SlideShare uma empresa Scribd logo
1 de 101
Baixar para ler offline
NO. Content Page
Chapter one Introduction 2
1.1 Energy sector in Palestine 2
1.2 Power system 3
1.3 Load flow analysis 4
1.4 Etab power station 5
1.5 SCADA System 6
1.5.1 SCADA hardware 6
1.5.2 SCADA software 6
1.6 About project 8
Chapter two Elements of the network 9
2.1 Distribution transformer 10
2.2 Medium voltage lines 11
2.2.1 Over head lines 11
2.2.2 Underground cables 12
2.2.3 Daily load curve 12
Chapter three Maximum Load Case Analysis 13
3.1 Maximum load case 14
3.2 Problems 14
3.3 The Maximum Load Case Improvement 15
3.4 Overloaded Transformers Problem 17
3.5 New connection Point Study for the maximum load
case
18
3.6 Improving the network with the new connection
point
19
Chapter four Minimum Load Case Study 20
4.1 Minimum Case Study 21
4.2 Minimum Load Study After The Connection Point
And Solving Overloaded Transformers Problem
22
Chapter five Economical Study 24
Chapter six Monitoring System 27
6.1 Monitoring System 28
6.2 Current Measurement 28
6.3 Voltage Measurement 29
6.4 Power Factor Measurement 31
6.5 Frequency Measurement 33
6.6 The Remote Terminal Unit (RTU) 34
Appendices Tables 36
References 101
Page 1
Chapter One
Introduction
Page 2
1.1Energy Sector in Palestine
Energy sector in Palestine faced many difficulties because of occupation. Till now
there is no unified power system in Palestine. Most of electrical energy depends on
IEC Company except Jericho which connected with Jordan and Gaza to Egypt
(17MW) through the interconnection project. The only generation plant is in Gaza
with generating capacity of 140MW. Distribution companies take the role of
distributing electricity in the different regions of Palestine.
The average annual growth rate of energy demand in west bank is 6.4%, and in Gaza
is 10% from 1999 to 2005. The following figure shows the growth pattern in West
Bank, Gaza Strip and the total Palestine forecast:
Fig. 1.1
The following table shows the forecast summary - peak demand (MW):
Table1.1
202520202015201020092008Year
1,7141,3471,059885845806Total
1,012809646548525502W.B.
701538413336320303Gaza
0
200
400
600
800
1000
1200
1400
1600
1800
2005 2010 2015 2020 2025 2030
Power(MW)
Year
Power Demand
Total
W.B.
Gaza
Page 3
1.2 Power System
The power system in general consists of these parts:
1. Generating station: And this part consists of
a. Generators in which electric power is produced by 3-phase alternators
operating in parallel. And usually electric power is generated at voltages of
12kv to 25kv.
b. Sub-station, where the power transformers step up the voltage to between
66kv 1000kv.
1. Primary transmission. The electric power at high voltages is transmitted by 3-
phase 3-wire overhead system to the outskirts of the city. This forms the primary
transmission.
2. Secondary transmission. The primary transmission line terminates at the
receiving station which usually lies at the outskirts of the city. At the receiving
station the voltage is reduced to 33kv or 22kv by step-down transformers.
3. Primary distribution. the secondary transmission line terminates at the sub-
station where voltage is reduced from the secondary voltage to the primary
distribution voltage usually 11kv could be 6.6kv 3-phase 3-wire .the 11kv lines
run along the important road sides of the city. And forms the primary
distribution.
4. Secondary distribution. The electric power form primary distribution line is
delivered to distribution sub-stations. These sub-stations are located near the
consumers localities and step down the voltage to 400v 3-phase 4-wire for
secondary distribution. And this forms secondary distribution.
Page 4
1.3 Load Flow Analysis
Load flow analysis is probably the most important of all network calculations since
it concerns the network performance in its normal operating conditions. It is
performed to investigate the magnitude and phase angle of the voltage at each
bus and the real and reactive power flows in the system components.
Load flow analysis has a great importance in future expansion planning, in
stability studies and in determining the best economical operation for existing
systems. Also load flow results are very valuable for setting the proper protection
devices to insure the security of the system. In order to perform a load flow study,
full data must be provided about the studied system, such as connection diagram,
parameters of transformers and lines, rated values of each equipment, and the
assumed values of real and reactive power for each load.
Bus Classification
Each bus in the system has four variables: voltage magnitude, voltage angle, real
power and reactive power. During the operation of the power system, each bus
has two known variables and two unknowns. Generally, the bus must be classified
as one of the following bus types:
1. Swing Bus
This bus is considered as the reference bus. It must be connected to a generator of
high rating relative to the other generators. During the operation, the voltage of this
bus is always specified and remains constant in magnitude and angle. In addition to
the generation assigned to it according to economic operation, this bus is responsible
for supplying the losses of the system.
2. Voltage Controlled Bus
During the operation the voltage magnitude at this the bus is kept constant. Also, the
active power supplied is kept constant at the value that satisfies the economic
operation of the system. Most probably, this bus is connected to a generator where
the voltage is controlled using the excitation and the power is controlled using the
prime mover control (as you have studied in the last experiment). Sometimes, this
bus is connected to a VAR device where the voltage can be controlled by varying the
value of the injected VAR to the bus.
3. Load Bus
This bus is not connected to a generator so that neither its voltage nor its real power
can be controlled. On the other hand, the load connected to this bus will change the
active and reactive power at the bus in a random manner. To solve the load flow
problem we have to assume the complex power value (real and reactive) at this bus.
Page 5
1.4 ETAP Power Station
ETAP Load Flow software performs power flow analysis and voltage drop calculations
with accurate and reliable results. Built-in features like automatic equipment
evaluation, alerts and warnings summary, load flow result analyzer, and intelligent
graphics make it the most efficient electrical power flow analysis tool available
today.
ETAP load flow calculation program calculates bus voltages, branch power factors,
currents, and power flows throughout the electrical system. ETAP allows for swing,
voltage regulated, and unregulated power sources with unlimited power grids and
generator connections.
Fig. 1.2
Page 6
1.5 SCADA System
SCADA (supervisory control and data acquisition) generally refers to industrial
control systems (ICS): computer systems that monitor and control industrial,
infrastructure, or facility-based processes, Industrial processes include those of
manufacturing, production, power generation, fabrication, and refining, and may run
in continuous, batch, repetitive, or discrete modes.
1.5.1 SCADA hardware.
A SCADA system consists of a number of remote terminal units (RTUs) collecting field
data and sending that data back to a master station, via a communication system.
The master station displays the acquired data and allows the operator to perform
remote control tasks.
The accurate and timely data allows for optimization of the plant operation and
process. Other benefits include more efficient, reliable and most importantly, safer
operations. These results in a lower cost of operation compared to earlier non-
automated systems.
On a more complex SCADA system there are essentially five levels or hierarchies:
 Field level instrumentation and control devices.
 Marshalling terminals and RTUs.
 Communications system.
 The master station(s).
 The commercial data processing department computer system.
The RTU provides an interface to the field analog and digital sensors situated at each
remote site.
The communications system provides the pathway for communication between the
master station and the remote sites. This communication system can be wire, fiber
optic, radio, telephone line, microwave and possibly even satellite. Specific protocols
and error detection philosophies are used for efficient and optimum transfer of data.
The master station (or sub-masters) gather data from the various RTUs and generally
provide an operator interface for display of information and control of the remote
sites. In large telemetry systems, sub-master sites gather information from remote
sites and act as a relay back to the control master station.
1.5.2 SCADA software
SCADA software can be divided into two types, proprietary or open. Companies
develop proprietary software to communicate to their hardware. These systems are
sold as ‘turnkey’ solutions. The main problem with this system is the overwhelming
reliance on the supplier of the system. Open software systems have gained
popularity because of the interoperability they bring to the system. Interoperability
is the ability to mix different manufacturers’ equipment on the same system.
Citect and WonderWare are just two of the open software packages available in the
market for SCADA systems. Some packages are now including asset management
integrated within the SCADA system. The typical components of a SCADA system are
indicated in the next diagram.
Page 7
Fig 1.3
Key features of SCADA software are:
• User interface
• Graphics displays
• Alarms
• Trends
• RTU (and PLC) interface
• Scalability
• Access to data
• Database
• Networking
• Fault tolerance and redundancy
• Client/server distributed processing
Page 8
1.6About Project
The aim of this project is to do load flow study for the network of Tubas Electrical
Distribution Company (TEDCO). Then make a simulation for monitoring system for
the network. In this system the supervision part of monitoring systems will be done.
The electrical supply of the network is provided by IEC through 33KV overhead
transmission cables. The main connection point of the network is in Tyaseer with
capacity of 15MVA. And TEDCO distribute the electricity for the consumers. The
company is planning to add new connection point in Al Zawya.
TEDCO already has a small SCADA system. Which monitors the main lines of every
town, and for the transmission of the data from the RTUs they use SMS through
JAWWAL network. SMS method for the transmission of data is not reliable because
the system will not be online monitored they receive data every one hour also it is
expensive. The company plans to get internet through the power line, when they do
they will use it to monitor the network online.
Page 9
Chapter two
Elements of the Network
Page 10
2.1 Distribution Transformers
The network consists of 141 distribution transformer (33∆/0.4Y (KV)). The
transformers range from 50KVA to 630 KVA the following table shows them in
details:
Table 2.1
Number of Transformers Rating (KVA)
4 50
15 100
19 160
43 250
33 400
27 630
Fig 2.1
Page 11
2.2 Medium Voltage Lines
2.2.1 Overhead Lines
The overhead lines used in the network are ACSR cables with different
diameters as the following table:
Table 2.2
Cable Name Cross
sectional area
(mm2
)
R (Ω/Km) X (Ω/Km) Nominal
Capacity (A)
Ostrich 150 0.19 0.28 350
Cochin 110 0.25 0.29 300
Lenghorn 70 0.39 0.31 180
Aprpcot 50 0.81 0.29 130
Fig 2.2
Page 12
2.2.2 Underground Cables
The underground cables used in the network are XLPE Cu (95 mm2
)
Table 2.3
Diameter (mm2
) R (Ω/Km) X (Ω/Km)
95 0.41 0.121
Fig 2.3
2.3 The daily load curve
The daily load curve of the network is shown in the figure below:
Fig2.4
The daily load curve shows the maximum and the minimum demand over the day,
these values help in the analysis of the network.
Page 13
Chapter three
Maximum Load Case Analysis
Page 14
3.1 Maximum load case
Considering the maximum demand in the daily load curve (fig2.4), it is found that the
maximum load equals two and half of the average load.
Then analyze the network using ETAP power station.
Cables lengths and resistances are shown in appendix 1.
The transformers loading are shown in appendix 2.
3.2 Problems
After the analysis of this case the following problems appeared:
 Under voltage buses (Appendix 3).
 Overloaded transformer (Appendix 4).
 Power factor less than 92%
Table 3.1 summarizes the results of the network analysis in the maximum load case
(total generation, demand, loading, percentage of losses, and the total power
factor.)
Table 3.1
MW MVAR MVA % PF
Swing Bus(es): 16.755 7.474 18.346 91.33 lag.
Generators: 0.00 0.00 0.00 0.00
Total Demand: 16.755 7.474 18.346 91.33 lag.
Total Motor Load: 9.368 4.148
10.245
91.44 lag.
Total Static Load: 6.760 2.245
7.123 94.9 lag.
Apparent Losses: 0.627 1.081
1. The P.F in the network equal 90.75 and this value causes a lot of problem
specially paying banalities and this value must be (0.92-0.95) the P.F is
related to the current in the network according that when P.F is poor the
Page 15
current in the network is high this also can cause increasing the loses in the
network .
2. The PF improvement will show that the current will decrease, as a result the
losses will decrease
3. It is seen that the voltages on the buses are not acceptable. These voltages will be
less at the consumer side, under the machines rating which will cause a many
problems for the consumer.
3.3 The Maximum Load Case Improvement
There are different methods in order to improve the network to increase the
voltages and to put the PF within the range. Which will reduce the losses then the
problems for the consumer will decrease and the cost of KWH will decrease.
These methods are:
1. Tab changing in the transformer:
In this method the ratio of the taps on the transformer is changed in a range
of -5% to 5%. In this project the taps were changed to 5%. The location of the
changed taps is shown in Appendix 5
2. Adding capacitors:
The capacitors were added to reduce the reactive power which increases the
PF and the voltages of the buses. First the capacitor is added at the lowest
voltage bus then the one which have the larger voltage and so on. When
adding capacitors the PF should be lagging and more than 95%. The location
of the capacitor banks is shown in Appendix 6.
As mentioned adding capacitors will improve the PF.
The low PF cause problems as:
 Higher Apparent Current.
 Higher Losses in the Electrical Distribution network.
 Low Voltage in the network.
 Paying penalties.
Improving the power factor will avoid these problems.
Page 16
Capacitor banks will increase the PF as the following:
Where:
 Qc: the reactive power to be compensated by the capacitor.
 P: the real power of the load.
 Ø old: the actual power angle.
 Ø New: the proposed power angle.
According to the previous equation the value of capacitor banks needed to be added
in the network is:
PF old = 91.33%
PF new = 92% at least
Capacitor banks should be connected in delta connection on the low voltage side of the
transformer.
Page 17
Table 3.2 shows summary for the results after adding the capacitors:
Table 3.2
MW MVAR MVA % PF
Swing Bus(es):
17.423 6.946 18.757 92.89 lag
Total Demand:
17.423 6.946 18.757 92.89 lag
Total Motor Load:
9.368 4.148 10.245 91.44 lag
Total Static Load:
7.399 1.668 7.585 97.55 lag
Apparent Losses:
0.656 1.131
Voltages on the busses after improvement are shown in appendix 7.
3.4 Overloaded Transformers Problem
After the improvement of the network in the maximum case there is the problem of
the overloaded transformers. This problem was solved by changing transformers
locations where the transformers which are large and the load on them small were
changed with small highly loaded transformers. Then another transformers
connected in parallel with the left overloaded transformers this will need to buy new
transformers.
Appendix 8 shows the operation of transformer changing.
Table 3.3 shows the transformers which are needed to be bought:
Table 3.3
Number of transformers KVA
6 630
1 250
Table 3.4 shows the extra transformers left after solving the overloaded
transformers problem:
Table 3.4
Number of transformers KVA
1 100
1 50
Page 18
Table 3.5 summarizes the analysis results after changing transformers
Table 3.5
MW MVAR MVA % PF
Swing Bus(es):
17.388 6.867 18.695 93.01 lag
Total Demand:
17.388 6.867 18.695 93.01 lag
Total Motor Load:
9.394 4.163 10.275 91.43 lag
Total Static Load:
7.374 1.664 7.559 97.55 lag
Apparent Losses:
0.620 1.039
The voltages on the buses after changing the transformers are shown in Appendix 9.
3.5 New connection Point Study for the maximum load case
Tubas Electrical Distribution Company (TEDCO) is planning to add new connection
point for the company in Zawya area. This connection point is 5MVA rated.
Appendix 10 shows the voltages on the busses after adding the new connection
point. It is seen that the voltages after the new connection point were enhanced and
the losses decreased. And the power factor increased.
The following table shows the results summary after the new connection point
Table 3.6
MW MVAR MVA % PF
Swing Bus(es):
17.430 6.622 18.646 93.48 lag
Total Demand:
17.430 6.622 18.646 93.48 lag
Total Motor Load:
9.394 4.163 10.275 91.43 lag
Total Static Load:
7.599 1.712 7.790 97.55 lag
Apparent Losses:
0.437 0.747
Page 19
3.6 Improving the network with the new connection point
As before the improvement is done by tap changing and adding capacitor banks.
The changed taps and the added capacitor banks are shown in Appendix 11
The operating voltages are shown in the same appendix.
Now all buses are operating over 100% voltages. This will make the voltages reach to
the consumer with fewer losses.
The results of the improving are summarized in the following table
Table 3.7
MW MVAR MVA % PF
Swing Bus(es):
17.454 6.558 18.645 93.61 lag.
Total Demand:
17.454 6.558 18.645 93.61 lag
Total Motor Load:
9.394 4.163 10.275 91.43 lag
Total Static Load:
7.624 1.650 7.801 97.74 lag
Apparent Losses:
0.435 0.744
Page 20
Chapter Four
Minimum Load Case Study
Page 21
4.1 Minimum Case Study
In the minimum load case the load is assumed to be half the maximum load.
The network analysis in this case shows the results in table 4.1
Table4.1
MW MVAR MVA % PF
Swing Bus(es):
8.381 3.480 9.075 92.36 lag
Total Demand:
8.381 3.480 9.075 92.36 lag
Total Motor Load:
4.699 2.082 5.140 91.43 lag
Total Static Load:
3.529 1.132 3.706 95.22 lag
Apparent Losses:
0.153 0.265
Appendix 12 shows the voltages on the buses for this case. It is noticed that these
voltages better than the voltages on the maximum load case.
Now taking the taps fixed as in the maximum load case the results shows that all the
buses have good voltage level and the power factor is in the range so no need to add
capacitor banks for this case, so the capacitor banks used in the network are all
regulated.
The following table shows the analysis summary with the taps changed
Table4.2
MW MVAR MVA % PF
Swing Bus(es):
8.720 3.614 9.439 92.38 lag
Total Demand:
8.720 3.614 9.439 92.38 lag
Total Motor Load:
4.699 2.082 5.140 91.43 lag
Total Static Load:
3.855 1.244 4.051 95.17 lag
Apparent Losses:
0.166 0.287
Voltages on buses after changing taps are shown in appendix 13
Page 22
4.2 Minimum Load Study After The Connection Point And Solving
Overloaded Transformers Problem
After solving overloaded transformers problem, as seen before some transformers
were changed and new transformers connected in parallel with some of overloaded
transformers. Also the new connection point is connected to the network.
