson
Method is the easiest and most dependable way to solveequations like this, even
though the equation and its derivative seem quite intimidating. Depending on the
conditions under which you are attempting to solvethis equation, severalof the
variables may be changing. So, it may be necessary to use partial derivatives. For
the purposes of this example, we are assuming thatpressure, temperature, and
volume are the only things changing, and that these values are all functions of
time. This avoids the useof a partial derivative; we simply differentiate all
variables with respect to time, as shown above. Somealgebraic manipulation of
the equation and/or its derivative may be needed depending on the specific
problem to be solved. Itis assumed that all of the variables but one are specified;
that variable is used in the expression for "xn+1" that Newton's method uses.
Performing Newton's method on this equation successfully would givea value of
that variable which gives a solution when the other variables are held constant at
the values you specified.
Real Power Losses
The real power losses: is the loss of the systembecauseof the voltage drop on the
busses.
In the load buses we must feed the load the power which is needed, put if the
voltage on the buses is very low the current become higher than beforeas the
following:
P = V*I *P.f
 P is constant, then:
If the voltage (V) is decreased the current (I) is increased,
∆P = 3*I2
* R
21
So that the reactive power losses will be increased.
To reduce the reactive power losses wemust increasethe voltage.
Reactive Power Compensation
CCeerrttaaiinn ccoonnssuummeerr ddeevviicceess nneeeedd nnoott oonnllyy aaccttiivvee bbuutt aallssoo rreeaaccttiivvee ppoowweerr.. SSuucchh
ddeevviicceess iinncclluuddee mmoottoorrss,, ddiisscchhaarrggee llaammppss aanndd ttrraannssffoorrmmeerrss.. TThhee aaccttuuaall wwoorrkk iiss
ddoonnee bbyy aaccttiivvee ppoowweerr,, aass iinn aallll eelleeccttrriiccaall ddeevviicceess.. RReeaaccttiivvee ppoowweerr iiss nneeeeddeedd ttoo
mmaaiinnttaaiinn tthhee mmaaggnneettiicc ffiieelldd..
RReeaaccttiivvee PPoowweerr CCoommppeennssaattiioonn iinn EElleeccttrriicc SSyysstteemmss iiss uussuuaallllyy ssttuuddiieedd aass aa
ccoonnssttrraaiinneedd SSiinnggllee--oobbjjeeccttiivvee OOppttiimmiizzaattiioonn PPrroobblleemm wwhheerree aann oobbjjeeccttiivvee ffuunnccttiioonn iiss
aa lliinneeaarr ccoommbbiinnaattiioonn ooff sseevveerraall ffaaccttoorrss,, ssuucchh aass,, iinnvveessttmmeenntt aanndd ttrraannssmmiissssiioonn
lloosssseess.. AAtt tthhee ssaammee ttiimmee,, ccoonnssttrraaiinnss lliimmiitt ootthheerr ppaarraammeetteerrss aass rreelliiaabbiilliittyy aanndd
vvoollttaaggee pprrooffiillee..
TThhee rreeaaccttiivvee ppoowweerr nneeeeddeedd bbyy ccoonnssuummeerr ddeevviicceess ccaann bbee pprroodduucceedd llooccaallllyy uussiinngg aa
ccoommppeennssaattiioonn ccaappaacciittoorr ppllaacceedd iinn tthhee vviicciinniittyy ooff ssuucchh ddeevviicceess
22
Components of power system
1.Power station
The power station of a power system consists of a prime mover, such as a
turbine driven by water, steam, or combustion gases that operate a system of
electric motors and generators. Most of the world's electric power is generated in
steam plants driven by coal, oil, nuclear energy, or gas. A smaller percentage of
the world’s electric power is generated by hydroelectric (waterpower), diesel, and
internal-combustion plants.[8]
2.Transformer
electric power systems transformer is a static device which transforms electrical
energy from one circuit to another without any direct electrical connection and
with help of mutual induction between to windings .it transforms power from one
circuit to another without changing its frequency but may be in different voltage
level .the transformer can work either as a step up or a step down voltage or
current. We have two types of transformers used in power system first one is
power transformer and the second is distribution transformer, power transformer
are used in the high voltage level usually in power station and in substation and
the distribution transformer are used in the medium and low voltage side
(consumer side) [8]
3.Transmission line
A transmission line is a material medium or structure that forms a path for
directing the transmission of energy from one place to another, such as
electromagnetic waves or acoustic waves as well as electric power transmission.
It use to carry the power from power station to the load that represent the
consumer ,it divided to long line and medium line and short line .
4.Load
Which it’s both reactive and real power and both of them are specified and both
voltage magnitude and angle are determined by the computer as part of solution, which
they’re both voltage magnitude and real power are specified and we will determine the
reactive power and angle by the computer program as part of solution so the generation
busses is one of the method to solve the parameter of the complex network. [8]
23
Chapter 1
Tulkarim Governorate networks & Sarra Connection
Point ….
1.1 description of the networks
Sarra connection point is fed by Israel Company, the capacity of this connection
point is 20MVA (rated) and the rated voltage is 33KV. This connection point
contains 92 distribution transformers with differentrating power depending on
the region (or the residential) and the consumption of energy. [9]
Table1.1A: transformers of University station
Transformer number Rating Rated power (KVA)
Tr1 southern 3311-6.6 10000
Tr2 madakh al- jneed 116.6-0.4 400
Tr3 amena saaed 116.6-0.4 160
Tr4 khalele 116.6-0.4 400
Tr5 jalal yaseen 116.6-0.4 400
Tr6 tayba 1 116.6-0.4 400
Tr7 tayba 2 116.6-0.4 400
Tr8 al ameria 116.6-0.4 630
Tr9 eskan almohandesen 116.6-0.4 250
Tr10 eskan Shinar 116.6-0.4 250
Tr11 bet wazan 116.6-0.4 250
Tr12 hajez 116.6-0.4 400
Tr13 jneed 116.6-0.4 400
Tr14 orabee 116.6-0.4 400
Tr15 alferdaws 116.6-0.4 630
Tr16 khateeb 116.6-0.4 630
Tr17 afonneh 116.6-0.4 630
Tr18 seha 116.6-0.4 400
Tr19 jaber 116.6-0.4 400
Tr20 msjed al makhfeha 116.6-0.4 400
Tr21 kamal jnblat 116.6-0.4 630
24
Tr22 etsalat 1 116.6-0.4 400
Tr23 etsalat 2 116.6-0.4 630
Tr24 reyada 116.6-0.4 630
Tr25 saydleh 116.6-0.4 630
Tr26 funon 116.6-0.4 1500
Tr27 tamred 116.6-0.4 1500
Tr28 oloom 116.6-0.4 1500
Tr29 hndesah 116.6-0.4 1500
Tr30 sejen jneed 116.6-0.4 630
Tr31 seefe 116.6-0.4 400
Tr32 eskanShinar khalfjneed 116.6-0.4 250
Tr33 al bydar 116.6-0.4 400
Table 1.2A: transformers of al karakon station
Transformers number Rating Rated power (KVA)
Tr1 karakon1 3311-6.6 10000
Tr2 karakon2 3311-6.6 10000
Tr3 karakon feeder 11-6.60.4 630
Tr4 heteen 11-6.60.4 400
Tr5 yasmeen hotel 11-6.60.4 630
Tr6 bab saha 11-6.60.4 630
Tr7 malhes 11-6.60.4 630
Tr8 aqaree bank 11-6.60.4 630
Tr9 Jordan bank 11-6.60.4 630
Tr10 othmanee 11-6.60.4 250
Tr11 revolee 11-6.60.4 630
Tr12 Palestine bank 11-6.60.4 400
Tr13 abo salha 11-6.60.4 630
Tr14 alkonee 11-6.60.4 630
Tr15 alsook alekhdar 11-6.60.4 500
Tr16 alhewaree 11-6.60.4 630
Tr17 tokan 11-6.60.4 630
25
Tr18 shakaa 11-6.60.4 400
Tr19 malhees 11-6.60.4 400
Tr20 alenjeehe 11-6.60.4 500
Tr21 kalbone1 11-6.60.4 630
Tr22 ksheka 11-6.60.4 400
Tr23 krom ashoor 11-6.60.4 250
Tr24 aeen al asel 11-6.60.4 400
Tr25 madakhet ras eleen 11-6.60.4 630
Tr26 salah deen 11-6.60.4 400
Tr27 Samsung 11-6.60.4 630
Tr28 el basha 11-6.60.4 630
Tr29 omer ben el aas 11-6.60.4 400
Tr30 kalboneh 2 11-6.60.4 250
Tr31 madakhet 24 11-6.60.4 630
Tr32 abo raed 11-6.60.4 630
Tr33 blaza 11-6.60.4 250
Tr34 takhasosee 11-6.60.4 1000
Tr35 sharea 24 11-6.60.4 630
Tr36 Kazan janobee 11-6.60.4 400
Tr37 jneed janobee 11-6.60.4 400
Tr38 karajat el jameaa 11-6.60.4 630
Tr39 maktabet el jameaa 11-6.60.4 400
Tr40 jameaa nor 11-6.60.4 400
Tr41 eskan naqabat 11-6.60.4 400
Tr42 sharea tel 11-6.60.4 630
Tr43 arade shinar 11-6.60.4 250
Tr44 Nablus jadeeda 11-6.60.4 630
Tr45 Iraq boreen 1 11-6.60.4 250
Tr46 Iraq boreen 2 11-6.60.4 250
Tr47 tel sharqee 11-6.60.4 400
Tr48 tel lehef 11-6.60.4 250
Tr49 tel el bald 11-6.60.4 250
26
Tr50 tel gharbee 11-6.60.4 400
Tr51 tareeq sarra 11-6.60.4 400
Tr52 tel madakha 11-6.60.4 250
Tr53 raze 11-6.60.4 400
Tr54 dardok 11-6.60.4 400
Tr55 joharee 11-6.60.4 400
Tr56 shohadaa 11-6.60.4 400
Tr57 qteshat 11-6.60.4 250
Tr58 el qaser 11-6.60.4 1000
Tr59 shanaa 11-6.60.4 250
Tulkarim Governorateis fed by IsraelCompany, and its contain two networks
1&2 the capacity of the firstone is 13MVA (rated) and the rated voltage is 22KV,
the second is 11.968 MVA (rated) and the voltage is 22KV also . These networks
contain 101 distribution transformers with differentrating power depending on
the region (or the residential) and the consumption of energy. 1
Table1.1B: transformers of tulkarim1
Transformers
number
RatingRated power
(KVA)
63022/0.4‫1خضوري‬
63022/0.4‫رقم‬ ‫1بئر‬
63022/0.4‫2خضوري‬
63022/0.4‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫1دوار‬
63022/0.4‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫2دوار‬
63022/0.4‫رقم‬ ‫2بئر‬
40022/0.4‫خضوري‬ ‫دوار‬
40022/0.4‫الدلهوم‬
40022/0.4‫د.ثابت‬
25022/0.4‫الجنوبي‬ ‫الحي‬
40022/0.4‫هواش‬
27
40022/0.4‫الغربي‬ ‫ارتاح‬
25022/0.4‫العاصي‬ ‫مصنع‬
25022/0.4‫المجاري‬ ‫برك‬
40022/0.4‫حسين‬ ‫ابو‬ ‫بئر‬
63022/0.4‫الميكانيك‬ ‫ورشه‬
40022/0.4‫الهوجي‬
40022/0.4‫1ارتاح‬
63022/0.4‫الصباح‬ ‫ارتاح‬
63022/0.4‫المحطه‬
63022/0.4‫الزكاة‬ ‫مستشفى‬
63022/0.4‫مفرق‬‫السلمان‬
63022/0.4‫الجالد‬ ‫ديوان‬
25022/0.4‫الفرنسي‬ ‫المخبز‬
40022/0.4‫السالم‬ ‫دوار‬
40022/0.4‫شوفة‬ ‫عزبة‬
25022/0.4‫فرعون‬
25022/0.4‫ناصر‬ ‫عزبة‬
25022/0.4‫خضرة‬ ‫ابو‬
25022/0.4‫ذياب‬ ‫بئر‬
25022/0.4‫ذياب‬ ‫حاره‬
36022/0.4‫مسقط‬ ‫مدرسه‬
25022/0.4‫عمير‬ ‫بن‬ ‫مصعب‬
25022/0.4‫صفيه‬ ‫ابو‬
63022/0.4‫المسلخ‬
25022/0.4‫المخابرات‬
40022/0.4‫الجراد‬ ‫عزبة‬
25022/0.4‫الددو‬ ‫انشراح‬
25022/0.4‫الصديق‬ ‫بئر‬
25022/0.4‫التفال‬ ‫بئر‬
63022/0.4‫التايه‬ ‫مقبره‬
25022/0.4‫مناصره‬ ‫اسامه‬
16022/0.4‫السفاريني‬ ‫بئر‬
63022/0.4‫حنون‬ ‫مربعه‬
63022/0.4‫البالونه‬
63022/0.4‫الميريالند‬
63022/0.4‫الوكالة‬ ‫1المخيم‬
28
63022/0.4‫الوكالة‬ ‫2المخيم‬
40022/0.4‫الوكالة‬ ‫المخيم‬ 3
63022/0.4‫المفتوحه‬ ‫القدس‬
25022/0.4‫االسكان‬
40022/0.4‫خريشه‬ ‫ذنابه‬
63022/0.4‫6بئر‬
40022/0.4‫الحرباوي‬
25022/0.4‫الحمدهلل‬
63022/0.4‫الشرع‬‫ي‬
63022/0.4‫السير‬ ‫دائره‬
40022/0.4‫نور‬ ‫منشار‬
40022/0.4‫نصار‬ ‫منشار‬
40022/0.4‫الكوكب‬ ‫منشار‬
Table1.2B: transformers of tulkarim2
Transformers
number
RatingRated power
(KVA)
40022/0.4‫اكتاب‬‫ا‬
16022/0.4‫ناصر‬ ‫بئر‬
63022/0.4‫االسالميه‬ ‫1مصنع‬
40022/0.4‫النور‬ ‫مصنع‬
63022/0.4‫االسالميه‬ ‫2مصنع‬
63022/0.4‫برهم‬ ‫زيد‬
63022/0.4‫الروضه‬ ‫مسجد‬
40022/0.4‫القدس‬ ‫بنك‬
63022/0.4‫االشقر‬ ‫مجمع‬
25022/0.4‫قزمار‬ ‫بئر‬
63022/0.4‫رقم‬ ‫3بئر‬
63022/0.4‫يونس‬ ‫ابو‬
63022/0.4‫الموز‬ ‫مخمر‬
25022/0.4‫صالح‬ ‫ابو‬ ‫بئر‬
25022/0.4‫ربحي‬ ‫ابو‬ ‫بئر‬
25022/0.4‫الخواجا‬ ‫بئر‬
29
63022/0.4‫الجعرون‬ ‫منجره‬
63022/0.4‫البرق‬ ‫مصنع‬
25022/0.4‫اكباريه‬ ‫ظهره‬
63022/0.4‫مفرق‬‫الجعرون‬
10022/0.4‫شويكه‬ ‫ملعب‬ ‫بئر‬
40022/0.4‫صالح‬ ‫ابو‬ ‫بئر‬
25022/0.4‫المهداوي‬
63022/0.4‫الميناوي‬ ‫1بئر‬
63022/0.4‫الميناوي‬ ‫2بئر‬
16022/0.4‫الشام‬ ‫واد‬
25022/0.4‫شويكه‬ ‫جمعية‬
63022/0.4‫شويكه‬ ‫دوار‬
63022/0.4‫عمان‬ ‫القاهرة‬ ‫بنك‬
63022/0.4‫البنك‬‫العربي‬
40022/0.4‫فلسطين‬ ‫بنك‬
63022/0.4‫ثابت‬‫1مستشفى‬
63022/0.4‫ثابت‬‫2مستشفى‬
63022/0.4‫العدويه‬
63022/0.4‫دعباس‬ ‫مجمع‬
63022/0.4‫التاج‬ ‫مجمع‬
25022/0.4‫الخاروف‬ ‫مجمع‬
63022/0.4‫الشاهد‬
63022/0.4‫المحافظه‬
63022/0.4‫المقاطعه‬
Table 1.3: R & X of transformers
Transformer rating
(KVA)
R(ΩKm) X(ΩKm) Z(ΩKm)
10000 0.06 0.05 0.06
1500 0.03 0.02 0.03
1000 0.01 0.01 0.01
630 0.002 0.012 0.012
500 0.003 0.013 0.014
400 0.004 0.015 0.016
250 0.008 0.024 0.025
160 0.01 0.037 0.04
30
1.2 source of information
When we stabilize the idea we searched for sources of information about what
we intend to do:
At first wewent to the municipality of Tulkarim and Northern Electric Distribution
Company(NEDCO) , and we got the information about the transformer ( rated
power) and the transmission lines length (the cross sectionalarea and the type
),and we measured the load of each transformer practically by ourselves also we
measured the impedances of each transmission line .
To calculate the load for each transformer wecan usethese formulas:
𝑆 𝑙𝑜𝑎𝑑 = 𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆 𝑡𝑟
𝑃 = 𝑆 ∗ 𝑐𝑜𝑠𝜃
𝑄 = √ 𝑆2 − 𝑃2
The average demand load factor in our network is 50% that means the average
load to the maximum load ratio is 50% which consider as a very good operating
load factor.
And the table below shows thevalue of the load for each transformer and the
power factor of the load.
Table1.4A: the load and power factor of each transformer
Transformer number Rated power (KVA) p(Kw) Q(Kvar) Power factor
Tr1 southern 5000 - - -
Tr2madakh al- jneed 200 180 87.18 90
Tr3 amena saaed 80 72 34.87 90
Tr4 khalele 200 180 87.18 90
Tr5 jalal yaseen 200 180 87.18 90
Tr6 tayba 1 200 180 87.18 90
31
Tr7 tayba 2 200 180 87.18 90
Tr8 al ameria 315 283.5 137.3 90.07
Tr9 eskan
almohandesen
125 113 54.357 90.12
Tr10 eskan Shinar 125 113 54.357 90.12
Tr11 bet wazan 125 113 54.357 90.12
Tr12 hajez 200 180 87.18 90
Tr13 jneed 200 180 87.18 90
Tr14 orabee 200 180 87.18 90
Tr15 alferdaws 315 283.5 137.3 90.07
Tr16 khateeb 315 283.5 137.3 90.07
Tr17 afonneh 315 283.5 137.3 90.07
Tr18 seha 200 180 87.18 90
Tr19 jaber 200 180 87.18 90
Tr20 msjed al makhfeha 200 180 87.18 90
Tr21 kamal jnblat 315 283.5 137.3 90.07
Tr22 etsalat 1 200 180 87.18 90
Tr23 etsalat 2 315 283.5 137.3 90.07
Tr24 reyada 315 283.5 137.3 90.07
Tr25 saydleh 315 283.5 137.3 90.07
Tr26 funon 750 675 327 90
Tr27 tamred 750 675 327 90
Tr28 oloom 750 675 327 90
Tr29 hndesah 750 675 327 90
Tr30 sejen jneed 315 283.5 137.3 90.07
Tr31 seefe 200 180 87.18 90
Tr32 eskan shinar
khalf jneed
125 113 54.357 90.12
Tr33 al bydar 200 180 87.18 90
Transformers number Rated power (KVA) P(Kw) Q(Kvar) Power factor
Tr1 karakon1 5000 - - -
Tr2 karakon2 5000 - - -
Tr3 karakon feeder 315 283.5 137.3 90.07
Tr4 heteen 200 180 87.18 90
32
Tr5 yasmeen hotel 315 283.5 137.3 90.07
Tr6 bab saha 315 283.5 137.3 90.07
Tr7 malhes 315 283.5 137.3 90.07
Tr8 aqaree bank 315 283.5 137.3 90.07
Tr9 Jordan bank 315 283.5 137.3 90.07
Tr10 othmanee 125 113 54.357 90.12
Tr11 revolee 315 283.5 137.3 90.07
Tr12 Palestine bank 200 180 87.18 90
Tr13 abo salha 315 283.5 137.3 90.07
Tr14 alkonee 315 283.5 137.3 90.07
Tr15 alsook alekhdar 250 225 108.97 90
Tr16 alhewaree 315 283.5 137.3 90.07
Tr17 tokan 315 283.5 137.3 90.07
Tr18 shakaa 200 180 87.18 90
Tr19 malhees 200 180 87.18 90
Tr20 alenjeehe 250 225 108.97 90
Tr21 kalbone1 315 283.5 137.3 90.07
Tr22 ksheka 200 180 87.18 90
Tr23 krom ashoor 125 113 54.357 90.12
Tr24 aeen al asel 200 180 87.18 90
Tr25 madakhet ras
eleen
315 283.5 137.3 90.07
Tr26 salah deen 200 180 87.18 90
Tr27 Samsung 315 283.5 137.3 90.07
Tr28 el basha 315 283.5 137.3 90.07
Tr29 omer ben el aas 200 180 87.18 90
Tr30 kalboneh 2 125 113 54.357 90.12
Tr31 madakhet 24 315 283.5 137.3 90.07
Tr32 abo raed 315 283.5 137.3 90.07
Tr33 blaza 125 113 54.357 90.12
Tr34 takhasosee 500 450 217.94 90.01
Tr35 sharea 24 315 283.5 137.3 90.07
Tr36 Kazan janobee 200 180 87.18 90
Tr37 jneed janobee 200 180 87.18 90
Tr38 karajat el jameaa 315 283.5 137.13 90.07
Tr39 maktabet el jameaa 200 180 87.18 90
Tr40 jameaa nor 200 180 87.18 90
Tr41 eskan naqabat 200 180 87.18 90
Tr42 sharea tel 315 283.5 137.3 90.07
Tr43 arade shinar 125 113 54.357 90.12
Tr44 Nablus jadeeda 315 283.5 137.3 90.07
Tr45 Iraq boreen 1 125 113 54.357 90.12
33
Tr46 Iraq boreen 2 125 113 54.357 90.12
Tr47 tel sharqee 200 180 87.18 90
Tr48 tel lehef 125 113 54.357 90.12
Tr49 tel el bald 125 113 54.357 90.12
Tr50 tel gharbee 200 180 87.18 90
Tr51 tareeq sarra 200 180 87.18 90
Tr52 tel madakha 125 113 54.357 90.12
Tr53 raze 200 180 87.18 90
Tr54 dardok 200 180 87.18 90
Tr55 joharee 200 180 87.18 90
Tr56 shohadaa 200 180 87.18 90
Tr57 qteshat 125 113 54.357 90.12
Tr58 el qaser 500 450 217.94 90.01
Tr59 shanaa 125 113 54.357 90.12
Table1.4B: the load and power factor of each transformer
PowerfactorQ(Kvar)P(Kw)Rated power
(KVA)
Transformers number
90190393436‫1خضوري‬
90151312346‫رقم‬ ‫1بئر‬
9090.598187208‫2خضوري‬
90242499544‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫1دوار‬
90242499544‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫2دوار‬
90151312346‫رقم‬ ‫2بئر‬
90121249277‫خضوري‬ ‫دوار‬
9090.598187208‫الدلهوم‬
9090.598187208‫د.ثابت‬
9090.598187208‫الجنوبي‬ ‫الحي‬
90121249277‫هواش‬
9090.598187208‫الغربي‬ ‫ارتاح‬
9070.498156173‫العاصي‬ ‫مصنع‬
9070.498156173‫المجاري‬ ‫برك‬
90121249277‫حسين‬ ‫ابو‬ ‫بئر‬
90151312346‫الميكانيك‬ ‫ورشه‬
90106218242‫الهوجي‬
90121249277‫1ارتاح‬
34
90136281312‫الصباح‬ ‫ارتاح‬
90106218242‫المحطه‬
90121249277‫الزكاة‬ ‫مستشفى‬
90151312346‫السلمان‬ ‫مفرق‬
90136281312‫الجالد‬ ‫ديوان‬
9090.598187208‫الفرنسي‬ ‫المخبز‬
90106218242‫السالم‬ ‫دوار‬
90121249277‫شوفة‬ ‫عزبة‬
9060.399125139‫فرعون‬
90106218242‫ناصر‬ ‫عزبة‬
9090.598187208‫خضرة‬ ‫ابو‬
9075.498156173‫ذياب‬ ‫بئر‬
9075.498156173‫ذياب‬ ‫حاره‬
90151312346‫مسقط‬ ‫مدرسه‬
9090.598187208‫عمير‬ ‫بن‬ ‫مصعب‬
90121249277‫صفيه‬ ‫ابو‬
90181374416‫المسلخ‬
9060.399125139‫المخابرات‬
9090.598187208‫الجراد‬ ‫عزبة‬
9060.399125139‫الددو‬ ‫انشراح‬
9075.498156173‫الصديق‬ ‫بئر‬
9075.498156173‫التفال‬ ‫بئر‬
90121249277‫التايه‬ ‫مقبره‬
9075.498156173‫مناصره‬ ‫اسامه‬
9024.15949.88355.4‫السفاريني‬ ‫بئر‬
90242499554‫حنون‬ ‫مربعه‬
90242499544‫البالونه‬
9060.399125139‫الميريالند‬
90242499544‫الوكالة‬ ‫1المخيم‬
90242499544‫الوكالة‬ ‫2المخيم‬
90181374416‫الوكالة‬ ‫المخيم‬ 3
9090.598187208‫المفتوحه‬ ‫القدس‬
9090.598187208‫االسكان‬
9090.598187208‫خريشه‬ ‫ذنابه‬
90151312346‫6بئر‬
9030.19962.35469.3‫الحرباوي‬
35
9030.19962.35469.3‫الحمدهلل‬
9090.598187208‫الشرع‬‫ي‬
90136281312‫السير‬ ‫دائره‬
90121249277‫نور‬ ‫منشار‬
90121249277‫نصار‬ ‫منشار‬
90121249277‫الكوكب‬ ‫منشار‬
Power
factor
Q(Kvar)p(Kw)Rated power
(KVA)
Transformers number
9060.399125139‫اكتابا‬
9024.15949.88355.4‫ناصر‬ ‫بئر‬
90181374416‫االسالميه‬ ‫1مصنع‬
9060.399125139‫النور‬ ‫مصنع‬
90257530589‫االسالميه‬ ‫2مصنع‬
9090.598187208‫برهم‬ ‫زيد‬
90136281312‫الروضه‬ ‫مسجد‬
9090.598187208‫القدس‬ ‫بنك‬
90181374416‫االشقر‬ ‫مجمع‬
9030.19962.34569.3‫قزمار‬ ‫بئر‬
90151312346‫رقم‬ ‫3بئر‬
90181374416‫يونس‬ ‫ابو‬
90121249277‫الموز‬ ‫مخمر‬
9018.1237.41241.6‫صالح‬ ‫ابو‬ ‫بئر‬
9060.399125139‫ربحي‬ ‫ابو‬ ‫بئر‬
9030.19962.34569.3‫الخواجا‬ ‫بئر‬
90121249277‫الجعرون‬ ‫منجره‬
90121249277‫البرق‬ ‫مصنع‬
9060.399125139‫اكباريه‬ ‫ظهره‬
90106218242‫الجعرون‬ ‫مفرق‬
9024.15949.88355.4‫شويكه‬ ‫ملعب‬ ‫بئر‬
9030.19962.34569.3‫صالح‬ ‫ابو‬ ‫بئر‬
9060.399125139‫المهداوي‬
90121249277‫الميناوي‬ ‫1بئر‬
9060.399125139‫الميناوي‬ ‫2بئر‬
36
9060.399125139‫الشام‬ ‫واد‬
9030.19962.34569.3‫شويكه‬ ‫جمعية‬
90106218242‫شويكه‬ ‫دوار‬
90151312346‫عمان‬ ‫القاهرة‬ ‫بنك‬
90151312346‫العربي‬ ‫البنك‬
90106218242‫فلسطين‬ ‫بنك‬
90242499554‫ثابت‬‫1مستشفى‬
90151312346‫ثابت‬‫2مستشفى‬
9075.498156173‫العدويه‬
9075.498156173‫دعباس‬ ‫مجمع‬
90151312346‫التاج‬ ‫مجمع‬
9075.498156173‫الخاروف‬ ‫مجمع‬
90181374416‫الشاهد‬
90151312346‫المحافظه‬
90181374416‫المقاطعه‬
37
Chapter 2:
Transmission lines…
1.1Electric-power transmission is the bulk transfer of electrical energy, from
generating power plants to electrical substations located near demand centers. This is distinct
from the local wiring between high-voltage substations and customers, which is typically
referred to as electric power distribution. Transmission lines, when interconnected with each
other, become transmission networks. The combined transmission and distribution network is
known as the "power grid" .
The system:
Most transmission lines are high-voltage three-phase alternating current (AC), although single
phase AC is sometimes used in railway electrification systems. High-voltage direct-current
(HVDC) technology is used for greater efficiency at very long distances (typically hundreds of
miles (kilometers)), or in submarine power cables (typically longer than 30 miles (50 km)).
HVDC links are also used to stabilize and control problems in large power distribution networks
where sudden new loads or blackouts in one part of a network can otherwise result in
synchronization problems and cascading failures.[11]
Diagram of an electric power system
38
1.2types of transmission lines that used in
this network
1. Overhead transmission..
High-voltage overhead conductors are not covered by insulation. The conductor material is
nearly always an aluminum alloy, made into several strands and possibly reinforced with steel
strands. Copper was sometimes used for overhead transmission, but aluminum is lighter, yields
only marginally reduced performance and costs much less. Overhead conductors are a
commodity supplied by several companies worldwide. Improved conductor material and shapes
are regularly used to allow increased capacity and modernize transmission circuits. Conductor
sizes range from 12 mm2
to 750 mm2
(1,590,000 circular mils area), with varying resistance and
current-carrying capacity. Thicker wires would lead to a relatively small increase in capacity due
to the skin effect, that causes most of the current to flow close to the surface of the wire.
Because of this current limitation, multiple parallel cables (called bundle conductors) are used
when higher capacity is needed. Bundle conductors are also used at high voltages to reduce
energy loss caused by corona discharge .[11]
In these networks, the type of overhead transmission lines that used are ACSR (aluminum
conductor steel rain forced) ,the resistance and reactance of this conductor shows in the below
table
ACSR cable R(ohmsKm) X(ohmsKm)
120 mm2 0.219 0.269
95mm2 0.301 0.322
50mm2 0.543 0.333
Table 2.1: R&X of the ACSR
39
2. Underground transmission
Electric power can also be transmitted by underground power cables instead of overhead power
lines. Underground cables take up less right-of-way than overhead lines, have lower visibility,
and are less affected by bad weather. However, costs of insulated cable and excavation are
much higher than overhead construction. Faults in buried transmission lines take longer to
locate and repair. Underground lines are strictly limited by their thermal capacity, which permits
fewer overloads or re-rating than overhead lines. Long underground AC cables have significant
capacitance, which may reduce their ability to provide useful power to loads. [11]
In these networks, the type of overhead transmission lines that used are XLPE Cu ,
XLPE Al ,the resistance and reactance of this conductor shows in the below table
XLPE Cu R(ohmsKm) X (ohmsKm)