The results for minimum load study in this case are shown in the following table4.3
Table 4.3
MW MVAR MVA % PF
Swing Bus(es):
8.738 3.541 9.428 92.68 lag
Total Demand:
8.738 3.541 9.428 92.68 lag
Total Motor Load:
4.699 2.082 5.140 91.43 lag
Total Static Load:
3.928 1.270 4.128 95.15 lag
Apparent Losses:
0.111 0.189
Appendix 14 Shows the voltages on the buses in the minimum case after changing
the transformers and connecting the new connection point.
It is noticed that the voltages and the power factor in this case are good, so no need
to add new capacitor banks to the network in this case, therefore all capacitor banks
connected are regulated. Also it can be seen that the losses decreased.
Page 23
The final results for the minimum load case are summarized in the following
table:
Table 4.4
MW MVAR MVA % PF
Swing Bus(es):
8.755 3.548 9.447 92.68 lag
Total Demand:
8.755 3.548 9.447 92.68 lag
Total Motor Load:
4.699 2.082 5.140 91.43 lag
Total Static Load:
3.945 1.276 4.146 95.15 lag
Apparent Losses:
0.111 0.190
The final voltages for the maximum case are shown in appendix 15
Page 24
Chapter Five
Economical Study
Page 25
Economical study
In this chapter economical study for the network will be done. This study is needed
to know whether it is reliable to connect the capacitor banks to the network or not.
Capacitor banks are reliable to be added to the network if their cost is acceptable
compared with the losses cost and power factor penalties, and their payback period
less than.
From this study the company can define its plans for the network.
In order to calculate the penalties on the low power factor, it is needed to know the
relation between low power factor and the penalty which is shown in the following
table
Table 4.1
PF Penalties
Over 92% No penalties
From 80% to 92% 1% of the total bill for every 1% decrease of PF
From 70% to 80% 1.25% of the total bill for every 1% decrease of PF
Less than 70% 1.5% of the total bill for every 1% decrease of PF
The amount of reactive power added to the network by capacitor banks is
The following parameters needed for the economical study:
 P max= 16.755 MW
 P min= 8.381 MW
 Losses before improvement = 0.627 MW
 Losses after improvement = 0.435 MW
 PF before improvement = 91.33%
 PF after improvement= 93.61%
The following calculations need to be applied to do the economical study:
Page 26
NIS
NIS
Cost of losses:
Losses before improvement = 627 × 0.748 = 468.996 KW
Energy = 468.996 × 8760 = 410.8404 × 104
KWH
Total cost=410.8404 × 104
× 0.45 = 1848782.232 NIS/YEAR
Losses after improvement = 435000 × 0.748 = 325.38 KW
Energy=325.38 × 8760 = 285.03288 × 104
KWH
Cost of losses=285.03288 × 104
× 0.45 = 128.2647 × 104
NIS/YEAR
= 566134 NIS/YEAR
Total capacitor = 905 KVAR
Cost per KVAR with control circuit = 15JD = 90NIS
Total cost of capacitors=905 × 90 = 81450 NIS
Total cost of transformers = 6 * 8200$ + 1 * 4000$
= 53200$ = 186200 NIS
Total investment cost = 81450 + 186200 = 267650 NIS
=3310072 + 566134 = 3876206 NIS
Page 27
Chapter Six
Monitoring System
Page 28
6.1 Monitoring System
The second part of the project is to simulate monitoring system for the network. PIC
microcontroller is used to do the monitoring. Monitoring the network is important to the
electricity distributers, it make them make a better informed real time decisions and helps
them for future planning for the grid.
The monitoring system designed in this project concentrates on the supervision part of
monitoring systems.
The monitoring system designed for this project consists of the following parts:
 Measurement devices.
 The remote terminal unit (RTU).
 Computer interface.
6.2 Current Measurement
It is important for the network supervisor to know the current in the network, because high
short circuit currents can cause severe damages in the system if they are not cured. The
supervisor can do the needed procedures for high currents before they cause the damage,
that if the protective devices in the network did not work well.
In this project the following circuit is used to measure the current:
Fig 6.1
Page 29
The current transformer (C.T) gives 4 volts at 10 amperes flowing in the primary side, then
the output voltage of the current transformer and according to Ohms law is divided on the
resistor connected in parallel with the transformer.
The signal then amplified by the op-amp (op amp amplification ratio is ) but this amplifier
inverse the signal so the buffer is used to get the signal in its actual shape. The buffer also
do the task of current isolation, to prevent relatively high current to damage the electronic
components in the next stage.
After this stage a rectifier circuit is used to take the peak of the voltage signal, to be in the
range of the microcontroller input. The rectifier circuit shown in the next figure
Fig 6.2
The low pass filter is to remove the high frequencies. The diode is to cut the negative half
wave of the voltage signal. The capacitor is to smooth the output DC signal.
6.3 Voltage Measurement
Voltage is another important parameter in the network, low voltages causes high currents. It
is needed to keep the voltages in a good range to keep the machines on the consumer side
work effectively and to reduce the losses in the network.
The way used to measure the voltage in this project is shown in the following circuit
Page 30
Fig 6.3
Here conventional transformer is used here instead of the potential transformer because it
is cheaper. The transformer ration is 220v:3.6v, as before the buffer is used for current
isolation and impedance matching.
As in the current measurement it is needed to rectify the voltage output signal to match the
controller output. The circuit is shown in figure
Fig 6.4
Page 31
6.4 Power Factor Measurement
The power factor is defined as cosine the angle between current and voltage signals. Here
the current and voltage signals will be transform to pulses, then they will be injected to PLL
(CD4046), the output of PLL will be the puls which its width represents the phase shift
between the signals.
The circuit to transform the signals from sign waves to a puls is shown below
Fig 6.5
Two distinct circuits will be needed to transform current and voltage signals to pulses. The
input of the circuit used for current signal is from circuit in figure 6.1. and the voltage signal
is from circuit in figure 6.3.
Fig 6.6
Page 32
The output of the PLL will be connected to B0 input of the microcontroller. Figure 6.6 shows
this operation.
6.1.1 shows the two signals A and B.
6.1.2 shows signal A pulses.
6.1.3 shows signal B pulses.
6.1.4 shows the output of PLL
Fig 6.7
A counter in the microcontroller will count the duration of the phase shift signal. The 50Hz
signal will have a duration of 20ms and 3600
so the angle of the phase shift will be found
according to the following relation (assume the duration of the phase shift puls is T and the
angle between the signals is φ).
Then the power factor will be cosine the angle.
Page 33
6.5 Frequency Measurement
In the frequency measurement the circuit in figure 6.3 in addition to other PLL will be
used. The output of the circuit will be sent to microcontroller and to the PLL, the
second input of the PLL will be a fixed signal with 20ms(i.e. 50Hz) from the
microcontroller will be applied to it.
The output of the PLL will be the difference between the fixed signal from the
microcontroller and the voltage pulses, the difference duration will be either added
or subtracted from the 50Hz. Addition and subtraction will be according to the
voltage puls duration, if it is more than 20ms it will be subtracted if less it will be
added. The duration of the voltage puls will be counted in the microcontroller.
Assume the duration of the PLL output is X and the voltage signal duration is Y
If Y>20ms then,
Else if Y<20ms then,
Fig 6.8.
Page 34
6.6 The Remote Terminal Unit (RTU)
The remote terminal unit control and send the data collected from the network
process them and send them to the supervision computer. The microcontroller used
in the RTU is PIC16F877A. PIC microcontroller is used because it is simple, available
all the time, and cheap.
The basic circuit for this microcontroller is shown in fig 6.9 below.
Fig 6.9
The data from the measurement devices is not the actual values for the network
parameters, calibration is done for the measurement devices and the values of the
measurement devices is multiplied by the factors in the microcontroller to return to
their actual value, then these values will be send to the computer.
To connect the microcontroller to the computer MAX232 is used to send the data
serially to the computer through RS232. As in the circuit in figure 6.10.
Page 35
Fig 6.10
In the computer an application programmed using C# programming language to read
the data from the serial port and preview them.
Pictures for the project in appendix A16
Page 36
Appendix 1
Cables lengths and resistances
X (Ω)R (Ω)area (mm2
)L (km)NRNS
0.280.19150121
0.70.4751502.532
0.12040.08171500.43033
0.103040.069921500.368403
0.140.0951500.554
0.0840.0571500.365
0.03080.02091500.1176
0.01450.01251100.0587
0.0290.0251100.198
0.07750.0975700.25109
0.17050.2145700.551110
0.0930.117700.31211
0.0620.078700.21312
0.0930.117700.31412
0.438340.55146701.4141514
0.1240.156700.41615
0.2170.273700.71716
0.1240.156700.41817
0.1240.156700.41918
0.0930.117700.32019
0.04650.0585700.152120
0.13950.1755700.4502121
0.04960.0624700.1622021
0.0620.078700.22322
0.1240.156700.40064021
0.379440.47736701.2246564
0.2170.273700.7006664
0.310.39701.0006766
0.184140.23166700.5947166
0.01550.0195700.0507266
0.3720.468701.2006867
0.363010.45669701.1717068
0.094240.11856700.3046968
0.22320.2808700.7207372
0.1550.195700.5007473
0.371070.46683701.1977572
0.310.39701.0007675
0.3720.468701.2007776
0.38750.4875701.2507877
Page 37
0.3720.468701.2008078
0.0310.039700.1007978
0.1240.156700.42423
0.0310.039700.12524
0.0620.078700.22625
0.0620.078700.22724
0.07750.0975700.252822
0.0310.039700.12928
0.04650.0585700.153028
0.0310.039700.13122
0.1550.195700.53220
0.07750.0975700.253332
0.04650.0585700.153419
0.0310.039700.13534
0.2480.312700.83635
0.3720.468701.23736
0.05270.0663700.173836
0.4650.585701.53934
0.0930.117700.34039
0.10850.1365700.354139
0.1240.156700.44217
0.1240.156700.44316
0.1240.156700.44415
0.4650.585701.54514
0.7130.897702.34645
0.3720.468701.24745
0.835451.05105702.6954814
0.310.397014948
0.1550.195700.55049
0.247380.31122700.7985150
0.1550.195700.55251
0.23250.2925700.755352
0.07750.0975700.255453
0.0310.039700.15553
0.931.177035651
1.241.567045756
0.0930.117700.35850
0.0620.078700.25950
0.05320.03611500.19605
0.09680.328UG 950.86160
0.1960.1331500.76261
0.4760.3231501.76362
0.0580.051100.218082
0.24070.20751100.83181180
Page 38
0.0580.051100.2182180
0.10440.091100.360817
0.0580.051100.2008281
0.12470.10751100.4308382
0.1450.1251100.5008583
0.32770.28251101.1308685
0.3190.2751101.1008785
0.3770.3251101.3008887
0.0580.051100.2008987
0.03480.031100.1209089
0.12470.10751100.4309290
0.290.251101.0009392
0.580.51102.0009493
0.13630.11751100.4709593
0.68150.58751102.3509695
0.04350.03751100.1509796
0.2030.1751100.7009897
0.33930.29251101.1709998
0.1450.1251100.50010099
0.0580.051100.200101100
0.078590.067751100.271102101
0.0870.0751100.300103101
0.11310.09751100.390104103
0.05580.0702700.180106103
0.72850.9165702.350107106
0.23250.2925700.750108107
0.1240.156700.400109108
0.20770.2613700.670110109
0.4340.546701.400111110
0.0310.039700.100112109
0.9921.248703.200113112
0.1550.195700.500114113
0.10850.1365700.350115113
0.5580.702701.800116115
0.07750.0975700.250117116
0.11780.1482700.380118116
0.620.78702.000119118
0.1240.156700.400120119
0.16120.2028700.520121119
0.0930.117700.300122121
0.07750.0975700.250123118
0.50840.6396701.640124123
0.620.78702.000125123
Page 39
0.1240.156700.400126125
0.25420.3198700.820127125
0.1550.195700.500128123
0.3720.468701.200129128
0.2480.312700.800130128
0.2170.273700.700131130
0.53320.6708701.720132131
0.3720.468701.200133132
0.07750.0975700.250151100
0.0310.039700.100152151
0.7750.975702.500153152
0.03720.0468700.120154153
0.09920.1248700.320155153
0.0620.078700.200156155
0.0310.039700.100157156
0.4340.546701.400158156
0.09920.1248700.320159155
0.0310.039700.100160159
0.5270.663701.700161159
0.19530.2457700.630162161
0.26350.3315700.850163162
0.620.78702.000164163
0.310.39701.000165163
0.310.39701.000166165
0.4650.585701.500167166
0.0930.117700.300168167
0.7750.975702.500169168
0.17050.2145700.550170151
0.8371.053702.700171170
0.04650.0585700.150172171
0.5270.663701.700173172
0.2480.312700.800174172
0.3720.468701.200175174
0.0930.117700.300176175
0.20150.2535700.650177175
0.3720.468701.20013496
0.1860.234700.6000.0134134
0.3720.468701.200135134
0.0930.117700.300136135
0.0930.117700.300137136
0.931.17703.000138136
0.1240.156700.400139138
0.04650.0585700.150140139
Page 40
0.1550.195700.500141140
0.0930.0571500.300142140
0.1860.1141500.600143140
0.0620.0381500.200144143
0.1550.0951500.500145144
0.7130.4371502.300146138
0.1240.0761500.400147146
0.07750.04751500.250148146
0.1550.0951500.500149148
0.020770.012731500.067150148
0.13020.0798UG 950.4208483
0.1550.095UG 950.5009190
0.06820.0418UG 950.220105104
Page 41
Appendix 2
Transformers Loading
Transformer PF
S
rated
S average S max LF max S min LF min
Tubas-Housing 0.999 250 104.7899 209.5798 0.838319 104.7899 0.41916
Tubas- Abu Omar 0.934 400 199.8465 399.693 0.999233 199.8465 0.499616
Tubas-
Almaslamani
0.944 630 186.4631 372.9262 0.591946 186.4631 0.295973
Tubas-Allan 0.914 250 112.6163 225.2326 0.90093 112.6163 0.450465
Tubas-Almasaeed 0.937 250 183.8042 367.6084 1.470434 183.8042 0.735217
Tubas-Alhawooz 0.955 400 190.5618 381.1236 0.952809 190.5618 0.476405
Tubas-Station 0.947 630 187.8887 375.7774 0.596472 187.8887 0.298236
Tubas- Aldaqanyia 0.944 250 81.0795 162.159 0.648636 81.0795 0.324318
Tubas-Alenabosi 0.968 250 47.02444 94.04888 0.376196 47.02444 0.188098
Tubas-Althoghra 0.933 160 56.73022 113.4604 0.709128 56.73022 0.354564
Tubas-Sameeh 0.94 250 14.06143 28.12286 0.112491 14.06143 0.056246
Tubas-Alaqaba 0.681 400 53.82302 107.646 0.269115 53.82302 0.134558
Tubas- Brick
Factory
0.946 400 70.51845 141.0369 0.352592 70.51845 0.176296
Tubas- Aldayr 0.934 250 25.70299 51.40598 0.205624 25.70299 0.102812
Tubas- Almasriya 0.938 250 32.43101 64.86202 0.259448 32.43101 0.129724
Tubas-Spanish 0.949 100 10.68236 21.36472 0.213647 10.68236 0.106824
Page 42
Tubas- Khalet
Alloz
0.836 160 1.30705 2.6141 0.016338 1.30705 0.008169
Tubas-Alsafeh
Northern
0.979 160 7.770959 15.54192 0.097137 7.770959 0.048568
Tubas-
Transformers
Factory
0.897 400 7.405304 14.81061 0.037027 7.405304 0.018513
Tubas-Concrete
Factory
0.983 250 14.55556 29.11112 0.116444 14.55556 0.058222
Tubas-
Salhab(Alkaraj)
0.999 100 2.134035 4.26807 0.042681 2.134035 0.02134
Tubas- Well 0.951 630 7.554617 15.10923 0.023983 7.554617 0.011991
Aqaba- Eastern 0.9419 400 175.7835 351.567 0.878918 175.7835 0.439459
Aqaba- Western 0.888 400 194.3629 388.7258 0.971815 194.3629 0.485907
Aqaba- Gas
Station
0.8 630 6.616667 13.23333 0.021005 6.616667 0.010503
Alfar’a Camp- Old
Station
0.936 630 341.9371 683.8742 1.085515 341.9371 0.542757
Alfar’a Camp-
Western
0.952 400 136.6954 273.3908 0.683477 136.6954 0.341739
Alfar’a Camp-
Al’een
1 630 31.52777 63.05554 0.100088 31.52777 0.050044
Alfar’a Camp-
School
0.921 250 59.96289 119.9258 0.479703 59.96289 0.239852
Alfar’a Camp-
Water Well
0.979 400 68.63228 137.2646 0.343161 68.63228 0.171581
Page 43
Alfar’a Camp-
Alhawooz
0.953 400 1.187308 2.374616 0.005937 1.187308 0.002968
Wadi Alfar’a-
Ref’at
0.888 400 116.4501 232.9002 0.582251 116.4501 0.291125
Wadi Alfar’a-
Alhafreya
0.931 250 92.28379 184.5676 0.73827 92.28379 0.369135
Wadi Alfar’a-
Alkazya
0.952 400 163.7862 327.5724 0.818931 163.7862 0.409466
Wadi Alfar’a-
Aleen
1 630 42.88888 85.77776 0.136155 42.88888 0.068078
Wadi Alfar’a -
Albasaten
0.972 630 136.1433 272.2866 0.432201 136.1433 0.2161
Wadi Alfar’a -
Alsafeena
0.946 400 73.03442 146.0688 0.365172 73.03442 0.182586
Wadi Alfar’a -
Sameet Tareq
0.917 250 14.71249 29.42498 0.1177 14.71249 0.05885
Wadi Alfar’a -
Sameet Khader
0.911 250 70.99563 141.9913 0.567965 70.99563 0.283983
Wadi Alfar’a –
Sameer
0.931 250 60.32318 120.6464 0.482585 60.32318 0.241293
Wadi Alfar’a -
Yaseedi Eastern
0.96 160 7.173338 14.34668 0.089667 7.173338 0.044833
Wadi Alfar’a-
Yaseedi Western
0.968 250 13.53976 27.07952 0.108318 13.53976 0.054159
Wadi Alfar’a –
School
0.914 400 2.519051 5.038102 0.012595 2.519051 0.006298
Page 44
Wadi Alfar’a -Abu
As’ad Crushers
0.661 250 11.19427 22.38854 0.089554 11.19427 0.044777
Ras Alfar’a-
Alshareef
0.288 400 113.1005 226.201 0.565503 113.1005 0.282751
Ras Alfar’a- Alhaj
Hakeem
0.912 630 193.1465 386.293 0.613163 193.1465 0.306582
Ras Alfar’a- Tubas
Well
0.999 400 14.61996 29.23992 0.0731 14.61996 0.03655
Ras Alfar’a-
Almalhame
0.923 630 57.32193 114.6439 0.181974 57.32193 0.090987
Ras Alfar’a- Khalet
Alqaser2
0.971 630 33.57208 67.14416 0.106578 33.57208 0.053289
Ras Alfar’a- Khalet
Alqaser 1
0.904 400 27.94077 55.88154 0.139704 27.94077 0.069852
Ras Alfar’a-
Alkharaz Well
0.983 160 23.99241 47.98482 0.299905 23.99241 0.149953
Ras Alfar’a-
Mwafaq Alfakhri
0.929 630 158.7152 317.4304 0.503858 158.7152 0.251929
RasAlfar’a-
AgriculturalProject
0.956 630 199.1391 398.2782 0.632188 199.1391 0.316094
Ras Alfar’a-
Alkhizran
1 160 42.7625 85.525 0.534531 42.7625 0.267266
Page 45
Ras Alfar’a- Abu
Hamed Well
0.921 630 87.50424 175.0085 0.277791 87.50424 0.138896
Ras Alfar’a-
Samara Crushers
0.896 400 5.820702 11.6414 0.029104 5.820702 0.014552
RasAlfar’a-
AhmadThyab Well
0.929 630 110.9732 221.9464 0.352296 110.9732 0.176148
Ras Alfar’a-
Alashqar Crushers
0.86 630 101.1073 202.2146 0.320976 101.1073 0.160488
Tamoon- Albatma 0.934 160 67.6927 135.3854 0.846159 67.6927 0.423079
Tamoon-
Almeshmas
0.903 250 169.2749 338.5498 1.354199 169.2749 0.6771
Tamoon- Borhan 0.92862 250 74.72974 149.4595 0.597838 74.72974 0.298919
Tamoon- Alrafeed 0.95251 250 126.4783 252.9566 1.011826 126.4783 0.505913
Tamoon- Jalamet
Albatma
0.95713 100 50.04802 100.096 1.00096 50.04802 0.50048
Tamoon- First of
Town
0.95841 250 94.17447 188.3489 0.753396 94.17447 0.376698
Tamoon-
Municipality Well
0.49507 630 204.9979 409.9958 0.650787 204.9979 0.325393
Tamoon- National
Security
0.93711 160 60.46897 120.9379 0.755862 60.46897 0.377931
Tamoon-
Al’ashareen
0.92176 160 22.33335 44.6667 0.279167 22.33335 0.139583
Page 46
Aatoof- Aatoof 0.89731 160 7.076683 14.15337 0.088459 7.076683 0.044229
Aatoof- Aljalhoom 0.88555 160 5.393672 10.78734 0.067421 5.393672 0.03371
Serees- Western 0.95158 250 96.49447 192.9889 0.771956 96.49447 0.385978
Serees- Centre 0.92174 250 56.5201 113.0402 0.452161 56.5201 0.22608
Serees- Southern 0.94938 250 49.00664 98.01328 0.392053 49.00664 0.196027
Serees- Almoghor 0.91503 630 46.16687 92.33374 0.146561 46.16687 0.073281
Serees- Wells 0.96733 100 32.7316 65.4632 0.654632 32.7316 0.327316
Serees- Cultural
Centre
0.83605 100 3.344082 6.688164 0.066882 3.344082 0.033441
Zababdeh- Eastern 0.98073 630 98.07689 196.1538 0.311355 98.07689 0.155678
Zababdeh- Centre 0.9381 400 137.935 275.87 0.689675 137.935 0.344838
Zababdeh-
Western
0.86738 400 111.349 222.698 0.556745 111.349 0.278373
Zababdeh-
Agricultural
College
0.9318 400 97.86287 195.7257 0.489314 97.86287 0.244657
Zababdeh- School 0.92228 250 10.03997 20.07994 0.08032 10.03997 0.04016
Zababdeh- Safyria 0.93286 250 82.46704 164.9341 0.659736 82.46704 0.329868
Zababdeh-
Almanasheer
0.92228 250 10.03997 20.07994 0.08032 10.03997 0.04016
Aljdeedeh- Ras
Albalad
0.98718 250 63.84898 127.698 0.510792 63.84898 0.255396
Aljdeedeh- Centre 0.91083 250 67.42555 134.8511 0.539404 67.42555 0.269702