240mm2 0.754 0.109
120mm2 0.196 0.117
95mm2 0.41 0.121
50mm2 0.387 0.138
Table 2.2: R&X of XLPE Cu
XLPE Al R(ohmsKm) X(ohmsKm)
95mm2 0.32 0.542
Table 2.3: R&X of XLPE Al
We measured the length of each transmission line
40
Chapter 3
Analysis for the existing networks…..
3.1 One line diagram for the networks
In this chapter we will study the networks beforethe improvement and
connecting the district,to find the losses of the power in the networks and to see
if the networks haveany problems like (over load on any transformer ,and the
drop voltage and power factor and voltage level or any problem that happened in
these networks )
Fromthe data in chapter one and two weget the information about our networks
to make the one line diagramfor the networks, thetables below will show the
required data for the one line diagram.
1. Number of transformers
Table 3.1A: rated power of each transformer
Transformer number Rated power (KVA)
Tr1 southern 10000
Tr2madakh al- jneed 400
Tr3 amena saaed 160
Tr4 khalele 400
Tr5 jalal yaseen 400
Tr6 tayba 1 400
Tr7 tayba 2 400
Tr8 al ameria 630
Tr9 eskan almohandesen 250
Tr10 eskan Shinar 250
Tr11 bet wazan 250
Tr12 hajez 400
Tr13 jneed 400
Tr14 orabee 400
Tr15 alferdaws 630
Tr16 khateeb 630
Tr17 afonneh 630
41
Tr18 seha 400
Tr19 jaber 400
Tr20 msjed al makhfeha 400
Tr21 kamal jnblat 630
Tr22 etsalat 1 400
Tr23 etsalat 2 630
Tr24 reyada 630
Tr25 saydleh 630
Tr26 funon 1500
Tr27 tamred 1500
Tr28 oloom 1500
Tr29 hndesah 1500
Tr30 sejen jneed 630
Tr31 seefe 400
Tr32 eskan shinar khalf jneed 250
Tr33 al bydar 400
Transformers number Rated power (KVA)
Tr1 karakon1 10000
Tr2 karakon2 10000
Tr3 karakon feeder 630
Tr4 heteen 400
Tr5 yasmeen hotel 630
Tr6 bab saha 630
Tr7 malhes 630
Tr8 aqaree bank 630
Tr9 Jordan bank 630
Tr10 othmanee 250
Tr11 revolee 630
Tr12 Palestine bank 400
Tr13 abo salha 630
Tr14 alkonee 630
Tr15 alsook alekhdar 500
Tr16 alhewaree 630
Tr17 tokan 630
Tr18 shakaa 400
Tr19 malhees 400
Tr20 alenjeehe 500
Tr21 kalbone1 630
Tr22 ksheka 400
Tr23 krom ashoor 250
Tr24 aeen al asel 400
42
Tr25 madakhet ras eleen 630
Tr26 salah deen 400
Tr27 Samsung 630
Tr28 el basha 630
Tr29 omer ben el aas 400
Tr30 kalboneh 2 250
Tr31 madakhet 24 630
Tr32 abo raed 630
Tr33 blaza 250
Tr34 takhasosee 1000
Tr35 sharea 24 630
Tr36 Kazan janobee 400
Tr37 jneed janobee 400
Tr38 karajat el jameaa 630
Tr39 maktabet el jameaa 400
Tr40 jameaa nor 400
Tr41 eskan naqabat 400
Tr42 sharea tel 630
Tr43 arade shinar 250
Tr44 Nablus jadeeda 630
Tr45 Iraq boreen 1 250
Tr46 Iraq boreen 2 250
Tr47 tel sharqee 400
Tr48 tel lehef 250
Tr49 tel el bald 250
Tr50 tel gharbee 400
Tr51 tareeq sarra 400
Tr52 tel madakha 250
Tr53 raze 400
Tr54 dardok 400
Tr55 joharee 400
Tr56 shohadaa 400
Tr57 qteshat 252
Tr58 el qaser 1222
Tr59 shanaa 252
43
Table 3.1B: rated power of each transformer
Rated power (KVA)Transformers number
630‫1خضوري‬
630‫رقم‬ ‫بئر‬
630‫2خضوري‬
630‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫1دوار‬
630‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫2دوار‬
630‫رقم‬ ‫2بئر‬
400‫خضوري‬ ‫دوار‬
400‫الدلهوم‬
400‫د.ثابت‬
250‫الجنوبي‬ ‫الحي‬
400‫هواش‬
400‫الغربي‬ ‫ارتاح‬
250‫العاصي‬ ‫مصنع‬
250‫المجاري‬ ‫برك‬
400‫حسين‬ ‫ابو‬ ‫بئر‬
630‫الميكانيك‬ ‫ورشه‬
400‫الهوجي‬
400‫1ارتاح‬
630‫الصباح‬ ‫ارتاح‬
630‫المحطه‬
630‫الزكاة‬ ‫مستشفى‬
630‫السلمان‬ ‫مفرق‬
630‫الجالد‬ ‫ديوان‬
250‫الفرنسي‬ ‫المخبز‬
400‫السالم‬ ‫دوار‬
400‫شوفة‬ ‫عزبة‬
250‫فرعون‬
250‫ناصر‬ ‫عزبة‬
250‫خضرة‬ ‫ابو‬
250‫ذياب‬ ‫بئر‬
250‫ذياب‬ ‫حاره‬
360‫مسقط‬ ‫مدرسه‬
250‫عمير‬ ‫بن‬ ‫مصعب‬
250‫صفيه‬ ‫ابو‬
44
630‫المسلخ‬
250‫المخابرات‬
400‫الجراد‬ ‫عزبة‬
250‫الددو‬ ‫انشراح‬
250‫الصديق‬ ‫بئر‬
250‫التفال‬ ‫بئر‬
630‫التايه‬ ‫مقبره‬
250‫مناصره‬ ‫اسامه‬
160‫السفاريني‬ ‫بئر‬
630‫حنون‬ ‫مربعه‬
630‫البالونه‬
630‫الميريالند‬
630‫الوكالة‬ ‫1المخيم‬
630‫الوكالة‬ ‫2المخيم‬
400‫الوكالة‬ ‫المخيم‬ 3
630‫المفتوحه‬ ‫القدس‬
250‫االسكان‬
400‫خريشه‬ ‫ذنابه‬
630‫6بئر‬
400‫الحرباوي‬
250‫الحمدهلل‬
630‫الشرعب‬
630‫السير‬ ‫دائره‬
400‫نور‬ ‫منشار‬
400‫نصار‬ ‫منشار‬
400‫الكوكب‬ ‫منشار‬
Rated power
(KVA)
Transformers number
400‫اكتابا‬
160‫ناصر‬ ‫بئر‬
630‫االسالميه‬ ‫1مصنع‬
400‫النور‬ ‫مصنع‬
630‫االسالميه‬ ‫2مصنع‬
630‫برهم‬ ‫زيد‬
45
630‫الروضه‬ ‫مسجد‬
400‫القدس‬ ‫بنك‬
630‫االشقر‬ ‫مجمع‬
250‫قزمار‬ ‫بئر‬
630‫رقم‬ ‫3بئر‬
630‫يونس‬ ‫ابو‬
630‫الموز‬ ‫مخمر‬
250‫صالح‬ ‫ابو‬ ‫بئر‬
250‫بئر‬‫ربحي‬ ‫ابو‬
250‫الخواجا‬ ‫بئر‬
630‫الجعرون‬ ‫منجره‬
630‫البرق‬ ‫مصنع‬
250‫اكباريه‬ ‫ظهره‬
630‫الجعرون‬ ‫مفرق‬
100‫شويكه‬ ‫ملعب‬ ‫بئر‬
400‫صالح‬ ‫ابو‬ ‫بئر‬
250‫المهداوي‬
630‫الميناوي‬ ‫1بئر‬
630‫الميناوي‬ ‫2بئر‬
160‫الشام‬ ‫واد‬
250‫شويكه‬ ‫جمعية‬
630‫شويكه‬ ‫دوار‬
630‫القاهرة‬ ‫بنك‬‫عمان‬
630‫العربي‬ ‫البنك‬
400‫فلسطين‬ ‫بنك‬
630‫ثابت‬‫1مستشفى‬
630‫ثابت‬‫2مستشفى‬
630‫العدويه‬
630‫دعباس‬ ‫مجمع‬
630‫التاج‬ ‫مجمع‬
250‫الخاروف‬ ‫مجمع‬
630‫الشاهد‬
630‫المحافظه‬
630‫المقاطعه‬
46
2. distance between transformers
By using the AutoCAD program for Sarra connection point and the single line
diagramfor Tulkarimnetwork, we specified and draw the location for each
transformer, also wedraw the distribution of the transmission lines and we show
the type of each line (overhead and underground line), after that we measured
the length of each transmission line as we see in the below picture:
Figure 3.1A: distribution of transformers and distance between them
47
Figure 3.1B: distribution of transformers and distance between them
48
49
50
After we show the distribution of transformers on the single line diagramand the
AutoCAD and after collecting all information, we design the one line diagramfor
these networks as we see in the pictures below
Figure 3.2A: one line diagram for Sarra connection point’s transformer
51
52
Figure 3.2B: one line diagram for Tulkarim transformer
53
54
The one line diagramshows thegrid, transformer, distanceand load.
Now, our next step to analyze the networks shown above
3.2 analysis of the network
# of Load Rating S
(KVA)
Rated V
(KV)
KW Kvar PF % Terminal
V (KV)
Operating
percentage
Load 1 5000 33 4500 5362 90 32.143 99.143
Load 2 200 0.4 180 87.18 90 0.394 98.844
Load 3 80 0.4 72 34.87 90 0.395 98.832
Load 4 200 0.4 180 87.18 90 0.395 98.817
Load 5 200 0.4 180 87.18 90 0.395 98.751
Load 6 200 0.4 180 87.18 90 0.394 98.48
Load 7 200 0.4 180 87.18 90 0.394 98.509
Load 8 315 0.4 283.5 137.3 90.07 0.394 98.585
Load 9 125 0.4 113 54.357 90.12 0.394 98.58
Load 10 125 0.4 113 54.357 90.12 0.395 98.757
Load 11 125 0.4 113 54.357 90.12 0.395 98.717
Load 12 200 0.4 180 87.18 90 0.395 98.771
Load 13 200 0.4 180 87.18 90 0.395 98.745
Load 14 200 0.4 180 87.18 90 0.396 98.963
Load 15 315 0.4 283.5 137.3 90.07 0.395 98.673
Load 16 315 0.4 283.5 137.3 90.07 0.395 98.717
Load 17 315 0.4 283.5 137.3 90.07 0.395 98.653
Load 18 200 0.4 180 87.18 90 0.395 98.715
Load 19 200 0.4 180 87.18 90 0.393 98.372
Load 20 200 0.4 180 87.18 90 0.393 98.355
Load 21 315 0.4 283.5 137.3 90.07 0.394 98.445
Load 22 200 0.4 180 87.18 90 0.394 98.387
Load 23 315 0.4 283.5 137.3 90.07 0.394 98.397
Load 24 315 0.4 283.5 137.3 90.07 0.396 99.087
Load 25 315 0.4 283.5 137.3 90.07 0.396 99.087
Load 26 750 0.4 675 327 90 0.396 99.079
Load 27 750 0.4 675 327 90 0.396 99.079
Load 28 750 0.4 675 327 90 0.396 99.079
Load 29 750 0.4 675 327 90 0.396 99.079
Load 30 315 0.4 283.5 137.3 90.07 0.396 98.945
Load 31 200 0.4 180 87.18 90 0.396 98.89
Load 32 125 0.4 113 54.357 90.12 0.395 98.871
Load 33 200 0.4 180 87.18 90 0.395 98.862
55
# of load Rating S
(KVA)
Rated V
(KV)
KW Kvar PF % Terminal
V (KV)
Operating
percentage
Load1 5000 33 4500 5362 90 32.64 98.984
Load2 5000 0.4 4500 5362 90 32.64 98.984
Load3 315 0.4 283.5 137.3 90.07 0.395 98.708
Load4 200 0.4 180 87.18 90 0.395 98.67
Load5 315 0.4 283.5 137.3 90.07 0.395 98.672
Load6 315 0.4 283.5 137.3 90.07 0.394 98.616
Load7 315 0.4 283.5 137.3 90.07 0.394 98.557
Load8 315 0.4 283.5 137.3 90.07 0.394 98.562
Load9 315 0.4 283.5 137.3 90.07 0.394 98.555
Load10 125 0.4 113 54.357 90.12 0.395 98.821
Load11 315 0.4 283.5 137.3 90.07 0.395 98.793
Load12 200 0.4 180 87.18 90 0.395 98.754
Load13 315 0.4 283.5 137.3 90.07 0.395 98.747
Load14 315 0.4 283.5 137.3 90.07 0.395 98.737
Load15 250 0.4 225 108.94 90 0.395 98.731
Load16 315 0.4 283.5 137.3 90.07 0.395 98.735
Load17 315 0.4 283.5 137.3 90.07 0.395 98.741
Load18 200 0.4 180 87.18 90 0.395 98.733
Load19 200 0.4 180 87.18 90 0.395 98.735
Load20 250 0.4 225 108.97 90 0.396 99.009
Load21 315 0.4 283.5 137.3 90.07 0.396 98.993
Load22 200 0.4 180 87.18 90 0.395 98.707
Load23 125 0.4 113 54.357 90.12 0.395 98.686
Load24 200 0.4 180 87.18 90 0.394 98.411
Load25 315 0.4 283.5 137.3 90.07 0.395 98.762
Load26 200 0.4 180 87.18 90 0.394 98.414
Load27 315 0.4 283.5 137.3 90.07 0.394 98.398
Load28 315 0.4 283.5 137.3 90.07 0.394 98.388
Load29 200 0.4 180 87.18 90 0.394 98.380
Load30 125 0.4 113 54.357 90.12 0.385 96.301
Load31 315 0.4 283.5 137.3 90.07 0.384 95.882
Load32 315 0.4 283.5 137.3 90.07 0.383 95.87
Load33 125 0.4 113 54.357 90.12 0.383 95.852
Load34 500 0.4 450 217.94 90 0.383 95.858
Load35 315 0.4 283.5 137.3 90.07 0.382 95.596
Load36 200 0.4 180 87.18 90 0.382 95.554
Load37 200 0.4 180 87.18 90 0.382 95.554
Load38 315 0.4 283.5 137.3 90.07 0.38 95.197
Load39 200 0.4 180 87.18 90 0.381 95.157
56
Load40 200 0.4 180 87.18 90 0.381 95.147
Load41 200 0.4 180 87.18 90 0.38 94.959
Load42 315 0.4 283.5 137.3 90.07 0.38 94.882
Load43 125 0.4 113 54.357 90.12 0.38 94.735
Load44 315 0.4 283.5 137.3 90.07 0.38 94.701
Load45 125 0.4 113 54.357 90.12 0.377 94.359
Load46 125 0.4 113 54.357 90.12 0.377 94.353
Load47 200 0.4 180 87.18 90 0.376 94.088
Load48 125 0.4 113 54.357 90.12 0.376 94.062
Load49 125 0.4 113 54.357 90.12 0.376 94.055
Load50 200 0.4 180 87.18 90 0.376 94.049
Load51 200 0.4 180 87.18 90 0.376 93.934
Load52 125 0.4 113 54.357 90.12 0.375 93.861
Load53 200 0.4 180 87.18 90 0.388 96.907
Load54 200 0.4 180 87.18 90 0.386 96.88
Load55 200 0.4 180 87.18 90 0.387 96.854
Load56 200 0.4 180 87.18 90 0.387 96.86
Load57 125 0.4 113 54.357 90.12 0.387 96.833
Load58 500 0.4 450 217.94 90.01 0.387 96.85
Load59 125 0.4 113 54.357 90.12 0.387 96.841
Table 3.2A: full load description
After analyzing the network we find that the sourcerated power is equal to
20.820 MW and this value of power is suitable and enough for this network. The
picture below shows thefirst run for this network at max casein ETAP program
that shows the distribution of power and its direction between buses and the
voltage for each bus and the power factor.
57
Figure 3.3A: first run for the net work shows (s, v & pf)
58
After we doing this analyzing for the network, weobtained the results about the
powers and losses which shown in the next summery table
59
Table 3.3A summary of total generation, loading & demand
Fromthe abovetable we can see the value of real power for the swing bus
(source) is equal to 20.820 MW, this is the real power that consuming by this
network and the reactive power for the network is equal to 10.213MVAr.
We note that the apparentpower of the network which is 23.190MVA
Also we note that the losses in the network for the real power is equal to
0.443MW and for reactive power is equal to 0.366 MVAr.
60
Table 3.2B: full load description
# of Load Rating
S
(KVA)
Rated
V
(KV)
p(Kw)
Q(Kvar)
Power
factor
Terminal
V (KV)
Operating
percentage
‫1خضوري‬ 436 0.4 393 190 90 2.396 99.045
‫رقم‬ ‫1بئر‬ 346 0.4 312 151 90 0.396 98.995
‫2خضوري‬ 208 0.4 187 90.598 90 0.396 99.011
‫عبد‬ ‫جمال‬ ‫دوار‬
‫1الناصر‬
544 0.4 499 242 90 0.396 98.952
‫عبد‬ ‫جمال‬ ‫دوار‬
‫2الناصر‬
544 0.4 499 242 90 0.396 98.952
‫رقم‬ ‫2بئر‬ 346 0.4 312 151 90 0.396 98.978
‫خضوري‬ ‫دوار‬ 277 0.4 249 121 90 0.396 99.012
‫الدلهوم‬ 208 0.4 187 90.598 90 0.395 98.781
‫د.ثابت‬ 208 0.4 187 90.598 90 0.394 98.614
‫الجنوبي‬ ‫الحي‬ 208 0.4 187 90.598 90 0.394 98.462
‫هواش‬ 277 0.4 249 121 90 0.393 98.294
‫الغربي‬ ‫ارتاح‬ 208 0.4 187 90.598 90 0.392 98.110
‫العاصي‬ ‫مصنع‬ 173 0.4 156 70.498 90 0.392 97.967
‫المجاري‬ ‫برك‬ 173 0.4 156 70.498 90 0.391 97.848
‫حسين‬ ‫ابو‬ ‫بئر‬ 277 0.4 249 121 90 0.39 97.676
‫الميكانيك‬ ‫ورشه‬ 346 0.4 312 151 90 0.39 97.690
‫الهوجي‬ 242 0.4 218 106 90 0.39 97.627
‫1ارتاح‬ 277 0.4 249 121 90 0.39 97.542
‫الصباح‬ ‫ارتاح‬ 312 0.4 281 136 90 0.39 97.574
‫المحطه‬ 242 0.4 218 106 90 0.382 95.495
‫الزكا‬ ‫مستشفى‬‫ة‬ 277 0.4 249 121 90 0.38 95.108
‫السلمان‬ ‫مفرق‬ 346 0.4 312 151 90 0.381 95.37
‫الجالد‬ ‫ديوان‬ 312 0.4 281 136 90 0.38 95.004
‫الفرنسي‬ ‫المخبز‬ 208 0.4 187 90.598 90 0.39 97.574
‫السالم‬ ‫دوار‬ 242 0.4 218 106 90 0.38 95.108
‫شوفة‬ ‫عزبة‬ 277 0.4 249 121 90 0.38 95.007
‫فرعون‬ 139 0.4 125 60.399 90 0.38 95.033
‫ناصر‬ ‫عزبة‬ 242 0.4 218 106 90 0.385 96.260
‫خضرة‬ ‫ابو‬ 208 0.4 187 90.598 90 0.382 95.512
‫ذياب‬ ‫بئر‬ 173 0.4 156 75.498 90 0.381 95.37
61
‫ذياب‬ ‫حاره‬ 173 0.4 156 75.498 90 0.38 95.230
‫مسقط‬ ‫مدرسه‬ 346 0.4 312 151 90 0.382 95.384
‫عمير‬ ‫بن‬ ‫مصعب‬ 208 0.4 187 90.598 90 0.378 94.544
‫ابو‬‫صفيه‬ 277 0.4 249 121 90 0.378 94.571
‫المسلخ‬ 416 0.4 374 181 90 0.38 94.991
‫المخابرات‬ 139 0.4 125 60.399 90 0.376 94.202
‫الجراد‬ ‫عزبة‬ 208 0.4 187 90.598 90 0.378 94.555
‫الددو‬ ‫انشراح‬ 139 0.4 125 60.399 90 0.374 93.494
‫الصديق‬ ‫بئر‬ 173 0.4 156 75.498 90 0.374 93.515
‫التفال‬ ‫بئر‬ 173 0.4 156 75.498 90 0.374 93.537
‫التايه‬ ‫مقبره‬ 277 0.4 249 121 90 0.374 93.506
‫مناصره‬ ‫اسامه‬ 173 0.4 156 75.498 90 0.374 93.507
‫السفاريني‬ ‫بئر‬ 55.4 0.4 49.883 24.159 90 0.375 93.656
‫حنون‬ ‫مربعه‬ 554 0.4 499 242 90 0.373 93.358
‫البالونه‬ 544 0.4 499 242 90 0.372 93.114
‫الميريالند‬ 139 0.4 125 60.399 90 0.371 92.856
‫الوكالة‬ ‫1المخيم‬ 544 0.4 499 242 90 0.371 92.850
‫الوكالة‬ ‫2المخيم‬ 544 0.4 499 242 90 0.372 92.959
‫الوكالة‬ ‫المخيم‬ 3 416 0.4 374 181 90 0.372 92.925
‫المفتوحه‬ ‫القدس‬ 208 0.4 187 90.598 90 0.371 92.760
‫االسكان‬ 208 0.4 187 90.598 90 0.371 92.765
‫خريشه‬ ‫ذنابه‬ 208 0.4 187 90.598 90 0.371 92.783
‫6بئر‬ 346 0.4 312 151 90 0.388 97.048
‫الحرباوي‬ 69.3 0.4 62.354 30.199 90 0.392 98.120
‫الحمدهلل‬ 69.3 0.4 62.354 30.199 90 0.392 98.124
‫الشرعب‬ 208 0.4 187 90.598 90 0.283 70.662
‫السير‬ ‫دائره‬ 312 0.4 281 136 90 0.372 92.982
‫نور‬ ‫منشار‬ 277 0.4 249 121 90 0.372 92.991
‫نصار‬ ‫منشار‬ 277 0.4 249 121 90 0.372 0.951
‫الكوكب‬ ‫منشار‬ 277 0.4 249 121 90 0.39 97.583
After analyzing the Tulkarim networks wefind that the sourcerated power for the
firstnetwork is equal to 15.926 MW and this value of power is unacceptable for
this network
62
# of Load Rating
S (KVA)
Rated
V
(KV)
p(Kw)
Q(Kvar)
Power
factor
Terminal
V (KV)
Operating
percentage
‫اكتابا‬ 139 0.4 125 60.399 90 0.394 98.6
‫ناصر‬ ‫بئر‬ 55.4 0.4 49.883 24.159 90 0.393 98.323
‫االسالميه‬ ‫1مصنع‬ 416 0.4 374 181 90 0.395 98.160
‫النور‬ ‫مصنع‬ 139 0.4 125 60.399 90 0.395 98.707
‫االسالميه‬ ‫2مصنع‬ 589 0.4 530 257 90 0.393 98.833
‫برهم‬ ‫زيد‬ 208 0.4 187 90.598 90 0.395 98.719
‫الروضه‬ ‫مسجد‬ 312 0.4 281 136 90 0.392 97.761
‫القدس‬ ‫بنك‬ 208 0.4 187 90.598 90 0.391 98.101
‫االشقر‬ ‫مجمع‬ 416 0.4 374 181 90 0.392 97.829
‫قزمار‬ ‫بئر‬ 69.3 0.4 62.345 30.199 90 0.391 97.887
‫رقم‬ ‫3بئر‬ 346 0.4 312 151 90 0.389 97.809
‫يونس‬ ‫ابو‬ 416 0.4 374 181 90 0.388 97.358
‫الموز‬ ‫مخمر‬ 277 0.4 249 121 90 0.389 97.028
‫صالح‬ ‫ابو‬ ‫بئر‬ 41.6 0.4 37.412 18.12 90 0.39 97.289
‫ربحي‬ ‫ابو‬ ‫بئر‬ 139 0.4 125 60.399 90 0.385 97.389
‫الخواجا‬ ‫بئر‬ 69.3 0.4 62.345 30.199 90 0.388 96.417
‫منجره‬‫الجعرون‬ 277 0.4 249 121 90 0.389 97.091
‫البرق‬ ‫مصنع‬ 277 0.4 249 121 90 0.388 97.157
‫اكباريه‬ ‫ظهره‬ 139 0.4 125 60.399 90 0.385 97.103
‫الجعرون‬ ‫مفرق‬ 242 0.4 218 106 90 0.389 96.233
‫شويك‬ ‫ملعب‬ ‫بئر‬‫ه‬ 55.4 0.4 49.883 24.159 90 0.382 97.304
‫صالح‬ ‫ابو‬ ‫بئر‬ 69.3 0.4 62.345 30.199 90 0.39 95.599
‫المهداوي‬ 139 0.4 125 60.399 90 0.385 97.469
‫الميناوي‬ ‫1بئر‬ 277 0.4 249 121 90 0.389 96.345
‫الميناوي‬ ‫2بئر‬ 139 0.4 125 60.399 90 0.39 97.202
‫الشام‬ ‫واد‬ 139 0.4 125 60.399 90 0.384 97.463
‫شويكه‬ ‫جمعية‬ 69.3 0.4 62.345 30.199 90 0.385 96.332
‫شويكه‬ ‫دوار‬ 242 0.4 218 106 90 0.39 96.033
‫عمان‬ ‫القاهرة‬ ‫بنك‬ 346 0.4 312 151 90 0.389 97.678
‫العربي‬ ‫البنك‬ 346 0.4 312 151 90 0.389 97.334
‫فلسطين‬ ‫بنك‬ 242 0.4 218 106 90 0.388 97.315
‫ثابت‬ ‫1مستشفى‬ 554 0.4 499 242 90 0.387 96.993
63
‫ثابت‬ ‫2مستشفى‬ 346 0.4 312 151 151 90 0.389 96.893
‫العدويه‬ 173 0.4 156 75.498 90 0.39 97.286
‫دعباس‬ ‫مجمع‬ 173 0.4 156 75.498 90 0.39 97.592
‫التاج‬ ‫مجمع‬ 346 0.4 312 151 90 0.389 97.450
‫الخاروف‬ ‫مجمع‬ 173 0.4 156 75.498 90 0.385 97.228
‫الشاهد‬ 416 0.4 374 181 90 0.388 97.059
‫المحافظه‬ 346 0.4 312 151 90 0.389 97.195
‫المقاطعه‬ 416 0.4 374 181 90 0.388 97.129
The sourcerated power for the second network is equal to 10.376 MW and this
value of power is suitable and enough for this network. The pictures below shows
the firstrun for these networks atmax case in ETAP programthat shows the
distribution of power and its direction between buses and the voltage for each
bus and the power factor.
64
Figure 3.3B: first run for the net work shows (s, v & pf)
65
66
After we doing this analyzing for the two networks, weobtained the results about
the powers and losses which shown in the next summery tables
Table 3.3B summary of total generation, loading & demand
Fromthe abovetable we can see the value of real power for the swing bus
(source) is equal to 15.926 MW which is more, this is the real power that
consuming by the firstnetwork and the reactive power for this network is equal
to 7.845MVAr.
We note that the apparentpower of the network which is 17.753MVA and this
value unacceptable.
Also we note that the losses in the network for the real power is equal to 0.88MW
and for reactive power is equal to 0.558 MVAr
67
Fromthe abovetables we can see the value of real power for the swing bus
(source) is equal to 10.376 MW, this is the real power that consuming by the
second network and the reactive power for this network is equal to 5.061MVAr.
We note that the apparentpower of the network which is 11.554MVA and this
value does not makea problemfor consuming power.
Also we note that the losses in the network for the real power is equal to
0.233MW and for reactive power is equal to 0.149 MVAr
68
3.3 problems in the net work
 voltages
The voltage mustbe in the range:
0.95 V nominal <V < 1.05 V nominal
After we doing the analyzing for the networks on the ETAP programwe see
that the voltages in somebuses are not located desired range
 power factor
The poor factor in many regions is low and we are looking to improveit to
92 and more
 there are 3 transformers (T29,T38,T55) in Tulkarimnetwork 1 that
connectedtoover load
The capacity of T29 is 250 KVA and the load that connected to this
transformer has a power equal to 238 KVA.
The load that connected to the transformer #29 is 95.2% fromthe total
load and this value is abovethe rangeof the load that allotted for each
transformer, and the rangefor the load that mustconnect to the
transformer between (50%-75%).
69
The capacity of T38 is 250 KVA and the load that connected to this
transformer has a power equal to 271 KVA.
The load that connected to the transformer #38 is 108% fromthe total load
and this value is above the rangeof the load that allotted for each
transformer
The capacity of T55 is 400 KVA and the load that connected to this
transformer has a power equal to 404 KVA.
The load that connected to the transformer #55 is 101% fromthe total load
and this value is above the rangeof the load that allotted for each
transformer
For more information you can see the appendix
70
Chapter4:
Analysis of supply Sarra connection point and
Tulkarem from central substation
At this stage of our graduation project we will Study the new condition of the two
networks (Tulkarimand Sarra connection point) after connecting them to Sarra
electricity distribution substation (16133) KV directly without relying on Israeli
national electricity company. Then we will improvethe voltage level and decrease
the real power losses and increase the reliability of the networks.
After the analysis of Sarra connection point and tulkaremnetworks after we
connecting them to Sarra electricity distribution substation (16133) KV also many
problems in the network appears as we mentioned before
For more details you can see the appendix
and the following tables will show us the conditions of the networkes.
Table 4.1A : summary of total generation, loading & demand
71
Table4.1B : summary of total generation, loading & demand
72
4.1: Improving the networkes
There are different methods in order to improve the network to increase the
voltages and to put the PF within the range. Which will reducethe losses then the
problems for the consumer will decreaseand the costof KWH will decrease.
These methods are:
1. Increasing the swing bus voltage:
2. Tab changing in the transformer:
3. Adding capacitors:
73
4.1A: Improvement by using taps changing:
In this method change the tap ratio of the transformers to 5%.
Figure4.1: 5% tap changer.
Table4.2A(TAP CHANGE) : summary of total generation, loading & demand
74
Note:
After changing the taps of the transformers thelosses in the network decrease
- The losses before= 0.479MW,
- The losses after=0.498MW,
Table4.2B(TAP CHANGE) : summary of total generation, loading & demand
Note:
After changing the taps of the transformers thelosses in the network decrease
- The losses before= 0.559MW,
- The losses after=0.579MW,
75
Note:
After changing the taps of the transformers thelosses in the network decrease
- The losses before= 0.490MW,
- The losses after=0.507MW,
76
4.1B: Power Factor Improvement
The cosine of angle of phasedisplacement between voltage and currentin an AC
circuit is known as Power Factor.
How to improve the P.F?
Where:
Qc: The reactive power to be compensated by the capacitor.
P: The real power of the load.
θ old: The actual power angle.
θ new: The proposed power angle.
Capacitor Banks:
The important of improvement power factor is by adding shuntcapacitor banks at
the buses at both transmission and distribution levels and loads and there are
more effective to add them in the low level Voltages.
77
Effect of Low Power Factor:
1. Higher Apparent Current.
2. Higher Losses in the Electrical Distribution network
3. Low Voltage in the network
Benefits of Improving Power Factor:
1. Lower Apparent Power.
2. Reduces losses in the transmission line.
3. Improves voltage drop.
4. Avoiding the penalties.
The problem of low power factor:
The low P.F is highly undesirable as it causes an increase in the current, resulting
in additional losses of active power in all the elements of power system from
power station generator down to the utilization devices .In additional to the
losses the low P.F causes penalties.
The following table shows the system of the penalties in our companies:
Power Factor P.F Penalties
P.F≥ 0.92 No Penalties.
0.92>P.F ≥0.8 1% of total bill for each one under 0.92
0.8>P.F≥0.7 1.25%of total bill for each one under 0.92
P.F <0.7 1.5%of total bill for each one under 0.92
Table4.3: The penalties of power factor.
Our aim to improvement the P.F in order to avoid penalties and to reduce the
current flow in the network which reduce the electrical losses in the network.
78
Table4.4A(POWER FACTOR) : summary of total generation, loading & demand
Note:
After adding the capacitor banks the losses in the network decrease
- The losses before= 0.498MW,
- The losses after=0.454MW,.
79
Table4.4B(POWER FACTOR) : summary of total generation, loading & demand
Note:
After adding the capacitor banks the losses in the network decrease
- The losses before= 0.579MW,
- The losses after=0.546MW,.
80
Note:
After adding the capacitor banks the losses in the network decrease
- The losses before= 0.507MW,
- The losses after=0.478MW,.
81
4.1C: OverloadedTransformers Problem
After the improvement of the network in the maximum case there is the problem
of the overloaded transformers. This problemwas solved by changing
transformers wherethetransformers which aresmall and the load on them large
were changed with large highly loaded transformer. this will need to buy new
transformers.
Table 4.5 shows the transformers which are needed to be bought:
Number of transformers KVA
1 400
Table 4.6 summarizes the analysis results after changing transformers
82
Chapter 5: Mechanical design
of the network
Mechanical Design:
Electrical Power can be transmitted or distributed either by means of
underground cables or by overhead lines. The underground cables are rarely used
for power transmission dueto main reasons. Firstly, power is generally
transmitted over long distances to load centers. Obviously, theinstallation costs
for underground transmission willbe very heavy. Secondly, electric power has to
be transmitted at high or medium voltages for economic reasons .Itis very
difficult to provideproper insulation to the cables to withstand such higher
pressures. Therefore, as a rule, power transmission over long distances is carried
out by using over headlines. With growth in power demand and consequentrise
in voltage levels, power transmission by overhead lines has assumed considerable
importance.
An overhead line is subjected to uncertain whether conditions and other external
interferences. This calls for the useof proper mechanical factor safety in order to
ensurethe continuity of operation in the line. In general, the strength of the line
should be such so as to provideagainstthe worstprobableweather conditions .In
this chapter; weshall focus our attention on the various aspects of mechanical
design of over head lines.
83
Main Components of overheadlines:
In general, the main components of overhead lines are:
 Conductors:
Which carry electric power fromthe sending end station to receiving end
station
 Supports:
Which may be poles or towers and keep the conductors at suitable level
above the ground.
 Insulators:
Which are attached to supports and insulate the conductors fromthe
ground.
 Cross Arms:
Which providesupportto the insulators.
Miscellaneous Items:
Such as phaseplates, danger plates, lightning arrestors, anticlimbing wires[17]
84
Conductors Material :
The conductor is one of the important items as most of the capital outlay is
invested for it. Therefore, proper choice of material and size of the conductor is of
considerableimportance. The conductor material used for transmission and
distribution of electric power should be having the following properties:
1. High electrical conductivity.
2. High tensile strength in order to withstand mechanical stresses.
3. Low cost so that it can be used for long distances.
4. Low specific gravity so that weight per unit volume is small.
The most commonly used conductor materials for overhead lines are
copper, aluminum, steel-cored aluminum, galvanized steel and cadmium
copper.
The choice of a particular material will depend upon the cost, the required
electrical and mechanical Properties and the local conditions.
 Copper:
Copper is an ideal material for overhead lines owing to its high electrical
conductivity and greater tensile strength. Itis always used in the hard
drawn formas stranded conductor.
Although hard drawing decreases the electrical conductivity slightly yet it
increases the tensile strength considerably.
Copper has high currentdensity i.e. the current carrying capacity of copper
per unit of X-sectional area is quite large. This leads to two advantages.
Firstly, smaller X-sectional area of conductor
is required and secondly, the area offered by the conductor to wind loads is
reduced. Moreover, this metal is quite homogeneous, durableand has high
scrap value. There is hardly any doubt that copper is an ideal material for
transmission and distribution of
electric power. However, dueto its higher cost and non availability, it is
rarely used for these purposes.
85
 Aluminum:
Aluminum is cheap and light as compared to copper but it has much smaller
Conductivity and tensile strength. The relative comparison of the two
materials is briefed below:
1) The conductivity of aluminum is 60% that of copper. The smaller conductivity
of aluminum means that for any particular transmission efficiency, the X-sectional
area of conductor mustbe larger in aluminum than in copper. For the same
resistance, the diameter of aluminum conductor is about 1·26 times the diameter
of copper conductor.
The increased X-section of aluminum exposes a greater surfaceto wind pressure
and, therefore, supporting towers mustbe designed for greater transverse
strength. This often requires the use of higher towers with consequence of
greater sag.
2) The specific gravity of aluminum (2·71 gm/cc) is lower than that of copper (8·9
gm/cc).
Therefore, an aluminum conductor has almost one-half the weight of equivalent
copper conductor.
For this reason, the supporting structures for aluminumneed not be made so
strong as that of copper conductor.
3) Aluminum conductor being light, is liable to greater swings and hence larger
cross-armsare
required.
4) Due to lower tensile strength and higher co-efficient of linear expansion of
aluminum, the sag is greater in aluminum conductors.
Considering the combined properties of cost, conductivity, tensile strength,
weight etc., aluminum has an edge over copper. Therefore, it is being widely used
as a conductor material. Itis particularly profitable to use aluminum for heavy-
currenttransmission wherethe conductor size is
large and its costforms a major proportion of the total costof complete
installation.
86
 Steel cordaluminum:
Due to low tensile strength, aluminum conductors producegreater sag. This
prohibits their usefor larger spans and makes them unsuitable for long distance
transmission.
In order to increase the tensile strength, the aluminum conductor is reinforced
with a core of galvanized steel wires. The compositeconductor thus obtained is
known as steel cored aluminum and is abbreviated as A.C.S.R. (aluminum
conductor steel reinforced).
Steel-cored aluminum conductor consists of central core of galvanized steel wires
surrounded by a number of aluminum strands.
The result of this compositeconductor is that steel core takes greater percentage
of mechanical strength while aluminum strands carry thebulk of current. The
steel cord aluminum conductors havethe following advantages :
1) The reinforcementwith steel increases the tensile strength but at the same
time keeps the composite conductor light. Therefore, steel cored aluminum
conductors will producesmaller sag and hence longer spans can be used.
2) Due to smaller sag with steel cored aluminum conductors, towers of smaller
heights can be used.
Fig 5.1: steel cord aluminum conductor.
 Galvanizedsteel:
Steel has very high tensile strength. Therefore, galvanized steel conductors can be
used for extremely long spans or for short line sections exposed to abnormally
high stresses dueto climatic conditions. They have been found very suitable in
ruralareas wherecheapness is the main consideration. Due to poor conductivity
and high resistanceof steel, such conductors arenot suitable for transmitting
87
large power over a long distance. However, they can be used to advantage for
transmitting a small power over a small distance where the size of the copper
conductor desirable fromeconomic considerations would be too small and thus
unsuitable for use becauseof poor mechanical strength.
 Cadmium copper:
The conductor material now being employed in certain cases is copper alloyed
with cadmium. An addition of 1% or 2% cadmium to copper increases the tensile
strength by about 50% and the conductivity is only reduced by 15% below that of
pure copper. Therefore, cadmium copper conductor can be useful for
exceptionally long spans. However, dueto high cost of cadmium, such conductors
will be economical only for lines of small X-section i.e., where the cost of
conductor material is comparatively smallcompared with the cost of supports.
Supports :
The supporting structures for overhead line conductors are various types of poles
and towers called line supports In general, the line supports should havethe
following properties:
1. High mechanical strength to withstand the weight of conductors and wind
loads.
2. Light in weight without the loss of mechanical strength.
3. Cheap in costand economical to maintain.
4. Longer life.
5. Easy accessibility of conductors for maintenance.
88
The line supports used for transmission and distribution of electric power are
of various types including wooden poles, steel poles, R.C.C. poles and lattice
steel towers. The choice of supporting structurefor a particular case depends
upon the line span, X-sectionalarea, line voltage, costand local conditions.
 Wooden poles:
These are made of seasoned wood and are suitable for lines of moderate X-
sectional area and of relatively shorter spans, say up to 50 meters. Such supports
are cheap, easily available, provideinsulating properties and, therefore, are
widely used for distribution purposes in ruralareas as an economical proposition.
The wooden poles generally tend to rot below
the ground level, causing foundation failure. In order to prevent this, the portion
of the pole below the ground level is impregnated with preservativecompounds
like creosoteoil. Double pole structures of the ‘A’ or ‘H’ type are often used to
obtain a higher transversestrength than could be economically provided by
means of single poles.
The main objections to wooden supports are: (i) tendency to rot below the
ground level (ii) comparatively smaller life (20-25 years) (iii) cannotbe used for
voltages higher than 20 kV (iv) less mechanical strength and (v) requireperiodical
inspection.
 Steel poles:
The steel poles are often used as a substitute for wooden poles. They possess
greater mechanical strength, longer life and permit longer spans to be used. Such
poles are generally used for distribution purposes in the cities. This type of
supports need to be galvanized or painted in
order to prolong its life. The steel poles are of three types. (i) Rail poles (ii) tubular
poles and
(iii) Rolled steel joints.
89
 RCC poles:
The reinforced concrete poles have become very popular as line supports in
recent years. They havegreater mechanical strength, longer life and permit
longer spans than steel poles. Moreover, they give good outlook, require little
maintenance and have good insulating properties. The holes in the poles facilitate
the climbing of poles and at the same time reduce the weight of line supports.
The main difficulty with the useof these poles is the high cost of transportowing
to their heavy weight. Therefore, such poles are often manufactured at the site in
order to avoid heavy cost of transportation.
 Steel towers:
In practice, wooden, steel and reinforced concrete poles are used for distribution
purposes atlow voltages, say up to 11 kV. However, for long distance
transmission athigher voltage, steel towers are invariably employed. Steel towers
have greater mechanical strength, longer life, can withstand mostsevere climatic
conditions and permit the use of longer spans. The risk of interrupted servicedue
to broken or punctured insulation is considerably reduced owing to longer spans.
Tower footings are usually grounded by driving rods into the earth. This minimizes
the lightning troubles as each tower acts as a lightning conductor.
Insulators :
The overhead lines conductors should besupported on the poles or towers in
such a way that currents fromconductors do not flow to earth through supports.
Line conductors mustbe properly insulated from supports. This is achieved by
securing line conductors to supports with the help of insulators.
The insulators providenecessary insulation between line conductors and supports
and thus prevent any leakage currentfromconductors to earth
90
the insulators should havethe following properties :
1. High mechanical strength in order to withstand conductor load, wind load
etc.
2. High electrical resistanceof insulator material in order to avoid leakage
currents to earth.
3. High relative permittivity of insulator material in order that dielectric
strength is high.
Types of Insulators:
 Pin type insulators
The part section of a pin type insulator is shown below as the name suggests,
the pin type insulator is secured to the cross-armon the pole. There is a
grooveon the upper end of the insulator for housing the conductor. The
conductor passes through this grooveand is bound by the annealed wire of
the samematerial as the conductor .Pin type insulators areused for
transmission and distribution of electric power at voltages up to 33 kV. Beyond
operating voltage of 33 kV, the pin type insulators become too bulky and
hence uneconomical. Causes of insulator failure. Insulators arerequired to
withstand both mechanical and electrical stresses. Thelatter type is primarily
due to line voltage and may causethe breakdown of the insulator. The
electrical breakdown of the insulator can occur either by flash-over or
puncture. In flashover, an arc occurs between the line conductor and insulator
pin (i.e. earth) and the dischargejumps across theair gaps, following shortest
distance. In caseof flash-over, theinsulator will continue to act in its proper
capacity unless extreme heat produced by the arc destroys theinsulator. In
case of puncture, the dischargeoccurs fromconductor to pin through the body
of the insulator. When such breakdown is involved, the insulator is
permanently destroyed due to excessiveheat. In practice, sufficient thickness
of porcelain is provided in the insulator to avoid punctureby the line voltage.
The ratio of puncture strength to flashover voltage is known as safety factor.
𝑠𝑎𝑓𝑒𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑖𝑠𝑛𝑢𝑙𝑎𝑡𝑜𝑟 =
𝑝𝑢𝑛𝑐𝑡𝑢𝑟𝑒 𝑠𝑡𝑟𝑒𝑛𝑔ℎ
𝑓𝑙𝑎𝑠ℎ − 𝑜𝑣𝑒𝑟 𝑣𝑜𝑙𝑡𝑎𝑔𝑒
91
Fig.5.2: pin type insulators.
 Suspensiontype insulators
The cost of pin type insulator increases rapidly as the working voltage is
increased. Therefore, this type of insulator is not economical beyond 33 kV.
For high voltages (>33 kV).
They consistof a number of porcelain discs connected in series by metal links
in the formof a string. The conductor is suspended at the bottom end of this
string while the other end of the string is secured to the cross-armof the
tower. Each unit or disc is designed for low voltage, say 11 kV. The number of
discs in series would obviously depend upon the working voltage. For instance,
if the working voltageis 66 kV, then sixdiscs in series will be provided on the
string.
 Advantages:
1) Suspension typeinsulators are cheaper than pin type insulators for
voltages beyond 33 kV.
2) Each unit or disc of suspension type insulator is designed for low voltage,
usually 11 kV.
Depending upon the working voltage, the desired number of discs can be
connected in series.
3) If any one disc is damaged, the whole string does not become useless
because the damaged disc can be replaced by the sound one.
4) The suspension arrangementprovides greater flexibility to the line. The
connection at the cross armis such that insulator string is free to swing in
any direction and can take up the position wheremechanical stresses are
92
minimum.
5) In case of increased demand on the transmission line, it is found more
satisfactory to supply the greater demand by raising the line voltage than to
provideanother set of conductors.
The additional insulation required for the raised voltage can be easily
obtained in the suspension arrangementby adding the desired number of
discs.
6) The suspension typeinsulators aregenerally used with steel towers. As
the conductors run below the earthed cross-armof thetower, therefore,
this arrangementprovides partial protection fromlightning
Fig.5.3: suspension insulators.
 Straininsulators
When there is a dead end of the line or there is corner or sharp curve, the line
is subjected to greater tension. In order to relieve the line of excessivetension,
strain insulators are used. For low voltage lines (< 11 kV), shackleinsulators are
used as strain insulators. However, for high voltage transmission lines, strain
insulator consists of an assembly of suspension insulators. Thediscs of strain
insulators are used in the vertical plane. When the tension in lines is
exceedingly high, as at long river spans, two or morestrings are used in
parallel.
93
Fig.5.4: strain insulator.
Important Points:
There is some of criteria wemust take it into account in mechanical design of
medium voltage:
1. Distances between the towers
The distance between each tow towers in the range (80 – 100) meter
2. The high of tower is (12) meter in 33 (KV) voltage level and 22 (KV).
3. Thickness of the steel material (80 – 90) mm, 90 mm fromthe base of tower
and 80 mm toward the top of tower .
4. Base of tower (2-2-2.5) m, (0.5) mabovethe ground and each base need about
(8) cup of concrete.
5. The distances between the insulators in the range (0.5-1) m.
6. Number of steel truss which we can put it in series in straightline without need
to put the steel towers from1 to 4 trusses until about 400 m distance.
 The Type of conductor that we usedin this project is Steel CordAluminium.
94
 We usedinthis project twotypes of supports, one of themcalledsteel truss
and other type calledsteel towers as we see inthe figure below:
Fig.5.5:truss with arm in front . Fig.5.6:tower.
Total number of steel towers and steel ladders we are need it to connect Tulkarim
and Sarra connection point with each other to unified the whole electrical
network:
Table 5.1: total number of tower and truss we are need to unified tulkarim network and sarra
connection point .
Steel tower Steel truss
61 182
Type of insulator we are used it in this projectis PIN type insulators , Suspension
type insulators and Straininsulators .Tablebelow shows the total number of
insulators weare need it :
95
Number of insulators that we needin eachtype as shown in table below:
Types of insulator Pin Suspension Strain
Number 546 62 366
Table 5.2:total numberwe are needineach type of insulator.
Sag in Overhead Lines:
While erecting an overhead line, it is very important that conductors are under
safetension. If the conductors aretoo much stretched between supports in a bid
to save conductor material, the stress in the conductor may reach unsafevalue
and in certain cases the conductor may break due to excessive tension. In order to
permit safe tension in the conductors, they are not fully stretched but are allowed
to have a dip or sag. The difference in level between points of supports and the
lowest point on the conductor is called sag.
Figurebelow shows a conductor suspended between two supports A and B. The
conductor is not fully stretched but is allowed to havea dip. The lowestpoint on
the conductor is O and the sag is S.
Fig 5.7: sag in overhead lines.
96
The following points may be noted:
1) When the conductor is suspended between two supports atthe samelevel, it
takes the shapeof catenaries. However, if the sag is very small compared with the
span, then sag-span curveis like a parabola.
2) The tension at any point on the conductor acts tangentially. Thus tension TO at
the lowestpoint O acts horizontally.
3) The horizontalcomponent of tension is constantthroughoutthe length of the
wire.
4) The tension at supports is approximately equal to the horizontaltension acting
at any point on the wire. Thus if T is the tension at the supportB, then T = TO.
Conductor sag and tension. This is an important consideration in the mechanical
design of overhead lines. The conductor sag should be kept to a minimum in
order to reducethe conductor material required and to avoid extra pole height
for sufficient clearance above ground level. Itis also desirable that tension in the
conductor should be low to avoid the mechanical failure of conductor and to
permit the use of less strong supports. However, low conductor tension and
minimum sag are not
possible. Itis becauselow sag means a tight wire and high tension, whereas a low
tension means a loose wire and increased sag. Therefore, in actual practice, a
compromisein made between the two.
Calculation of Sag
In an overhead line, the sag should be so adjusted that tension in the conductors
is within safelimits. The tension is governed by conductor weight, effects of wind,
ice loading and temperature variations.
Itis a standard practice to keep conductor tension less than 50% of its ultimate
tensile strength i.e.. We shall now calculate sag and tension of a conductor when
1) supports areat equal levels and 2) supports areat unequal levels.
97
 When supports are at equal levels:
Consider a conductor between two equivalent supports A and B with O as the
lowest point as shown in Fig.
Let Fig.5.8: sag when supports are at equal levels.
l = Length of span
w = Weight per unit length of conductor
T = Tension in the conductor.
we get,
15]
 When supports are at unequal levels:
Fig. below shows a conductor suspended between two supports A and B which
are at different levels. The lowestpoint on the conductor is O.
Optimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate network