Page 47
Aljdeedeh-
Almatrooha
0.96184 250 87.01625 174.0325 0.69613 87.01625 0.348065
Aljdeedeh- Wells 0.91084 630 115.5646 231.1292 0.366872 115.5646 0.183436
Aljdeedeh-
Western
0.99833 250 26.05163 52.10326 0.208413 26.05163 0.104207
Aljdeedeh-
Eastern(Qalalweh)
0.96094 250 47.6396 95.2792 0.381117 47.6396 0.190558
Aljdeedeh- Alsahel 0.94787 250 53.96268 107.9254 0.431701 53.96268 0.215851
AAUJ 1 0.95715 400 161.0022 322.0044 0.805011 161.0022 0.402506
AAUJ 2 0.94212 400 61.60397 123.2079 0.30802 61.60397 0.15401
Jalqamous-
Western
0.96358 160 44.09477 88.18954 0.551185 44.09477 0.275592
Jalqamous- Centre 0.941 400 58.87012 117.7402 0.294351 58.87012 0.147175
Jalqamous-
Eastern
0.92497 160 29.06232 58.12464 0.363279 29.06232 0.18164
Raba- Centre 0.90998 250 52.62782 105.2556 0.421023 52.62782 0.210511
Raba- Eastern 0.92431 250 54.65786 109.3157 0.437263 54.65786 0.218631
Raba- Western 0.96214 100 29.93456 59.86912 0.598691 29.93456 0.299346
Raba-
Almanasheer
0.78694 630 83.56368 167.1274 0.265282 83.56368 0.132641
Raba- Chiclen
Farm
0.95062 160 38.05698 76.11396 0.475712 38.05698 0.237856
Mesleyah- Eastern 0.98762 400 63.17331 126.3466 0.315867 63.17331 0.157933
Mesleyah-
Western
0.90988 400 72.74752 145.495 0.363738 72.74752 0.181869
Page 48
Mesleyah-
Almanasheer
0.89566 630 66.668 133.336 0.211644 66.668 0.105822
Mesleyah- Wells 0.89678 630 199.1022 398.2044 0.63207 199.1022 0.316035
Mesleyah- Centre 0.9095 100 19.00451 38.00902 0.38009 19.00451 0.190045
Almghayer-
Eastern
0.99998 250 51.37515 102.7503 0.411001 51.37515 0.205501
Almghayer-
Western
0.99998 250 29.12249 58.24498 0.23298 29.12249 0.11649
Almghayer- Marah
Alkaras
0.99999 100 45.71063 91.42126 0.914213 45.71063 0.457106
Tyaseer- Main 0.91242 250 122.2624 244.5248 0.978099 122.2624 0.48905
Seer- Main 0.91185 400 77.07256 154.1451 0.385363 77.07256 0.192681
Seer- Chicken 1 0.88296 250 12.83718 25.67436 0.102697 12.83718 0.051349
Seer- Alheesh 0.92852 100 14.5108 29.0216 0.290216 14.5108 0.145108
Seer- Chicken 2 0.79625 160 21.73708 43.47416 0.271714 21.73708 0.135857
Em Altoot- Main 0.88765 400 75.44835 150.8967 0.377242 75.44835 0.188621
Aljarba- Main 0.93201 400 84.13808 168.2762 0.42069 84.13808 0.210345
Aljarba- Eastern 0.8697 160 69.94693 139.8939 0.874337 69.94693 0.437168
Aljarba- Blastic
Factory
0.85901 250 51.44506 102.8901 0.41156 51.44506 0.20578
Qashda- 154 0.93589 50 11.57537 23.15074 0.463015 11.57537 0.231507
Qashda- Prickles
Factory
0.90864 400 30.02487 60.04974 0.150124 30.02487 0.075062
Page 49
Qashda- Fakhree 1 400 137.5166 275.0332 0.687583 137.5166 0.343792
Talfeet- Centre 0.88318 100 5.241429 10.48286 0.104829 5.241429 0.052414
Talfeet- Kherbat
Aysha
0.99994 50 1.777884 3.555768 0.071115 1.777884 0.035558
Al-Aqaba- Tyaseer 0.81638 160 11.65701 23.31402 0.145713 11.65701 0.072856
Dream Land 0.92987 250 19.16776 38.33552 0.153342 19.16776 0.076671
Dream Land-
Mosque
0.9262 250 9.25373 18.50746 0.07403 9.25373 0.037015
Tanin- Main 0.92684 160 6.488566 12.97713 0.081107 6.488566 0.040554
Merkeh- Pump 0.93009 100 11.4116 22.8232 0.228232 11.4116 0.114116
Merkeh- School 0.98518 400 66.05493 132.1099 0.330275 66.05493 0.165137
Merkeh- Abu
Omar
0.93579 50 25.82467 51.64934 1.032987 25.82467 0.516493
Merkeh- Wadi
Afsheh
0.99751 50 5.991284 11.98257 0.239651 5.991284 0.119826
Merkeh-
Almesrara
0.99295 100 15.38622 30.77244 0.307724 15.38622 0.153862
Alzawya- Centre 0.99999 250 20.24722 40.49444 0.161978 20.24722 0.080989
Alzawya- Alwad 0.84018 100 14.91575 29.8315 0.298315 14.91575 0.149158
Alzawya-Faqaset
AlKarmel
0.80103 160 14.94418 29.88836 0.186802 14.94418 0.093401
Wadi Da’ooq 0.92175 100 8.653469 17.30694 0.173069 8.653469 0.086535
Alhafeere- Centre 0.91052 100 20.22634 40.45268 0.404527 20.22634 0.202263
Beer AlBasha-
Centre
0.92299 400 60.03824 120.0765 0.300191 60.03824 0.150096
Page 50
Beer AlBasha-
Eastern
0.95899 250 37.63051 75.26102 0.301044 37.63051 0.150522
Zakarneh Crushers 0.8351 630 20.1105 40.221 0.063843 20.1105 0.031921
Qabatiya Well 0.91874 630 216.6569 433.3138 0.6878 216.6569 0.3439
DiamondStone-
Crusher
0.84582 630 68.2419 136.4838 0.216641 68.2419 0.10832
Diamond Stone-
Factory
0.96871 630 27.78023 55.56046 0.088191 27.78023 0.044096
Page 51
Appendix 3
Under voltage buses at maximum case
Bus # rated(kv) operating(kv) operating %
Bus179 0.400 0.367 91.8
Bus180 0.400 0.375 93.7
Bus186 0.400 0.374 93.5
Bus187 0.400 0.377 94.2
Bus189 0.400 0.379 94.6
Bus190 0.400 0.378 94.6
Bus191 0.400 0.377 94.2
Bus196 0.400 0.376 94.0
Bus197 0.400 0.371 92.8
Bus198 0.400 0.376 94.0
Bus199 0.400 0.374 93.5
Bus200 0.400 0.371 92.8
Bus201 0.400 0.364 90.9
Bus202 0.400 0.373 93.1
Bus207 0.400 0.377 94.2
Bus208 0.400 0.379 94.8
Bus209 0.400 0.379 94.7
Bus210 0.400 0.375 93.6
Bus212 0.400 0.377 94.2
Bus213 0.400 0.377 94.3
Bus214 0.400 0.375 93.8
Bus215 0.400 0.379 94.9
Bus216 0.400 0.380 94.9
Bus217 0.400 0.378 94.5
Bus218 0.400 0.373 93.3
Bus219 0.400 0.378 94.6
Bus220 0.400 0.379 94.7
Bus221 0.400 0.379 94.9
Bus222 0.400 0.369 92.2
Bus223 0.400 0.369 92.2
Bus224 0.400 0.361 90.2
Bus225 0.400 0.377 94.3
Bus226 0.400 0.379 94.7
Bus227 0.400 0.374 93.6
Bus229 0.400 0.371 92.9
Bus230 0.400 0.372 93.0
Bus231 0.400 0.376 94.1
Bus232 0.400 0.380 95.0
Bus233 0.400 0.379 94.9
Bus234 0.400 0.379 94.8
Page 52
Bus235 0.400 0.371 92.6
Bus237 0.400 0.376 94.0
Bus238 0.400 0.372 93.1
Bus239 0.400 0.380 94.9
Bus240 0.400 0.376 94.0
Bus241 0.400 0.380 94.9
Bus243 0.400 0.367 91.7
Bus244 0.400 0.371 92.7
Bus245 0.400 0.376 93.9
Bus246 0.400 0.375 93.7
Bus247 0.400 0.378 94.4
Bus248 0.400 0.368 92.0
Bus249 0.400 0.375 93.7
Bus250 0.400 0.374 93.4
Bus251 0.400 0.367 91.8
Bus252 0.400 0.369 92.3
Bus253 0.400 0.367 91.7
Bus254 0.400 0.372 93.0
Bus255 0.400 0.373 93.2
Bus256 0.400 0.369 92.3
Bus257 0.400 0.368 92.1
Bus258 0.400 0.365 91.3
Bus259 0.400 0.369 92.1
Bus260 0.400 0.364 90.9
Bus261 0.400 0.365 91.2
Bus262 0.400 0.371 92.8
Bus263 0.400 0.358 89.4
Bus264 0.400 0.370 92.6
Bus265 0.400 0.370 92.4
Bus266 0.400 0.370 92.4
Bus267 0.400 0.370 92.4
Bus268 0.400 0.372 93.0
Bus269 0.400 0.368 92.0
Bus270 0.400 0.370 92.4
Bus271 0.400 0.373 93.2
Bus272 0.400 0.370 92.4
Bus273 0.400 0.369 92.2
Bus274 0.400 0.375 93.7
Bus277 0.400 0.374 93.4
Bus278 0.400 0.374 93.6
Bus279 0.400 0.365 91.3
Bus280 0.400 0.371 92.8
Bus281 0.400 0.374 93.6
Bus282 0.400 0.373 93.3
Bus283 0.400 0.374 93.6
Page 53
Bus284 0.400 0.371 92.8
Bus286 0.400 0.370 92.5
Bus287 0.400 0.367 91.8
Bus288 0.400 0.373 93.3
Bus289 0.400 0.372 93.0
Bus295 0.400 0.369 92.2
Bus296 0.400 0.370 92.4
Bus297 0.400 0.369 92.4
Bus298 0.400 0.369 92.4
Bus299 0.400 0.371 92.8
Bus300 0.400 0.374 93.4
Bus301 0.400 0.372 93.0
Bus302 0.400 0.376 94.1
Bus303 0.400 0.373 93.3
Bus304 0.400 0.372 92.9
Bus305 0.400 0.372 93.0
Bus306 0.400 0.371 92.7
Bus307 0.400 0.375 93.6
Bus308 0.400 0.371 92.8
Bus309 0.400 0.368 92.1
Bus310 0.400 0.368 91.9
Bus311 0.400 0.372 92.9
Bus312 0.400 0.374 93.6
Bus313 0.400 0.366 91.6
Bus314 0.400 0.370 92.5
Bus315 0.400 0.375 93.7
Bus316 0.400 0.368 91.9
Bus317 0.400 0.370 92.5
Bus318 0.400 0.369 92.3
Bus321 0.400 0.376 94.1
Bus327 0.400 0.367 91.7
Bus328 0.400 0.368 92.0
Page 54
Appendix 4
Overloaded transformers
transformer Srated old LF old
AAUJ1 400 1.00625
Serees Western 250 1.049945
Tamoon Albatmah 160 1.057695
Tamoon
Almeshmas
250 1.69275
Tamoon Alrafeed 250 1.264785
Tamoon jalamet
Albatmah
100 1.2512
Tamoon first of the
town
250 1.056745
Tamoon National
Security
160 1.007328
Aqaba Eastern 400 1.098647
Aqaba Western 400 1.214769
Faraa Camp Old
Station
630 1.356893
wadi alfaraa
alhafreia
250 1.01784
Wadi alfaraa gas
station
400 1.023663
Housing 250 1.0479
Abu Omar 400 1.249041
Allan Alsood 250 1.126165
Almasaeed 250 1.83804
Page 55
Alhawooz 400 1.191013
Althoghra 160 1.019219
Almghier Marah
Alkaras
100 1.142766
Tayaseer Main 250 1.222625
Aljarba Eastern 160 1.092922
Merkeh Abu Omar 50 1.291233
Page 56
Appendix 5
Tap changing at maximum case
Bus # Rated
(KV)
Operating
(KV)
Operating
%
Tab
%
Bus179 0.400 0.367 91.8 5
Bus180 0.400 0.375 93.7 5
Bus186 0.400 0.374 93.5 5
Bus187 0.400 0.377 94.2 5
Bus189 0.400 0.379 94.6 5
Bus190 0.400 0.378 94.6 5
Bus191 0.400 0.377 94.2 5
Bus196 0.400 0.376 94.0 5
Bus197 0.400 0.371 92.8 5
Bus198 0.400 0.376 94.0 5
Bus199 0.400 0.374 93.5 5
Bus200 0.400 0.371 92.8 5
Bus201 0.400 0.364 90.9 5
Bus202 0.400 0.373 93.1 5
Bus207 0.400 0.377 94.2 5
Bus208 0.400 0.379 94.8 5
Bus209 0.400 0.379 94.7 5
Bus210 0.400 0.375 93.6 5
Bus212 0.400 0.377 94.2 5
Bus213 0.400 0.377 94.3 5
Bus214 0.400 0.375 93.8 5
Bus215 0.400 0.379 94.9 5
Bus216 0.400 0.380 94.9 5
Bus217 0.400 0.378 94.5 5
Bus218 0.400 0.373 93.3 5
Bus219 0.400 0.378 94.6 5
Bus220 0.400 0.379 94.7 5
Bus221 0.400 0.379 94.9 5
Bus222 0.400 0.369 92.2 5
Bus223 0.400 0.369 92.2 5
Bus224 0.400 0.361 90.2 5
Bus225 0.400 0.377 94.3 5
Bus226 0.400 0.379 94.7 5
Bus227 0.400 0.374 93.6 5
Bus229 0.400 0.371 92.9 5
Bus230 0.400 0.372 93.0 5
Bus231 0.400 0.376 94.1 5
Bus232 0.400 0.380 95.0 5
Page 57
Bus233 0.400 0.379 94.9 5
Bus234 0.400 0.379 94.8 5
Bus235 0.400 0.371 92.6 5
Bus237 0.400 0.376 94.0 5
Bus238 0.400 0.372 93.1 5
Bus239 0.400 0.380 94.9 5
Bus240 0.400 0.376 94.0 5
Bus241 0.400 0.380 94.9 5
Bus243 0.400 0.367 91.7 5
Bus244 0.400 0.371 92.7 5
Bus245 0.400 0.376 93.9 5
Bus246 0.400 0.375 93.7 5
Bus247 0.400 0.378 94.4 5
Bus248 0.400 0.368 92.0 5
Bus249 0.400 0.375 93.7 5
Bus250 0.400 0.374 93.4 5
Bus251 0.400 0.367 91.8 5
Bus252 0.400 0.369 92.3 5
Bus253 0.400 0.367 91.7 5
Bus254 0.400 0.372 93.0 5
Bus255 0.400 0.373 93.2 5
Bus256 0.400 0.369 92.3 5
Bus257 0.400 0.368 92.1 5
Bus258 0.400 0.365 91.3 5
Bus259 0.400 0.369 92.1 5
Bus260 0.400 0.364 90.9 5
Bus261 0.400 0.365 91.2 5
Bus262 0.400 0.371 92.8 5
Bus263 0.400 0.358 89.4 5
Bus264 0.400 0.370 92.6 5
Bus265 0.400 0.370 92.4 5
Bus266 0.400 0.370 92.4 5
Bus267 0.400 0.370 92.4 5
Bus268 0.400 0.372 93.0 5
Bus269 0.400 0.368 92.0 5
Bus270 0.400 0.370 92.4 5
Bus271 0.400 0.373 93.2 5
Bus272 0.400 0.370 92.4 5
Bus273 0.400 0.369 92.2 5
Bus274 0.400 0.375 93.7 5
Bus277 0.400 0.374 93.4 5
Bus278 0.400 0.374 93.6 5
Bus279 0.400 0.365 91.3 5
Bus280 0.400 0.371 92.8 5
Bus281 0.400 0.374 93.6 5
Page 58
Bus282 0.400 0.373 93.3 5
Bus283 0.400 0.374 93.6 5
Bus284 0.400 0.371 92.8 5
Bus286 0.400 0.370 92.5 5
Bus287 0.400 0.367 91.8 5
Bus288 0.400 0.373 93.3 5
Bus289 0.400 0.372 93.0 5
Bus295 0.400 0.369 92.2 5
Bus296 0.400 0.370 92.4 5
Bus297 0.400 0.369 92.4 5
Bus298 0.400 0.369 92.4 5
Bus299 0.400 0.371 92.8 5
Bus300 0.400 0.374 93.4 5
Bus301 0.400 0.372 93.0 5
Bus302 0.400 0.376 94.1 5
Bus303 0.400 0.373 93.3 5
Bus304 0.400 0.372 92.9 5
Bus305 0.400 0.372 93.0 5
Bus306 0.400 0.371 92.7 5
Bus307 0.400 0.375 93.6 5
Bus308 0.400 0.371 92.8 5
Bus309 0.400 0.368 92.1 5
Bus310 0.400 0.368 91.9 5
Bus311 0.400 0.372 92.9 5
Bus312 0.400 0.374 93.6 5
Bus313 0.400 0.366 91.6 5
Bus314 0.400 0.370 92.5 5
Bus315 0.400 0.375 93.7 5
Bus316 0.400 0.368 91.9 5
Bus317 0.400 0.370 92.5 5
Bus318 0.400 0.369 92.3 5
Bus321 0.400 0.376 94.1 5
Bus327 0.400 0.367 91.7 5
Bus328 0.400 0.368 92.0 5
Page 59
Appendix 6
Maximum case before and after adding capacitors
After Taps After Capacitors
Bus
Rated
(KV)
Operating
(KV)
Operating
%
Cap
(KVAR)
Operating
(KV)
Operating
%
Bus179 0.400 0.3848 96.2 50 0.3888 97.2
Bus180 0.400 0.392 98 0.3924 98.1
Bus184 0.400 0.3828 95.7 10 0.3836 95.9
Bus186 0.400 0.3924 98.1 0.3984 99.6
Bus187 0.400 0.3952 98.8 0.3956 98.9
Bus188 0.400 0.382 95.5 20 0.3852 96.3
Bus189 0.400 0.3964 99.1 0.3968 99.2
Bus190 0.400 0.3968 99.2 0.3972 99.3
Bus191 0.400 0.394 98.5 0.3944 98.6
Bus196 0.400 0.3936 98.4 0.394 98.5
Bus197 0.400 0.3892 97.3 0.3896 97.4
Bus198 0.400 0.3944 98.6 0.3948 98.7
Bus199 0.400 0.392 98 0.3928 98.2
Bus200 0.400 0.3892 97.3 0.3896 97.4
Bus201 0.400 0.3808 95.2 100 0.388 97
Bus202 0.400 0.3904 97.6 0.3912 97.8
Bus203 0.400 0.3812 95.3 10 0.3828 95.7
Bus204 0.400 0.3828 95.7 5 0.3836 95.9
Bus205 0.400 0.3824 95.6 5 0.3832 95.8
Bus206 0.400 0.3812 95.3 25 0.3828 95.7
Bus207 0.400 0.3952 98.8 0.3956 98.9
Bus208 0.400 0.3972 99.3 0.3976 99.4
Bus209 0.400 0.3972 99.3 0.3976 99.4
Bus210 0.400 0.3928 98.2 0.3932 98.3
Bus212 0.400 0.3952 98.8 0.3956 98.9
Bus213 0.400 0.3956 98.9 0.396 99
Bus214 0.400 0.3936 98.4 0.394 98.5
Bus215 0.400 0.398 99.5 0.3984 99.6
Bus216 0.400 0.398 99.5 0.3988 99.7
Bus217 0.400 0.3964 99.1 0.3968 99.2
Bus218 0.400 0.3912 97.8 0.392 98
Bus219 0.400 0.3968 99.2 0.3972 99.3
Bus220 0.400 0.3972 99.3 0.3976 99.4
Bus221 0.400 0.398 99.5 0.3984 99.6
Bus222 0.400 0.3868 96.7 0.3872 96.8
Bus223 0.400 0.3856 96.4 0.386 96.5
Bus224 0.400 0.39 97.5 0.3904 97.6
Bus225 0.400 0.3956 98.9 0.396 99
Page 60
Bus226 0.400 0.3972 99.3 0.398 99.5
Bus227 0.400 0.3924 98.1 0.3932 98.3
Bus229 0.400 0.3888 97.2 0.3892 97.3
Bus230 0.400 0.39 97.5 0.3908 97.7
Bus231 0.400 0.3944 98.6 0.3952 98.8
Bus232 0.400 0.398 99.5 0.3984 99.6
Bus233 0.400 0.398 99.5 0.3984 99.6
Bus234 0.400 0.398 99.5 0.3984 99.6
Bus235 0.400 0.3884 97.1 0.3892 97.3
Bus237 0.400 0.3944 98.6 0.3948 98.7
Bus238 0.400 0.3904 97.6 0.3908 97.7
Bus239 0.400 0.3984 99.6 0.3988 99.7
Bus240 0.400 0.3944 98.6 0.3952 98.8
Bus241 0.400 0.398 99.5 0.3984 99.6
Bus242 0.400 0.3812 95.3 5 0.3824 95.6
Bus243 0.400 0.384 96 100 0.3888 97.2
Bus244 0.400 0.3876 96.9 0.3884 97.1
Bus245 0.400 0.3936 98.4 0.3944 98.6
Bus246 0.400 0.3928 98.2 0.3936 98.4
Bus247 0.400 0.3956 98.9 0.3964 99.1
Bus248 0.400 0.3848 96.2 0.3856 96.4
Bus249 0.400 0.3928 98.2 0.394 98.5
Bus250 0.400 0.3916 97.9 50 0.3924 98.1
Bus251 0.400 0.3844 96.1 0.3876 96.9
Bus252 0.400 0.3868 96.7 0.3876 96.9
Bus253 0.400 0.3844 96.1 20 0.0264 6.6
Bus254 0.400 0.3896 97.4 0.3904 97.6
Bus255 0.400 0.3908 97.7 0.3916 97.9
Bus256 0.400 0.3864 96.6 0.3876 96.9
Bus257 0.400 0.386 96.5 0.3868 96.7
Bus258 0.400 0.3824 95.6 50 0.3848 96.2
Bus259 0.400 0.3856 96.4 0.3864 96.6
Bus260 0.400 0.3808 95.2 40 0.3856 96.4
Bus261 0.400 0.382 95.5 60 0.3868 96.7
Bus262 0.400 0.3884 97.1 0.3896 97.4
Bus263 0.400 0.374 93.5 15 0.38 95
Bus264 0.400 0.388 97 0.3888 97.2
Bus265 0.400 0.3872 96.8 0.388 97
Bus266 0.400 0.3872 96.8 0.388 97
Bus267 0.400 0.3872 96.8 0.3884 97.1
Bus268 0.400 0.3896 97.4 0.3908 97.7
Bus269 0.400 0.3852 96.3 0.3864 96.6
Bus270 0.400 0.3872 96.8 0.3884 97.1
Bus271 0.400 0.3904 97.6 0.3916 97.9
Bus272 0.400 0.3868 96.7 0.388 97
Page 61
Bus273 0.400 0.386 96.5 0.3876 96.9
Bus274 0.400 0.3928 98.2 0.3936 98.4
Bus277 0.400 0.3916 97.9 0.3924 98.1
Bus278 0.400 0.3924 98.1 0.3932 98.3
Bus279 0.400 0.3824 95.6 50 0.3936 98.4
Bus280 0.400 0.3892 97.3 0.39 97.5
Bus281 0.400 0.392 98 0.3932 98.3
Bus282 0.400 0.3912 97.8 0.392 98
Bus283 0.400 0.392 98 0.3932 98.3
Bus284 0.400 0.3888 97.2 0.3896 97.4
Bus286 0.400 0.3872 96.8 0.3884 97.1
Bus287 0.400 0.3844 96.1 0.3852 96.3
Bus288 0.400 0.3912 97.8 0.392 98
Bus289 0.400 0.3896 97.4 0.3912 97.8
Bus295 0.400 0.3856 96.4 0.3864 96.6
Bus296 0.400 0.3872 96.8 0.388 97
Bus297 0.400 0.3868 96.7 0.388 97
Bus298 0.400 0.3868 96.7 0.388 97
Bus299 0.400 0.3888 97.2 0.3896 97.4
Bus300 0.400 0.3912 97.8 0.392 98
Bus301 0.400 0.3896 97.4 0.3904 97.6
Bus302 0.400 0.3956 98.9 0.3988 99.7
Bus303 0.400 0.3908 97.7 0.3916 97.9
Bus304 0.400 0.3892 97.3 0.3896 97.4
Bus305 0.400 0.3896 97.4 0.3904 97.6
Bus306 0.400 0.3884 97.1 0.3892 97.3
Bus307 0.400 0.3924 98.1 0.3932 98.3
Bus308 0.400 0.3892 97.3 0.39 97.5
Bus309 0.400 0.386 96.5 0.3868 96.7
Bus310 0.400 0.3852 96.3 0.386 96.5
Bus311 0.400 0.3892 97.3 0.39 97.5
Bus312 0.400 0.392 98 0.3928 98.2
Bus313 0.400 0.3836 95.9 20 0.3856 96.4
Bus314 0.400 0.3876 96.9 0.3884 97.1
Bus315 0.400 0.3928 98.2 0.3936 98.4
Bus316 0.400 0.3852 96.3 0.386 96.5
Bus317 0.400 0.3868 96.7 0.388 97
Bus318 0.400 0.3864 96.6 0.3872 96.8
Bus320 0.400 0.3824 95.6 20 0.3828 95.7
Bus321 0.400 0.3944 98.6 0.3952 98.8
Bus324 0.400 0.39 97.5 50 0.3904 97.6
Bus327 0.400 0.3844 96.1 50 0.3864 96.6
Bus328 0.400 0.3848 96.2 0.386 96.5
Bus65 0.400 0.3844 96.1 50 0.3876 96.9
Bus69 0.400 0.382 95.5 40 0.386 96.5
Page 62
Appendix 7
Maximum case voltages after taps and capacitors
Bus number V rated (KV) Operating %
Bus65 0.4 97.646
Bus68 0.4 99.519
Bus69 0.4 97.426
Bus70 0.4 97.275
Bus73 0.4 97.309
Bus179 0.4 99.029
Bus180 0.4 99.483
Bus181 0.4 100.755
Page 63
Bus182 0.4 97.209
Bus183 0.4 97.114
Bus184 0.4 96.815
Bus185 0.4 97.207
Bus186 0.4 99.632
Bus187 0.4 100.218
Bus188 0.4 97.264
Bus189 0.4 100.444
Bus190 0.4 100.526
Bus191 0.4 99.557
Bus192 0.4 97.197
Bus193 0.4 97.617
Bus195 0.4 94.478
Bus196 0.4 99.841
Bus197 0.4 99.029
Bus198 0.4 100.029
Bus199 0.4 99.619
Bus200 0.4 99.01
Bus201 0.4 99.11
Bus202 0.400 99.299
Bus203 0.4 96.639
Bus204 0.400 96.793
Bus205 0.4 96.718
Bus206 0.400 96.653
Bus207 0.4 100.191
Bus208 0.4 100.601
Bus209 0.4 100.579
Bus210 0.4 99.762
Bus211 0.4 96.316
Bus212 0.4 100.199
Bus213 0.4 100.296
Bus214 0.4 99.876
Bus215 0.4 100.782
Bus216 0.4 100.815
Bus217 0.4 101.112
Bus218 0.4 99.482
Bus219 0.4 100.538
Page 64
Bus220 0.4 100.467
Bus221 0.4 100.792
Bus222 0.4 98.578
Bus223 0.4 98.254
Bus224 0.4 99.171
Bus225 0.4 100.313
Bus226 0.4 100.649
Bus227 0.4 99.7
Bus228 0.4 96.582
Bus229 0.4 98.889
Bus230 0.4 99.296
Bus231 0.4 100.102
Bus232 0.4 100.883
Bus233 0.4 100.795
Bus234 0.4 100.766
Bus235 0.4 98.914
Bus236 0.4 100.977
Bus237 0.4 100.091
Bus238 0.4 99.263
Bus239 0.4 100.8
Bus240 0.4 100.09
Bus241 0.4 100.795
Bus242 0.4 96.525
Bus243 0.4 99.13
Bus244 0.4 98.712
Bus245 0.4 99.937
Bus246 0.4 99.815
Bus247 0.4 100.386
Bus248 0.4 98.206
Bus249 0.4 99.85
Bus250 0.4 99.588
Bus251 0.4 98.717
Bus252 0.4 98.643
Bus253 0.4 98.492
Bus254 0.4 99.202
Bus255 0.4 99.404
Bus256 0.4 98.612
Page 65
Bus257 0.4 98.472
Bus258 0.4 98.163
Bus259 0.4 98.385
Bus260 0.4 98.502
Bus261 0.4 98.718
Bus262 0.4 99.003
Bus263 0.4 97.418
Bus264 0.4 98.897
Bus265 0.4 98.744
Bus266 0.4 98.734
Bus267 0.4 98.76
Bus268 0.4 99.223
Bus269 0.4 98.354
Bus270 0.4 98.766
Bus271 0.4 99.416
Bus272 0.4 98.653
Bus273 0.4 98.522
Bus274 0.4 99.837
Bus277 0.4 99.584
Bus278 0.4 99.738
Bus279 0.4 98.34
Bus280 0.4 99.08
Bus281 0.4 99.688
Bus282 0.4 99.479
Bus283 0.4 99.701
Bus284 0.4 99.01
Bus286 0.4 98.75
Bus287 0.4 98.194
Bus288 0.4 99.461
Bus289 0.4 99.207
Bus291 0.4 94.681
Bus295 0.4 98.364
Bus296 0.4 98.735
Bus297 0.4 98.674
Bus298 0.4 98.67
Bus299 0.4 99.006
Bus300 0.4 99.454
Page 66
Bus301 0.4 99.164
Bus302 0.4 100.108
Bus303 0.4 99.446
Bus304 0.4 99.031
Bus305 0.4 99.136
Bus306 0.4 98.938
Bus307 0.4 99.742
Bus308 0.4 99.061
Bus309 0.4 98.44
Bus310 0.4 98.31
Bus311 0.4 99.039
Bus312 0.4 99.672
Bus313 0.4 98.343
Bus314 0.4 98.745
Bus315 0.4 99.825
Bus316 0.4 98.295
Bus317 0.4 98.628
Bus318 0.4 98.506
Bus319 0.4 96.317
Bus320 0.4 96.592
Bus321 0.4 100.114
Bus322 0.4 96.532
Bus323 0.4 97.181
Bus324 0.4 97.022
Bus325 0.4 97.196
Bus327 0.4 98.482
Bus328 0.4 98.269
Appendix 8
Page 67
Transformers changing
transformer Srated old Savg LF old Srated new LF new
AAUJ1 400 402.5 1.00625 250+250 0.644
Serees
Western
250 262.48625 1.049945 400 0.4824
Tamoon
Albatmah
160 169.23125 1.057695 250 0.5415
Tamoon
Almeshmas
250 423.1875 1.69275 250+250 0.6771
Tamoon
Alrafeed
250 316.19625 1.264785 400 0.6323
Tamoon jalamet
Albatmah
100 125.12 1.2512 160 0.6256
Tamoon first of
the town
250 264.18625 1.056745 160+160 0.5885
Tamoon
National
Security
160 161.1725 1.007328 250 0.4837
Aqaba Eastern 400 439.45875 1.098647 630 0.558
Aqaba Western 400 485.9075 1.214769 630 0.617
Faraa Camp
Old Station
630 854.8425 1.356893 630+400 0.6639
wadi alfaraa
alhafreia
250 254.46 1.01784 400 0.4614
Wadi alfaraa
gas station
400 409.465 1.023663 630 0.5199
Housing 250 261.975 1.0479 400 0.5239
Abu Omar 400 499.61625 1.249041 630 0.6344
Allan Alsood 250 281.54125 1.126165 250+250 0.4504
Almasaeed 250 459.51 1.83804 630 0.5835