Mais conteúdo relacionado

Destaque (7)

Ethanol production costs
Ethanol production costsEthanol production costs
Ethanol production costs
 
The promise of reason
The promise of reasonThe promise of reason
The promise of reason
 
Osiloskop (Oscilloscope) Kullanımı
Osiloskop (Oscilloscope) KullanımıOsiloskop (Oscilloscope) Kullanımı
Osiloskop (Oscilloscope) Kullanımı
 
Why you should quit smoking
Why you should quit smokingWhy you should quit smoking
Why you should quit smoking
 
Smith Chart
Smith ChartSmith Chart
Smith Chart
 
Four vedas_english
Four vedas_englishFour vedas_english
Four vedas_english
 
Chp 55
Chp 55Chp 55
Chp 55
 

Semelhante a Optimum performance of tulkarim governorate network

Optimum performances of ramallah
Optimum performances of ramallahOptimum performances of ramallah
Optimum performances of ramallah
slmnsvn
 
Optimum design and performance for nablus network
Optimum design and performance for nablus networkOptimum design and performance for nablus network
Optimum design and performance for nablus network
slmnsvn
 
140211 KIUMA Electrical Proposal(S)
140211 KIUMA Electrical Proposal(S)140211 KIUMA Electrical Proposal(S)
140211 KIUMA Electrical Proposal(S)
Neil Eichstadt
 
Wireless charger for_low_power_devices_ excellent one same
Wireless charger for_low_power_devices_ excellent one sameWireless charger for_low_power_devices_ excellent one same
Wireless charger for_low_power_devices_ excellent one same
Ibrahim Khleifat
 
Rehabilitation of nablus electrical network by adding a new connection point
Rehabilitation of nablus electrical network by adding a new connection pointRehabilitation of nablus electrical network by adding a new connection point
Rehabilitation of nablus electrical network by adding a new connection point
slmnsvn
 
Solar powered refrigerator
Solar powered refrigeratorSolar powered refrigerator
Solar powered refrigerator
slmnsvn
 
Low bridge avoidance system
Low bridge avoidance systemLow bridge avoidance system
Low bridge avoidance system
slmnsvn
 

Semelhante a Optimum performance of tulkarim governorate network (20)

Optimum performances of ramallah
Optimum performances of ramallahOptimum performances of ramallah
Optimum performances of ramallah
 
Automatic street light control using LDR.
Automatic street light control using LDR.Automatic street light control using LDR.
Automatic street light control using LDR.
 
Automatic street light control using LDR.
Automatic street light control using LDR.Automatic street light control using LDR.
Automatic street light control using LDR.
 
Implementationof over voltageunder-voltageprotectionsystem
Implementationof over voltageunder-voltageprotectionsystemImplementationof over voltageunder-voltageprotectionsystem
Implementationof over voltageunder-voltageprotectionsystem
 
Optimum design and performance for nablus network
Optimum design and performance for nablus networkOptimum design and performance for nablus network
Optimum design and performance for nablus network
 
140211 KIUMA Electrical Proposal(S)
140211 KIUMA Electrical Proposal(S)140211 KIUMA Electrical Proposal(S)
140211 KIUMA Electrical Proposal(S)
 
Wireless charger for_low_power_devices_ excellent one same
Wireless charger for_low_power_devices_ excellent one sameWireless charger for_low_power_devices_ excellent one same
Wireless charger for_low_power_devices_ excellent one same
 
Rehabilitation of nablus electrical network by adding a new connection point
Rehabilitation of nablus electrical network by adding a new connection pointRehabilitation of nablus electrical network by adding a new connection point
Rehabilitation of nablus electrical network by adding a new connection point
 
Thesis final rept version 1
Thesis final rept version 1Thesis final rept version 1
Thesis final rept version 1
 
driverless Robot car controlled using GSM
driverless Robot car controlled using GSMdriverless Robot car controlled using GSM
driverless Robot car controlled using GSM
 
Ltu ex-05238-se
Ltu ex-05238-seLtu ex-05238-se
Ltu ex-05238-se
 
Wireless power transmission doc/sanjeet-1308143
Wireless power transmission doc/sanjeet-1308143Wireless power transmission doc/sanjeet-1308143
Wireless power transmission doc/sanjeet-1308143
 
Automatic power factor_detection_and_cor
Automatic power factor_detection_and_corAutomatic power factor_detection_and_cor
Automatic power factor_detection_and_cor
 
Solar powered refrigerator
Solar powered refrigeratorSolar powered refrigerator
Solar powered refrigerator
 
etd7288_MHamidirad
etd7288_MHamidiradetd7288_MHamidirad
etd7288_MHamidirad
 
SWITCHGEAR AND PROTECTION, STARTING OF 3 PHASE INDUCTION MOTOR
SWITCHGEAR AND PROTECTION, STARTING OF 3 PHASE INDUCTION MOTORSWITCHGEAR AND PROTECTION, STARTING OF 3 PHASE INDUCTION MOTOR
SWITCHGEAR AND PROTECTION, STARTING OF 3 PHASE INDUCTION MOTOR
 
Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...
Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...
Dissertation or Thesis on Efficient Clustering Scheme in Cognitive Radio Wire...
 
Final report
Final reportFinal report
Final report
 
Low bridge avoidance system
Low bridge avoidance systemLow bridge avoidance system
Low bridge avoidance system
 
Automatic power factor_improvement_and_monitoring_by_using_plc[1]
Automatic power factor_improvement_and_monitoring_by_using_plc[1]Automatic power factor_improvement_and_monitoring_by_using_plc[1]
Automatic power factor_improvement_and_monitoring_by_using_plc[1]
 

Mais de slmnsvn

Analysis optimization and monitoring system
Analysis optimization and monitoring system Analysis optimization and monitoring system
Analysis optimization and monitoring system
slmnsvn
 
Analysis optimization and monitoring system
Analysis optimization and monitoring system Analysis optimization and monitoring system
Analysis optimization and monitoring system
slmnsvn
 
Smart fuel theft detector
Smart fuel theft detectorSmart fuel theft detector
Smart fuel theft detector
slmnsvn
 
Smart fuel theft detector
Smart fuel theft detectorSmart fuel theft detector
Smart fuel theft detector
slmnsvn
 
Rfid attendace system
Rfid attendace systemRfid attendace system
Rfid attendace system
slmnsvn
 
Quad pod transformable vehicle
Quad pod transformable vehicleQuad pod transformable vehicle
Quad pod transformable vehicle
slmnsvn
 
Quad pod transformable vehicle
Quad pod transformable vehicleQuad pod transformable vehicle
Quad pod transformable vehicle
slmnsvn
 
Power factor correction
Power factor correctionPower factor correction
Power factor correction
slmnsvn
 
Power factor correction
Power factor correctionPower factor correction
Power factor correction
slmnsvn
 
Optimum performances of ramallah
Optimum performances of ramallahOptimum performances of ramallah
Optimum performances of ramallah
slmnsvn
 
Optimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate networkOptimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate network
slmnsvn
 
Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2
slmnsvn
 
Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2
slmnsvn
 
Optimum performance for aqraba electrical network
Optimum performance for aqraba electrical networkOptimum performance for aqraba electrical network
Optimum performance for aqraba electrical network
slmnsvn
 
Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...
slmnsvn
 
Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...
slmnsvn
 
Investigation effects-of-supplying-power-distrubition
Investigation effects-of-supplying-power-distrubitionInvestigation effects-of-supplying-power-distrubition
Investigation effects-of-supplying-power-distrubition
slmnsvn
 

Mais de slmnsvn (20)

Analysis optimization and monitoring system
Analysis optimization and monitoring system Analysis optimization and monitoring system
Analysis optimization and monitoring system
 
Analysis optimization and monitoring system
Analysis optimization and monitoring system Analysis optimization and monitoring system
Analysis optimization and monitoring system
 
Smart home
Smart homeSmart home
Smart home
 
Smart fuel theft detector
Smart fuel theft detectorSmart fuel theft detector
Smart fuel theft detector
 
Smart fuel theft detector
Smart fuel theft detectorSmart fuel theft detector
Smart fuel theft detector
 
Rfid attendace system
Rfid attendace systemRfid attendace system
Rfid attendace system
 
Quad pod transformable vehicle
Quad pod transformable vehicleQuad pod transformable vehicle
Quad pod transformable vehicle
 
Quad pod transformable vehicle
Quad pod transformable vehicleQuad pod transformable vehicle
Quad pod transformable vehicle
 
Power factor correction
Power factor correctionPower factor correction
Power factor correction
 
Power factor correction
Power factor correctionPower factor correction
Power factor correction
 
Optimum performances of ramallah
Optimum performances of ramallahOptimum performances of ramallah
Optimum performances of ramallah
 
Optimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate networkOptimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate network
 
Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2
 
Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2
 
Optimum performance for aqraba electrical network
Optimum performance for aqraba electrical networkOptimum performance for aqraba electrical network
Optimum performance for aqraba electrical network
 
Multi tone test
Multi tone testMulti tone test
Multi tone test
 
Multi tone test
Multi tone testMulti tone test
Multi tone test
 
Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...
 
Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...
 
Investigation effects-of-supplying-power-distrubition
Investigation effects-of-supplying-power-distrubitionInvestigation effects-of-supplying-power-distrubition
Investigation effects-of-supplying-power-distrubition
 

Último

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 

Último (20)

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 

Optimum performance of tulkarim governorate network

  • 2. 2 AN-Najah National University Faculty of Engineering Electrical Engineering Department Introduction to Graduation Project Optimum Performance of Tulkarim Governorate network & Sarra Connection Point ‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬ Supervisor: Dr. Imad Ibrik Prepared by: Woroud turabi Ahmad nasralla
  • 3. 3 Acknowledgment: Our first and greatest thanks are to Allah. He above all was, is, and will be the source of help and guidance that counts. His help kept us going through many frustrations and His guidance brought us back on track when our frustrations tended to drive us astray. Next, we would like to express our deep gratitude to our supervisor Dr. Imad Ibrik for his effort and encouragement throughout the preparation of this project.His Knowledge and endless support was a great asset from which we learned plenty. He was very enthusiastic about the project, which gave us a motive to work harder and harder. We would like to thank friends who did their best whenever we needed or asked for anything. No matter what the task was or how busy they were, they always found the time. Also we would like to thank our families that help us very much and they were very generous with us. It is difficult to acknowledge everyone who was involved in preparation of this project by name. Nevertheless we appreciate their help no matter how simple it might have been. Finally, we owe our colleagues great thanks for supporting us through our college years and for making those years the best years of our life.
  • 4. 4 DISCLAIMER This report was written by students at the Electrical and Telecommunication Engineering Department, Faculty of Engineering, An-Najah National University. It has not been altered or corrected, other than editorial corrections, as a result of assessment and it may contain language as well as content errors. The views expressed in it together with any outcomes and recommendations are solely those of the students. An-Najah National University accepts no responsibility or liability for the consequences of this report being used for a purpose other than the purpose for which it was commissioned.
  • 5. 5 Contents: List of tables and figures ………………………………………………………… IEC standards……………………………………………………………………………………….. Nomenclature or list of symbols……………………………………………… Abstract………………………………………………………………………………….. Introduction …………………………………………………………………………… Chapter 1: Tulkarim networks & Sarra connection point Description of the networks……………………………………………………… Sourceof information………………………………………………………………. Chapter 2: Transmission lines… Electrical power transmission……………………………………… Type of transmission line……………………………………………. Chapter 3: analysis for the existing networks One line diagramfor networks………………………………………………… Analysis of the networks…………………………………………………………… Problems in the networks………………………………………………………… Chapter4: analysis of supply sarra connection point and tulkarim from central substation Improving thenetworkes ………………………………………………………………………… 1. Tap changing
  • 6. 6 2. Power factor improvement 3. Changing over load transformer Chapter5: Mechanical design of the network Main Components of overhead lines……………………………………………………. 1. Conductors 2. Supports 3. Insulators ImportantPoint……………………………………………………………………………………… Sag in Overhead Lines…………………………………………………………………………….. Calculation of Sag…………………………………………………………………………………. References………………………………………………………………………………... Appendix………………………………………………………………………………….. List of tables: Table 1.1A: transformersof University station…………………………………………………………. 1.2A: transformersof al karakonstation…….………………………………………………….. 1.1B: transformersof tulkarim1……………………………………………….………………….. 1.2B: transformersof tulkarim2…………………………………………..………………………. 1.3: R & X of transformers…………………………………………………………………………... 1.4A: the loadandpowerfactor of each transformer………………………………………… 1.4B: the loadand powerfactorof each transformer………………………………………… Table 2.1: R&X of the ACSR ……………………………………………………………… 2.2: R&X of the XLPE Cu……………………………………………………………….
  • 7. 7 2.3: R&X of the XLPE Al………………………………………………………………….. Table 3.1A: rated powerof eachtransformer………………………………………………….. 3.1B: ratedpowerof each transformer………………………………………………….. 3.2A: full loaddescription…………………………………………………………………… 3.2B: full loaddescription…………………………………………………………………… 3.3A: summaryof total generation,loading&demand…………………… 3.3B: summaryof total generation, loading&demand…………………… Table 4.1A : summaryof total generation,loading&demand…………………… 4.1B: summaryof total generation,loading&demand…………………… 4.2A(TAPCHANGE) : summaryof total generation,loading&demand……………. 4.2B(TAP CHANGE) : summaryof total generation,loading&demand……………. 4.3: The penaltiesof powerfactor……………………………………………………………………….. 4.4A(POWERFACTOR) : summaryof total generation,loading&demand………… 4.4B(POWER FACTOR) : summaryof total generation,loading& demand………… 4.5 showsthe transformerswhichare neededtobe bought…………………………………… 4.6 summarizesthe analysisresultsafterchangingtransformers…………………………………. Table 5.1: Numberof steel towersandtrusswhichwe need………………………………………………… 5.2: Numberof insulatorsthatwe needineachtype……………………………………………………
  • 8. 8 List of figures: Figure a. a: the growthpatternin WestBank,Gaza Stripand the total Palestine forecast…………. 3.1A: distributionof transformersanddistance betweenthem…………… 3.1B: distributionof transformersanddistance betweenthem……………………………. 3.2A: one line diagramforSarra connectionpoint’stransformer……….. 3.2B: one line diagramforTulkarimnetworks………………………………… 3.3A: firstrun for the network shows(s,v & pf)……………………………… 3.3B: firstrun forthe networkshows(s,v & pf)……………………………… 4.1 : 5% tap changer……………………………………………………………………………………………………….. 5.1:steel cordaluminumconductor…………………………………………………………………………………….. 5.2: pintype insulators………………………………………………………………………………………………………. 5.3: suspensioninsulators………………………………………………………………………………………………….. 5.4: straininsulator…………………………………………………………………………………………………………….. 5.5: trusswitharm in front……………………………………………………………………………………………………. 5.6: tower…………………………………………………………………………………………………………………………….. 5.7: sag inoverheadlines………………………………………………………………………………………………………. 5.8: sag whensupportsare at equal levels……………………………………………………………………………. 5.9: sag whensupportsare at unequal levels…………………………………………………………………………. 5.10: Effectof windand ice loading……………………………………………………………………………………..
  • 9. 9 All units’ mentions in the report are based on IEC standards [1]
  • 10. 10 IEC standards This is an incomplete list of standards published by the International Electrotechnical Commission(IEC) 1]:  IEC 60038 IEC StandardVoltages  IEC 60044 Instrumenttransformers  IEC 60028 International standardof resistance forcopper  IEC 60076 Powertransformers  IEC 60085 Electrical insulation  IEC60228Conductorsofinsulated[2]  IEC209 Aluminumstrandedconductorsteelreinforced [3]  IEC 60871 capacitorbank [4]
  • 11. 11 Nomenclature or list of symbols: A ampere(s) V volt(s) W watt(s) KA kiloampere(s) KV kilovolt(s) Km kilometer(s) MVA megavolt ampere(s) MVAR megavolt-ampere(s) reactive MW megawatt ACCR aluminum conductor composite reinforced Xlpe cross-linked polyethylene power cable m meter mm2 millimeter square mm millimeter
  • 12. 12 {Abstract}: The important aspects to be covered in this project are preparing the initial data for Tulkarim Governoratenetwork & Sarra Connection Point and subjectto a load flow study using modern softwarelike ETAP to improvethe voltage level and the power factor and reduce the electrical losses by Reconnection the two networks with Sarra electricity converter station which converts from33Kv to 11Kv instead of (336.6) KV.  The objectives of the project are:  To be familiar with TulkarimGovernoratenetwork & Sarra Connection Point  To improvethe voltage level and decreasethe real power losses  To increase the reliability of the networks  To connect the two networks( Tulkarimand Sarra connection point) to Sarra electricity converter station (16133 KV) directly without relying on Israelinational electricity company  Giving recommendation for the best systemto be used in Sarra connection point and in Tulkarim (e.g reconnection, change transformers).  Giving recommendation for the design to be used in Sarra connection point and in Tulkarim  In order to do these objectives these method will be followed :  Built the one line diagramfor ETAP program  Collect the data for the networks including all parameters  Load flow analysis and study for networks by Detect problems in networks
  • 13. 13 Energy sector in Palestine Energy sector in Palestine faced many difficulties becauseof occupation. Till now there is no unified power systemin Palestine. Most of electrical energy depends on IEC Company except Jericho which connected with Jordan and Gaza to Egypt (17MW) through the interconnection project. The only generation plant is in Gaza with generating capacity of 140MW. Distribution companies take the role of distributing electricity in the different regions of Palestine. The average annual growth rate of energy demand in westbank is 6.4%, and in Gaza is 10% from1999 to 2005. [5] Figure a. a: the growth patterninWestBank, Gaza Stripand the total Palestineforecast
  • 15. 15 Power system The power system is complicated electrical networks used to supply, transmit, and use electrical energy .the networks supply s towns containing houses hospitals industrial region called CRID. the grid is contains generators that supply the power ,the transmission system that carries the power from the generating center to the load center and the distribution system that feeds the power to the nearby home and industries . the majority of these system rely upon three-phase AC power –the standard for large- scale power transmission and distribution across the modern world .specialized power systems that do not always rely three-phase AC power are found in aircraft ,electric rail systems , ocean linear and automobiles 1] Power flow study: In power engineering, the power flow study (also known as load-flow study) is an important tool involving numerical analysis applied to a power system. Unlike traditional circuit analysis, a power flow study usually uses simplified notation such as a one-line diagram and per-unit system, and focuses on various forms of AC power (ie: reactive, real, and apparent) rather than voltage and current. It analyzes the power systems in normal steady-state operation. There exist a number of software implementations of power flow studies. In addition to a power flow study itself, sometimes called the base case, many software implementations perform other types of analysis, such as short- circuit fault analysis and economic analysis. In particular, some programs use linear programming to find the optimal power flow, the conditions which give the lowest cost per kilowatt generated. The great importance of power flow or load-flow studies is in the planning the future expansion of power systems as well as in determining the best operation of existing systems. The principal information obtained from the power flow study is the magnitude and phase angle of the voltage at each bus and the real and reactive power flowing in each line. Commercial power systems are usually too large to allow for hand solution of the power flow. the first step in the load flow study is simulate the power system by the one line diagram and collect the data and specification of all power system contents and then translate this system to per unit circuit in order simplifies it ,this happened by choose abases value in the power system .[6]
  • 16. 16 Bus classification: Load bus: In these buses no generators are connected and hence the generated real power PGi and reactive power QGi are taken as zero. The load drawn by these buses are defined by real power -PLi and reactive power -QLi in which the negative sign accommodates for the power flowing out of the bus. This is why these buses are sometimes referred to as P-Q bus. The objective of the load flow is to find the bus voltage magnitude |Vi| and its angle δi.[7] Generator bus or voltage controlledbus:Theseare the buses wheregenerators are connected. Thereforethe power generation in such buses is controlled through a prime mover while the terminal voltage is controlled through the generator excitation. Keeping the input power constant through turbine-governor control and keeping the bus voltage constant using automatic voltage regulator, we can specify constant PGi and | Vi | for these buses. This is why such buses are also referred to as P-V buses. Itis to be noted that the reactive power supplied by the generator QGi depends on the systemconfiguration and cannot be specified in advance. Furthermorewe haveto find the unknown angle δi of the bus voltage. [7] Slack (swing) bus:Usually this bus is numbered 1 for the load flow studies. This bus sets the angular reference for all the other buses. Sinceit is the angle difference between two voltage sources that dictates the real and reactive power flow between them, the particular angle of the slack bus is not important. However it sets the reference against which angles of all the other bus voltages are measured. For this reason the angle of this bus is usually chosen as 0°. Furthermoreit is assumed that the magnitude of the voltage of this bus is known.[7]
  • 17. 17 LLooaadd FFllooww eeqquuaattiioonnss:: 11--GGaauussss--SSeeiiddeell mmeetthhoodd.. ....22--NNeewwttoonn--RRaapphhssoonn mmeetthhoodd GGaauussss--SSeeiiddeell mmeetthhoodd:: WWee aarree ccoonnssiiddeerriinngg aann iitteerraattiivvee ssoolluuttiioonn ttoo tthhee lliinneeaarr ssyysstteemm wwhheerree iiss aann ssppaarrssee mmaattrriixx,, xx aanndd bb aarree vveeccttoorrss ooff lleennggtthh nn,, aanndd wwee aarree ssoollvviinngg ffoorr xx.. IItteerraattiivvee ssoollvveerrss aarree aann aalltteerrnnaattiivvee ttoo ddiirreecctt mmeetthhooddss tthhaatt aatttteemmpptt ttoo ccaallccuullaattee aann eexxaacctt ssoolluuttiioonn ttoo tthhee ssyysstteemm ooff eeqquuaattiioonnss.. IItteerraattiivvee mmeetthhooddss aatttteemmpptt ttoo ffiinndd aa ssoolluuttiioonn ttoo tthhee ssyysstteemm ooff lliinneeaarr eeqquuaattiioonnss bbyy rreeppeeaatteeddllyy ssoollvviinngg tthhee lliinneeaarr ssyysstteemm uussiinngg aapppprrooxxiimmaattiioonnss ttoo tthhee vveeccttoorr.. IItteerraattiioonnss ccoonnttiinnuuee uunnttiill tthhee ssoolluuttiioonn iiss wwiitthhiinn aa pprreeddeetteerrmmiinneedd aacccceeppttaabbllee bboouunndd oonn tthhee eerrrroorr.. CCoommmmoonn iitteerraattiivvee mmeetthhooddss ffoorr ggeenneerraall mmaattrriicceess iinncclluuddee tthhee GGaauussss--JJaaccoobbii aanndd GGaauussss--SSeeiiddeell,, wwhhiillee ccoonnjjuuggaattee ggrraaddiieenntt mmeetthhooddss eexxiisstt ffoorr ppoossiittiivvee ddeeffiinniittee mmaattrriicceess.. CCrriittiiccaall iinn tthhee cchhooiiccee aanndd uussee ooff iitteerraattiivvee mmeetthhooddss iiss tthhee ccoonnvveerrggeennccee ooff tthhee tteecchhnniiqquuee.. GGaauussss--JJaaccoobbii uusseess aallll vvaalluueess ffrroomm tthhee pprreevviioouuss iitteerraattiioonn,, wwhhiillee GGaauussss--SSeeiiddeell rreeqquuiirreess tthhaatt tthhee mmoosstt rreecceenntt vvaalluueess bbee uusseedd iinn ccaallccuullaattiioonnss.. TThhee GGaauussss--SSeeiiddeell mmeetthhoodd ggeenneerraallllyy hhaass bbeetttteerr ccoonnvveerrggeennccee tthhaann tthhee GGaauussss--JJaaccoobbii mmeetthhoodd,, aalltthhoouugghh ffoorr ddeennssee mmaattrriicceess,, tthhee GGaauussss--SSeeiiddeell mmeetthhoodd iiss iinnhheerreennttllyy sseeqquueennttiiaall.. BBeetttteerr ccoonnvveerrggeennccee mmeeaannss lleessss iitteerraattiioonn,, aanndd aa ffaasstteerr oovveerraallll aallggoorriitthhmm,, aass lloonngg aass tthhee ssttrriicctt pprreecceeddeennccee rruulleess ccaann bbee oobbsseerrvveedd.. TThhee ccoonnvveerrggeennccee ooff tthhee iitteerraattiivvee mmeetthhoodd mmuusstt bbee eexxaammiinneedd ffoorr tthhee aapppplliiccaattiioonn aalloonngg wwiitthh aallggoorriitthhmm ppeerrffoorrmmaannccee ttoo eennssuurree tthhaatt aa uusseeffuull ssoolluuttiioonn ttoo ccaann bbee ffoouunndd.. TThhee GGaauussss--SSeeiiddeell mmeetthhoodd ccaann bbee wwrriitttteenn aass::
  • 18. 18 TThhee rreepprreesseennttaattiioonn iinn eeqquuaattiioonn 22 iiss uusseedd iinn tthhee ddeevveellooppmmeenntt ooff tthhee ppaarraalllleell aallggoorriitthhmm,, wwhhiillee tthhee eeqquuiivvaalleenntt mmaattrriixx--bbaasseedd rreepprreesseennttaattiioonn iinn eeqquuaattiioonn 33 iiss uusseedd bbeellooww iinn ddiissccuussssiioonnss ooff aavvaaiillaabbllee ppaarraalllleelliissmm.. IItt iiss vveerryy ddiiffffiiccuulltt ttoo ddeetteerrmmiinnee iiff oonnee--sstteepp iitteerraattiivvee mmeetthhooddss,, lliikkee tthhee GGaauussss--SSeeiiddeell mmeetthhoodd,, ccoonnvveerrggee ffoorr ggeenneerraall mmaattrriicceess.. NNeevveerrtthheelleessss,, ffoorr ssoommee ccllaasssseess ooff mmaattrriicceess,, iitt iiss ppoossssiibbllee ttoo pprroovvee GGaauussss--SSeeiiddeell mmeetthhooddss ddoo ccoonnvveerrggee aanndd yyiieelldd tthhee uunniiqquuee ssoolluuttiioonn ffoorr wwiitthh aannyy iinniittiiaall ssttaarrttiinngg vveeccttoorr .. RReeffeerreennccee [[44]] pprroovveess tthheeoorreemmss ttoo sshhooww tthhaatt tthhiiss hhoollddss ffoorr bbootthh ddiiaaggoonnaallllyy ddoommiinnaanntt aanndd ssyymmmmeettrriicc ppoossiittiivvee ddeeffiinniittee mmaattrriicceess.. TThhee pprrooooffss ooff tthheessee tthheeoorreemmss ssttaattee tthhaatt tthhee GGaauussss--SSeeiiddeell mmeetthhoodd wwiillll ccoonnvveerrggee ffoorr tthheessee mmaattrriixx ttyyppeess;; hhoowweevveerr,, tthheerree iiss nnoo eevviiddeennccee aass ttoo tthhee rraattee ooff ccoonnvveerrggeennccee.. OOrrddeerriinngg aa ssyymmmmeettrriicc ssppaarrssee mmaattrriixx iiss aaccttuuaallllyy lliittttllee mmoorree tthhaann cchhaannggiinngg tthhee llaabbeellss aassssoocciiaatteedd wwiitthh nnooddeess iinn aann uunnddiirreecctteedd ggrraapphh.. MMooddiiffyyiinngg tthhee oorrddeerriinngg ooff aa ssppaarrssee mmaattrriixx iiss ssiimmppllee ttoo ppeerrffoorrmm uussiinngg aa ppeerrmmuuttaattiioonn mmaattrriixx ooff eeiitthheerr zzeerrooss oorr oonneess tthhaatt ssiimmppllyy ggeenneerraatteess eelleemmeennttaarryy rrooww aanndd ccoolluummnn eexxcchhaannggeess.. AAppppllyyiinngg tthhee ppeerrmmuuttaattiioonn mmaattrriixx ttoo tthhee oorriiggiinnaall lliinneeaarr ssyysstteemm iinn eeqquuaattiioonn 11 yyiieellddss tthhee lliinneeaarr ssyysstteemm TThhaatt iiss ssoollvveedd uussiinngg tthhee ppaarraalllleell GGaauussss--SSeeiiddeell aallggoorriitthhmm.. WWhhiillee oorrddeerriinngg tthhee mmaattrriixx ggrreeaattllyy ssiimmpplliiffiieess aacccceessssiinngg ppaarraalllleelliissmm iinnhheerreenntt wwiitthhiinn tthhee mmaattrriixx ssttrruuccttuurree,, oorrddeerriinngg ccaann hhaavvee aann eeffffeecctt oonn ccoonnvveerrggeennccee [[66]].. NNeewwttoonn--RRaapp ssoonn MMeetthhoodd:: IIff yyoouu''vvee eevveerr ttrriieedd ttoo ffiinndd aa rroooott ooff aa ccoommpplliiccaatteedd ffuunnccttiioonn aallggeebbrraaiiccaallllyy,, yyoouu mmaayy hhaavvee hhaadd ssoommee ddiiffffiiccuullttyy.. UUssiinngg ssoommee bbaassiicc ccoonncceeppttss ooff ccaallccuulluuss,, wwee hhaavvee wwaayyss ooff nnuummeerriiccaallllyy eevvaalluuaattiinngg rroooottss ooff ccoommpplliiccaatteedd ffuunnccttiioonnss.. CCoommmmoonnllyy,, wwee uussee tthhee NNeewwttoonn--RRaapp ssoonn mmeetthhoodd.. TThhiiss iitteerraattiivvee pprroocceessss ffoolllloowwss aa sseett gguuiiddeelliinnee ttoo aapppprrooxxiimmaattee oonnee rroooott,, ccoonnssiiddeerriinngg tthhee ffuunnccttiioonn,, iittss ddeerriivvaattiivvee,, aanndd aann iinniittiiaall xx-- vvaalluuee..[[66]] YYoouu mmaayy rreemmeemmbbeerr ffrroomm aallggeebbrraa tthhaatt aa rroooott ooff aa ffuunnccttiioonn iiss aa zzeerroo ooff tthhee ffuunnccttiioonn.. TThhiiss mmeeaannss tthhaatt aatt tthhee ""rroooott"" tthhee ffuunnccttiioonn eeqquuaallss zzeerroo.. WWee ccaann ffiinndd
  • 19. 19 tthheessee rroooottss ooff aa ssiimmppllee ffuunnccttiioonn ssuucchh aass:: ff((xx)) == xx22 --44 ssiimmppllyy bbyy sseettttiinngg tthhee ffuunnccttiioonn ttoo zzeerroo,, aanndd ssoollvviinngg:: FF((xx)) == xx22 --44 == 00 ((xx++22))((xx--22)) == 00 xx == 22 oorr xx == --22 The Newton-Rap son method uses an iterative process to approach one root of a function. The specific root that the process locates depends on the initial, arbitrarily chosen x-value. Here, xn is the currentknown x-value, f(xn) represents the value of the function at xn, and f'(xn) is the derivative (slope) at xn. xn+1 representthe next x-value that you are trying to find. Essentially, f'(x), the derivative represents f(x)/dx(dx = delta-x). Therefore, the term f(x)/f'(x) represents a value of dx. TThhee mmoorree iitteerraattiioonn tthhaatt aarree rruunn,, tthhee cclloosseerr ddxx wwiillll bbee ttoo zzeerroo ((00)).. The Newton-Raphson method does not always work, however. Itruns into problems in several places. First, consider the above example. Whatwould happen if we chosean initial x-valueof x=0? We would have a "division by zero" error, and would not be able to proceed. You may also consider operating the process on the function f(x) = x1/3 , using an initial x-valueof x=1. Do the x-values converge? Does the delta-x decrease toward zero (0)? 1 So, how does this relate to chemistry? Consider the van der Waals equation found in the Gas Laws section of this text. Assuming that we have a set number of moles of a set gas, not under ideal conditions, we can use the Newton-Raphson method to solve for one of the three variables (temperature, pressure, or volume), based on the other two. To do this, we need to use the van der Waals equation, and the derivative of this equation, both seen below [6].