Alhawooz 400 476.405 1.191013 630 0.6049
Althoghra 160 163.075 1.019219 250 0.4538
Almghier Marah
Alkaras
100 114.276625 1.142766 160 0.5713
Tayaseer Main 250 305.65625 1.222625 400 0.6113
Aljarba Eastern 160 174.8675 1.092922 250 0.5595
Merkeh Abu
Omar
50 64.561625 1.291233 100 0.5164
Page 68
Appendix 9
The voltages on the buses after changing the transformers
Bus number Vrated Operating (%)
Bus65 0.4 98.353
Bus68 0.4 99.519
Bus69 0.4 97.774
Bus70 0.4 97.286
Bus73 0.4 97.322
Bus179 0.4 101.288
Bus180 0.4 100.658
Bus181 0.4 100.769
Bus182 0.4 97.223
Bus183 0.4 97.128
Bus184 0.4 96.829
Bus185 0.4 97.221
Bus186 0.4 100.719
Bus187 0.4 100.234
Bus188 0.4 97.279
Bus189 0.4 100.924
Page 69
Bus190 0.4 100.543
Bus191 0.4 101.273
Bus192 0.4 97.209
Bus193 0.4 97.63
Bus195 0.4 95.529
Bus196 0.4 100.276
Bus197 0.4 99.045
Bus198 0.4 100.046
Bus199 0.4 100.403
Bus200 0.4 100.06
Bus201 0.4 100.469
Bus202 0.4 100.191
Bus203 0.4 96.653
Bus204 0.4 96.809
Bus205 0.4 96.735
Bus206 0.4 96.667
Bus207 0.4 100.206
Bus208 0.4 100.615
Bus209 0.4 100.593
Bus210 0.4 99.776
Bus211 0.4 96.33
Bus212 0.4 100.213
Bus213 0.4 100.31
Bus214 0.4 99.89
Bus215 0.4 100.796
Bus216 0.4 100.829
Bus217 0.4 101.126
Bus218 0.4 99.496
Bus219 0.4 100.552
Bus220 0.4 100.481
Bus221 0.4 100.806
Bus222 0.4 98.592
Bus223 0.4 99.332
Bus224 0.4 99.92
Bus225 0.4 100.327
Bus226 0.4 100.663
Bus227 0.4 99.714
Page 70
Bus228 0.4 96.596
Bus229 0.4 99.798
Bus230 0.4 99.31
Bus231 0.4 100.116
Bus232 0.4 100.897
Bus233 0.4 100.809
Bus234 0.4 100.78
Bus235 0.4 99.733
Bus236 0.4 100.991
Bus237 0.4 100.105
Bus238 0.4 99.277
Bus239 0.4 100.814
Bus240 0.4 100.104
Bus241 0.4 100.809
Bus242 0.4 96.542
Bus243 0.4 100.076
Bus244 0.4 99.721
Bus245 0.4 99.958
Bus246 0.4 99.836
Bus247 0.4 100.407
Bus248 0.4 98.228
Bus249 0.4 99.872
Bus250 0.4 99.609
Bus251 0.4 98.74
Bus252 0.4 98.665
Bus253 0.4 98.514
Bus254 0.4 99.227
Bus255 0.4 99.43
Bus256 0.4 98.638
Bus257 0.4 98.498
Bus258 0.4 98.189
Bus259 0.4 98.414
Bus260 0.4 98.376
Bus261 0.4 98.748
Bus262 0.4 99.038
Bus263 0.4 98.502
Bus264 0.4 98.934
Page 71
Bus265 0.4 98.782
Bus266 0.4 98.771
Bus267 0.4 98.797
Bus268 0.4 99.259
Bus269 0.4 98.391
Bus270 0.4 98.802
Bus271 0.4 99.453
Bus272 0.4 98.69
Bus273 0.4 98.56
Bus274 0.4 99.859
Bus277 0.4 99.607
Bus278 0.4 99.761
Bus279 0.4 98.69
Bus280 0.4 99.103
Bus281 0.4 99.711
Bus282 0.4 99.502
Bus283 0.4 99.723
Bus284 0.4 99.033
Bus286 0.4 98.772
Bus287 0.4 99.006
Bus288 0.4 99.483
Bus289 0.4 99.23
Bus291 0.4 94.703
Bus294 33 97.385
Bus295 0.4 98.385
Bus296 0.4 98.757
Bus297 0.4 98.696
Bus298 0.4 98.692
Bus299 0.4 99.028
Bus300 0.4 99.475
Bus301 0.4 99.185
Bus302 0.4 100.128
Bus303 0.4 99.467
Bus304 0.4 99.051
Bus305 0.4 99.156
Bus306 0.4 98.959
Bus307 0.4 99.762
Page 72
Bus308 0.4 99.082
Bus309 0.4 98.461
Bus310 0.4 98.331
Bus311 0.4 99.06
Bus312 0.4 99.693
Bus313 0.4 99.028
Bus314 0.4 98.767
Bus315 0.4 99.846
Bus316 0.4 98.316
Bus317 0.4 98.65
Bus318 0.4 98.528
Bus319 0.4 96.335
Bus320 0.4 96.606
Bus321 0.4 100.131
Bus322 0.4 96.548
Bus323 0.4 97.195
Bus324 0.4 97.036
Bus325 0.4 97.21
Bus327 0.4 98.504
Bus328 0.4 98.628
Page 73
Appendix 10
Voltages on buses after the new connection point
Bus Vrated Operating (%)
Bus65 0.4 98.484
Bus68 0.4 99.519
Bus69 0.4 98.241
Bus70 0.4 97.853
Page 74
Bus73 0.4 97.991
Bus179 0.4 102.013
Bus180 0.4 101.362
Bus181 0.4 101.475
Bus182 0.4 97.905
Bus183 0.4 97.81
Bus184 0.4 97.515
Bus185 0.4 97.962
Bus186 0.4 101.609
Bus187 0.4 101.211
Bus188 0.4 98.211
Bus189 0.4 102.067
Bus190 0.4 101.736
Bus191 0.4 101.924
Bus192 0.4 97.84
Bus193 0.4 98.259
Bus195 0.4 100.861
Bus196 0.4 100.981
Bus197 0.4 99.773
Bus198 0.4 100.769
Bus199 0.4 101.124
Bus200 0.4 100.783
Bus201 0.4 101.199
Bus202 0.4 100.913
Bus203 0.4 97.34
Bus204 0.4 97.49
Bus205 0.4 97.418
Bus206 0.4 97.352
Bus207 0.4 100.928
Bus208 0.4 101.325
Bus209 0.4 101.305
Bus210 0.4 100.499
Bus211 0.4 97.012
Bus212 0.4 100.934
Bus213 0.4 101.031
Bus214 0.4 100.613
Bus215 0.4 101.515
Page 75
Bus216 0.4 101.548
Bus217 0.4 101.843
Bus218 0.4 100.221
Bus219 0.4 101.272
Bus220 0.4 101.193
Bus221 0.4 101.524
Bus222 0.4 99.32
Bus223 0.4 100.036
Bus224 0.4 100.628
Bus225 0.4 101.047
Bus226 0.4 101.381
Bus227 0.4 100.437
Bus228 0.4 97.278
Bus229 0.4 100.507
Bus230 0.4 100.035
Bus231 0.4 100.837
Bus232 0.4 101.615
Bus233 0.4 101.526
Bus234 0.4 101.498
Bus235 0.4 100.455
Bus236 0.4 101.708
Bus237 0.4 100.826
Bus238 0.4 100.002
Bus239 0.4 101.532
Bus240 0.4 100.824
Bus241 0.4 101.525
Bus242 0.4 97.761
Bus243 0.4 101.547
Bus244 0.4 101.224
Bus245 0.4 101.888
Bus246 0.4 101.901
Bus247 0.4 102.465
Bus248 0.4 100.553
Bus249 0.4 102.245
Bus250 0.4 101.871
Bus251 0.4 101.2
Bus252 0.4 101.149
Page 76
Bus253 0.4 100.97
Bus254 0.4 102.266
Bus255 0.4 102.627
Bus256 0.4 101.99
Bus257 0.4 101.828
Bus258 0.4 101.545
Bus259 0.4 102.465
Bus260 0.4 102.549
Bus261 0.4 103.021
Bus262 0.4 103.633
Bus263 0.4 103.285
Bus264 0.4 103.657
Bus265 0.4 103.509
Bus266 0.4 103.499
Bus267 0.4 103.524
Bus268 0.4 104.562
Bus269 0.4 103.812
Bus270 0.4 104.012
Bus271 0.4 104.162
Bus272 0.4 103.363
Bus273 0.4 103.292
Bus274 0.4 102.199
Bus277 0.4 101.948
Bus278 0.4 102.099
Bus279 0.4 101.062
Bus280 0.4 101.452
Bus281 0.4 102.043
Bus282 0.4 101.845
Bus283 0.4 102.063
Bus284 0.4 101.381
Bus286 0.4 101.124
Bus287 0.4 101.356
Bus288 0.4 101.813
Bus289 0.4 101.575
Bus291 0.4 96.934
Bus295 0.4 100.685
Bus296 0.4 101.112
Page 77
Bus297 0.4 101.052
Bus298 0.4 101.048
Bus299 0.4 101.379
Bus300 0.4 101.375
Bus301 0.4 101.116
Bus302 0.4 102.049
Bus303 0.4 101.395
Bus304 0.4 100.949
Bus305 0.4 101.056
Bus306 0.4 100.891
Bus307 0.4 101.685
Bus308 0.4 101.013
Bus309 0.4 100.399
Bus310 0.4 100.271
Bus311 0.4 100.959
Bus312 0.4 101.603
Bus313 0.4 100.965
Bus314 0.4 100.7
Bus315 0.4 101.767
Bus316 0.4 100.256
Bus317 0.4 100.959
Bus318 0.4 100.834
Bus319 0.4 97.712
Bus320 0.4 97.451
Bus321 0.4 101.347
Bus322 0.4 97.698
Bus323 0.4 97.967
Bus324 0.4 97.814
Bus325 0.4 97.982
Bus327 0.4 100.961
Bus328 0.4 103.296
Page 78
Page 79
Appendix 11
Maximum new capacitors and taps after the connection point
Bus number New capacitor (KVAR) New tap (%)
182 2.5
183 2.5
Page 80
184 2.5
185 2.5
188 2.5
192 2.5
193 2.5
195 5
203 5
204 5
205 5
206 5
211 5
222 60 -
228 5
242 2.5
291 5
319 2.5
320 5
322 2.5
323 2.5
324 2.5
325 2.5
65 2.5
68 2.5
69 2.5
70 2.5
73 2.5
Page 81
Appendix 12
Minimum case original voltages
Bus number Vrated Operating (%)
Bus65 0.400 98.454
Bus68 0.400 99.760
Bus69 0.400 98.284
Bus70 0.400 98.666
Bus73 0.400 98.682
Bus179 0.400 96.900
Bus180 0.400 97.504
Bus181 0.400 98.063
Bus182 0.400 98.635
Bus183 0.400 98.589
Bus184 0.400 98.367
Bus185 0.400 98.631
Bus186 0.400 97.630
Bus187 0.400 97.785
Bus188 0.400 98.303
Bus189 0.400 97.916
Bus190 0.400 97.917
Bus191 0.400 97.700
Bus192 0.400 98.626
Bus193 0.400 98.834
Bus195 0.400 97.247
Bus196 0.400 97.174
Bus197 0.400 97.239
Bus198 0.400 97.697
Bus199 0.400 97.512
Bus200 0.400 97.237
Bus201 0.400 96.532
Bus202 0.400 97.366
Bus203 0.400 98.241
Bus204 0.400 98.368
Bus205 0.400 98.333
Bus206 0.400 98.254
Bus207 0.400 97.774
Bus208 0.400 97.989
Bus209 0.400 97.974
Bus210 0.400 97.586
Bus211 0.400 98.207
Bus212 0.400 97.781
Bus213 0.400 97.826
Bus214 0.400 97.635
Bus215 0.400 98.048
Page 82
Bus216 0.400 98.063
Bus217 0.400 98.200
Bus218 0.400 97.457
Bus219 0.400 97.937
Bus220 0.400 97.916
Bus221 0.400 98.053
Bus222 0.400 97.041
Bus223 0.400 97.410
Bus224 0.400 97.413
Bus225 0.400 97.835
Bus226 0.400 97.988
Bus227 0.400 97.555
Bus228 0.400 98.336
Bus229 0.400 97.216
Bus230 0.400 97.367
Bus231 0.400 97.738
Bus232 0.400 98.095
Bus233 0.400 98.055
Bus234 0.400 98.042
Bus235 0.400 97.201
Bus236 0.400 98.139
Bus237 0.400 97.735
Bus238 0.400 97.357
Bus239 0.400 98.058
Bus240 0.400 97.732
Bus241 0.400 98.059
Bus242 0.400 98.257
Bus243 0.400 96.806
Bus244 0.400 97.117
Bus245 0.400 97.643
Bus246 0.400 97.575
Bus247 0.400 97.838
Bus248 0.400 96.891
Bus249 0.400 97.586
Bus250 0.400 97.470
Bus251 0.400 96.832
Bus252 0.400 97.036
Bus253 0.400 96.818
Bus254 0.400 97.285
Bus255 0.400 97.382
Bus256 0.400 97.015
Bus257 0.400 96.950
Bus258 0.400 96.660
Bus259 0.400 96.922
Bus260 0.400 96.107
Bus261 0.400 96.606
Page 83
Bus262 0.400 97.199
Bus263 0.400 95.939
Bus264 0.400 97.145
Bus265 0.400 97.076
Bus266 0.400 97.070
Bus267 0.400 97.083
Bus268 0.400 97.296
Bus269 0.400 96.896
Bus270 0.400 97.085
Bus271 0.400 97.382
Bus272 0.400 97.043
Bus273 0.400 96.974
Bus274 0.400 97.580
Bus277 0.400 97.462
Bus278 0.400 97.533
Bus279 0.400 96.670
Bus280 0.400 97.234
Bus281 0.400 97.515
Bus282 0.400 97.416
Bus283 0.400 97.517
Bus284 0.400 97.203
Bus286 0.400 97.084
Bus287 0.400 96.971
Bus288 0.400 97.414
Bus289 0.400 97.295
Bus291 0.400 97.383
Bus294 33.000 98.713
Bus295 0.400 96.929
Bus296 0.400 97.080
Bus297 0.400 97.051
Bus298 0.400 97.049
Bus299 0.400 97.201
Bus300 0.400 97.427
Bus301 0.400 97.282
Bus302 0.400 97.712
Bus303 0.400 97.409
Bus304 0.400 97.238
Bus305 0.400 97.283
Bus306 0.400 97.180
Bus307 0.400 97.546
Bus308 0.400 97.234
Bus309 0.400 96.954
Bus310 0.400 96.899
Bus311 0.400 97.239
Bus312 0.400 97.519
Bus313 0.400 96.764
Page 84
Bus314 0.400 97.092
Bus315 0.400 97.585
Bus316 0.400 96.890
Bus317 0.400 97.042
Bus318 0.400 96.991
Bus319 0.400 98.190
Bus320 0.400 98.328
Bus321 0.400 97.732
Bus322 0.400 98.297
Bus323 0.400 98.618
Bus324 0.400 98.392
Bus325 0.400 98.625
Bus327 0.400 96.814
Bus328 0.400 97.015
Page 85
Appendix 13
Minimum after changing taps
Bus number Vrated Operating (%)
Bus65 0.400 98.445
Bus68 0.400 99.760
Bus69 0.400 98.251
Bus70 0.400 98.626
Bus73 0.400 101.099
Bus179 0.400 101.654
Bus180 0.400 102.194
Bus181 0.400 102.842
Bus182 0.400 98.582
Bus183 0.400 98.534
Bus184 0.400 98.318
Bus185 0.400 98.581
Bus186 0.400 102.434
Bus187 0.400 102.598
Bus188 0.400 98.247
Bus189 0.400 102.690
Bus190 0.400 102.736
Bus191 0.400 102.412
Bus192 0.400 98.582
Bus193 0.400 98.790
Bus195 0.400 97.188
Bus196 0.400 101.830
Bus197 0.400 102.012
Bus198 0.400 102.503
Bus199 0.400 102.304
Bus200 0.400 102.010
Bus201 0.400 101.254
Bus202 0.400 102.148
Bus203 0.400 98.185
Bus204 0.400 98.308
Bus205 0.400 98.273
Bus206 0.400 98.191
Bus207 0.400 102.581
Bus208 0.400 102.775
Bus209 0.400 102.764
Bus210 0.400 102.376
Bus211 0.400 98.136
Bus212 0.400 102.585
Bus213 0.400 102.633
Bus214 0.400 102.429
Bus215 0.400 102.871
Page 86
Bus216 0.400 102.888
Bus217 0.400 103.033
Bus218 0.400 102.237
Bus219 0.400 102.752
Bus220 0.400 102.704
Bus221 0.400 102.875
Bus222 0.400 101.790
Bus223 0.400 102.118
Bus224 0.400 102.122
Bus225 0.400 102.640
Bus226 0.400 102.804
Bus227 0.400 102.341
Bus228 0.400 98.269
Bus229 0.400 101.896
Bus230 0.400 102.140
Bus231 0.400 102.537
Bus232 0.400 102.919
Bus233 0.400 102.876
Bus234 0.400 102.862
Bus235 0.400 101.961
Bus236 0.400 102.966
Bus237 0.400 102.533
Bus238 0.400 102.128
Bus239 0.400 102.879
Bus240 0.400 102.530
Bus241 0.400 102.874
Bus242 0.400 98.191
Bus243 0.400 101.543
Bus244 0.400 101.784
Bus245 0.400 102.412
Bus246 0.400 102.359
Bus247 0.400 102.641
Bus248 0.400 101.555
Bus249 0.400 102.368
Bus250 0.400 102.244
Bus251 0.400 101.560
Bus252 0.400 101.778
Bus253 0.400 101.545
Bus254 0.400 102.043
Bus255 0.400 102.133
Bus256 0.400 101.753
Bus257 0.400 101.683
Bus258 0.400 101.373
Bus259 0.400 101.607
Bus260 0.400 100.778
Bus261 0.400 101.312
Page 87
Bus262 0.400 101.929
Bus263 0.400 100.597
Bus264 0.400 101.889
Bus265 0.400 101.815
Bus266 0.400 101.808
Bus267 0.400 101.822
Bus268 0.400 102.043
Bus269 0.400 101.622
Bus270 0.400 101.824
Bus271 0.400 102.142
Bus272 0.400 101.750
Bus273 0.400 101.705
Bus274 0.400 102.362
Bus277 0.400 102.234
Bus278 0.400 102.309
Bus279 0.400 101.385
Bus280 0.400 101.989
Bus281 0.400 102.282
Bus282 0.400 102.185
Bus283 0.400 102.292
Bus284 0.400 101.954
Bus286 0.400 101.827
Bus287 0.400 101.706
Bus288 0.400 102.168
Bus289 0.400 102.053
Bus291 0.400 97.287
Bus294 33.000 98.661
Bus295 0.400 101.603
Bus296 0.400 101.826
Bus297 0.400 101.795
Bus298 0.400 101.792
Bus299 0.400 101.955
Bus300 0.400 102.166
Bus301 0.400 102.044
Bus302 0.400 102.506
Bus303 0.400 102.182
Bus304 0.400 101.956
Bus305 0.400 102.007
Bus306 0.400 101.933
Bus307 0.400 102.325
Bus308 0.400 101.990
Bus309 0.400 101.690
Bus310 0.400 101.631
Bus311 0.400 101.957
Bus312 0.400 102.281
Bus313 0.400 101.487
Page 88
Bus314 0.400 101.838
Bus315 0.400 102.366
Bus316 0.400 101.622
Bus317 0.400 101.737
Bus318 0.400 101.677
Bus319 0.400 98.120
Bus320 0.400 98.274
Bus321 0.400 102.538
Bus322 0.400 98.233
Bus323 0.400 98.567
Bus324 0.400 98.340
Bus325 0.400 98.574
Bus327 0.400 101.541
Bus328 0.400 101.717
Page 89
Appendix14
Minimum after transformer change and connection point
Bus Vrated Operating (%)
Bus65 0.400 99.003
Bus68 0.400 99.760
Bus69 0.400 98.819
Bus70 0.400 98.920
Bus73 0.400 101.456
Bus179 0.400 103.328
Bus180 0.400 103.158
Bus181 0.400 103.214
Bus182 0.400 98.938
Bus183 0.400 98.890
Bus184 0.400 98.675
Bus185 0.400 98.967
Bus186 0.400 103.300
Bus187 0.400 103.105
Bus188 0.400 98.728
Bus189 0.400 103.517
Bus190 0.400 103.356
Bus191 0.400 103.439
Bus192 0.400 98.910
Bus193 0.400 99.118
Bus195 0.400 98.072
Bus196 0.400 102.961
Bus197 0.400 102.389
Bus198 0.400 102.879
Bus199 0.400 103.051
Bus200 0.400 102.882
Bus201 0.400 102.669
Bus202 0.400 102.946
Bus203 0.400 98.542
Bus204 0.400 98.665
Bus205 0.400 98.630
Bus206 0.400 98.548
Bus207 0.400 102.956
Bus208 0.400 103.147
Bus209 0.400 103.137
Bus210 0.400 102.752
Bus211 0.400 98.492
Bus212 0.400 102.960
Bus213 0.400 103.008
Bus214 0.400 102.805
Bus215 0.400 103.245
Page 90
Bus216 0.400 103.262
Bus217 0.400 103.407
Bus218 0.400 102.613
Bus219 0.400 103.126
Bus220 0.400 103.077
Bus221 0.400 103.249
Bus222 0.400 102.166
Bus223 0.400 102.489
Bus224 0.400 102.789
Bus225 0.400 103.015
Bus226 0.400 103.178
Bus227 0.400 102.716
Bus228 0.400 98.625
Bus229 0.400 102.728
Bus230 0.400 102.516
Bus231 0.400 102.912
Bus232 0.400 103.293
Bus233 0.400 103.250
Bus234 0.400 103.236
Bus235 0.400 102.725
Bus236 0.400 103.340
Bus237 0.400 102.908
Bus238 0.400 102.504
Bus239 0.400 103.253
Bus240 0.400 102.905
Bus241 0.400 103.248
Bus242 0.400 98.827
Bus243 0.400 102.924
Bus244 0.400 103.084
Bus245 0.400 103.423
Bus246 0.400 103.436
Bus247 0.400 103.716
Bus248 0.400 102.782
Bus249 0.400 103.607
Bus250 0.400 103.424
Bus251 0.400 102.832
Bus252 0.400 103.071
Bus253 0.400 102.817
Bus254 0.400 103.629
Bus255 0.400 103.808
Bus256 0.400 103.498
Bus257 0.400 103.417
Bus258 0.400 103.109
Bus259 0.400 103.736
Bus260 0.400 103.448
Bus261 0.400 103.510
Page 91
Bus262 0.400 104.336
Bus263 0.400 103.853
Bus264 0.400 104.352
Bus265 0.400 104.279
Bus266 0.400 104.273
Bus267 0.400 104.286
Bus268 0.400 104.816
Bus269 0.400 104.445
Bus270 0.400 104.540
Bus271 0.400 104.602
Bus272 0.400 104.201
Bus273 0.400 104.171
Bus274 0.400 103.584
Bus277 0.400 103.457
Bus278 0.400 103.531
Bus279 0.400 102.818
Bus280 0.400 103.214
Bus281 0.400 103.502
Bus282 0.400 103.408
Bus283 0.400 103.514
Bus284 0.400 103.178
Bus286 0.400 103.052
Bus287 0.400 103.171
Bus288 0.400 103.388
Bus289 0.400 103.277
Bus291 0.400 98.451
Bus294 33.000 99.064
Bus295 0.400 102.815
Bus296 0.400 103.052
Bus297 0.400 103.021
Bus298 0.400 103.018
Bus299 0.400 103.180
Bus300 0.400 103.163
Bus301 0.400 103.049
Bus302 0.400 103.508
Bus303 0.400 103.186
Bus304 0.400 102.952
Bus305 0.400 103.004
Bus306 0.400 102.938
Bus307 0.400 103.328
Bus308 0.400 102.994
Bus309 0.400 102.696
Bus310 0.400 102.638
Bus311 0.400 102.953
Bus312 0.400 103.281
Bus313 0.400 102.870
Page 92
Bus314 0.400 102.843
Bus315 0.400 103.368
Bus316 0.400 102.628
Bus317 0.400 102.952
Bus318 0.400 102.890
Bus319 0.400 98.838
Bus320 0.400 98.713
Bus321 0.400 103.170
Bus322 0.400 98.833
Bus323 0.400 98.970
Bus324 0.400 98.744
Bus325 0.400 98.977
Bus327 0.400 102.813
Bus328 0.400 104.166
Page 93
Appendix 15
Minimum case final voltages
Bus Vrated Operating (%)
Bus65 0.400 101.435
Bus68 0.400 102.252
Bus69 0.400 101.283
Bus70 0.400 101.388
Bus73 0.400 101.455
Bus179 0.400 103.327
Bus180 0.400 103.157
Bus181 0.400 103.212
Bus182 0.400 101.409
Bus183 0.400 101.360
Bus184 0.400 101.136
Bus185 0.400 101.439
Bus186 0.400 103.299
Bus187 0.400 103.104
Bus188 0.400 101.192
Bus189 0.400 103.516
Bus190 0.400 103.355
Bus191 0.400 103.438
Bus192 0.400 101.379
Bus193 0.400 101.594
Bus195 0.400 102.897
Bus196 0.400 102.958
Bus197 0.400 102.387
Bus198 0.400 102.876
Bus199 0.400 103.048
Bus200 0.400 102.879
Bus201 0.400 102.666
Bus202 0.400 102.943
Bus203 0.400 103.459
Bus204 0.400 103.585
Bus205 0.400 103.556
Bus206 0.400 103.469
Bus207 0.400 102.954
Bus208 0.400 103.145
Bus209 0.400 103.135
Bus210 0.400 102.750
Bus211 0.400 103.410
Bus212 0.400 102.958
Bus213 0.400 103.006
Bus214 0.400 102.803
Bus215 0.400 103.243
Page 94
Bus216 0.400 103.260
Bus217 0.400 103.405
Bus218 0.400 102.611
Bus219 0.400 103.124
Bus220 0.400 103.075
Bus221 0.400 103.247
Bus222 0.400 102.164
Bus223 0.400 102.487
Bus224 0.400 102.787
Bus225 0.400 103.013
Bus226 0.400 103.176
Bus227 0.400 102.714
Bus228 0.400 103.554
Bus229 0.400 102.726
Bus230 0.400 102.514
Bus231 0.400 102.910
Bus232 0.400 103.291
Bus233 0.400 103.248
Bus234 0.400 103.234
Bus235 0.400 102.723
Bus236 0.400 103.338
Bus237 0.400 102.905
Bus238 0.400 102.501
Bus239 0.400 103.251
Bus240 0.400 102.902
Bus241 0.400 103.246
Bus242 0.400 101.295
Bus243 0.400 102.923
Bus244 0.400 103.082
Bus245 0.400 103.422
Bus246 0.400 103.435
Bus247 0.400 103.715
Bus248 0.400 102.781
Bus249 0.400 103.606
Bus250 0.400 103.423
Bus251 0.400 102.831
Bus252 0.400 103.070
Bus253 0.400 102.816
Bus254 0.400 103.628
Bus255 0.400 103.807
Bus256 0.400 103.497
Bus257 0.400 103.416
Bus258 0.400 103.109
Bus259 0.400 103.736
Bus260 0.400 103.448
Bus261 0.400 103.509
Page 95
Bus262 0.400 104.335
Bus263 0.400 103.853
Bus264 0.400 104.352
Bus265 0.400 104.279
Bus266 0.400 104.273
Bus267 0.400 104.286
Bus268 0.400 104.816
Bus269 0.400 104.445
Bus270 0.400 104.540
Bus271 0.400 104.602
Bus272 0.400 104.201
Bus273 0.400 104.171
Bus274 0.400 103.583
Bus277 0.400 103.456
Bus278 0.400 103.530
Bus279 0.400 102.817
Bus280 0.400 103.213
Bus281 0.400 103.501
Bus282 0.400 103.406
Bus283 0.400 103.513
Bus284 0.400 103.177
Bus286 0.400 103.051
Bus287 0.400 103.170
Bus288 0.400 103.387
Bus289 0.400 103.275
Bus291 0.400 103.369
Bus294 33.000 99.063
Bus295 0.400 102.814
Bus296 0.400 103.051
Bus297 0.400 103.020
Bus298 0.400 103.017
Bus299 0.400 103.179
Bus300 0.400 103.162
Bus301 0.400 103.048
Bus302 0.400 103.507
Bus303 0.400 103.185
Bus304 0.400 102.951
Bus305 0.400 103.003
Bus306 0.400 102.936
Bus307 0.400 103.326
Bus308 0.400 102.993
Bus309 0.400 102.695
Bus310 0.400 102.637
Bus311 0.400 102.952
Bus312 0.400 103.279
Bus313 0.400 102.868
Page 96
Bus314 0.400 102.842
Bus315 0.400 103.367
Bus316 0.400 102.627
Bus317 0.400 102.950
Bus318 0.400 102.889
Bus319 0.400 101.308
Bus320 0.400 103.641
Bus321 0.400 103.168
Bus322 0.400 101.301
Bus323 0.400 101.442
Bus324 0.400 101.208
Bus325 0.400 101.449
Bus327 0.400 102.812
Bus328 0.400 104.166
Page 97
Appendix 16
Photos of the monitoring system
Page 98
Results for experiment on 40W lamp
Page 99
Results for experiment on 100W lamp
Page 100
References:
 http://penra.gov.ps/
 Elements of Power System Analysis by William D. Stevenson
 Electric Power Generation, Transmission and Distribution, 2nd
edition by
Leonard L. Grigsby.
 Power Systems, 2nd
edition by Leonard L. Grigsby.
 Supervisory control and data acquisition systems for command, control,
communications, computer, By Headquarters Department of The Army
Washington, DC, 21 January 2006.
 What are amps, watts, volts and ohms?, HowStuffWorks.com, 31 October
2000. Last accessed: 27 June 2010
 http://www.opamp-electronics.com/tutorials/energy_losses_2_09_09.htm
 http://www.energyvortex.com/energydictionary/high_voltage_transmission_
lines.htm