  • 20. 20 As you can see, the Van der Waals equation is quite complex. It is not possibleto solveit algebraically, so a numerical method must be used. The Newton-Raphson Method is the easiest and most dependable way to solveequations like this, even though the equation and its derivative seem quite intimidating. Depending on the conditions under which you are attempting to solvethis equation, severalof the variables may be changing. So, it may be necessary to use partial derivatives. For the purposes of this example, we are assuming thatpressure, temperature, and volume are the only things changing, and that these values are all functions of time. This avoids the useof a partial derivative; we simply differentiate all variables with respect to time, as shown above. Somealgebraic manipulation of the equation and/or its derivative may be needed depending on the specific problem to be solved. Itis assumed that all of the variables but one are specified; that variable is used in the expression for "xn+1" that Newton's method uses. Performing Newton's method on this equation successfully would givea value of that variable which gives a solution when the other variables are held constant at the values you specified. Real Power Losses The real power losses: is the loss of the systembecauseof the voltage drop on the busses. In the load buses we must feed the load the power which is needed, put if the voltage on the buses is very low the current become higher than beforeas the following: P = V*I *P.f  P is constant, then: If the voltage (V) is decreased the current (I) is increased, ∆P = 3*I2 * R
  • 21. 21 So that the reactive power losses will be increased. To reduce the reactive power losses wemust increasethe voltage. Reactive Power Compensation CCeerrttaaiinn ccoonnssuummeerr ddeevviicceess nneeeedd nnoott oonnllyy aaccttiivvee bbuutt aallssoo rreeaaccttiivvee ppoowweerr.. SSuucchh ddeevviicceess iinncclluuddee mmoottoorrss,, ddiisscchhaarrggee llaammppss aanndd ttrraannssffoorrmmeerrss.. TThhee aaccttuuaall wwoorrkk iiss ddoonnee bbyy aaccttiivvee ppoowweerr,, aass iinn aallll eelleeccttrriiccaall ddeevviicceess.. RReeaaccttiivvee ppoowweerr iiss nneeeeddeedd ttoo mmaaiinnttaaiinn tthhee mmaaggnneettiicc ffiieelldd.. RReeaaccttiivvee PPoowweerr CCoommppeennssaattiioonn iinn EElleeccttrriicc SSyysstteemmss iiss uussuuaallllyy ssttuuddiieedd aass aa ccoonnssttrraaiinneedd SSiinnggllee--oobbjjeeccttiivvee OOppttiimmiizzaattiioonn PPrroobblleemm wwhheerree aann oobbjjeeccttiivvee ffuunnccttiioonn iiss aa lliinneeaarr ccoommbbiinnaattiioonn ooff sseevveerraall ffaaccttoorrss,, ssuucchh aass,, iinnvveessttmmeenntt aanndd ttrraannssmmiissssiioonn lloosssseess.. AAtt tthhee ssaammee ttiimmee,, ccoonnssttrraaiinnss lliimmiitt ootthheerr ppaarraammeetteerrss aass rreelliiaabbiilliittyy aanndd vvoollttaaggee pprrooffiillee.. TThhee rreeaaccttiivvee ppoowweerr nneeeeddeedd bbyy ccoonnssuummeerr ddeevviicceess ccaann bbee pprroodduucceedd llooccaallllyy uussiinngg aa ccoommppeennssaattiioonn ccaappaacciittoorr ppllaacceedd iinn tthhee vviicciinniittyy ooff ssuucchh ddeevviicceess
  • 22. 22 Components of power system 1.Power station The power station of a power system consists of a prime mover, such as a turbine driven by water, steam, or combustion gases that operate a system of electric motors and generators. Most of the world's electric power is generated in steam plants driven by coal, oil, nuclear energy, or gas. A smaller percentage of the world’s electric power is generated by hydroelectric (waterpower), diesel, and internal-combustion plants.[8] 2.Transformer electric power systems transformer is a static device which transforms electrical energy from one circuit to another without any direct electrical connection and with help of mutual induction between to windings .it transforms power from one circuit to another without changing its frequency but may be in different voltage level .the transformer can work either as a step up or a step down voltage or current. We have two types of transformers used in power system first one is power transformer and the second is distribution transformer, power transformer are used in the high voltage level usually in power station and in substation and the distribution transformer are used in the medium and low voltage side (consumer side) [8] 3.Transmission line A transmission line is a material medium or structure that forms a path for directing the transmission of energy from one place to another, such as electromagnetic waves or acoustic waves as well as electric power transmission. It use to carry the power from power station to the load that represent the consumer ,it divided to long line and medium line and short line . 4.Load Which it’s both reactive and real power and both of them are specified and both voltage magnitude and angle are determined by the computer as part of solution, which they’re both voltage magnitude and real power are specified and we will determine the reactive power and angle by the computer program as part of solution so the generation busses is one of the method to solve the parameter of the complex network. [8]
  • 23. 23 Chapter 1 Tulkarim Governorate networks & Sarra Connection Point …. 1.1 description of the networks Sarra connection point is fed by Israel Company, the capacity of this connection point is 20MVA (rated) and the rated voltage is 33KV. This connection point contains 92 distribution transformers with differentrating power depending on the region (or the residential) and the consumption of energy. [9] Table1.1A: transformers of University station Transformer number Rating Rated power (KVA) Tr1 southern 3311-6.6 10000 Tr2 madakh al- jneed 116.6-0.4 400 Tr3 amena saaed 116.6-0.4 160 Tr4 khalele 116.6-0.4 400 Tr5 jalal yaseen 116.6-0.4 400 Tr6 tayba 1 116.6-0.4 400 Tr7 tayba 2 116.6-0.4 400 Tr8 al ameria 116.6-0.4 630 Tr9 eskan almohandesen 116.6-0.4 250 Tr10 eskan Shinar 116.6-0.4 250 Tr11 bet wazan 116.6-0.4 250 Tr12 hajez 116.6-0.4 400 Tr13 jneed 116.6-0.4 400 Tr14 orabee 116.6-0.4 400 Tr15 alferdaws 116.6-0.4 630 Tr16 khateeb 116.6-0.4 630 Tr17 afonneh 116.6-0.4 630 Tr18 seha 116.6-0.4 400 Tr19 jaber 116.6-0.4 400 Tr20 msjed al makhfeha 116.6-0.4 400 Tr21 kamal jnblat 116.6-0.4 630
  • 24. 24 Tr22 etsalat 1 116.6-0.4 400 Tr23 etsalat 2 116.6-0.4 630 Tr24 reyada 116.6-0.4 630 Tr25 saydleh 116.6-0.4 630 Tr26 funon 116.6-0.4 1500 Tr27 tamred 116.6-0.4 1500 Tr28 oloom 116.6-0.4 1500 Tr29 hndesah 116.6-0.4 1500 Tr30 sejen jneed 116.6-0.4 630 Tr31 seefe 116.6-0.4 400 Tr32 eskanShinar khalfjneed 116.6-0.4 250 Tr33 al bydar 116.6-0.4 400 Table 1.2A: transformers of al karakon station Transformers number Rating Rated power (KVA) Tr1 karakon1 3311-6.6 10000 Tr2 karakon2 3311-6.6 10000 Tr3 karakon feeder 11-6.60.4 630 Tr4 heteen 11-6.60.4 400 Tr5 yasmeen hotel 11-6.60.4 630 Tr6 bab saha 11-6.60.4 630 Tr7 malhes 11-6.60.4 630 Tr8 aqaree bank 11-6.60.4 630 Tr9 Jordan bank 11-6.60.4 630 Tr10 othmanee 11-6.60.4 250 Tr11 revolee 11-6.60.4 630 Tr12 Palestine bank 11-6.60.4 400 Tr13 abo salha 11-6.60.4 630 Tr14 alkonee 11-6.60.4 630 Tr15 alsook alekhdar 11-6.60.4 500 Tr16 alhewaree 11-6.60.4 630 Tr17 tokan 11-6.60.4 630
  • 25. 25 Tr18 shakaa 11-6.60.4 400 Tr19 malhees 11-6.60.4 400 Tr20 alenjeehe 11-6.60.4 500 Tr21 kalbone1 11-6.60.4 630 Tr22 ksheka 11-6.60.4 400 Tr23 krom ashoor 11-6.60.4 250 Tr24 aeen al asel 11-6.60.4 400 Tr25 madakhet ras eleen 11-6.60.4 630 Tr26 salah deen 11-6.60.4 400 Tr27 Samsung 11-6.60.4 630 Tr28 el basha 11-6.60.4 630 Tr29 omer ben el aas 11-6.60.4 400 Tr30 kalboneh 2 11-6.60.4 250 Tr31 madakhet 24 11-6.60.4 630 Tr32 abo raed 11-6.60.4 630 Tr33 blaza 11-6.60.4 250 Tr34 takhasosee 11-6.60.4 1000 Tr35 sharea 24 11-6.60.4 630 Tr36 Kazan janobee 11-6.60.4 400 Tr37 jneed janobee 11-6.60.4 400 Tr38 karajat el jameaa 11-6.60.4 630 Tr39 maktabet el jameaa 11-6.60.4 400 Tr40 jameaa nor 11-6.60.4 400 Tr41 eskan naqabat 11-6.60.4 400 Tr42 sharea tel 11-6.60.4 630 Tr43 arade shinar 11-6.60.4 250 Tr44 Nablus jadeeda 11-6.60.4 630 Tr45 Iraq boreen 1 11-6.60.4 250 Tr46 Iraq boreen 2 11-6.60.4 250 Tr47 tel sharqee 11-6.60.4 400 Tr48 tel lehef 11-6.60.4 250 Tr49 tel el bald 11-6.60.4 250
  • 26. 26 Tr50 tel gharbee 11-6.60.4 400 Tr51 tareeq sarra 11-6.60.4 400 Tr52 tel madakha 11-6.60.4 250 Tr53 raze 11-6.60.4 400 Tr54 dardok 11-6.60.4 400 Tr55 joharee 11-6.60.4 400 Tr56 shohadaa 11-6.60.4 400 Tr57 qteshat 11-6.60.4 250 Tr58 el qaser 11-6.60.4 1000 Tr59 shanaa 11-6.60.4 250 Tulkarim Governorateis fed by IsraelCompany, and its contain two networks 1&2 the capacity of the firstone is 13MVA (rated) and the rated voltage is 22KV, the second is 11.968 MVA (rated) and the voltage is 22KV also . These networks contain 101 distribution transformers with differentrating power depending on the region (or the residential) and the consumption of energy. 1 Table1.1B: transformers of tulkarim1 Transformers number RatingRated power (KVA) 63022/0.4‫1خضوري‬ 63022/0.4‫رقم‬ ‫1بئر‬ 63022/0.4‫2خضوري‬ 63022/0.4‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫1دوار‬ 63022/0.4‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫2دوار‬ 63022/0.4‫رقم‬ ‫2بئر‬ 40022/0.4‫خضوري‬ ‫دوار‬ 40022/0.4‫الدلهوم‬ 40022/0.4‫د.ثابت‬ 25022/0.4‫الجنوبي‬ ‫الحي‬ 40022/0.4‫هواش‬
  • 27. 27 40022/0.4‫الغربي‬ ‫ارتاح‬ 25022/0.4‫العاصي‬ ‫مصنع‬ 25022/0.4‫المجاري‬ ‫برك‬ 40022/0.4‫حسين‬ ‫ابو‬ ‫بئر‬ 63022/0.4‫الميكانيك‬ ‫ورشه‬ 40022/0.4‫الهوجي‬ 40022/0.4‫1ارتاح‬ 63022/0.4‫الصباح‬ ‫ارتاح‬ 63022/0.4‫المحطه‬ 63022/0.4‫الزكاة‬ ‫مستشفى‬ 63022/0.4‫مفرق‬‫السلمان‬ 63022/0.4‫الجالد‬ ‫ديوان‬ 25022/0.4‫الفرنسي‬ ‫المخبز‬ 40022/0.4‫السالم‬ ‫دوار‬ 40022/0.4‫شوفة‬ ‫عزبة‬ 25022/0.4‫فرعون‬ 25022/0.4‫ناصر‬ ‫عزبة‬ 25022/0.4‫خضرة‬ ‫ابو‬ 25022/0.4‫ذياب‬ ‫بئر‬ 25022/0.4‫ذياب‬ ‫حاره‬ 36022/0.4‫مسقط‬ ‫مدرسه‬ 25022/0.4‫عمير‬ ‫بن‬ ‫مصعب‬ 25022/0.4‫صفيه‬ ‫ابو‬ 63022/0.4‫المسلخ‬ 25022/0.4‫المخابرات‬ 40022/0.4‫الجراد‬ ‫عزبة‬ 25022/0.4‫الددو‬ ‫انشراح‬ 25022/0.4‫الصديق‬ ‫بئر‬ 25022/0.4‫التفال‬ ‫بئر‬ 63022/0.4‫التايه‬ ‫مقبره‬ 25022/0.4‫مناصره‬ ‫اسامه‬ 16022/0.4‫السفاريني‬ ‫بئر‬ 63022/0.4‫حنون‬ ‫مربعه‬ 63022/0.4‫البالونه‬ 63022/0.4‫الميريالند‬ 63022/0.4‫الوكالة‬ ‫1المخيم‬
  • 28. 28 63022/0.4‫الوكالة‬ ‫2المخيم‬ 40022/0.4‫الوكالة‬ ‫المخيم‬ 3 63022/0.4‫المفتوحه‬ ‫القدس‬ 25022/0.4‫االسكان‬ 40022/0.4‫خريشه‬ ‫ذنابه‬ 63022/0.4‫6بئر‬ 40022/0.4‫الحرباوي‬ 25022/0.4‫الحمدهلل‬ 63022/0.4‫الشرع‬‫ي‬ 63022/0.4‫السير‬ ‫دائره‬ 40022/0.4‫نور‬ ‫منشار‬ 40022/0.4‫نصار‬ ‫منشار‬ 40022/0.4‫الكوكب‬ ‫منشار‬ Table1.2B: transformers of tulkarim2 Transformers number RatingRated power (KVA) 40022/0.4‫اكتاب‬‫ا‬ 16022/0.4‫ناصر‬ ‫بئر‬ 63022/0.4‫االسالميه‬ ‫1مصنع‬ 40022/0.4‫النور‬ ‫مصنع‬ 63022/0.4‫االسالميه‬ ‫2مصنع‬ 63022/0.4‫برهم‬ ‫زيد‬ 63022/0.4‫الروضه‬ ‫مسجد‬ 40022/0.4‫القدس‬ ‫بنك‬ 63022/0.4‫االشقر‬ ‫مجمع‬ 25022/0.4‫قزمار‬ ‫بئر‬ 63022/0.4‫رقم‬ ‫3بئر‬ 63022/0.4‫يونس‬ ‫ابو‬ 63022/0.4‫الموز‬ ‫مخمر‬ 25022/0.4‫صالح‬ ‫ابو‬ ‫بئر‬ 25022/0.4‫ربحي‬ ‫ابو‬ ‫بئر‬ 25022/0.4‫الخواجا‬ ‫بئر‬
  • 29. 29 63022/0.4‫الجعرون‬ ‫منجره‬ 63022/0.4‫البرق‬ ‫مصنع‬ 25022/0.4‫اكباريه‬ ‫ظهره‬ 63022/0.4‫مفرق‬‫الجعرون‬ 10022/0.4‫شويكه‬ ‫ملعب‬ ‫بئر‬ 40022/0.4‫صالح‬ ‫ابو‬ ‫بئر‬ 25022/0.4‫المهداوي‬ 63022/0.4‫الميناوي‬ ‫1بئر‬ 63022/0.4‫الميناوي‬ ‫2بئر‬ 16022/0.4‫الشام‬ ‫واد‬ 25022/0.4‫شويكه‬ ‫جمعية‬ 63022/0.4‫شويكه‬ ‫دوار‬ 63022/0.4‫عمان‬ ‫القاهرة‬ ‫بنك‬ 63022/0.4‫البنك‬‫العربي‬ 40022/0.4‫فلسطين‬ ‫بنك‬ 63022/0.4‫ثابت‬‫1مستشفى‬ 63022/0.4‫ثابت‬‫2مستشفى‬ 63022/0.4‫العدويه‬ 63022/0.4‫دعباس‬ ‫مجمع‬ 63022/0.4‫التاج‬ ‫مجمع‬ 25022/0.4‫الخاروف‬ ‫مجمع‬ 63022/0.4‫الشاهد‬ 63022/0.4‫المحافظه‬ 63022/0.4‫المقاطعه‬ Table 1.3: R & X of transformers Transformer rating (KVA) R(ΩKm) X(ΩKm) Z(ΩKm) 10000 0.06 0.05 0.06 1500 0.03 0.02 0.03 1000 0.01 0.01 0.01 630 0.002 0.012 0.012 500 0.003 0.013 0.014 400 0.004 0.015 0.016 250 0.008 0.024 0.025 160 0.01 0.037 0.04
  • 30. 30 1.2 source of information When we stabilize the idea we searched for sources of information about what we intend to do: At first wewent to the municipality of Tulkarim and Northern Electric Distribution Company(NEDCO) , and we got the information about the transformer ( rated power) and the transmission lines length (the cross sectionalarea and the type ),and we measured the load of each transformer practically by ourselves also we measured the impedances of each transmission line . To calculate the load for each transformer wecan usethese formulas: 𝑆 𝑙𝑜𝑎𝑑 = 𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆 𝑡𝑟 𝑃 = 𝑆 ∗ 𝑐𝑜𝑠𝜃 𝑄 = √ 𝑆2 − 𝑃2 The average demand load factor in our network is 50% that means the average load to the maximum load ratio is 50% which consider as a very good operating load factor. And the table below shows thevalue of the load for each transformer and the power factor of the load. Table1.4A: the load and power factor of each transformer Transformer number Rated power (KVA) p(Kw) Q(Kvar) Power factor Tr1 southern 5000 - - - Tr2madakh al- jneed 200 180 87.18 90 Tr3 amena saaed 80 72 34.87 90 Tr4 khalele 200 180 87.18 90 Tr5 jalal yaseen 200 180 87.18 90 Tr6 tayba 1 200 180 87.18 90
  • 31. 31 Tr7 tayba 2 200 180 87.18 90 Tr8 al ameria 315 283.5 137.3 90.07 Tr9 eskan almohandesen 125 113 54.357 90.12 Tr10 eskan Shinar 125 113 54.357 90.12 Tr11 bet wazan 125 113 54.357 90.12 Tr12 hajez 200 180 87.18 90 Tr13 jneed 200 180 87.18 90 Tr14 orabee 200 180 87.18 90 Tr15 alferdaws 315 283.5 137.3 90.07 Tr16 khateeb 315 283.5 137.3 90.07 Tr17 afonneh 315 283.5 137.3 90.07 Tr18 seha 200 180 87.18 90 Tr19 jaber 200 180 87.18 90 Tr20 msjed al makhfeha 200 180 87.18 90 Tr21 kamal jnblat 315 283.5 137.3 90.07 Tr22 etsalat 1 200 180 87.18 90 Tr23 etsalat 2 315 283.5 137.3 90.07 Tr24 reyada 315 283.5 137.3 90.07 Tr25 saydleh 315 283.5 137.3 90.07 Tr26 funon 750 675 327 90 Tr27 tamred 750 675 327 90 Tr28 oloom 750 675 327 90 Tr29 hndesah 750 675 327 90 Tr30 sejen jneed 315 283.5 137.3 90.07 Tr31 seefe 200 180 87.18 90 Tr32 eskan shinar khalf jneed 125 113 54.357 90.12 Tr33 al bydar 200 180 87.18 90 Transformers number Rated power (KVA) P(Kw) Q(Kvar) Power factor Tr1 karakon1 5000 - - - Tr2 karakon2 5000 - - - Tr3 karakon feeder 315 283.5 137.3 90.07 Tr4 heteen 200 180 87.18 90
  • 32. 32 Tr5 yasmeen hotel 315 283.5 137.3 90.07 Tr6 bab saha 315 283.5 137.3 90.07 Tr7 malhes 315 283.5 137.3 90.07 Tr8 aqaree bank 315 283.5 137.3 90.07 Tr9 Jordan bank 315 283.5 137.3 90.07 Tr10 othmanee 125 113 54.357 90.12 Tr11 revolee 315 283.5 137.3 90.07 Tr12 Palestine bank 200 180 87.18 90 Tr13 abo salha 315 283.5 137.3 90.07 Tr14 alkonee 315 283.5 137.3 90.07 Tr15 alsook alekhdar 250 225 108.97 90 Tr16 alhewaree 315 283.5 137.3 90.07 Tr17 tokan 315 283.5 137.3 90.07 Tr18 shakaa 200 180 87.18 90 Tr19 malhees 200 180 87.18 90 Tr20 alenjeehe 250 225 108.97 90 Tr21 kalbone1 315 283.5 137.3 90.07 Tr22 ksheka 200 180 87.18 90 Tr23 krom ashoor 125 113 54.357 90.12 Tr24 aeen al asel 200 180 87.18 90 Tr25 madakhet ras eleen 315 283.5 137.3 90.07 Tr26 salah deen 200 180 87.18 90 Tr27 Samsung 315 283.5 137.3 90.07 Tr28 el basha 315 283.5 137.3 90.07 Tr29 omer ben el aas 200 180 87.18 90 Tr30 kalboneh 2 125 113 54.357 90.12 Tr31 madakhet 24 315 283.5 137.3 90.07 Tr32 abo raed 315 283.5 137.3 90.07 Tr33 blaza 125 113 54.357 90.12 Tr34 takhasosee 500 450 217.94 90.01 Tr35 sharea 24 315 283.5 137.3 90.07 Tr36 Kazan janobee 200 180 87.18 90 Tr37 jneed janobee 200 180 87.18 90 Tr38 karajat el jameaa 315 283.5 137.13 90.07 Tr39 maktabet el jameaa 200 180 87.18 90 Tr40 jameaa nor 200 180 87.18 90 Tr41 eskan naqabat 200 180 87.18 90 Tr42 sharea tel 315 283.5 137.3 90.07 Tr43 arade shinar 125 113 54.357 90.12 Tr44 Nablus jadeeda 315 283.5 137.3 90.07 Tr45 Iraq boreen 1 125 113 54.357 90.12
  • 33. 33 Tr46 Iraq boreen 2 125 113 54.357 90.12 Tr47 tel sharqee 200 180 87.18 90 Tr48 tel lehef 125 113 54.357 90.12 Tr49 tel el bald 125 113 54.357 90.12 Tr50 tel gharbee 200 180 87.18 90 Tr51 tareeq sarra 200 180 87.18 90 Tr52 tel madakha 125 113 54.357 90.12 Tr53 raze 200 180 87.18 90 Tr54 dardok 200 180 87.18 90 Tr55 joharee 200 180 87.18 90 Tr56 shohadaa 200 180 87.18 90 Tr57 qteshat 125 113 54.357 90.12 Tr58 el qaser 500 450 217.94 90.01 Tr59 shanaa 125 113 54.357 90.12 Table1.4B: the load and power factor of each transformer PowerfactorQ(Kvar)P(Kw)Rated power (KVA) Transformers number 90190393436‫1خضوري‬ 90151312346‫رقم‬ ‫1بئر‬ 9090.598187208‫2خضوري‬ 90242499544‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫1دوار‬ 90242499544‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫2دوار‬ 90151312346‫رقم‬ ‫2بئر‬ 90121249277‫خضوري‬ ‫دوار‬ 9090.598187208‫الدلهوم‬ 9090.598187208‫د.ثابت‬ 9090.598187208‫الجنوبي‬ ‫الحي‬ 90121249277‫هواش‬ 9090.598187208‫الغربي‬ ‫ارتاح‬ 9070.498156173‫العاصي‬ ‫مصنع‬ 9070.498156173‫المجاري‬ ‫برك‬ 90121249277‫حسين‬ ‫ابو‬ ‫بئر‬ 90151312346‫الميكانيك‬ ‫ورشه‬ 90106218242‫الهوجي‬ 90121249277‫1ارتاح‬
  • 34. 34 90136281312‫الصباح‬ ‫ارتاح‬ 90106218242‫المحطه‬ 90121249277‫الزكاة‬ ‫مستشفى‬ 90151312346‫السلمان‬ ‫مفرق‬ 90136281312‫الجالد‬ ‫ديوان‬ 9090.598187208‫الفرنسي‬ ‫المخبز‬ 90106218242‫السالم‬ ‫دوار‬ 90121249277‫شوفة‬ ‫عزبة‬ 9060.399125139‫فرعون‬ 90106218242‫ناصر‬ ‫عزبة‬ 9090.598187208‫خضرة‬ ‫ابو‬ 9075.498156173‫ذياب‬ ‫بئر‬ 9075.498156173‫ذياب‬ ‫حاره‬ 90151312346‫مسقط‬ ‫مدرسه‬ 9090.598187208‫عمير‬ ‫بن‬ ‫مصعب‬ 90121249277‫صفيه‬ ‫ابو‬ 90181374416‫المسلخ‬ 9060.399125139‫المخابرات‬ 9090.598187208‫الجراد‬ ‫عزبة‬ 9060.399125139‫الددو‬ ‫انشراح‬ 9075.498156173‫الصديق‬ ‫بئر‬ 9075.498156173‫التفال‬ ‫بئر‬ 90121249277‫التايه‬ ‫مقبره‬ 9075.498156173‫مناصره‬ ‫اسامه‬ 9024.15949.88355.4‫السفاريني‬ ‫بئر‬ 90242499554‫حنون‬ ‫مربعه‬ 90242499544‫البالونه‬ 9060.399125139‫الميريالند‬ 90242499544‫الوكالة‬ ‫1المخيم‬ 90242499544‫الوكالة‬ ‫2المخيم‬ 90181374416‫الوكالة‬ ‫المخيم‬ 3 9090.598187208‫المفتوحه‬ ‫القدس‬ 9090.598187208‫االسكان‬ 9090.598187208‫خريشه‬ ‫ذنابه‬ 90151312346‫6بئر‬ 9030.19962.35469.3‫الحرباوي‬
  • 35. 35 9030.19962.35469.3‫الحمدهلل‬ 9090.598187208‫الشرع‬‫ي‬ 90136281312‫السير‬ ‫دائره‬ 90121249277‫نور‬ ‫منشار‬ 90121249277‫نصار‬ ‫منشار‬ 90121249277‫الكوكب‬ ‫منشار‬ Power factor Q(Kvar)p(Kw)Rated power (KVA) Transformers number 9060.399125139‫اكتابا‬ 9024.15949.88355.4‫ناصر‬ ‫بئر‬ 90181374416‫االسالميه‬ ‫1مصنع‬ 9060.399125139‫النور‬ ‫مصنع‬ 90257530589‫االسالميه‬ ‫2مصنع‬ 9090.598187208‫برهم‬ ‫زيد‬ 90136281312‫الروضه‬ ‫مسجد‬ 9090.598187208‫القدس‬ ‫بنك‬ 90181374416‫االشقر‬ ‫مجمع‬ 9030.19962.34569.3‫قزمار‬ ‫بئر‬ 90151312346‫رقم‬ ‫3بئر‬ 90181374416‫يونس‬ ‫ابو‬ 90121249277‫الموز‬ ‫مخمر‬ 9018.1237.41241.6‫صالح‬ ‫ابو‬ ‫بئر‬ 9060.399125139‫ربحي‬ ‫ابو‬ ‫بئر‬ 9030.19962.34569.3‫الخواجا‬ ‫بئر‬ 90121249277‫الجعرون‬ ‫منجره‬ 90121249277‫البرق‬ ‫مصنع‬ 9060.399125139‫اكباريه‬ ‫ظهره‬ 90106218242‫الجعرون‬ ‫مفرق‬ 9024.15949.88355.4‫شويكه‬ ‫ملعب‬ ‫بئر‬ 9030.19962.34569.3‫صالح‬ ‫ابو‬ ‫بئر‬ 9060.399125139‫المهداوي‬ 90121249277‫الميناوي‬ ‫1بئر‬ 9060.399125139‫الميناوي‬ ‫2بئر‬
  • 36. 36 9060.399125139‫الشام‬ ‫واد‬ 9030.19962.34569.3‫شويكه‬ ‫جمعية‬ 90106218242‫شويكه‬ ‫دوار‬ 90151312346‫عمان‬ ‫القاهرة‬ ‫بنك‬ 90151312346‫العربي‬ ‫البنك‬ 90106218242‫فلسطين‬ ‫بنك‬ 90242499554‫ثابت‬‫1مستشفى‬ 90151312346‫ثابت‬‫2مستشفى‬ 9075.498156173‫العدويه‬ 9075.498156173‫دعباس‬ ‫مجمع‬ 90151312346‫التاج‬ ‫مجمع‬ 9075.498156173‫الخاروف‬ ‫مجمع‬ 90181374416‫الشاهد‬ 90151312346‫المحافظه‬ 90181374416‫المقاطعه‬
  • 37. 37 Chapter 2: Transmission lines… 1.1Electric-power transmission is the bulk transfer of electrical energy, from generating power plants to electrical substations located near demand centers. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. Transmission lines, when interconnected with each other, become transmission networks. The combined transmission and distribution network is known as the "power grid" . The system: Most transmission lines are high-voltage three-phase alternating current (AC), although single phase AC is sometimes used in railway electrification systems. High-voltage direct-current (HVDC) technology is used for greater efficiency at very long distances (typically hundreds of miles (kilometers)), or in submarine power cables (typically longer than 30 miles (50 km)). HVDC links are also used to stabilize and control problems in large power distribution networks where sudden new loads or blackouts in one part of a network can otherwise result in synchronization problems and cascading failures.[11] Diagram of an electric power system
  • 38. 38 1.2types of transmission lines that used in this network 1. Overhead transmission.. High-voltage overhead conductors are not covered by insulation. The conductor material is nearly always an aluminum alloy, made into several strands and possibly reinforced with steel strands. Copper was sometimes used for overhead transmission, but aluminum is lighter, yields only marginally reduced performance and costs much less. Overhead conductors are a commodity supplied by several companies worldwide. Improved conductor material and shapes are regularly used to allow increased capacity and modernize transmission circuits. Conductor sizes range from 12 mm2 to 750 mm2 (1,590,000 circular mils area), with varying resistance and current-carrying capacity. Thicker wires would lead to a relatively small increase in capacity due to the skin effect, that causes most of the current to flow close to the surface of the wire. Because of this current limitation, multiple parallel cables (called bundle conductors) are used when higher capacity is needed. Bundle conductors are also used at high voltages to reduce energy loss caused by corona discharge .[11] In these networks, the type of overhead transmission lines that used are ACSR (aluminum conductor steel rain forced) ,the resistance and reactance of this conductor shows in the below table ACSR cable R(ohmsKm) X(ohmsKm) 120 mm2 0.219 0.269 95mm2 0.301 0.322 50mm2 0.543 0.333 Table 2.1: R&X of the ACSR
  • 39. 39 2. Underground transmission Electric power can also be transmitted by underground power cables instead of overhead power lines. Underground cables take up less right-of-way than overhead lines, have lower visibility, and are less affected by bad weather. However, costs of insulated cable and excavation are much higher than overhead construction. Faults in buried transmission lines take longer to locate and repair. Underground lines are strictly limited by their thermal capacity, which permits fewer overloads or re-rating than overhead lines. Long underground AC cables have significant capacitance, which may reduce their ability to provide useful power to loads. [11] In these networks, the type of overhead transmission lines that used are XLPE Cu , XLPE Al ,the resistance and reactance of this conductor shows in the below table XLPE Cu R(ohmsKm) X (ohmsKm) 240mm2 0.754 0.109 120mm2 0.196 0.117 95mm2 0.41 0.121 50mm2 0.387 0.138 Table 2.2: R&X of XLPE Cu XLPE Al R(ohmsKm) X(ohmsKm) 95mm2 0.32 0.542 Table 2.3: R&X of XLPE Al We measured the length of each transmission line
  • 40. 40 Chapter 3 Analysis for the existing networks….. 3.1 One line diagram for the networks In this chapter we will study the networks beforethe improvement and connecting the district,to find the losses of the power in the networks and to see if the networks haveany problems like (over load on any transformer ,and the drop voltage and power factor and voltage level or any problem that happened in these networks ) Fromthe data in chapter one and two weget the information about our networks to make the one line diagramfor the networks, thetables below will show the required data for the one line diagram. 1. Number of transformers Table 3.1A: rated power of each transformer Transformer number Rated power (KVA) Tr1 southern 10000 Tr2madakh al- jneed 400 Tr3 amena saaed 160 Tr4 khalele 400 Tr5 jalal yaseen 400 Tr6 tayba 1 400 Tr7 tayba 2 400 Tr8 al ameria 630 Tr9 eskan almohandesen 250 Tr10 eskan Shinar 250 Tr11 bet wazan 250 Tr12 hajez 400 Tr13 jneed 400 Tr14 orabee 400 Tr15 alferdaws 630 Tr16 khateeb 630 Tr17 afonneh 630
  • 41. 41 Tr18 seha 400 Tr19 jaber 400 Tr20 msjed al makhfeha 400 Tr21 kamal jnblat 630 Tr22 etsalat 1 400 Tr23 etsalat 2 630 Tr24 reyada 630 Tr25 saydleh 630 Tr26 funon 1500 Tr27 tamred 1500 Tr28 oloom 1500 Tr29 hndesah 1500 Tr30 sejen jneed 630 Tr31 seefe 400 Tr32 eskan shinar khalf jneed 250 Tr33 al bydar 400 Transformers number Rated power (KVA) Tr1 karakon1 10000 Tr2 karakon2 10000 Tr3 karakon feeder 630 Tr4 heteen 400 Tr5 yasmeen hotel 630 Tr6 bab saha 630 Tr7 malhes 630 Tr8 aqaree bank 630 Tr9 Jordan bank 630 Tr10 othmanee 250 Tr11 revolee 630 Tr12 Palestine bank 400 Tr13 abo salha 630 Tr14 alkonee 630 Tr15 alsook alekhdar 500 Tr16 alhewaree 630 Tr17 tokan 630 Tr18 shakaa 400 Tr19 malhees 400 Tr20 alenjeehe 500 Tr21 kalbone1 630 Tr22 ksheka 400 Tr23 krom ashoor 250 Tr24 aeen al asel 400
  • 42. 42 Tr25 madakhet ras eleen 630 Tr26 salah deen 400 Tr27 Samsung 630 Tr28 el basha 630 Tr29 omer ben el aas 400 Tr30 kalboneh 2 250 Tr31 madakhet 24 630 Tr32 abo raed 630 Tr33 blaza 250 Tr34 takhasosee 1000 Tr35 sharea 24 630 Tr36 Kazan janobee 400 Tr37 jneed janobee 400 Tr38 karajat el jameaa 630 Tr39 maktabet el jameaa 400 Tr40 jameaa nor 400 Tr41 eskan naqabat 400 Tr42 sharea tel 630 Tr43 arade shinar 250 Tr44 Nablus jadeeda 630 Tr45 Iraq boreen 1 250 Tr46 Iraq boreen 2 250 Tr47 tel sharqee 400 Tr48 tel lehef 250 Tr49 tel el bald 250 Tr50 tel gharbee 400 Tr51 tareeq sarra 400 Tr52 tel madakha 250 Tr53 raze 400 Tr54 dardok 400 Tr55 joharee 400 Tr56 shohadaa 400 Tr57 qteshat 252 Tr58 el qaser 1222 Tr59 shanaa 252
  • 43. 43 Table 3.1B: rated power of each transformer Rated power (KVA)Transformers number 630‫1خضوري‬ 630‫رقم‬ ‫بئر‬ 630‫2خضوري‬ 630‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫1دوار‬ 630‫الناصر‬ ‫عبد‬ ‫جمال‬ ‫2دوار‬ 630‫رقم‬ ‫2بئر‬ 400‫خضوري‬ ‫دوار‬ 400‫الدلهوم‬ 400‫د.ثابت‬ 250‫الجنوبي‬ ‫الحي‬ 400‫هواش‬ 400‫الغربي‬ ‫ارتاح‬ 250‫العاصي‬ ‫مصنع‬ 250‫المجاري‬ ‫برك‬ 400‫حسين‬ ‫ابو‬ ‫بئر‬ 630‫الميكانيك‬ ‫ورشه‬ 400‫الهوجي‬ 400‫1ارتاح‬ 630‫الصباح‬ ‫ارتاح‬ 630‫المحطه‬ 630‫الزكاة‬ ‫مستشفى‬ 630‫السلمان‬ ‫مفرق‬ 630‫الجالد‬ ‫ديوان‬ 250‫الفرنسي‬ ‫المخبز‬ 400‫السالم‬ ‫دوار‬ 400‫شوفة‬ ‫عزبة‬ 250‫فرعون‬ 250‫ناصر‬ ‫عزبة‬ 250‫خضرة‬ ‫ابو‬ 250‫ذياب‬ ‫بئر‬ 250‫ذياب‬ ‫حاره‬ 360‫مسقط‬ ‫مدرسه‬ 250‫عمير‬ ‫بن‬ ‫مصعب‬ 250‫صفيه‬ ‫ابو‬
  • 44. 44 630‫المسلخ‬ 250‫المخابرات‬ 400‫الجراد‬ ‫عزبة‬ 250‫الددو‬ ‫انشراح‬ 250‫الصديق‬ ‫بئر‬ 250‫التفال‬ ‫بئر‬ 630‫التايه‬ ‫مقبره‬ 250‫مناصره‬ ‫اسامه‬ 160‫السفاريني‬ ‫بئر‬ 630‫حنون‬ ‫مربعه‬ 630‫البالونه‬ 630‫الميريالند‬ 630‫الوكالة‬ ‫1المخيم‬ 630‫الوكالة‬ ‫2المخيم‬ 400‫الوكالة‬ ‫المخيم‬ 3 630‫المفتوحه‬ ‫القدس‬ 250‫االسكان‬ 400‫خريشه‬ ‫ذنابه‬ 630‫6بئر‬ 400‫الحرباوي‬ 250‫الحمدهلل‬ 630‫الشرعب‬ 630‫السير‬ ‫دائره‬ 400‫نور‬ ‫منشار‬ 400‫نصار‬ ‫منشار‬ 400‫الكوكب‬ ‫منشار‬ Rated power (KVA) Transformers number 400‫اكتابا‬ 160‫ناصر‬ ‫بئر‬ 630‫االسالميه‬ ‫1مصنع‬ 400‫النور‬ ‫مصنع‬ 630‫االسالميه‬ ‫2مصنع‬ 630‫برهم‬ ‫زيد‬
  • 45. 45 630‫الروضه‬ ‫مسجد‬ 400‫القدس‬ ‫بنك‬ 630‫االشقر‬ ‫مجمع‬ 250‫قزمار‬ ‫بئر‬ 630‫رقم‬ ‫3بئر‬ 630‫يونس‬ ‫ابو‬ 630‫الموز‬ ‫مخمر‬ 250‫صالح‬ ‫ابو‬ ‫بئر‬ 250‫بئر‬‫ربحي‬ ‫ابو‬ 250‫الخواجا‬ ‫بئر‬ 630‫الجعرون‬ ‫منجره‬ 630‫البرق‬ ‫مصنع‬ 250‫اكباريه‬ ‫ظهره‬ 630‫الجعرون‬ ‫مفرق‬ 100‫شويكه‬ ‫ملعب‬ ‫بئر‬ 400‫صالح‬ ‫ابو‬ ‫بئر‬ 250‫المهداوي‬ 630‫الميناوي‬ ‫1بئر‬ 630‫الميناوي‬ ‫2بئر‬ 160‫الشام‬ ‫واد‬ 250‫شويكه‬ ‫جمعية‬ 630‫شويكه‬ ‫دوار‬ 630‫القاهرة‬ ‫بنك‬‫عمان‬ 630‫العربي‬ ‫البنك‬ 400‫فلسطين‬ ‫بنك‬ 630‫ثابت‬‫1مستشفى‬ 630‫ثابت‬‫2مستشفى‬ 630‫العدويه‬ 630‫دعباس‬ ‫مجمع‬ 630‫التاج‬ ‫مجمع‬ 250‫الخاروف‬ ‫مجمع‬ 630‫الشاهد‬ 630‫المحافظه‬ 630‫المقاطعه‬
  • 46. 46 2. distance between transformers By using the AutoCAD program for Sarra connection point and the single line diagramfor Tulkarimnetwork, we specified and draw the location for each transformer, also wedraw the distribution of the transmission lines and we show the type of each line (overhead and underground line), after that we measured the length of each transmission line as we see in the below picture: Figure 3.1A: distribution of transformers and distance between them
  • 47. 47 Figure 3.1B: distribution of transformers and distance between them
  • 48. 48
  • 49. 49
  • 50. 50 After we show the distribution of transformers on the single line diagramand the AutoCAD and after collecting all information, we design the one line diagramfor these networks as we see in the pictures below Figure 3.2A: one line diagram for Sarra connection point’s transformer
  • 51. 51
  • 52. 52 Figure 3.2B: one line diagram for Tulkarim transformer
  • 53. 53
  • 54. 54 The one line diagramshows thegrid, transformer, distanceand load. Now, our next step to analyze the networks shown above 3.2 analysis of the network # of Load Rating S (KVA) Rated V (KV) KW Kvar PF % Terminal V (KV) Operating percentage Load 1 5000 33 4500 5362 90 32.143 99.143 Load 2 200 0.4 180 87.18 90 0.394 98.844 Load 3 80 0.4 72 34.87 90 0.395 98.832 Load 4 200 0.4 180 87.18 90 0.395 98.817 Load 5 200 0.4 180 87.18 90 0.395 98.751 Load 6 200 0.4 180 87.18 90 0.394 98.48 Load 7 200 0.4 180 87.18 90 0.394 98.509 Load 8 315 0.4 283.5 137.3 90.07 0.394 98.585 Load 9 125 0.4 113 54.357 90.12 0.394 98.58 Load 10 125 0.4 113 54.357 90.12 0.395 98.757 Load 11 125 0.4 113 54.357 90.12 0.395 98.717 Load 12 200 0.4 180 87.18 90 0.395 98.771 Load 13 200 0.4 180 87.18 90 0.395 98.745 Load 14 200 0.4 180 87.18 90 0.396 98.963 Load 15 315 0.4 283.5 137.3 90.07 0.395 98.673 Load 16 315 0.4 283.5 137.3 90.07 0.395 98.717 Load 17 315 0.4 283.5 137.3 90.07 0.395 98.653 Load 18 200 0.4 180 87.18 90 0.395 98.715 Load 19 200 0.4 180 87.18 90 0.393 98.372 Load 20 200 0.4 180 87.18 90 0.393 98.355 Load 21 315 0.4 283.5 137.3 90.07 0.394 98.445 Load 22 200 0.4 180 87.18 90 0.394 98.387 Load 23 315 0.4 283.5 137.3 90.07 0.394 98.397 Load 24 315 0.4 283.5 137.3 90.07 0.396 99.087 Load 25 315 0.4 283.5 137.3 90.07 0.396 99.087 Load 26 750 0.4 675 327 90 0.396 99.079 Load 27 750 0.4 675 327 90 0.396 99.079 Load 28 750 0.4 675 327 90 0.396 99.079 Load 29 750 0.4 675 327 90 0.396 99.079 Load 30 315 0.4 283.5 137.3 90.07 0.396 98.945 Load 31 200 0.4 180 87.18 90 0.396 98.89 Load 32 125 0.4 113 54.357 90.12 0.395 98.871 Load 33 200 0.4 180 87.18 90 0.395 98.862
  • 55. 55 # of load Rating S (KVA) Rated V (KV) KW Kvar PF % Terminal V (KV) Operating percentage Load1 5000 33 4500 5362 90 32.64 98.984 Load2 5000 0.4 4500 5362 90 32.64 98.984 Load3 315 0.4 283.5 137.3 90.07 0.395 98.708 Load4 200 0.4 180 87.18 90 0.395 98.67 Load5 315 0.4 283.5 137.3 90.07 0.395 98.672 Load6 315 0.4 283.5 137.3 90.07 0.394 98.616 Load7 315 0.4 283.5 137.3 90.07 0.394 98.557 Load8 315 0.4 283.5 137.3 90.07 0.394 98.562 Load9 315 0.4 283.5 137.3 90.07 0.394 98.555 Load10 125 0.4 113 54.357 90.12 0.395 98.821 Load11 315 0.4 283.5 137.3 90.07 0.395 98.793 Load12 200 0.4 180 87.18 90 0.395 98.754 Load13 315 0.4 283.5 137.3 90.07 0.395 98.747 Load14 315 0.4 283.5 137.3 90.07 0.395 98.737 Load15 250 0.4 225 108.94 90 0.395 98.731 Load16 315 0.4 283.5 137.3 90.07 0.395 98.735 Load17 315 0.4 283.5 137.3 90.07 0.395 98.741 Load18 200 0.4 180 87.18 90 0.395 98.733 Load19 200 0.4 180 87.18 90 0.395 98.735 Load20 250 0.4 225 108.97 90 0.396 99.009 Load21 315 0.4 283.5 137.3 90.07 0.396 98.993 Load22 200 0.4 180 87.18 90 0.395 98.707 Load23 125 0.4 113 54.357 90.12 0.395 98.686 Load24 200 0.4 180 87.18 90 0.394 98.411 Load25 315 0.4 283.5 137.3 90.07 0.395 98.762 Load26 200 0.4 180 87.18 90 0.394 98.414 Load27 315 0.4 283.5 137.3 90.07 0.394 98.398 Load28 315 0.4 283.5 137.3 90.07 0.394 98.388 Load29 200 0.4 180 87.18 90 0.394 98.380 Load30 125 0.4 113 54.357 90.12 0.385 96.301 Load31 315 0.4 283.5 137.3 90.07 0.384 95.882 Load32 315 0.4 283.5 137.3 90.07 0.383 95.87 Load33 125 0.4 113 54.357 90.12 0.383 95.852 Load34 500 0.4 450 217.94 90 0.383 95.858 Load35 315 0.4 283.5 137.3 90.07 0.382 95.596 Load36 200 0.4 180 87.18 90 0.382 95.554 Load37 200 0.4 180 87.18 90 0.382 95.554 Load38 315 0.4 283.5 137.3 90.07 0.38 95.197 Load39 200 0.4 180 87.18 90 0.381 95.157
  • 56. 56 Load40 200 0.4 180 87.18 90 0.381 95.147 Load41 200 0.4 180 87.18 90 0.38 94.959 Load42 315 0.4 283.5 137.3 90.07 0.38 94.882 Load43 125 0.4 113 54.357 90.12 0.38 94.735 Load44 315 0.4 283.5 137.3 90.07 0.38 94.701 Load45 125 0.4 113 54.357 90.12 0.377 94.359 Load46 125 0.4 113 54.357 90.12 0.377 94.353 Load47 200 0.4 180 87.18 90 0.376 94.088 Load48 125 0.4 113 54.357 90.12 0.376 94.062 Load49 125 0.4 113 54.357 90.12 0.376 94.055 Load50 200 0.4 180 87.18 90 0.376 94.049 Load51 200 0.4 180 87.18 90 0.376 93.934 Load52 125 0.4 113 54.357 90.12 0.375 93.861 Load53 200 0.4 180 87.18 90 0.388 96.907 Load54 200 0.4 180 87.18 90 0.386 96.88 Load55 200 0.4 180 87.18 90 0.387 96.854 Load56 200 0.4 180 87.18 90 0.387 96.86 Load57 125 0.4 113 54.357 90.12 0.387 96.833 Load58 500 0.4 450 217.94 90.01 0.387 96.85 Load59 125 0.4 113 54.357 90.12 0.387 96.841 Table 3.2A: full load description After analyzing the network we find that the sourcerated power is equal to 20.820 MW and this value of power is suitable and enough for this network. The picture below shows thefirst run for this network at max casein ETAP program that shows the distribution of power and its direction between buses and the voltage for each bus and the power factor.
  • 57. 57 Figure 3.3A: first run for the net work shows (s, v & pf)
  • 58. 58 After we doing this analyzing for the network, weobtained the results about the powers and losses which shown in the next summery table
  • 59. 59 Table 3.3A summary of total generation, loading & demand Fromthe abovetable we can see the value of real power for the swing bus (source) is equal to 20.820 MW, this is the real power that consuming by this network and the reactive power for the network is equal to 10.213MVAr. We note that the apparentpower of the network which is 23.190MVA Also we note that the losses in the network for the real power is equal to 0.443MW and for reactive power is equal to 0.366 MVAr.
  • 60. 60 Table 3.2B: full load description # of Load Rating S (KVA) Rated V (KV) p(Kw) Q(Kvar) Power factor Terminal V (KV) Operating percentage ‫1خضوري‬ 436 0.4 393 190 90 2.396 99.045 ‫رقم‬ ‫1بئر‬ 346 0.4 312 151 90 0.396 98.995 ‫2خضوري‬ 208 0.4 187 90.598 90 0.396 99.011 ‫عبد‬ ‫جمال‬ ‫دوار‬ ‫1الناصر‬ 544 0.4 499 242 90 0.396 98.952 ‫عبد‬ ‫جمال‬ ‫دوار‬ ‫2الناصر‬ 544 0.4 499 242 90 0.396 98.952 ‫رقم‬ ‫2بئر‬ 346 0.4 312 151 90 0.396 98.978 ‫خضوري‬ ‫دوار‬ 277 0.4 249 121 90 0.396 99.012 ‫الدلهوم‬ 208 0.4 187 90.598 90 0.395 98.781 ‫د.ثابت‬ 208 0.4 187 90.598 90 0.394 98.614 ‫الجنوبي‬ ‫الحي‬ 208 0.4 187 90.598 90 0.394 98.462 ‫هواش‬ 277 0.4 249 121 90 0.393 98.294 ‫الغربي‬ ‫ارتاح‬ 208 0.4 187 90.598 90 0.392 98.110 ‫العاصي‬ ‫مصنع‬ 173 0.4 156 70.498 90 0.392 97.967 ‫المجاري‬ ‫برك‬ 173 0.4 156 70.498 90 0.391 97.848 ‫حسين‬ ‫ابو‬ ‫بئر‬ 277 0.4 249 121 90 0.39 97.676 ‫الميكانيك‬ ‫ورشه‬ 346 0.4 312 151 90 0.39 97.690 ‫الهوجي‬ 242 0.4 218 106 90 0.39 97.627 ‫1ارتاح‬ 277 0.4 249 121 90 0.39 97.542 ‫الصباح‬ ‫ارتاح‬ 312 0.4 281 136 90 0.39 97.574 ‫المحطه‬ 242 0.4 218 106 90 0.382 95.495 ‫الزكا‬ ‫مستشفى‬‫ة‬ 277 0.4 249 121 90 0.38 95.108 ‫السلمان‬ ‫مفرق‬ 346 0.4 312 151 90 0.381 95.37 ‫الجالد‬ ‫ديوان‬ 312 0.4 281 136 90 0.38 95.004 ‫الفرنسي‬ ‫المخبز‬ 208 0.4 187 90.598 90 0.39 97.574 ‫السالم‬ ‫دوار‬ 242 0.4 218 106 90 0.38 95.108 ‫شوفة‬ ‫عزبة‬ 277 0.4 249 121 90 0.38 95.007 ‫فرعون‬ 139 0.4 125 60.399 90 0.38 95.033 ‫ناصر‬ ‫عزبة‬ 242 0.4 218 106 90 0.385 96.260 ‫خضرة‬ ‫ابو‬ 208 0.4 187 90.598 90 0.382 95.512 ‫ذياب‬ ‫بئر‬ 173 0.4 156 75.498 90 0.381 95.37
  • 61. 61 ‫ذياب‬ ‫حاره‬ 173 0.4 156 75.498 90 0.38 95.230 ‫مسقط‬ ‫مدرسه‬ 346 0.4 312 151 90 0.382 95.384 ‫عمير‬ ‫بن‬ ‫مصعب‬ 208 0.4 187 90.598 90 0.378 94.544 ‫ابو‬‫صفيه‬ 277 0.4 249 121 90 0.378 94.571 ‫المسلخ‬ 416 0.4 374 181 90 0.38 94.991 ‫المخابرات‬ 139 0.4 125 60.399 90 0.376 94.202 ‫الجراد‬ ‫عزبة‬ 208 0.4 187 90.598 90 0.378 94.555 ‫الددو‬ ‫انشراح‬ 139 0.4 125 60.399 90 0.374 93.494 ‫الصديق‬ ‫بئر‬ 173 0.4 156 75.498 90 0.374 93.515 ‫التفال‬ ‫بئر‬ 173 0.4 156 75.498 90 0.374 93.537 ‫التايه‬ ‫مقبره‬ 277 0.4 249 121 90 0.374 93.506 ‫مناصره‬ ‫اسامه‬ 173 0.4 156 75.498 90 0.374 93.507 ‫السفاريني‬ ‫بئر‬ 55.4 0.4 49.883 24.159 90 0.375 93.656 ‫حنون‬ ‫مربعه‬ 554 0.4 499 242 90 0.373 93.358 ‫البالونه‬ 544 0.4 499 242 90 0.372 93.114 ‫الميريالند‬ 139 0.4 125 60.399 90 0.371 92.856 ‫الوكالة‬ ‫1المخيم‬ 544 0.4 499 242 90 0.371 92.850 ‫الوكالة‬ ‫2المخيم‬ 544 0.4 499 242 90 0.372 92.959 ‫الوكالة‬ ‫المخيم‬ 3 416 0.4 374 181 90 0.372 92.925 ‫المفتوحه‬ ‫القدس‬ 208 0.4 187 90.598 90 0.371 92.760 ‫االسكان‬ 208 0.4 187 90.598 90 0.371 92.765 ‫خريشه‬ ‫ذنابه‬ 208 0.4 187 90.598 90 0.371 92.783 ‫6بئر‬ 346 0.4 312 151 90 0.388 97.048 ‫الحرباوي‬ 69.3 0.4 62.354 30.199 90 0.392 98.120 ‫الحمدهلل‬ 69.3 0.4 62.354 30.199 90 0.392 98.124 ‫الشرعب‬ 208 0.4 187 90.598 90 0.283 70.662 ‫السير‬ ‫دائره‬ 312 0.4 281 136 90 0.372 92.982 ‫نور‬ ‫منشار‬ 277 0.4 249 121 90 0.372 92.991 ‫نصار‬ ‫منشار‬ 277 0.4 249 121 90 0.372 0.951 ‫الكوكب‬ ‫منشار‬ 277 0.4 249 121 90 0.39 97.583 After analyzing the Tulkarim networks wefind that the sourcerated power for the firstnetwork is equal to 15.926 MW and this value of power is unacceptable for this network
  • 62. 62 # of Load Rating S (KVA) Rated V (KV) p(Kw) Q(Kvar) Power factor Terminal V (KV) Operating percentage ‫اكتابا‬ 139 0.4 125 60.399 90 0.394 98.6 ‫ناصر‬ ‫بئر‬ 55.4 0.4 49.883 24.159 90 0.393 98.323 ‫االسالميه‬ ‫1مصنع‬ 416 0.4 374 181 90 0.395 98.160 ‫النور‬ ‫مصنع‬ 139 0.4 125 60.399 90 0.395 98.707 ‫االسالميه‬ ‫2مصنع‬ 589 0.4 530 257 90 0.393 98.833 ‫برهم‬ ‫زيد‬ 208 0.4 187 90.598 90 0.395 98.719 ‫الروضه‬ ‫مسجد‬ 312 0.4 281 136 90 0.392 97.761 ‫القدس‬ ‫بنك‬ 208 0.4 187 90.598 90 0.391 98.101 ‫االشقر‬ ‫مجمع‬ 416 0.4 374 181 90 0.392 97.829 ‫قزمار‬ ‫بئر‬ 69.3 0.4 62.345 30.199 90 0.391 97.887 ‫رقم‬ ‫3بئر‬ 346 0.4 312 151 90 0.389 97.809 ‫يونس‬ ‫ابو‬ 416 0.4 374 181 90 0.388 97.358 ‫الموز‬ ‫مخمر‬ 277 0.4 249 121 90 0.389 97.028 ‫صالح‬ ‫ابو‬ ‫بئر‬ 41.6 0.4 37.412 18.12 90 0.39 97.289 ‫ربحي‬ ‫ابو‬ ‫بئر‬ 139 0.4 125 60.399 90 0.385 97.389 ‫الخواجا‬ ‫بئر‬ 69.3 0.4 62.345 30.199 90 0.388 96.417 ‫منجره‬‫الجعرون‬ 277 0.4 249 121 90 0.389 97.091 ‫البرق‬ ‫مصنع‬ 277 0.4 249 121 90 0.388 97.157 ‫اكباريه‬ ‫ظهره‬ 139 0.4 125 60.399 90 0.385 97.103 ‫الجعرون‬ ‫مفرق‬ 242 0.4 218 106 90 0.389 96.233 ‫شويك‬ ‫ملعب‬ ‫بئر‬‫ه‬ 55.4 0.4 49.883 24.159 90 0.382 97.304 ‫صالح‬ ‫ابو‬ ‫بئر‬ 69.3 0.4 62.345 30.199 90 0.39 95.599 ‫المهداوي‬ 139 0.4 125 60.399 90 0.385 97.469 ‫الميناوي‬ ‫1بئر‬ 277 0.4 249 121 90 0.389 96.345 ‫الميناوي‬ ‫2بئر‬ 139 0.4 125 60.399 90 0.39 97.202 ‫الشام‬ ‫واد‬ 139 0.4 125 60.399 90 0.384 97.463 ‫شويكه‬ ‫جمعية‬ 69.3 0.4 62.345 30.199 90 0.385 96.332 ‫شويكه‬ ‫دوار‬ 242 0.4 218 106 90 0.39 96.033 ‫عمان‬ ‫القاهرة‬ ‫بنك‬ 346 0.4 312 151 90 0.389 97.678 ‫العربي‬ ‫البنك‬ 346 0.4 312 151 90 0.389 97.334 ‫فلسطين‬ ‫بنك‬ 242 0.4 218 106 90 0.388 97.315 ‫ثابت‬ ‫1مستشفى‬ 554 0.4 499 242 90 0.387 96.993
  • 63. 63 ‫ثابت‬ ‫2مستشفى‬ 346 0.4 312 151 151 90 0.389 96.893 ‫العدويه‬ 173 0.4 156 75.498 90 0.39 97.286 ‫دعباس‬ ‫مجمع‬ 173 0.4 156 75.498 90 0.39 97.592 ‫التاج‬ ‫مجمع‬ 346 0.4 312 151 90 0.389 97.450 ‫الخاروف‬ ‫مجمع‬ 173 0.4 156 75.498 90 0.385 97.228 ‫الشاهد‬ 416 0.4 374 181 90 0.388 97.059 ‫المحافظه‬ 346 0.4 312 151 90 0.389 97.195 ‫المقاطعه‬ 416 0.4 374 181 90 0.388 97.129 The sourcerated power for the second network is equal to 10.376 MW and this value of power is suitable and enough for this network. The pictures below shows the firstrun for these networks atmax case in ETAP programthat shows the distribution of power and its direction between buses and the voltage for each bus and the power factor.
  • 64. 64 Figure 3.3B: first run for the net work shows (s, v & pf)
  • 65. 65
  • 66. 66 After we doing this analyzing for the two networks, weobtained the results about the powers and losses which shown in the next summery tables Table 3.3B summary of total generation, loading & demand Fromthe abovetable we can see the value of real power for the swing bus (source) is equal to 15.926 MW which is more, this is the real power that consuming by the firstnetwork and the reactive power for this network is equal to 7.845MVAr. We note that the apparentpower of the network which is 17.753MVA and this value unacceptable. Also we note that the losses in the network for the real power is equal to 0.88MW and for reactive power is equal to 0.558 MVAr
  • 67. 67 Fromthe abovetables we can see the value of real power for the swing bus (source) is equal to 10.376 MW, this is the real power that consuming by the second network and the reactive power for this network is equal to 5.061MVAr. We note that the apparentpower of the network which is 11.554MVA and this value does not makea problemfor consuming power. Also we note that the losses in the network for the real power is equal to 0.233MW and for reactive power is equal to 0.149 MVAr
  • 68. 68 3.3 problems in the net work  voltages The voltage mustbe in the range: 0.95 V nominal <V < 1.05 V nominal After we doing the analyzing for the networks on the ETAP programwe see that the voltages in somebuses are not located desired range  power factor The poor factor in many regions is low and we are looking to improveit to 92 and more  there are 3 transformers (T29,T38,T55) in Tulkarimnetwork 1 that connectedtoover load The capacity of T29 is 250 KVA and the load that connected to this transformer has a power equal to 238 KVA. The load that connected to the transformer #29 is 95.2% fromthe total load and this value is abovethe rangeof the load that allotted for each transformer, and the rangefor the load that mustconnect to the transformer between (50%-75%).
  • 69. 69 The capacity of T38 is 250 KVA and the load that connected to this transformer has a power equal to 271 KVA. The load that connected to the transformer #38 is 108% fromthe total load and this value is above the rangeof the load that allotted for each transformer The capacity of T55 is 400 KVA and the load that connected to this transformer has a power equal to 404 KVA. The load that connected to the transformer #55 is 101% fromthe total load and this value is above the rangeof the load that allotted for each transformer For more information you can see the appendix
  • 70. 70 Chapter4: Analysis of supply Sarra connection point and Tulkarem from central substation At this stage of our graduation project we will Study the new condition of the two networks (Tulkarimand Sarra connection point) after connecting them to Sarra electricity distribution substation (16133) KV directly without relying on Israeli national electricity company. Then we will improvethe voltage level and decrease the real power losses and increase the reliability of the networks. After the analysis of Sarra connection point and tulkaremnetworks after we connecting them to Sarra electricity distribution substation (16133) KV also many problems in the network appears as we mentioned before For more details you can see the appendix and the following tables will show us the conditions of the networkes. Table 4.1A : summary of total generation, loading & demand
  • 71. 71 Table4.1B : summary of total generation, loading & demand
  • 72. 72 4.1: Improving the networkes There are different methods in order to improve the network to increase the voltages and to put the PF within the range. Which will reducethe losses then the problems for the consumer will decreaseand the costof KWH will decrease. These methods are: 1. Increasing the swing bus voltage: 2. Tab changing in the transformer: 3. Adding capacitors:
  • 73. 73 4.1A: Improvement by using taps changing: In this method change the tap ratio of the transformers to 5%. Figure4.1: 5% tap changer. Table4.2A(TAP CHANGE) : summary of total generation, loading & demand
  • 74. 74 Note: After changing the taps of the transformers thelosses in the network decrease - The losses before= 0.479MW, - The losses after=0.498MW, Table4.2B(TAP CHANGE) : summary of total generation, loading & demand Note: After changing the taps of the transformers thelosses in the network decrease - The losses before= 0.559MW, - The losses after=0.579MW,
  • 75. 75 Note: After changing the taps of the transformers thelosses in the network decrease - The losses before= 0.490MW, - The losses after=0.507MW,
  • 76. 76 4.1B: Power Factor Improvement The cosine of angle of phasedisplacement between voltage and currentin an AC circuit is known as Power Factor. How to improve the P.F? Where: Qc: The reactive power to be compensated by the capacitor. P: The real power of the load. θ old: The actual power angle. θ new: The proposed power angle. Capacitor Banks: The important of improvement power factor is by adding shuntcapacitor banks at the buses at both transmission and distribution levels and loads and there are more effective to add them in the low level Voltages.
  • 77. 77 Effect of Low Power Factor: 1. Higher Apparent Current. 2. Higher Losses in the Electrical Distribution network 3. Low Voltage in the network Benefits of Improving Power Factor: 1. Lower Apparent Power. 2. Reduces losses in the transmission line. 3. Improves voltage drop. 4. Avoiding the penalties. The problem of low power factor: The low P.F is highly undesirable as it causes an increase in the current, resulting in additional losses of active power in all the elements of power system from power station generator down to the utilization devices .In additional to the losses the low P.F causes penalties. The following table shows the system of the penalties in our companies: Power Factor P.F Penalties P.F≥ 0.92 No Penalties. 0.92>P.F ≥0.8 1% of total bill for each one under 0.92 0.8>P.F≥0.7 1.25%of total bill for each one under 0.92 P.F <0.7 1.5%of total bill for each one under 0.92 Table4.3: The penalties of power factor. Our aim to improvement the P.F in order to avoid penalties and to reduce the current flow in the network which reduce the electrical losses in the network.