Mais conteúdo relacionado

Mais procurados

An Under frequency Load Shedding Scheme for
An Under frequency Load Shedding Scheme forAn Under frequency Load Shedding Scheme for
An Under frequency Load Shedding Scheme for
Ajay Singh
 
Wide area measurements (synchrophasor measurements) in Power Systems
Wide area measurements (synchrophasor measurements) in Power SystemsWide area measurements (synchrophasor measurements) in Power Systems
Wide area measurements (synchrophasor measurements) in Power Systems
Naila Syed
 
A Matlab/Simulink Model for the control scheme utilized to improve power qual...
A Matlab/Simulink Model for the control scheme utilized to improve power qual...A Matlab/Simulink Model for the control scheme utilized to improve power qual...
A Matlab/Simulink Model for the control scheme utilized to improve power qual...
AM Publications
 
AUTOMATIC VOLTAGE CONTROL OF TRANSFORMER USING MICROCONTROLLER AND SCADA
AUTOMATIC VOLTAGE CONTROL OF TRANSFORMER USING MICROCONTROLLER AND SCADA AUTOMATIC VOLTAGE CONTROL OF TRANSFORMER USING MICROCONTROLLER AND SCADA
AUTOMATIC VOLTAGE CONTROL OF TRANSFORMER USING MICROCONTROLLER AND SCADA
Ajesh Jacob
 
Introduction of wide area mesurement syatem
Introduction of wide area mesurement syatemIntroduction of wide area mesurement syatem
Introduction of wide area mesurement syatem
PanditNitesh
 

Mais procurados (20)

LOAD SHEDDING DESIGN FOR AN INDUSTRIAL COGENERATION SYSTEM
LOAD SHEDDING DESIGN FOR AN INDUSTRIAL COGENERATION SYSTEMLOAD SHEDDING DESIGN FOR AN INDUSTRIAL COGENERATION SYSTEM
LOAD SHEDDING DESIGN FOR AN INDUSTRIAL COGENERATION SYSTEM
 
Wide Area Monitoring System WAMS & Applications
Wide Area Monitoring System WAMS & ApplicationsWide Area Monitoring System WAMS & Applications
Wide Area Monitoring System WAMS & Applications
 
An Under frequency Load Shedding Scheme for
An Under frequency Load Shedding Scheme forAn Under frequency Load Shedding Scheme for
An Under frequency Load Shedding Scheme for
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Load Shedding Management
Load Shedding ManagementLoad Shedding Management
Load Shedding Management
 
Ni project presentation version 3
Ni project presentation version 3Ni project presentation version 3
Ni project presentation version 3
 
IRJET- Fuzzy Control Scheme for Damping of Oscillations in Multi Machine Powe...
IRJET- Fuzzy Control Scheme for Damping of Oscillations in Multi Machine Powe...IRJET- Fuzzy Control Scheme for Damping of Oscillations in Multi Machine Powe...
IRJET- Fuzzy Control Scheme for Damping of Oscillations in Multi Machine Powe...
 
V fuzzy logic applications to electrical systems
V fuzzy logic applications to electrical systemsV fuzzy logic applications to electrical systems
V fuzzy logic applications to electrical systems
 
Energy Management and the Evolution of Intelligent Motor Control and Drives @...
Energy Management and the Evolution of Intelligent Motor Control and Drives @...Energy Management and the Evolution of Intelligent Motor Control and Drives @...
Energy Management and the Evolution of Intelligent Motor Control and Drives @...
 
Challenges of phasor measurement units
Challenges of phasor measurement unitsChallenges of phasor measurement units
Challenges of phasor measurement units
 
WIDE AREA MANAGEMENT SYSTEM
WIDE AREA MANAGEMENT SYSTEMWIDE AREA MANAGEMENT SYSTEM
WIDE AREA MANAGEMENT SYSTEM
 
Transient Stability of Power System using Facts Device-UPFC
Transient Stability of Power System using Facts Device-UPFCTransient Stability of Power System using Facts Device-UPFC
Transient Stability of Power System using Facts Device-UPFC
 
Wide area measurements (synchrophasor measurements) in Power Systems
Wide area measurements (synchrophasor measurements) in Power SystemsWide area measurements (synchrophasor measurements) in Power Systems
Wide area measurements (synchrophasor measurements) in Power Systems
 
A Matlab/Simulink Model for the control scheme utilized to improve power qual...
A Matlab/Simulink Model for the control scheme utilized to improve power qual...A Matlab/Simulink Model for the control scheme utilized to improve power qual...
A Matlab/Simulink Model for the control scheme utilized to improve power qual...
 
POWER SYSTEM OPERATION AND CONTROL
POWER SYSTEM OPERATION AND CONTROLPOWER SYSTEM OPERATION AND CONTROL
POWER SYSTEM OPERATION AND CONTROL
 
Effects of the Droop Speed Governor and Automatic Generation Control AGC on G...
Effects of the Droop Speed Governor and Automatic Generation Control AGC on G...Effects of the Droop Speed Governor and Automatic Generation Control AGC on G...
Effects of the Droop Speed Governor and Automatic Generation Control AGC on G...
 
Role of phasor measuring unit in power system
Role of phasor measuring unit in power systemRole of phasor measuring unit in power system
Role of phasor measuring unit in power system
 
Summary Presentation on PMU Based Transmission Line Protection Scheme
Summary Presentation on PMU Based Transmission Line Protection Scheme Summary Presentation on PMU Based Transmission Line Protection Scheme
Summary Presentation on PMU Based Transmission Line Protection Scheme
 
AUTOMATIC VOLTAGE CONTROL OF TRANSFORMER USING MICROCONTROLLER AND SCADA
AUTOMATIC VOLTAGE CONTROL OF TRANSFORMER USING MICROCONTROLLER AND SCADA AUTOMATIC VOLTAGE CONTROL OF TRANSFORMER USING MICROCONTROLLER AND SCADA
AUTOMATIC VOLTAGE CONTROL OF TRANSFORMER USING MICROCONTROLLER AND SCADA
 
Introduction of wide area mesurement syatem
Introduction of wide area mesurement syatemIntroduction of wide area mesurement syatem
Introduction of wide area mesurement syatem
 

Destaque

Quad pod transformable vehicle
Quad pod transformable vehicleQuad pod transformable vehicle
Quad pod transformable vehicle
slmnsvn
 
Quad pod transformable vehicle
Quad pod transformable vehicleQuad pod transformable vehicle
Quad pod transformable vehicle
slmnsvn
 
Smart fuel theft detector
Smart fuel theft detectorSmart fuel theft detector
Smart fuel theft detector
slmnsvn
 
Quad pod transformable vehicle
Quad pod transformable vehicleQuad pod transformable vehicle
Quad pod transformable vehicle
slmnsvn
 
Rfid attendace system
Rfid attendace systemRfid attendace system
Rfid attendace system
slmnsvn
 
Analysis optimization and monitoring system
Analysis optimization and monitoring system Analysis optimization and monitoring system
Analysis optimization and monitoring system
slmnsvn
 
Smart fuel theft detector
Smart fuel theft detectorSmart fuel theft detector
Smart fuel theft detector
slmnsvn
 

Destaque (8)

Quad pod transformable vehicle
Quad pod transformable vehicleQuad pod transformable vehicle
Quad pod transformable vehicle
 
Quad pod transformable vehicle
Quad pod transformable vehicleQuad pod transformable vehicle
Quad pod transformable vehicle
 
Smart home
Smart homeSmart home
Smart home
 
Smart fuel theft detector
Smart fuel theft detectorSmart fuel theft detector
Smart fuel theft detector
 
Quad pod transformable vehicle
Quad pod transformable vehicleQuad pod transformable vehicle
Quad pod transformable vehicle
 
Rfid attendace system
Rfid attendace systemRfid attendace system
Rfid attendace system
 
Analysis optimization and monitoring system
Analysis optimization and monitoring system Analysis optimization and monitoring system
Analysis optimization and monitoring system
 
Smart fuel theft detector
Smart fuel theft detectorSmart fuel theft detector
Smart fuel theft detector
 

Semelhante a Analysis optimization and monitoring system

Practical Distribution & Substation Automation (Incl. Communications) for Ele...
Practical Distribution & Substation Automation (Incl. Communications) for Ele...Practical Distribution & Substation Automation (Incl. Communications) for Ele...
Practical Distribution & Substation Automation (Incl. Communications) for Ele...
Living Online
 
eIisrt arutselvi (electrical)
eIisrt arutselvi (electrical)eIisrt arutselvi (electrical)
eIisrt arutselvi (electrical)
IISRT
 
Power system automation
Power system automationPower system automation
Power system automation
satyam11
 

Semelhante a Analysis optimization and monitoring system (20)

A04420107
A04420107A04420107
A04420107
 
Grid Connected Photovoltaic System with Energy Management Scheme
Grid Connected Photovoltaic System with Energy Management SchemeGrid Connected Photovoltaic System with Energy Management Scheme
Grid Connected Photovoltaic System with Energy Management Scheme
 
Computer Applications in Power Systems 2023 SECOND.pdf
Computer Applications in Power Systems 2023 SECOND.pdfComputer Applications in Power Systems 2023 SECOND.pdf
Computer Applications in Power Systems 2023 SECOND.pdf
 
15ee81 module1[www.vtuloop.com].pdf
15ee81 module1[www.vtuloop.com].pdf15ee81 module1[www.vtuloop.com].pdf
15ee81 module1[www.vtuloop.com].pdf
 
IRJET - Automated Monitoring Test Rig for Circuit Breaker Operation
IRJET -  	  Automated Monitoring Test Rig for Circuit Breaker OperationIRJET -  	  Automated Monitoring Test Rig for Circuit Breaker Operation
IRJET - Automated Monitoring Test Rig for Circuit Breaker Operation
 
Practical Distribution & Substation Automation (Incl. Communications) for Ele...
Practical Distribution & Substation Automation (Incl. Communications) for Ele...Practical Distribution & Substation Automation (Incl. Communications) for Ele...
Practical Distribution & Substation Automation (Incl. Communications) for Ele...
 
Performance of DVR under various Fault conditions in Electrical Distribution ...
Performance of DVR under various Fault conditions in Electrical Distribution ...Performance of DVR under various Fault conditions in Electrical Distribution ...
Performance of DVR under various Fault conditions in Electrical Distribution ...
 
Control Methodology for Peak Demand through Multi-Source Environment at Deman...
Control Methodology for Peak Demand through Multi-Source Environment at Deman...Control Methodology for Peak Demand through Multi-Source Environment at Deman...
Control Methodology for Peak Demand through Multi-Source Environment at Deman...
 
Application of scada for system automation on smart grid rev2
Application of scada for system automation on smart grid rev2Application of scada for system automation on smart grid rev2
Application of scada for system automation on smart grid rev2
 
IRJET- Automatic Load Balancing and Phase Balancing by PLC and Scada
IRJET-  	  Automatic Load Balancing and Phase Balancing by PLC and ScadaIRJET-  	  Automatic Load Balancing and Phase Balancing by PLC and Scada
IRJET- Automatic Load Balancing and Phase Balancing by PLC and Scada
 
Transformer failure prevent
Transformer failure preventTransformer failure prevent
Transformer failure prevent
 
IRJET- IoT and PLC based Home Automation System with PV Inverter
IRJET-  	  IoT and PLC based Home Automation System with PV InverterIRJET-  	  IoT and PLC based Home Automation System with PV Inverter
IRJET- IoT and PLC based Home Automation System with PV Inverter
 
IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...
IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...
IRJET- Voltage Stability, Loadability and Contingency Analysis with Optimal I...
 
Voltage profile Improvement Using Static Synchronous Compensator STATCOM
Voltage profile Improvement Using Static Synchronous Compensator STATCOMVoltage profile Improvement Using Static Synchronous Compensator STATCOM
Voltage profile Improvement Using Static Synchronous Compensator STATCOM
 
IRJET- PLC Based Intelligent Control of Substation
IRJET- PLC Based Intelligent Control of SubstationIRJET- PLC Based Intelligent Control of Substation
IRJET- PLC Based Intelligent Control of Substation
 
eIisrt arutselvi (electrical)
eIisrt arutselvi (electrical)eIisrt arutselvi (electrical)
eIisrt arutselvi (electrical)
 
Power system automation
Power system automationPower system automation
Power system automation
 
Power Factor Control at ABA Control 33/11kV Injection Substation Using Auto T...
Power Factor Control at ABA Control 33/11kV Injection Substation Using Auto T...Power Factor Control at ABA Control 33/11kV Injection Substation Using Auto T...
Power Factor Control at ABA Control 33/11kV Injection Substation Using Auto T...
 
IRJET-Identification of Weak Bus using Load Variation
IRJET-Identification of Weak Bus using Load VariationIRJET-Identification of Weak Bus using Load Variation
IRJET-Identification of Weak Bus using Load Variation
 
DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...
DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...
DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...
 

Mais de slmnsvn

Power factor correction
Power factor correctionPower factor correction
Power factor correction
slmnsvn
 
Power factor correction
Power factor correctionPower factor correction
Power factor correction
slmnsvn
 
Optimum performances of ramallah
Optimum performances of ramallahOptimum performances of ramallah
Optimum performances of ramallah
slmnsvn
 
Optimum performances of ramallah
Optimum performances of ramallahOptimum performances of ramallah
Optimum performances of ramallah
slmnsvn
 
Optimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate networkOptimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate network
slmnsvn
 
Optimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate networkOptimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate network
slmnsvn
 
Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2
slmnsvn
 
Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2
slmnsvn
 
Optimum performance for aqraba electrical network
Optimum performance for aqraba electrical networkOptimum performance for aqraba electrical network
Optimum performance for aqraba electrical network
slmnsvn
 
Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...
slmnsvn
 
Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...
slmnsvn
 
Investigation effects-of-supplying-power-distrubition
Investigation effects-of-supplying-power-distrubitionInvestigation effects-of-supplying-power-distrubition
Investigation effects-of-supplying-power-distrubition
slmnsvn
 
Investigation of-effects-of-supplying-jenins-power
Investigation of-effects-of-supplying-jenins-powerInvestigation of-effects-of-supplying-jenins-power
Investigation of-effects-of-supplying-jenins-power
slmnsvn
 
Cell phone based dtmf controlled
Cell phone based dtmf controlledCell phone based dtmf controlled
Cell phone based dtmf controlled
slmnsvn
 
Cell phone based dtmf controlled
Cell phone based dtmf controlledCell phone based dtmf controlled
Cell phone based dtmf controlled
slmnsvn
 
Cell phone based dtmf
Cell phone based dtmfCell phone based dtmf
Cell phone based dtmf
slmnsvn
 

Mais de slmnsvn (20)

Power factor correction
Power factor correctionPower factor correction
Power factor correction
 
Power factor correction
Power factor correctionPower factor correction
Power factor correction
 
Optimum performances of ramallah
Optimum performances of ramallahOptimum performances of ramallah
Optimum performances of ramallah
 
Optimum performances of ramallah
Optimum performances of ramallahOptimum performances of ramallah
Optimum performances of ramallah
 
Optimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate networkOptimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate network
 
Optimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate networkOptimum performance of tulkarim governorate network
Optimum performance of tulkarim governorate network
 
Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2
 
Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2
 
Optimum performance for aqraba electrical network
Optimum performance for aqraba electrical networkOptimum performance for aqraba electrical network
Optimum performance for aqraba electrical network
 
Multi tone test
Multi tone testMulti tone test
Multi tone test
 
Multi tone test
Multi tone testMulti tone test
Multi tone test
 
Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...
 
Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...Mini scada system for monitoring pv and wind installation in meteorology stat...
Mini scada system for monitoring pv and wind installation in meteorology stat...
 
Investigation effects-of-supplying-power-distrubition
Investigation effects-of-supplying-power-distrubitionInvestigation effects-of-supplying-power-distrubition
Investigation effects-of-supplying-power-distrubition
 
Investigation of-effects-of-supplying-jenins-power
Investigation of-effects-of-supplying-jenins-powerInvestigation of-effects-of-supplying-jenins-power
Investigation of-effects-of-supplying-jenins-power
 
Enable talk
Enable talkEnable talk
Enable talk
 
Enable talk
Enable talkEnable talk
Enable talk
 
Cell phone based dtmf controlled
Cell phone based dtmf controlledCell phone based dtmf controlled
Cell phone based dtmf controlled
 
Cell phone based dtmf controlled
Cell phone based dtmf controlledCell phone based dtmf controlled
Cell phone based dtmf controlled
 
Cell phone based dtmf
Cell phone based dtmfCell phone based dtmf
Cell phone based dtmf
 

Último

1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
chumtiyababu
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 

Último (20)