  • 78. 78 Table4.4A(POWER FACTOR) : summary of total generation, loading & demand Note: After adding the capacitor banks the losses in the network decrease - The losses before= 0.498MW, - The losses after=0.454MW,.
  • 79. 79 Table4.4B(POWER FACTOR) : summary of total generation, loading & demand Note: After adding the capacitor banks the losses in the network decrease - The losses before= 0.579MW, - The losses after=0.546MW,.
  • 80. 80 Note: After adding the capacitor banks the losses in the network decrease - The losses before= 0.507MW, - The losses after=0.478MW,.
  • 81. 81 4.1C: OverloadedTransformers Problem After the improvement of the network in the maximum case there is the problem of the overloaded transformers. This problemwas solved by changing transformers wherethetransformers which aresmall and the load on them large were changed with large highly loaded transformer. this will need to buy new transformers. Table 4.5 shows the transformers which are needed to be bought: Number of transformers KVA 1 400 Table 4.6 summarizes the analysis results after changing transformers
  • 82. 82 Chapter 5: Mechanical design of the network Mechanical Design: Electrical Power can be transmitted or distributed either by means of underground cables or by overhead lines. The underground cables are rarely used for power transmission dueto main reasons. Firstly, power is generally transmitted over long distances to load centers. Obviously, theinstallation costs for underground transmission willbe very heavy. Secondly, electric power has to be transmitted at high or medium voltages for economic reasons .Itis very difficult to provideproper insulation to the cables to withstand such higher pressures. Therefore, as a rule, power transmission over long distances is carried out by using over headlines. With growth in power demand and consequentrise in voltage levels, power transmission by overhead lines has assumed considerable importance. An overhead line is subjected to uncertain whether conditions and other external interferences. This calls for the useof proper mechanical factor safety in order to ensurethe continuity of operation in the line. In general, the strength of the line should be such so as to provideagainstthe worstprobableweather conditions .In this chapter; weshall focus our attention on the various aspects of mechanical design of over head lines.
  • 83. 83 Main Components of overheadlines: In general, the main components of overhead lines are:  Conductors: Which carry electric power fromthe sending end station to receiving end station  Supports: Which may be poles or towers and keep the conductors at suitable level above the ground.  Insulators: Which are attached to supports and insulate the conductors fromthe ground.  Cross Arms: Which providesupportto the insulators. Miscellaneous Items: Such as phaseplates, danger plates, lightning arrestors, anticlimbing wires[17]
  • 84. 84 Conductors Material : The conductor is one of the important items as most of the capital outlay is invested for it. Therefore, proper choice of material and size of the conductor is of considerableimportance. The conductor material used for transmission and distribution of electric power should be having the following properties: 1. High electrical conductivity. 2. High tensile strength in order to withstand mechanical stresses. 3. Low cost so that it can be used for long distances. 4. Low specific gravity so that weight per unit volume is small. The most commonly used conductor materials for overhead lines are copper, aluminum, steel-cored aluminum, galvanized steel and cadmium copper. The choice of a particular material will depend upon the cost, the required electrical and mechanical Properties and the local conditions.  Copper: Copper is an ideal material for overhead lines owing to its high electrical conductivity and greater tensile strength. Itis always used in the hard drawn formas stranded conductor. Although hard drawing decreases the electrical conductivity slightly yet it increases the tensile strength considerably. Copper has high currentdensity i.e. the current carrying capacity of copper per unit of X-sectional area is quite large. This leads to two advantages. Firstly, smaller X-sectional area of conductor is required and secondly, the area offered by the conductor to wind loads is reduced. Moreover, this metal is quite homogeneous, durableand has high scrap value. There is hardly any doubt that copper is an ideal material for transmission and distribution of electric power. However, dueto its higher cost and non availability, it is rarely used for these purposes.
  • 85. 85  Aluminum: Aluminum is cheap and light as compared to copper but it has much smaller Conductivity and tensile strength. The relative comparison of the two materials is briefed below: 1) The conductivity of aluminum is 60% that of copper. The smaller conductivity of aluminum means that for any particular transmission efficiency, the X-sectional area of conductor mustbe larger in aluminum than in copper. For the same resistance, the diameter of aluminum conductor is about 1·26 times the diameter of copper conductor. The increased X-section of aluminum exposes a greater surfaceto wind pressure and, therefore, supporting towers mustbe designed for greater transverse strength. This often requires the use of higher towers with consequence of greater sag. 2) The specific gravity of aluminum (2·71 gm/cc) is lower than that of copper (8·9 gm/cc). Therefore, an aluminum conductor has almost one-half the weight of equivalent copper conductor. For this reason, the supporting structures for aluminumneed not be made so strong as that of copper conductor. 3) Aluminum conductor being light, is liable to greater swings and hence larger cross-armsare required. 4) Due to lower tensile strength and higher co-efficient of linear expansion of aluminum, the sag is greater in aluminum conductors. Considering the combined properties of cost, conductivity, tensile strength, weight etc., aluminum has an edge over copper. Therefore, it is being widely used as a conductor material. Itis particularly profitable to use aluminum for heavy- currenttransmission wherethe conductor size is large and its costforms a major proportion of the total costof complete installation.
  • 86. 86  Steel cordaluminum: Due to low tensile strength, aluminum conductors producegreater sag. This prohibits their usefor larger spans and makes them unsuitable for long distance transmission. In order to increase the tensile strength, the aluminum conductor is reinforced with a core of galvanized steel wires. The compositeconductor thus obtained is known as steel cored aluminum and is abbreviated as A.C.S.R. (aluminum conductor steel reinforced). Steel-cored aluminum conductor consists of central core of galvanized steel wires surrounded by a number of aluminum strands. The result of this compositeconductor is that steel core takes greater percentage of mechanical strength while aluminum strands carry thebulk of current. The steel cord aluminum conductors havethe following advantages : 1) The reinforcementwith steel increases the tensile strength but at the same time keeps the composite conductor light. Therefore, steel cored aluminum conductors will producesmaller sag and hence longer spans can be used. 2) Due to smaller sag with steel cored aluminum conductors, towers of smaller heights can be used. Fig 5.1: steel cord aluminum conductor.  Galvanizedsteel: Steel has very high tensile strength. Therefore, galvanized steel conductors can be used for extremely long spans or for short line sections exposed to abnormally high stresses dueto climatic conditions. They have been found very suitable in ruralareas wherecheapness is the main consideration. Due to poor conductivity and high resistanceof steel, such conductors arenot suitable for transmitting
  • 87. 87 large power over a long distance. However, they can be used to advantage for transmitting a small power over a small distance where the size of the copper conductor desirable fromeconomic considerations would be too small and thus unsuitable for use becauseof poor mechanical strength.  Cadmium copper: The conductor material now being employed in certain cases is copper alloyed with cadmium. An addition of 1% or 2% cadmium to copper increases the tensile strength by about 50% and the conductivity is only reduced by 15% below that of pure copper. Therefore, cadmium copper conductor can be useful for exceptionally long spans. However, dueto high cost of cadmium, such conductors will be economical only for lines of small X-section i.e., where the cost of conductor material is comparatively smallcompared with the cost of supports. Supports : The supporting structures for overhead line conductors are various types of poles and towers called line supports In general, the line supports should havethe following properties: 1. High mechanical strength to withstand the weight of conductors and wind loads. 2. Light in weight without the loss of mechanical strength. 3. Cheap in costand economical to maintain. 4. Longer life. 5. Easy accessibility of conductors for maintenance.
  • 88. 88 The line supports used for transmission and distribution of electric power are of various types including wooden poles, steel poles, R.C.C. poles and lattice steel towers. The choice of supporting structurefor a particular case depends upon the line span, X-sectionalarea, line voltage, costand local conditions.  Wooden poles: These are made of seasoned wood and are suitable for lines of moderate X- sectional area and of relatively shorter spans, say up to 50 meters. Such supports are cheap, easily available, provideinsulating properties and, therefore, are widely used for distribution purposes in ruralareas as an economical proposition. The wooden poles generally tend to rot below the ground level, causing foundation failure. In order to prevent this, the portion of the pole below the ground level is impregnated with preservativecompounds like creosoteoil. Double pole structures of the ‘A’ or ‘H’ type are often used to obtain a higher transversestrength than could be economically provided by means of single poles. The main objections to wooden supports are: (i) tendency to rot below the ground level (ii) comparatively smaller life (20-25 years) (iii) cannotbe used for voltages higher than 20 kV (iv) less mechanical strength and (v) requireperiodical inspection.  Steel poles: The steel poles are often used as a substitute for wooden poles. They possess greater mechanical strength, longer life and permit longer spans to be used. Such poles are generally used for distribution purposes in the cities. This type of supports need to be galvanized or painted in order to prolong its life. The steel poles are of three types. (i) Rail poles (ii) tubular poles and (iii) Rolled steel joints.
  • 89. 89  RCC poles: The reinforced concrete poles have become very popular as line supports in recent years. They havegreater mechanical strength, longer life and permit longer spans than steel poles. Moreover, they give good outlook, require little maintenance and have good insulating properties. The holes in the poles facilitate the climbing of poles and at the same time reduce the weight of line supports. The main difficulty with the useof these poles is the high cost of transportowing to their heavy weight. Therefore, such poles are often manufactured at the site in order to avoid heavy cost of transportation.  Steel towers: In practice, wooden, steel and reinforced concrete poles are used for distribution purposes atlow voltages, say up to 11 kV. However, for long distance transmission athigher voltage, steel towers are invariably employed. Steel towers have greater mechanical strength, longer life, can withstand mostsevere climatic conditions and permit the use of longer spans. The risk of interrupted servicedue to broken or punctured insulation is considerably reduced owing to longer spans. Tower footings are usually grounded by driving rods into the earth. This minimizes the lightning troubles as each tower acts as a lightning conductor. Insulators : The overhead lines conductors should besupported on the poles or towers in such a way that currents fromconductors do not flow to earth through supports. Line conductors mustbe properly insulated from supports. This is achieved by securing line conductors to supports with the help of insulators. The insulators providenecessary insulation between line conductors and supports and thus prevent any leakage currentfromconductors to earth
  • 90. 90 the insulators should havethe following properties : 1. High mechanical strength in order to withstand conductor load, wind load etc. 2. High electrical resistanceof insulator material in order to avoid leakage currents to earth. 3. High relative permittivity of insulator material in order that dielectric strength is high. Types of Insulators:  Pin type insulators The part section of a pin type insulator is shown below as the name suggests, the pin type insulator is secured to the cross-armon the pole. There is a grooveon the upper end of the insulator for housing the conductor. The conductor passes through this grooveand is bound by the annealed wire of the samematerial as the conductor .Pin type insulators areused for transmission and distribution of electric power at voltages up to 33 kV. Beyond operating voltage of 33 kV, the pin type insulators become too bulky and hence uneconomical. Causes of insulator failure. Insulators arerequired to withstand both mechanical and electrical stresses. Thelatter type is primarily due to line voltage and may causethe breakdown of the insulator. The electrical breakdown of the insulator can occur either by flash-over or puncture. In flashover, an arc occurs between the line conductor and insulator pin (i.e. earth) and the dischargejumps across theair gaps, following shortest distance. In caseof flash-over, theinsulator will continue to act in its proper capacity unless extreme heat produced by the arc destroys theinsulator. In case of puncture, the dischargeoccurs fromconductor to pin through the body of the insulator. When such breakdown is involved, the insulator is permanently destroyed due to excessiveheat. In practice, sufficient thickness of porcelain is provided in the insulator to avoid punctureby the line voltage. The ratio of puncture strength to flashover voltage is known as safety factor. 𝑠𝑎𝑓𝑒𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑖𝑠𝑛𝑢𝑙𝑎𝑡𝑜𝑟 = 𝑝𝑢𝑛𝑐𝑡𝑢𝑟𝑒 𝑠𝑡𝑟𝑒𝑛𝑔ℎ 𝑓𝑙𝑎𝑠ℎ − 𝑜𝑣𝑒𝑟 𝑣𝑜𝑙𝑡𝑎𝑔𝑒
  • 91. 91 Fig.5.2: pin type insulators.  Suspensiontype insulators The cost of pin type insulator increases rapidly as the working voltage is increased. Therefore, this type of insulator is not economical beyond 33 kV. For high voltages (>33 kV). They consistof a number of porcelain discs connected in series by metal links in the formof a string. The conductor is suspended at the bottom end of this string while the other end of the string is secured to the cross-armof the tower. Each unit or disc is designed for low voltage, say 11 kV. The number of discs in series would obviously depend upon the working voltage. For instance, if the working voltageis 66 kV, then sixdiscs in series will be provided on the string.  Advantages: 1) Suspension typeinsulators are cheaper than pin type insulators for voltages beyond 33 kV. 2) Each unit or disc of suspension type insulator is designed for low voltage, usually 11 kV. Depending upon the working voltage, the desired number of discs can be connected in series. 3) If any one disc is damaged, the whole string does not become useless because the damaged disc can be replaced by the sound one. 4) The suspension arrangementprovides greater flexibility to the line. The connection at the cross armis such that insulator string is free to swing in any direction and can take up the position wheremechanical stresses are
  • 92. 92 minimum. 5) In case of increased demand on the transmission line, it is found more satisfactory to supply the greater demand by raising the line voltage than to provideanother set of conductors. The additional insulation required for the raised voltage can be easily obtained in the suspension arrangementby adding the desired number of discs. 6) The suspension typeinsulators aregenerally used with steel towers. As the conductors run below the earthed cross-armof thetower, therefore, this arrangementprovides partial protection fromlightning Fig.5.3: suspension insulators.  Straininsulators When there is a dead end of the line or there is corner or sharp curve, the line is subjected to greater tension. In order to relieve the line of excessivetension, strain insulators are used. For low voltage lines (< 11 kV), shackleinsulators are used as strain insulators. However, for high voltage transmission lines, strain insulator consists of an assembly of suspension insulators. Thediscs of strain insulators are used in the vertical plane. When the tension in lines is exceedingly high, as at long river spans, two or morestrings are used in parallel.
  • 93. 93 Fig.5.4: strain insulator. Important Points: There is some of criteria wemust take it into account in mechanical design of medium voltage: 1. Distances between the towers The distance between each tow towers in the range (80 – 100) meter 2. The high of tower is (12) meter in 33 (KV) voltage level and 22 (KV). 3. Thickness of the steel material (80 – 90) mm, 90 mm fromthe base of tower and 80 mm toward the top of tower . 4. Base of tower (2-2-2.5) m, (0.5) mabovethe ground and each base need about (8) cup of concrete. 5. The distances between the insulators in the range (0.5-1) m. 6. Number of steel truss which we can put it in series in straightline without need to put the steel towers from1 to 4 trusses until about 400 m distance.  The Type of conductor that we usedin this project is Steel CordAluminium.
  • 94. 94  We usedinthis project twotypes of supports, one of themcalledsteel truss and other type calledsteel towers as we see inthe figure below: Fig.5.5:truss with arm in front . Fig.5.6:tower. Total number of steel towers and steel ladders we are need it to connect Tulkarim and Sarra connection point with each other to unified the whole electrical network: Table 5.1: total number of tower and truss we are need to unified tulkarim network and sarra connection point . Steel tower Steel truss 61 182 Type of insulator we are used it in this projectis PIN type insulators , Suspension type insulators and Straininsulators .Tablebelow shows the total number of insulators weare need it :
  • 95. 95 Number of insulators that we needin eachtype as shown in table below: Types of insulator Pin Suspension Strain Number 546 62 366 Table 5.2:total numberwe are needineach type of insulator. Sag in Overhead Lines: While erecting an overhead line, it is very important that conductors are under safetension. If the conductors aretoo much stretched between supports in a bid to save conductor material, the stress in the conductor may reach unsafevalue and in certain cases the conductor may break due to excessive tension. In order to permit safe tension in the conductors, they are not fully stretched but are allowed to have a dip or sag. The difference in level between points of supports and the lowest point on the conductor is called sag. Figurebelow shows a conductor suspended between two supports A and B. The conductor is not fully stretched but is allowed to havea dip. The lowestpoint on the conductor is O and the sag is S. Fig 5.7: sag in overhead lines.
  • 96. 96 The following points may be noted: 1) When the conductor is suspended between two supports atthe samelevel, it takes the shapeof catenaries. However, if the sag is very small compared with the span, then sag-span curveis like a parabola. 2) The tension at any point on the conductor acts tangentially. Thus tension TO at the lowestpoint O acts horizontally. 3) The horizontalcomponent of tension is constantthroughoutthe length of the wire. 4) The tension at supports is approximately equal to the horizontaltension acting at any point on the wire. Thus if T is the tension at the supportB, then T = TO. Conductor sag and tension. This is an important consideration in the mechanical design of overhead lines. The conductor sag should be kept to a minimum in order to reducethe conductor material required and to avoid extra pole height for sufficient clearance above ground level. Itis also desirable that tension in the conductor should be low to avoid the mechanical failure of conductor and to permit the use of less strong supports. However, low conductor tension and minimum sag are not possible. Itis becauselow sag means a tight wire and high tension, whereas a low tension means a loose wire and increased sag. Therefore, in actual practice, a compromisein made between the two. Calculation of Sag In an overhead line, the sag should be so adjusted that tension in the conductors is within safelimits. The tension is governed by conductor weight, effects of wind, ice loading and temperature variations. Itis a standard practice to keep conductor tension less than 50% of its ultimate tensile strength i.e.. We shall now calculate sag and tension of a conductor when 1) supports areat equal levels and 2) supports areat unequal levels.
  • 97. 97  When supports are at equal levels: Consider a conductor between two equivalent supports A and B with O as the lowest point as shown in Fig. Let Fig.5.8: sag when supports are at equal levels. l = Length of span w = Weight per unit length of conductor T = Tension in the conductor. we get, 15]  When supports are at unequal levels: Fig. below shows a conductor suspended between two supports A and B which are at different levels. The lowestpoint on the conductor is O.