1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 

Analysis optimization and monitoring system

  • 1. NO. Content Page Chapter one Introduction 2 1.1 Energy sector in Palestine 2 1.2 Power system 3 1.3 Load flow analysis 4 1.4 Etab power station 5 1.5 SCADA System 6 1.5.1 SCADA hardware 6 1.5.2 SCADA software 6 1.6 About project 8 Chapter two Elements of the network 9 2.1 Distribution transformer 10 2.2 Medium voltage lines 11 2.2.1 Over head lines 11 2.2.2 Underground cables 12 2.2.3 Daily load curve 12 Chapter three Maximum Load Case Analysis 13 3.1 Maximum load case 14 3.2 Problems 14 3.3 The Maximum Load Case Improvement 15 3.4 Overloaded Transformers Problem 17 3.5 New connection Point Study for the maximum load case 18 3.6 Improving the network with the new connection point 19 Chapter four Minimum Load Case Study 20 4.1 Minimum Case Study 21 4.2 Minimum Load Study After The Connection Point And Solving Overloaded Transformers Problem 22 Chapter five Economical Study 24 Chapter six Monitoring System 27 6.1 Monitoring System 28 6.2 Current Measurement 28 6.3 Voltage Measurement 29 6.4 Power Factor Measurement 31 6.5 Frequency Measurement 33 6.6 The Remote Terminal Unit (RTU) 34 Appendices Tables 36 References 101
  • 3. Page 2 1.1Energy Sector in Palestine Energy sector in Palestine faced many difficulties because of occupation. Till now there is no unified power system in Palestine. Most of electrical energy depends on IEC Company except Jericho which connected with Jordan and Gaza to Egypt (17MW) through the interconnection project. The only generation plant is in Gaza with generating capacity of 140MW. Distribution companies take the role of distributing electricity in the different regions of Palestine. The average annual growth rate of energy demand in west bank is 6.4%, and in Gaza is 10% from 1999 to 2005. The following figure shows the growth pattern in West Bank, Gaza Strip and the total Palestine forecast: Fig. 1.1 The following table shows the forecast summary - peak demand (MW): Table1.1 202520202015201020092008Year 1,7141,3471,059885845806Total 1,012809646548525502W.B. 701538413336320303Gaza 0 200 400 600 800 1000 1200 1400 1600 1800 2005 2010 2015 2020 2025 2030 Power(MW) Year Power Demand Total W.B. Gaza
  • 4. Page 3 1.2 Power System The power system in general consists of these parts: 1. Generating station: And this part consists of a. Generators in which electric power is produced by 3-phase alternators operating in parallel. And usually electric power is generated at voltages of 12kv to 25kv. b. Sub-station, where the power transformers step up the voltage to between 66kv 1000kv. 1. Primary transmission. The electric power at high voltages is transmitted by 3- phase 3-wire overhead system to the outskirts of the city. This forms the primary transmission. 2. Secondary transmission. The primary transmission line terminates at the receiving station which usually lies at the outskirts of the city. At the receiving station the voltage is reduced to 33kv or 22kv by step-down transformers. 3. Primary distribution. the secondary transmission line terminates at the sub- station where voltage is reduced from the secondary voltage to the primary distribution voltage usually 11kv could be 6.6kv 3-phase 3-wire .the 11kv lines run along the important road sides of the city. And forms the primary distribution. 4. Secondary distribution. The electric power form primary distribution line is delivered to distribution sub-stations. These sub-stations are located near the consumers localities and step down the voltage to 400v 3-phase 4-wire for secondary distribution. And this forms secondary distribution.
  • 5. Page 4 1.3 Load Flow Analysis Load flow analysis is probably the most important of all network calculations since it concerns the network performance in its normal operating conditions. It is performed to investigate the magnitude and phase angle of the voltage at each bus and the real and reactive power flows in the system components. Load flow analysis has a great importance in future expansion planning, in stability studies and in determining the best economical operation for existing systems. Also load flow results are very valuable for setting the proper protection devices to insure the security of the system. In order to perform a load flow study, full data must be provided about the studied system, such as connection diagram, parameters of transformers and lines, rated values of each equipment, and the assumed values of real and reactive power for each load. Bus Classification Each bus in the system has four variables: voltage magnitude, voltage angle, real power and reactive power. During the operation of the power system, each bus has two known variables and two unknowns. Generally, the bus must be classified as one of the following bus types: 1. Swing Bus This bus is considered as the reference bus. It must be connected to a generator of high rating relative to the other generators. During the operation, the voltage of this bus is always specified and remains constant in magnitude and angle. In addition to the generation assigned to it according to economic operation, this bus is responsible for supplying the losses of the system. 2. Voltage Controlled Bus During the operation the voltage magnitude at this the bus is kept constant. Also, the active power supplied is kept constant at the value that satisfies the economic operation of the system. Most probably, this bus is connected to a generator where the voltage is controlled using the excitation and the power is controlled using the prime mover control (as you have studied in the last experiment). Sometimes, this bus is connected to a VAR device where the voltage can be controlled by varying the value of the injected VAR to the bus. 3. Load Bus This bus is not connected to a generator so that neither its voltage nor its real power can be controlled. On the other hand, the load connected to this bus will change the active and reactive power at the bus in a random manner. To solve the load flow problem we have to assume the complex power value (real and reactive) at this bus.
  • 6. Page 5 1.4 ETAP Power Station ETAP Load Flow software performs power flow analysis and voltage drop calculations with accurate and reliable results. Built-in features like automatic equipment evaluation, alerts and warnings summary, load flow result analyzer, and intelligent graphics make it the most efficient electrical power flow analysis tool available today. ETAP load flow calculation program calculates bus voltages, branch power factors, currents, and power flows throughout the electrical system. ETAP allows for swing, voltage regulated, and unregulated power sources with unlimited power grids and generator connections. Fig. 1.2
  • 7. Page 6 1.5 SCADA System SCADA (supervisory control and data acquisition) generally refers to industrial control systems (ICS): computer systems that monitor and control industrial, infrastructure, or facility-based processes, Industrial processes include those of manufacturing, production, power generation, fabrication, and refining, and may run in continuous, batch, repetitive, or discrete modes. 1.5.1 SCADA hardware. A SCADA system consists of a number of remote terminal units (RTUs) collecting field data and sending that data back to a master station, via a communication system. The master station displays the acquired data and allows the operator to perform remote control tasks. The accurate and timely data allows for optimization of the plant operation and process. Other benefits include more efficient, reliable and most importantly, safer operations. These results in a lower cost of operation compared to earlier non- automated systems. On a more complex SCADA system there are essentially five levels or hierarchies:  Field level instrumentation and control devices.  Marshalling terminals and RTUs.  Communications system.  The master station(s).  The commercial data processing department computer system. The RTU provides an interface to the field analog and digital sensors situated at each remote site. The communications system provides the pathway for communication between the master station and the remote sites. This communication system can be wire, fiber optic, radio, telephone line, microwave and possibly even satellite. Specific protocols and error detection philosophies are used for efficient and optimum transfer of data. The master station (or sub-masters) gather data from the various RTUs and generally provide an operator interface for display of information and control of the remote sites. In large telemetry systems, sub-master sites gather information from remote sites and act as a relay back to the control master station. 1.5.2 SCADA software SCADA software can be divided into two types, proprietary or open. Companies develop proprietary software to communicate to their hardware. These systems are sold as ‘turnkey’ solutions. The main problem with this system is the overwhelming reliance on the supplier of the system. Open software systems have gained popularity because of the interoperability they bring to the system. Interoperability is the ability to mix different manufacturers’ equipment on the same system. Citect and WonderWare are just two of the open software packages available in the market for SCADA systems. Some packages are now including asset management integrated within the SCADA system. The typical components of a SCADA system are indicated in the next diagram.
  • 8. Page 7 Fig 1.3 Key features of SCADA software are: • User interface • Graphics displays • Alarms • Trends • RTU (and PLC) interface • Scalability • Access to data • Database • Networking • Fault tolerance and redundancy • Client/server distributed processing
  • 9. Page 8 1.6About Project The aim of this project is to do load flow study for the network of Tubas Electrical Distribution Company (TEDCO). Then make a simulation for monitoring system for the network. In this system the supervision part of monitoring systems will be done. The electrical supply of the network is provided by IEC through 33KV overhead transmission cables. The main connection point of the network is in Tyaseer with capacity of 15MVA. And TEDCO distribute the electricity for the consumers. The company is planning to add new connection point in Al Zawya. TEDCO already has a small SCADA system. Which monitors the main lines of every town, and for the transmission of the data from the RTUs they use SMS through JAWWAL network. SMS method for the transmission of data is not reliable because the system will not be online monitored they receive data every one hour also it is expensive. The company plans to get internet through the power line, when they do they will use it to monitor the network online.
  • 10. Page 9 Chapter two Elements of the Network
  • 11. Page 10 2.1 Distribution Transformers The network consists of 141 distribution transformer (33∆/0.4Y (KV)). The transformers range from 50KVA to 630 KVA the following table shows them in details: Table 2.1 Number of Transformers Rating (KVA) 4 50 15 100 19 160 43 250 33 400 27 630 Fig 2.1
  • 12. Page 11 2.2 Medium Voltage Lines 2.2.1 Overhead Lines The overhead lines used in the network are ACSR cables with different diameters as the following table: Table 2.2 Cable Name Cross sectional area (mm2 ) R (Ω/Km) X (Ω/Km) Nominal Capacity (A) Ostrich 150 0.19 0.28 350 Cochin 110 0.25 0.29 300 Lenghorn 70 0.39 0.31 180 Aprpcot 50 0.81 0.29 130 Fig 2.2
  • 13. Page 12 2.2.2 Underground Cables The underground cables used in the network are XLPE Cu (95 mm2 ) Table 2.3 Diameter (mm2 ) R (Ω/Km) X (Ω/Km) 95 0.41 0.121 Fig 2.3 2.3 The daily load curve The daily load curve of the network is shown in the figure below: Fig2.4 The daily load curve shows the maximum and the minimum demand over the day, these values help in the analysis of the network.
  • 14. Page 13 Chapter three Maximum Load Case Analysis
  • 15. Page 14 3.1 Maximum load case Considering the maximum demand in the daily load curve (fig2.4), it is found that the maximum load equals two and half of the average load. Then analyze the network using ETAP power station. Cables lengths and resistances are shown in appendix 1. The transformers loading are shown in appendix 2. 3.2 Problems After the analysis of this case the following problems appeared:  Under voltage buses (Appendix 3).  Overloaded transformer (Appendix 4).  Power factor less than 92% Table 3.1 summarizes the results of the network analysis in the maximum load case (total generation, demand, loading, percentage of losses, and the total power factor.) Table 3.1 MW MVAR MVA % PF Swing Bus(es): 16.755 7.474 18.346 91.33 lag. Generators: 0.00 0.00 0.00 0.00 Total Demand: 16.755 7.474 18.346 91.33 lag. Total Motor Load: 9.368 4.148 10.245 91.44 lag. Total Static Load: 6.760 2.245 7.123 94.9 lag. Apparent Losses: 0.627 1.081 1. The P.F in the network equal 90.75 and this value causes a lot of problem specially paying banalities and this value must be (0.92-0.95) the P.F is related to the current in the network according that when P.F is poor the
  • 16. Page 15 current in the network is high this also can cause increasing the loses in the network . 2. The PF improvement will show that the current will decrease, as a result the losses will decrease 3. It is seen that the voltages on the buses are not acceptable. These voltages will be less at the consumer side, under the machines rating which will cause a many problems for the consumer. 3.3 The Maximum Load Case Improvement There are different methods in order to improve the network to increase the voltages and to put the PF within the range. Which will reduce the losses then the problems for the consumer will decrease and the cost of KWH will decrease. These methods are: 1. Tab changing in the transformer: In this method the ratio of the taps on the transformer is changed in a range of -5% to 5%. In this project the taps were changed to 5%. The location of the changed taps is shown in Appendix 5 2. Adding capacitors: The capacitors were added to reduce the reactive power which increases the PF and the voltages of the buses. First the capacitor is added at the lowest voltage bus then the one which have the larger voltage and so on. When adding capacitors the PF should be lagging and more than 95%. The location of the capacitor banks is shown in Appendix 6. As mentioned adding capacitors will improve the PF. The low PF cause problems as:  Higher Apparent Current.  Higher Losses in the Electrical Distribution network.  Low Voltage in the network.  Paying penalties. Improving the power factor will avoid these problems.
  • 17. Page 16 Capacitor banks will increase the PF as the following: Where:  Qc: the reactive power to be compensated by the capacitor.  P: the real power of the load.  Ø old: the actual power angle.  Ø New: the proposed power angle. According to the previous equation the value of capacitor banks needed to be added in the network is: PF old = 91.33% PF new = 92% at least Capacitor banks should be connected in delta connection on the low voltage side of the transformer.
  • 18. Page 17 Table 3.2 shows summary for the results after adding the capacitors: Table 3.2 MW MVAR MVA % PF Swing Bus(es): 17.423 6.946 18.757 92.89 lag Total Demand: 17.423 6.946 18.757 92.89 lag Total Motor Load: 9.368 4.148 10.245 91.44 lag Total Static Load: 7.399 1.668 7.585 97.55 lag Apparent Losses: 0.656 1.131 Voltages on the busses after improvement are shown in appendix 7. 3.4 Overloaded Transformers Problem After the improvement of the network in the maximum case there is the problem of the overloaded transformers. This problem was solved by changing transformers locations where the transformers which are large and the load on them small were changed with small highly loaded transformers. Then another transformers connected in parallel with the left overloaded transformers this will need to buy new transformers. Appendix 8 shows the operation of transformer changing. Table 3.3 shows the transformers which are needed to be bought: Table 3.3 Number of transformers KVA 6 630 1 250 Table 3.4 shows the extra transformers left after solving the overloaded transformers problem: Table 3.4 Number of transformers KVA 1 100 1 50
  • 19. Page 18 Table 3.5 summarizes the analysis results after changing transformers Table 3.5 MW MVAR MVA % PF Swing Bus(es): 17.388 6.867 18.695 93.01 lag Total Demand: 17.388 6.867 18.695 93.01 lag Total Motor Load: 9.394 4.163 10.275 91.43 lag Total Static Load: 7.374 1.664 7.559 97.55 lag Apparent Losses: 0.620 1.039 The voltages on the buses after changing the transformers are shown in Appendix 9. 3.5 New connection Point Study for the maximum load case Tubas Electrical Distribution Company (TEDCO) is planning to add new connection point for the company in Zawya area. This connection point is 5MVA rated. Appendix 10 shows the voltages on the busses after adding the new connection point. It is seen that the voltages after the new connection point were enhanced and the losses decreased. And the power factor increased. The following table shows the results summary after the new connection point Table 3.6 MW MVAR MVA % PF Swing Bus(es): 17.430 6.622 18.646 93.48 lag Total Demand: 17.430 6.622 18.646 93.48 lag Total Motor Load: 9.394 4.163 10.275 91.43 lag Total Static Load: 7.599 1.712 7.790 97.55 lag Apparent Losses: 0.437 0.747
  • 20. Page 19 3.6 Improving the network with the new connection point As before the improvement is done by tap changing and adding capacitor banks. The changed taps and the added capacitor banks are shown in Appendix 11 The operating voltages are shown in the same appendix. Now all buses are operating over 100% voltages. This will make the voltages reach to the consumer with fewer losses. The results of the improving are summarized in the following table Table 3.7 MW MVAR MVA % PF Swing Bus(es): 17.454 6.558 18.645 93.61 lag. Total Demand: 17.454 6.558 18.645 93.61 lag Total Motor Load: 9.394 4.163 10.275 91.43 lag Total Static Load: 7.624 1.650 7.801 97.74 lag Apparent Losses: 0.435 0.744
  • 21. Page 20 Chapter Four Minimum Load Case Study
  • 22. Page 21 4.1 Minimum Case Study In the minimum load case the load is assumed to be half the maximum load. The network analysis in this case shows the results in table 4.1 Table4.1 MW MVAR MVA % PF Swing Bus(es): 8.381 3.480 9.075 92.36 lag Total Demand: 8.381 3.480 9.075 92.36 lag Total Motor Load: 4.699 2.082 5.140 91.43 lag Total Static Load: 3.529 1.132 3.706 95.22 lag Apparent Losses: 0.153 0.265 Appendix 12 shows the voltages on the buses for this case. It is noticed that these voltages better than the voltages on the maximum load case. Now taking the taps fixed as in the maximum load case the results shows that all the buses have good voltage level and the power factor is in the range so no need to add capacitor banks for this case, so the capacitor banks used in the network are all regulated. The following table shows the analysis summary with the taps changed Table4.2 MW MVAR MVA % PF Swing Bus(es): 8.720 3.614 9.439 92.38 lag Total Demand: 8.720 3.614 9.439 92.38 lag Total Motor Load: 4.699 2.082 5.140 91.43 lag Total Static Load: 3.855 1.244 4.051 95.17 lag Apparent Losses: 0.166 0.287 Voltages on buses after changing taps are shown in appendix 13
  • 23. Page 22 4.2 Minimum Load Study After The Connection Point And Solving Overloaded Transformers Problem After solving overloaded transformers problem, as seen before some transformers were changed and new transformers connected in parallel with some of overloaded transformers. Also the new connection point is connected to the network. The results for minimum load study in this case are shown in the following table4.3 Table 4.3 MW MVAR MVA % PF Swing Bus(es): 8.738 3.541 9.428 92.68 lag Total Demand: 8.738 3.541 9.428 92.68 lag Total Motor Load: 4.699 2.082 5.140 91.43 lag Total Static Load: 3.928 1.270 4.128 95.15 lag Apparent Losses: 0.111 0.189 Appendix 14 Shows the voltages on the buses in the minimum case after changing the transformers and connecting the new connection point. It is noticed that the voltages and the power factor in this case are good, so no need to add new capacitor banks to the network in this case, therefore all capacitor banks connected are regulated. Also it can be seen that the losses decreased.
  • 24. Page 23 The final results for the minimum load case are summarized in the following table: Table 4.4 MW MVAR MVA % PF Swing Bus(es): 8.755 3.548 9.447 92.68 lag Total Demand: 8.755 3.548 9.447 92.68 lag Total Motor Load: 4.699 2.082 5.140 91.43 lag Total Static Load: 3.945 1.276 4.146 95.15 lag Apparent Losses: 0.111 0.190 The final voltages for the maximum case are shown in appendix 15
  • 26. Page 25 Economical study In this chapter economical study for the network will be done. This study is needed to know whether it is reliable to connect the capacitor banks to the network or not. Capacitor banks are reliable to be added to the network if their cost is acceptable compared with the losses cost and power factor penalties, and their payback period less than. From this study the company can define its plans for the network. In order to calculate the penalties on the low power factor, it is needed to know the relation between low power factor and the penalty which is shown in the following table Table 4.1 PF Penalties Over 92% No penalties From 80% to 92% 1% of the total bill for every 1% decrease of PF From 70% to 80% 1.25% of the total bill for every 1% decrease of PF Less than 70% 1.5% of the total bill for every 1% decrease of PF The amount of reactive power added to the network by capacitor banks is The following parameters needed for the economical study:  P max= 16.755 MW  P min= 8.381 MW  Losses before improvement = 0.627 MW  Losses after improvement = 0.435 MW  PF before improvement = 91.33%  PF after improvement= 93.61% The following calculations need to be applied to do the economical study:
  • 27. Page 26 NIS NIS Cost of losses: Losses before improvement = 627 × 0.748 = 468.996 KW Energy = 468.996 × 8760 = 410.8404 × 104 KWH Total cost=410.8404 × 104 × 0.45 = 1848782.232 NIS/YEAR Losses after improvement = 435000 × 0.748 = 325.38 KW Energy=325.38 × 8760 = 285.03288 × 104 KWH Cost of losses=285.03288 × 104 × 0.45 = 128.2647 × 104 NIS/YEAR = 566134 NIS/YEAR Total capacitor = 905 KVAR Cost per KVAR with control circuit = 15JD = 90NIS Total cost of capacitors=905 × 90 = 81450 NIS Total cost of transformers = 6 * 8200$ + 1 * 4000$ = 53200$ = 186200 NIS Total investment cost = 81450 + 186200 = 267650 NIS =3310072 + 566134 = 3876206 NIS
  • 29. Page 28 6.1 Monitoring System The second part of the project is to simulate monitoring system for the network. PIC microcontroller is used to do the monitoring. Monitoring the network is important to the electricity distributers, it make them make a better informed real time decisions and helps them for future planning for the grid. The monitoring system designed in this project concentrates on the supervision part of monitoring systems. The monitoring system designed for this project consists of the following parts:  Measurement devices.  The remote terminal unit (RTU).  Computer interface. 6.2 Current Measurement It is important for the network supervisor to know the current in the network, because high short circuit currents can cause severe damages in the system if they are not cured. The supervisor can do the needed procedures for high currents before they cause the damage, that if the protective devices in the network did not work well. In this project the following circuit is used to measure the current: Fig 6.1
  • 30. Page 29 The current transformer (C.T) gives 4 volts at 10 amperes flowing in the primary side, then the output voltage of the current transformer and according to Ohms law is divided on the resistor connected in parallel with the transformer. The signal then amplified by the op-amp (op amp amplification ratio is ) but this amplifier inverse the signal so the buffer is used to get the signal in its actual shape. The buffer also do the task of current isolation, to prevent relatively high current to damage the electronic components in the next stage. After this stage a rectifier circuit is used to take the peak of the voltage signal, to be in the range of the microcontroller input. The rectifier circuit shown in the next figure Fig 6.2 The low pass filter is to remove the high frequencies. The diode is to cut the negative half wave of the voltage signal. The capacitor is to smooth the output DC signal. 6.3 Voltage Measurement Voltage is another important parameter in the network, low voltages causes high currents. It is needed to keep the voltages in a good range to keep the machines on the consumer side work effectively and to reduce the losses in the network. The way used to measure the voltage in this project is shown in the following circuit
  • 31. Page 30 Fig 6.3 Here conventional transformer is used here instead of the potential transformer because it is cheaper. The transformer ration is 220v:3.6v, as before the buffer is used for current isolation and impedance matching. As in the current measurement it is needed to rectify the voltage output signal to match the controller output. The circuit is shown in figure Fig 6.4
  • 32. Page 31 6.4 Power Factor Measurement The power factor is defined as cosine the angle between current and voltage signals. Here the current and voltage signals will be transform to pulses, then they will be injected to PLL (CD4046), the output of PLL will be the puls which its width represents the phase shift between the signals. The circuit to transform the signals from sign waves to a puls is shown below Fig 6.5 Two distinct circuits will be needed to transform current and voltage signals to pulses. The input of the circuit used for current signal is from circuit in figure 6.1. and the voltage signal is from circuit in figure 6.3. Fig 6.6
  • 33. Page 32 The output of the PLL will be connected to B0 input of the microcontroller. Figure 6.6 shows this operation. 6.1.1 shows the two signals A and B. 6.1.2 shows signal A pulses. 6.1.3 shows signal B pulses. 6.1.4 shows the output of PLL Fig 6.7 A counter in the microcontroller will count the duration of the phase shift signal. The 50Hz signal will have a duration of 20ms and 3600 so the angle of the phase shift will be found according to the following relation (assume the duration of the phase shift puls is T and the angle between the signals is φ). Then the power factor will be cosine the angle.
  • 34. Page 33 6.5 Frequency Measurement In the frequency measurement the circuit in figure 6.3 in addition to other PLL will be used. The output of the circuit will be sent to microcontroller and to the PLL, the second input of the PLL will be a fixed signal with 20ms(i.e. 50Hz) from the microcontroller will be applied to it. The output of the PLL will be the difference between the fixed signal from the microcontroller and the voltage pulses, the difference duration will be either added or subtracted from the 50Hz. Addition and subtraction will be according to the voltage puls duration, if it is more than 20ms it will be subtracted if less it will be added. The duration of the voltage puls will be counted in the microcontroller. Assume the duration of the PLL output is X and the voltage signal duration is Y If Y>20ms then, Else if Y<20ms then, Fig 6.8.
  • 35. Page 34 6.6 The Remote Terminal Unit (RTU) The remote terminal unit control and send the data collected from the network process them and send them to the supervision computer. The microcontroller used in the RTU is PIC16F877A. PIC microcontroller is used because it is simple, available all the time, and cheap. The basic circuit for this microcontroller is shown in fig 6.9 below. Fig 6.9 The data from the measurement devices is not the actual values for the network parameters, calibration is done for the measurement devices and the values of the measurement devices is multiplied by the factors in the microcontroller to return to their actual value, then these values will be send to the computer. To connect the microcontroller to the computer MAX232 is used to send the data serially to the computer through RS232. As in the circuit in figure 6.10.
  • 36. Page 35 Fig 6.10 In the computer an application programmed using C# programming language to read the data from the serial port and preview them. Pictures for the project in appendix A16
  • 37. Page 36 Appendix 1 Cables lengths and resistances X (Ω)R (Ω)area (mm2 )L (km)NRNS 0.280.19150121 0.70.4751502.532 0.12040.08171500.43033 0.103040.069921500.368403 0.140.0951500.554 0.0840.0571500.365 0.03080.02091500.1176 0.01450.01251100.0587 0.0290.0251100.198 0.07750.0975700.25109 0.17050.2145700.551110 0.0930.117700.31211 0.0620.078700.21312 0.0930.117700.31412 0.438340.55146701.4141514 0.1240.156700.41615 0.2170.273700.71716 0.1240.156700.41817 0.1240.156700.41918 0.0930.117700.32019 0.04650.0585700.152120 0.13950.1755700.4502121 0.04960.0624700.1622021 0.0620.078700.22322 0.1240.156700.40064021 0.379440.47736701.2246564 0.2170.273700.7006664 0.310.39701.0006766 0.184140.23166700.5947166 0.01550.0195700.0507266 0.3720.468701.2006867 0.363010.45669701.1717068 0.094240.11856700.3046968 0.22320.2808700.7207372 0.1550.195700.5007473 0.371070.46683701.1977572 0.310.39701.0007675 0.3720.468701.2007776 0.38750.4875701.2507877
  • 38. Page 37 0.3720.468701.2008078 0.0310.039700.1007978 0.1240.156700.42423 0.0310.039700.12524 0.0620.078700.22625 0.0620.078700.22724 0.07750.0975700.252822 0.0310.039700.12928 0.04650.0585700.153028 0.0310.039700.13122 0.1550.195700.53220 0.07750.0975700.253332 0.04650.0585700.153419 0.0310.039700.13534 0.2480.312700.83635 0.3720.468701.23736 0.05270.0663700.173836 0.4650.585701.53934 0.0930.117700.34039 0.10850.1365700.354139 0.1240.156700.44217 0.1240.156700.44316 0.1240.156700.44415 0.4650.585701.54514 0.7130.897702.34645 0.3720.468701.24745 0.835451.05105702.6954814 0.310.397014948 0.1550.195700.55049 0.247380.31122700.7985150 0.1550.195700.55251 0.23250.2925700.755352 0.07750.0975700.255453 0.0310.039700.15553 0.931.177035651 1.241.567045756 0.0930.117700.35850 0.0620.078700.25950 0.05320.03611500.19605 0.09680.328UG 950.86160 0.1960.1331500.76261 0.4760.3231501.76362 0.0580.051100.218082 0.24070.20751100.83181180
  • 39. Page 38 0.0580.051100.2182180 0.10440.091100.360817 0.0580.051100.2008281 0.12470.10751100.4308382 0.1450.1251100.5008583 0.32770.28251101.1308685 0.3190.2751101.1008785 0.3770.3251101.3008887 0.0580.051100.2008987 0.03480.031100.1209089 0.12470.10751100.4309290 0.290.251101.0009392 0.580.51102.0009493 0.13630.11751100.4709593 0.68150.58751102.3509695 0.04350.03751100.1509796 0.2030.1751100.7009897 0.33930.29251101.1709998 0.1450.1251100.50010099 0.0580.051100.200101100 0.078590.067751100.271102101 0.0870.0751100.300103101 0.11310.09751100.390104103 0.05580.0702700.180106103 0.72850.9165702.350107106 0.23250.2925700.750108107 0.1240.156700.400109108 0.20770.2613700.670110109 0.4340.546701.400111110 0.0310.039700.100112109 0.9921.248703.200113112 0.1550.195700.500114113 0.10850.1365700.350115113 0.5580.702701.800116115 0.07750.0975700.250117116 0.11780.1482700.380118116 0.620.78702.000119118 0.1240.156700.400120119 0.16120.2028700.520121119 0.0930.117700.300122121 0.07750.0975700.250123118 0.50840.6396701.640124123 0.620.78702.000125123
  • 40. Page 39 0.1240.156700.400126125 0.25420.3198700.820127125 0.1550.195700.500128123 0.3720.468701.200129128 0.2480.312700.800130128 0.2170.273700.700131130 0.53320.6708701.720132131 0.3720.468701.200133132 0.07750.0975700.250151100 0.0310.039700.100152151 0.7750.975702.500153152 0.03720.0468700.120154153 0.09920.1248700.320155153 0.0620.078700.200156155 0.0310.039700.100157156 0.4340.546701.400158156 0.09920.1248700.320159155 0.0310.039700.100160159 0.5270.663701.700161159 0.19530.2457700.630162161 0.26350.3315700.850163162 0.620.78702.000164163 0.310.39701.000165163 0.310.39701.000166165 0.4650.585701.500167166 0.0930.117700.300168167 0.7750.975702.500169168 0.17050.2145700.550170151 0.8371.053702.700171170 0.04650.0585700.150172171 0.5270.663701.700173172 0.2480.312700.800174172 0.3720.468701.200175174 0.0930.117700.300176175 0.20150.2535700.650177175 0.3720.468701.20013496 0.1860.234700.6000.0134134 0.3720.468701.200135134 0.0930.117700.300136135 0.0930.117700.300137136 0.931.17703.000138136 0.1240.156700.400139138 0.04650.0585700.150140139
  • 42. Page 41 Appendix 2 Transformers Loading Transformer PF S rated S average S max LF max S min LF min Tubas-Housing 0.999 250 104.7899 209.5798 0.838319 104.7899 0.41916 Tubas- Abu Omar 0.934 400 199.8465 399.693 0.999233 199.8465 0.499616 Tubas- Almaslamani 0.944 630 186.4631 372.9262 0.591946 186.4631 0.295973 Tubas-Allan 0.914 250 112.6163 225.2326 0.90093 112.6163 0.450465 Tubas-Almasaeed 0.937 250 183.8042 367.6084 1.470434 183.8042 0.735217 Tubas-Alhawooz 0.955 400 190.5618 381.1236 0.952809 190.5618 0.476405 Tubas-Station 0.947 630 187.8887 375.7774 0.596472 187.8887 0.298236 Tubas- Aldaqanyia 0.944 250 81.0795 162.159 0.648636 81.0795 0.324318 Tubas-Alenabosi 0.968 250 47.02444 94.04888 0.376196 47.02444 0.188098 Tubas-Althoghra 0.933 160 56.73022 113.4604 0.709128 56.73022 0.354564 Tubas-Sameeh 0.94 250 14.06143 28.12286 0.112491 14.06143 0.056246 Tubas-Alaqaba 0.681 400 53.82302 107.646 0.269115 53.82302 0.134558 Tubas- Brick Factory 0.946 400 70.51845 141.0369 0.352592 70.51845 0.176296 Tubas- Aldayr 0.934 250 25.70299 51.40598 0.205624 25.70299 0.102812 Tubas- Almasriya 0.938 250 32.43101 64.86202 0.259448 32.43101 0.129724 Tubas-Spanish 0.949 100 10.68236 21.36472 0.213647 10.68236 0.106824
  • 43. Page 42 Tubas- Khalet Alloz 0.836 160 1.30705 2.6141 0.016338 1.30705 0.008169 Tubas-Alsafeh Northern 0.979 160 7.770959 15.54192 0.097137 7.770959 0.048568 Tubas- Transformers Factory 0.897 400 7.405304 14.81061 0.037027 7.405304 0.018513 Tubas-Concrete Factory 0.983 250 14.55556 29.11112 0.116444 14.55556 0.058222 Tubas- Salhab(Alkaraj) 0.999 100 2.134035 4.26807 0.042681 2.134035 0.02134 Tubas- Well 0.951 630 7.554617 15.10923 0.023983 7.554617 0.011991 Aqaba- Eastern 0.9419 400 175.7835 351.567 0.878918 175.7835 0.439459 Aqaba- Western 0.888 400 194.3629 388.7258 0.971815 194.3629 0.485907 Aqaba- Gas Station 0.8 630 6.616667 13.23333 0.021005 6.616667 0.010503 Alfar’a Camp- Old Station 0.936 630 341.9371 683.8742 1.085515 341.9371 0.542757 Alfar’a Camp- Western 0.952 400 136.6954 273.3908 0.683477 136.6954 0.341739 Alfar’a Camp- Al’een 1 630 31.52777 63.05554 0.100088 31.52777 0.050044 Alfar’a Camp- School 0.921 250 59.96289 119.9258 0.479703 59.96289 0.239852 Alfar’a Camp- Water Well 0.979 400 68.63228 137.2646 0.343161 68.63228 0.171581
  • 44. Page 43 Alfar’a Camp- Alhawooz 0.953 400 1.187308 2.374616 0.005937 1.187308 0.002968 Wadi Alfar’a- Ref’at 0.888 400 116.4501 232.9002 0.582251 116.4501 0.291125 Wadi Alfar’a- Alhafreya 0.931 250 92.28379 184.5676 0.73827 92.28379 0.369135 Wadi Alfar’a- Alkazya 0.952 400 163.7862 327.5724 0.818931 163.7862 0.409466 Wadi Alfar’a- Aleen 1 630 42.88888 85.77776 0.136155 42.88888 0.068078 Wadi Alfar’a - Albasaten 0.972 630 136.1433 272.2866 0.432201 136.1433 0.2161 Wadi Alfar’a - Alsafeena 0.946 400 73.03442 146.0688 0.365172 73.03442 0.182586 Wadi Alfar’a - Sameet Tareq 0.917 250 14.71249 29.42498 0.1177 14.71249 0.05885 Wadi Alfar’a - Sameet Khader 0.911 250 70.99563 141.9913 0.567965 70.99563 0.283983 Wadi Alfar’a – Sameer 0.931 250 60.32318 120.6464 0.482585 60.32318 0.241293 Wadi Alfar’a - Yaseedi Eastern 0.96 160 7.173338 14.34668 0.089667 7.173338 0.044833 Wadi Alfar’a- Yaseedi Western 0.968 250 13.53976 27.07952 0.108318 13.53976 0.054159 Wadi Alfar’a – School 0.914 400 2.519051 5.038102 0.012595 2.519051 0.006298
  • 45. Page 44 Wadi Alfar’a -Abu As’ad Crushers 0.661 250 11.19427 22.38854 0.089554 11.19427 0.044777 Ras Alfar’a- Alshareef 0.288 400 113.1005 226.201 0.565503 113.1005 0.282751 Ras Alfar’a- Alhaj Hakeem 0.912 630 193.1465 386.293 0.613163 193.1465 0.306582 Ras Alfar’a- Tubas Well 0.999 400 14.61996 29.23992 0.0731 14.61996 0.03655 Ras Alfar’a- Almalhame 0.923 630 57.32193 114.6439 0.181974 57.32193 0.090987 Ras Alfar’a- Khalet Alqaser2 0.971 630 33.57208 67.14416 0.106578 33.57208 0.053289 Ras Alfar’a- Khalet Alqaser 1 0.904 400 27.94077 55.88154 0.139704 27.94077 0.069852 Ras Alfar’a- Alkharaz Well 0.983 160 23.99241 47.98482 0.299905 23.99241 0.149953 Ras Alfar’a- Mwafaq Alfakhri 0.929 630 158.7152 317.4304 0.503858 158.7152 0.251929 RasAlfar’a- AgriculturalProject 0.956 630 199.1391 398.2782 0.632188 199.1391 0.316094 Ras Alfar’a- Alkhizran 1 160 42.7625 85.525 0.534531 42.7625 0.267266
  • 46. Page 45 Ras Alfar’a- Abu Hamed Well 0.921 630 87.50424 175.0085 0.277791 87.50424 0.138896 Ras Alfar’a- Samara Crushers 0.896 400 5.820702 11.6414 0.029104 5.820702 0.014552 RasAlfar’a- AhmadThyab Well 0.929 630 110.9732 221.9464 0.352296 110.9732 0.176148 Ras Alfar’a- Alashqar Crushers 0.86 630 101.1073 202.2146 0.320976 101.1073 0.160488 Tamoon- Albatma 0.934 160 67.6927 135.3854 0.846159 67.6927 0.423079 Tamoon- Almeshmas 0.903 250 169.2749 338.5498 1.354199 169.2749 0.6771 Tamoon- Borhan 0.92862 250 74.72974 149.4595 0.597838 74.72974 0.298919 Tamoon- Alrafeed 0.95251 250 126.4783 252.9566 1.011826 126.4783 0.505913 Tamoon- Jalamet Albatma 0.95713 100 50.04802 100.096 1.00096 50.04802 0.50048 Tamoon- First of Town 0.95841 250 94.17447 188.3489 0.753396 94.17447 0.376698 Tamoon- Municipality Well 0.49507 630 204.9979 409.9958 0.650787 204.9979 0.325393 Tamoon- National Security 0.93711 160 60.46897 120.9379 0.755862 60.46897 0.377931 Tamoon- Al’ashareen 0.92176 160 22.33335 44.6667 0.279167 22.33335 0.139583
  • 47. Page 46 Aatoof- Aatoof 0.89731 160 7.076683 14.15337 0.088459 7.076683 0.044229 Aatoof- Aljalhoom 0.88555 160 5.393672 10.78734 0.067421 5.393672 0.03371 Serees- Western 0.95158 250 96.49447 192.9889 0.771956 96.49447 0.385978 Serees- Centre 0.92174 250 56.5201 113.0402 0.452161 56.5201 0.22608 Serees- Southern 0.94938 250 49.00664 98.01328 0.392053 49.00664 0.196027 Serees- Almoghor 0.91503 630 46.16687 92.33374 0.146561 46.16687 0.073281 Serees- Wells 0.96733 100 32.7316 65.4632 0.654632 32.7316 0.327316 Serees- Cultural Centre 0.83605 100 3.344082 6.688164 0.066882 3.344082 0.033441 Zababdeh- Eastern 0.98073 630 98.07689 196.1538 0.311355 98.07689 0.155678 Zababdeh- Centre 0.9381 400 137.935 275.87 0.689675 137.935 0.344838 Zababdeh- Western 0.86738 400 111.349 222.698 0.556745 111.349 0.278373 Zababdeh- Agricultural College 0.9318 400 97.86287 195.7257 0.489314 97.86287 0.244657 Zababdeh- School 0.92228 250 10.03997 20.07994 0.08032 10.03997 0.04016 Zababdeh- Safyria 0.93286 250 82.46704 164.9341 0.659736 82.46704 0.329868 Zababdeh- Almanasheer 0.92228 250 10.03997 20.07994 0.08032 10.03997 0.04016 Aljdeedeh- Ras Albalad 0.98718 250 63.84898 127.698 0.510792 63.84898 0.255396 Aljdeedeh- Centre 0.91083 250 67.42555 134.8511 0.539404 67.42555 0.269702
  • 48. Page 47 Aljdeedeh- Almatrooha 0.96184 250 87.01625 174.0325 0.69613 87.01625 0.348065 Aljdeedeh- Wells 0.91084 630 115.5646 231.1292 0.366872 115.5646 0.183436 Aljdeedeh- Western 0.99833 250 26.05163 52.10326 0.208413 26.05163 0.104207 Aljdeedeh- Eastern(Qalalweh) 0.96094 250 47.6396 95.2792 0.381117 47.6396 0.190558 Aljdeedeh- Alsahel 0.94787 250 53.96268 107.9254 0.431701 53.96268 0.215851 AAUJ 1 0.95715 400 161.0022 322.0044 0.805011 161.0022 0.402506 AAUJ 2 0.94212 400 61.60397 123.2079 0.30802 61.60397 0.15401 Jalqamous- Western 0.96358 160 44.09477 88.18954 0.551185 44.09477 0.275592 Jalqamous- Centre 0.941 400 58.87012 117.7402 0.294351 58.87012 0.147175 Jalqamous- Eastern 0.92497 160 29.06232 58.12464 0.363279 29.06232 0.18164 Raba- Centre 0.90998 250 52.62782 105.2556 0.421023 52.62782 0.210511 Raba- Eastern 0.92431 250 54.65786 109.3157 0.437263 54.65786 0.218631 Raba- Western 0.96214 100 29.93456 59.86912 0.598691 29.93456 0.299346 Raba- Almanasheer 0.78694 630 83.56368 167.1274 0.265282 83.56368 0.132641 Raba- Chiclen Farm 0.95062 160 38.05698 76.11396 0.475712 38.05698 0.237856 Mesleyah- Eastern 0.98762 400 63.17331 126.3466 0.315867 63.17331 0.157933 Mesleyah- Western 0.90988 400 72.74752 145.495 0.363738 72.74752 0.181869
  • 49. Page 48 Mesleyah- Almanasheer 0.89566 630 66.668 133.336 0.211644 66.668 0.105822 Mesleyah- Wells 0.89678 630 199.1022 398.2044 0.63207 199.1022 0.316035 Mesleyah- Centre 0.9095 100 19.00451 38.00902 0.38009 19.00451 0.190045 Almghayer- Eastern 0.99998 250 51.37515 102.7503 0.411001 51.37515 0.205501 Almghayer- Western 0.99998 250 29.12249 58.24498 0.23298 29.12249 0.11649 Almghayer- Marah Alkaras 0.99999 100 45.71063 91.42126 0.914213 45.71063 0.457106 Tyaseer- Main 0.91242 250 122.2624 244.5248 0.978099 122.2624 0.48905 Seer- Main 0.91185 400 77.07256 154.1451 0.385363 77.07256 0.192681 Seer- Chicken 1 0.88296 250 12.83718 25.67436 0.102697 12.83718 0.051349 Seer- Alheesh 0.92852 100 14.5108 29.0216 0.290216 14.5108 0.145108 Seer- Chicken 2 0.79625 160 21.73708 43.47416 0.271714 21.73708 0.135857 Em Altoot- Main 0.88765 400 75.44835 150.8967 0.377242 75.44835 0.188621 Aljarba- Main 0.93201 400 84.13808 168.2762 0.42069 84.13808 0.210345 Aljarba- Eastern 0.8697 160 69.94693 139.8939 0.874337 69.94693 0.437168 Aljarba- Blastic Factory 0.85901 250 51.44506 102.8901 0.41156 51.44506 0.20578 Qashda- 154 0.93589 50 11.57537 23.15074 0.463015 11.57537 0.231507 Qashda- Prickles Factory 0.90864 400 30.02487 60.04974 0.150124 30.02487 0.075062
  • 50. Page 49 Qashda- Fakhree 1 400 137.5166 275.0332 0.687583 137.5166 0.343792 Talfeet- Centre 0.88318 100 5.241429 10.48286 0.104829 5.241429 0.052414 Talfeet- Kherbat Aysha 0.99994 50 1.777884 3.555768 0.071115 1.777884 0.035558 Al-Aqaba- Tyaseer 0.81638 160 11.65701 23.31402 0.145713 11.65701 0.072856 Dream Land 0.92987 250 19.16776 38.33552 0.153342 19.16776 0.076671 Dream Land- Mosque 0.9262 250 9.25373 18.50746 0.07403 9.25373 0.037015 Tanin- Main 0.92684 160 6.488566 12.97713 0.081107 6.488566 0.040554 Merkeh- Pump 0.93009 100 11.4116 22.8232 0.228232 11.4116 0.114116 Merkeh- School 0.98518 400 66.05493 132.1099 0.330275 66.05493 0.165137 Merkeh- Abu Omar 0.93579 50 25.82467 51.64934 1.032987 25.82467 0.516493 Merkeh- Wadi Afsheh 0.99751 50 5.991284 11.98257 0.239651 5.991284 0.119826 Merkeh- Almesrara 0.99295 100 15.38622 30.77244 0.307724 15.38622 0.153862 Alzawya- Centre 0.99999 250 20.24722 40.49444 0.161978 20.24722 0.080989 Alzawya- Alwad 0.84018 100 14.91575 29.8315 0.298315 14.91575 0.149158 Alzawya-Faqaset AlKarmel 0.80103 160 14.94418 29.88836 0.186802 14.94418 0.093401 Wadi Da’ooq 0.92175 100 8.653469 17.30694 0.173069 8.653469 0.086535 Alhafeere- Centre 0.91052 100 20.22634 40.45268 0.404527 20.22634 0.202263 Beer AlBasha- Centre 0.92299 400 60.03824 120.0765 0.300191 60.03824 0.150096
  • 51. Page 50 Beer AlBasha- Eastern 0.95899 250 37.63051 75.26102 0.301044 37.63051 0.150522 Zakarneh Crushers 0.8351 630 20.1105 40.221 0.063843 20.1105 0.031921 Qabatiya Well 0.91874 630 216.6569 433.3138 0.6878 216.6569 0.3439 DiamondStone- Crusher 0.84582 630 68.2419 136.4838 0.216641 68.2419 0.10832 Diamond Stone- Factory 0.96871 630 27.78023 55.56046 0.088191 27.78023 0.044096
  • 52. Page 51 Appendix 3 Under voltage buses at maximum case Bus # rated(kv) operating(kv) operating % Bus179 0.400 0.367 91.8 Bus180 0.400 0.375 93.7 Bus186 0.400 0.374 93.5 Bus187 0.400 0.377 94.2 Bus189 0.400 0.379 94.6 Bus190 0.400 0.378 94.6 Bus191 0.400 0.377 94.2 Bus196 0.400 0.376 94.0 Bus197 0.400 0.371 92.8 Bus198 0.400 0.376 94.0 Bus199 0.400 0.374 93.5 Bus200 0.400 0.371 92.8 Bus201 0.400 0.364 90.9 Bus202 0.400 0.373 93.1 Bus207 0.400 0.377 94.2 Bus208 0.400 0.379 94.8 Bus209 0.400 0.379 94.7 Bus210 0.400 0.375 93.6 Bus212 0.400 0.377 94.2 Bus213 0.400 0.377 94.3 Bus214 0.400 0.375 93.8 Bus215 0.400 0.379 94.9 Bus216 0.400 0.380 94.9 Bus217 0.400 0.378 94.5 Bus218 0.400 0.373 93.3 Bus219 0.400 0.378 94.6 Bus220 0.400 0.379 94.7 Bus221 0.400 0.379 94.9 Bus222 0.400 0.369 92.2 Bus223 0.400 0.369 92.2 Bus224 0.400 0.361 90.2 Bus225 0.400 0.377 94.3 Bus226 0.400 0.379 94.7 Bus227 0.400 0.374 93.6 Bus229 0.400 0.371 92.9 Bus230 0.400 0.372 93.0 Bus231 0.400 0.376 94.1 Bus232 0.400 0.380 95.0 Bus233 0.400 0.379 94.9 Bus234 0.400 0.379 94.8
  • 53. Page 52 Bus235 0.400 0.371 92.6 Bus237 0.400 0.376 94.0 Bus238 0.400 0.372 93.1 Bus239 0.400 0.380 94.9 Bus240 0.400 0.376 94.0 Bus241 0.400 0.380 94.9 Bus243 0.400 0.367 91.7 Bus244 0.400 0.371 92.7 Bus245 0.400 0.376 93.9 Bus246 0.400 0.375 93.7 Bus247 0.400 0.378 94.4 Bus248 0.400 0.368 92.0 Bus249 0.400 0.375 93.7 Bus250 0.400 0.374 93.4 Bus251 0.400 0.367 91.8 Bus252 0.400 0.369 92.3 Bus253 0.400 0.367 91.7 Bus254 0.400 0.372 93.0 Bus255 0.400 0.373 93.2 Bus256 0.400 0.369 92.3 Bus257 0.400 0.368 92.1 Bus258 0.400 0.365 91.3 Bus259 0.400 0.369 92.1 Bus260 0.400 0.364 90.9 Bus261 0.400 0.365 91.2 Bus262 0.400 0.371 92.8 Bus263 0.400 0.358 89.4 Bus264 0.400 0.370 92.6 Bus265 0.400 0.370 92.4 Bus266 0.400 0.370 92.4 Bus267 0.400 0.370 92.4 Bus268 0.400 0.372 93.0 Bus269 0.400 0.368 92.0 Bus270 0.400 0.370 92.4 Bus271 0.400 0.373 93.2 Bus272 0.400 0.370 92.4 Bus273 0.400 0.369 92.2 Bus274 0.400 0.375 93.7 Bus277 0.400 0.374 93.4 Bus278 0.400 0.374 93.6 Bus279 0.400 0.365 91.3 Bus280 0.400 0.371 92.8 Bus281 0.400 0.374 93.6 Bus282 0.400 0.373 93.3 Bus283 0.400 0.374 93.6
  • 54. Page 53 Bus284 0.400 0.371 92.8 Bus286 0.400 0.370 92.5 Bus287 0.400 0.367 91.8 Bus288 0.400 0.373 93.3 Bus289 0.400 0.372 93.0 Bus295 0.400 0.369 92.2 Bus296 0.400 0.370 92.4 Bus297 0.400 0.369 92.4 Bus298 0.400 0.369 92.4 Bus299 0.400 0.371 92.8 Bus300 0.400 0.374 93.4 Bus301 0.400 0.372 93.0 Bus302 0.400 0.376 94.1 Bus303 0.400 0.373 93.3 Bus304 0.400 0.372 92.9 Bus305 0.400 0.372 93.0 Bus306 0.400 0.371 92.7 Bus307 0.400 0.375 93.6 Bus308 0.400 0.371 92.8 Bus309 0.400 0.368 92.1 Bus310 0.400 0.368 91.9 Bus311 0.400 0.372 92.9 Bus312 0.400 0.374 93.6 Bus313 0.400 0.366 91.6 Bus314 0.400 0.370 92.5 Bus315 0.400 0.375 93.7 Bus316 0.400 0.368 91.9 Bus317 0.400 0.370 92.5 Bus318 0.400 0.369 92.3 Bus321 0.400 0.376 94.1 Bus327 0.400 0.367 91.7 Bus328 0.400 0.368 92.0
  • 55. Page 54 Appendix 4 Overloaded transformers transformer Srated old LF old AAUJ1 400 1.00625 Serees Western 250 1.049945 Tamoon Albatmah 160 1.057695 Tamoon Almeshmas 250 1.69275 Tamoon Alrafeed 250 1.264785 Tamoon jalamet Albatmah 100 1.2512 Tamoon first of the town 250 1.056745 Tamoon National Security 160 1.007328 Aqaba Eastern 400 1.098647 Aqaba Western 400 1.214769 Faraa Camp Old Station 630 1.356893 wadi alfaraa alhafreia 250 1.01784 Wadi alfaraa gas station 400 1.023663 Housing 250 1.0479 Abu Omar 400 1.249041 Allan Alsood 250 1.126165 Almasaeed 250 1.83804
  • 56. Page 55 Alhawooz 400 1.191013 Althoghra 160 1.019219 Almghier Marah Alkaras 100 1.142766 Tayaseer Main 250 1.222625 Aljarba Eastern 160 1.092922 Merkeh Abu Omar 50 1.291233
  • 57. Page 56 Appendix 5 Tap changing at maximum case Bus # Rated (KV) Operating (KV) Operating % Tab % Bus179 0.400 0.367 91.8 5 Bus180 0.400 0.375 93.7 5 Bus186 0.400 0.374 93.5 5 Bus187 0.400 0.377 94.2 5 Bus189 0.400 0.379 94.6 5 Bus190 0.400 0.378 94.6 5 Bus191 0.400 0.377 94.2 5 Bus196 0.400 0.376 94.0 5 Bus197 0.400 0.371 92.8 5 Bus198 0.400 0.376 94.0 5 Bus199 0.400 0.374 93.5 5 Bus200 0.400 0.371 92.8 5 Bus201 0.400 0.364 90.9 5 Bus202 0.400 0.373 93.1 5 Bus207 0.400 0.377 94.2 5 Bus208 0.400 0.379 94.8 5 Bus209 0.400 0.379 94.7 5 Bus210 0.400 0.375 93.6 5 Bus212 0.400 0.377 94.2 5 Bus213 0.400 0.377 94.3 5 Bus214 0.400 0.375 93.8 5 Bus215 0.400 0.379 94.9 5 Bus216 0.400 0.380 94.9 5 Bus217 0.400 0.378 94.5 5 Bus218 0.400 0.373 93.3 5 Bus219 0.400 0.378 94.6 5 Bus220 0.400 0.379 94.7 5 Bus221 0.400 0.379 94.9 5 Bus222 0.400 0.369 92.2 5 Bus223 0.400 0.369 92.2 5 Bus224 0.400 0.361 90.2 5 Bus225 0.400 0.377 94.3 5 Bus226 0.400 0.379 94.7 5 Bus227 0.400 0.374 93.6 5 Bus229 0.400 0.371 92.9 5 Bus230 0.400 0.372 93.0 5 Bus231 0.400 0.376 94.1 5 Bus232 0.400 0.380 95.0 5
  • 58. Page 57 Bus233 0.400 0.379 94.9 5 Bus234 0.400 0.379 94.8 5 Bus235 0.400 0.371 92.6 5 Bus237 0.400 0.376 94.0 5 Bus238 0.400 0.372 93.1 5 Bus239 0.400 0.380 94.9 5 Bus240 0.400 0.376 94.0 5 Bus241 0.400 0.380 94.9 5 Bus243 0.400 0.367 91.7 5 Bus244 0.400 0.371 92.7 5 Bus245 0.400 0.376 93.9 5 Bus246 0.400 0.375 93.7 5 Bus247 0.400 0.378 94.4 5 Bus248 0.400 0.368 92.0 5 Bus249 0.400 0.375 93.7 5 Bus250 0.400 0.374 93.4 5 Bus251 0.400 0.367 91.8 5 Bus252 0.400 0.369 92.3 5 Bus253 0.400 0.367 91.7 5 Bus254 0.400 0.372 93.0 5 Bus255 0.400 0.373 93.2 5 Bus256 0.400 0.369 92.3 5 Bus257 0.400 0.368 92.1 5 Bus258 0.400 0.365 91.3 5 Bus259 0.400 0.369 92.1 5 Bus260 0.400 0.364 90.9 5 Bus261 0.400 0.365 91.2 5 Bus262 0.400 0.371 92.8 5 Bus263 0.400 0.358 89.4 5 Bus264 0.400 0.370 92.6 5 Bus265 0.400 0.370 92.4 5 Bus266 0.400 0.370 92.4 5 Bus267 0.400 0.370 92.4 5 Bus268 0.400 0.372 93.0 5 Bus269 0.400 0.368 92.0 5 Bus270 0.400 0.370 92.4 5 Bus271 0.400 0.373 93.2 5 Bus272 0.400 0.370 92.4 5 Bus273 0.400 0.369 92.2 5 Bus274 0.400 0.375 93.7 5 Bus277 0.400 0.374 93.4 5 Bus278 0.400 0.374 93.6 5 Bus279 0.400 0.365 91.3 5 Bus280 0.400 0.371 92.8 5 Bus281 0.400 0.374 93.6 5
  • 59. Page 58 Bus282 0.400 0.373 93.3 5 Bus283 0.400 0.374 93.6 5 Bus284 0.400 0.371 92.8 5 Bus286 0.400 0.370 92.5 5 Bus287 0.400 0.367 91.8 5 Bus288 0.400 0.373 93.3 5 Bus289 0.400 0.372 93.0 5 Bus295 0.400 0.369 92.2 5 Bus296 0.400 0.370 92.4 5 Bus297 0.400 0.369 92.4 5 Bus298 0.400 0.369 92.4 5 Bus299 0.400 0.371 92.8 5 Bus300 0.400 0.374 93.4 5 Bus301 0.400 0.372 93.0 5 Bus302 0.400 0.376 94.1 5 Bus303 0.400 0.373 93.3 5 Bus304 0.400 0.372 92.9 5 Bus305 0.400 0.372 93.0 5 Bus306 0.400 0.371 92.7 5 Bus307 0.400 0.375 93.6 5 Bus308 0.400 0.371 92.8 5 Bus309 0.400 0.368 92.1 5 Bus310 0.400 0.368 91.9 5 Bus311 0.400 0.372 92.9 5 Bus312 0.400 0.374 93.6 5 Bus313 0.400 0.366 91.6 5 Bus314 0.400 0.370 92.5 5 Bus315 0.400 0.375 93.7 5 Bus316 0.400 0.368 91.9 5 Bus317 0.400 0.370 92.5 5 Bus318 0.400 0.369 92.3 5 Bus321 0.400 0.376 94.1 5 Bus327 0.400 0.367 91.7 5 Bus328 0.400 0.368 92.0 5
  • 60. Page 59 Appendix 6 Maximum case before and after adding capacitors After Taps After Capacitors Bus Rated (KV) Operating (KV) Operating % Cap (KVAR) Operating (KV) Operating % Bus179 0.400 0.3848 96.2 50 0.3888 97.2 Bus180 0.400 0.392 98 0.3924 98.1 Bus184 0.400 0.3828 95.7 10 0.3836 95.9 Bus186 0.400 0.3924 98.1 0.3984 99.6 Bus187 0.400 0.3952 98.8 0.3956 98.9 Bus188 0.400 0.382 95.5 20 0.3852 96.3 Bus189 0.400 0.3964 99.1 0.3968 99.2 Bus190 0.400 0.3968 99.2 0.3972 99.3 Bus191 0.400 0.394 98.5 0.3944 98.6 Bus196 0.400 0.3936 98.4 0.394 98.5 Bus197 0.400 0.3892 97.3 0.3896 97.4 Bus198 0.400 0.3944 98.6 0.3948 98.7 Bus199 0.400 0.392 98 0.3928 98.2 Bus200 0.400 0.3892 97.3 0.3896 97.4 Bus201 0.400 0.3808 95.2 100 0.388 97 Bus202 0.400 0.3904 97.6 0.3912 97.8 Bus203 0.400 0.3812 95.3 10 0.3828 95.7 Bus204 0.400 0.3828 95.7 5 0.3836 95.9 Bus205 0.400 0.3824 95.6 5 0.3832 95.8 Bus206 0.400 0.3812 95.3 25 0.3828 95.7 Bus207 0.400 0.3952 98.8 0.3956 98.9 Bus208 0.400 0.3972 99.3 0.3976 99.4 Bus209 0.400 0.3972 99.3 0.3976 99.4 Bus210 0.400 0.3928 98.2 0.3932 98.3 Bus212 0.400 0.3952 98.8 0.3956 98.9 Bus213 0.400 0.3956 98.9 0.396 99 Bus214 0.400 0.3936 98.4 0.394 98.5 Bus215 0.400 0.398 99.5 0.3984 99.6 Bus216 0.400 0.398 99.5 0.3988 99.7 Bus217 0.400 0.3964 99.1 0.3968 99.2 Bus218 0.400 0.3912 97.8 0.392 98 Bus219 0.400 0.3968 99.2 0.3972 99.3 Bus220 0.400 0.3972 99.3 0.3976 99.4 Bus221 0.400 0.398 99.5 0.3984 99.6 Bus222 0.400 0.3868 96.7 0.3872 96.8 Bus223 0.400 0.3856 96.4 0.386 96.5 Bus224 0.400 0.39 97.5 0.3904 97.6 Bus225 0.400 0.3956 98.9 0.396 99
  • 61. Page 60 Bus226 0.400 0.3972 99.3 0.398 99.5 Bus227 0.400 0.3924 98.1 0.3932 98.3 Bus229 0.400 0.3888 97.2 0.3892 97.3 Bus230 0.400 0.39 97.5 0.3908 97.7 Bus231 0.400 0.3944 98.6 0.3952 98.8 Bus232 0.400 0.398 99.5 0.3984 99.6 Bus233 0.400 0.398 99.5 0.3984 99.6 Bus234 0.400 0.398 99.5 0.3984 99.6 Bus235 0.400 0.3884 97.1 0.3892 97.3 Bus237 0.400 0.3944 98.6 0.3948 98.7 Bus238 0.400 0.3904 97.6 0.3908 97.7 Bus239 0.400 0.3984 99.6 0.3988 99.7 Bus240 0.400 0.3944 98.6 0.3952 98.8 Bus241 0.400 0.398 99.5 0.3984 99.6 Bus242 0.400 0.3812 95.3 5 0.3824 95.6 Bus243 0.400 0.384 96 100 0.3888 97.2 Bus244 0.400 0.3876 96.9 0.3884 97.1 Bus245 0.400 0.3936 98.4 0.3944 98.6 Bus246 0.400 0.3928 98.2 0.3936 98.4 Bus247 0.400 0.3956 98.9 0.3964 99.1 Bus248 0.400 0.3848 96.2 0.3856 96.4 Bus249 0.400 0.3928 98.2 0.394 98.5 Bus250 0.400 0.3916 97.9 50 0.3924 98.1 Bus251 0.400 0.3844 96.1 0.3876 96.9 Bus252 0.400 0.3868 96.7 0.3876 96.9 Bus253 0.400 0.3844 96.1 20 0.0264 6.6 Bus254 0.400 0.3896 97.4 0.3904 97.6 Bus255 0.400 0.3908 97.7 0.3916 97.9 Bus256 0.400 0.3864 96.6 0.3876 96.9 Bus257 0.400 0.386 96.5 0.3868 96.7 Bus258 0.400 0.3824 95.6 50 0.3848 96.2 Bus259 0.400 0.3856 96.4 0.3864 96.6 Bus260 0.400 0.3808 95.2 40 0.3856 96.4 Bus261 0.400 0.382 95.5 60 0.3868 96.7 Bus262 0.400 0.3884 97.1 0.3896 97.4 Bus263 0.400 0.374 93.5 15 0.38 95 Bus264 0.400 0.388 97 0.3888 97.2 Bus265 0.400 0.3872 96.8 0.388 97 Bus266 0.400 0.3872 96.8 0.388 97 Bus267 0.400 0.3872 96.8 0.3884 97.1 Bus268 0.400 0.3896 97.4 0.3908 97.7 Bus269 0.400 0.3852 96.3 0.3864 96.6 Bus270 0.400 0.3872 96.8 0.3884 97.1 Bus271 0.400 0.3904 97.6 0.3916 97.9 Bus272 0.400 0.3868 96.7 0.388 97
  • 62. Page 61 Bus273 0.400 0.386 96.5 0.3876 96.9 Bus274 0.400 0.3928 98.2 0.3936 98.4 Bus277 0.400 0.3916 97.9 0.3924 98.1 Bus278 0.400 0.3924 98.1 0.3932 98.3 Bus279 0.400 0.3824 95.6 50 0.3936 98.4 Bus280 0.400 0.3892 97.3 0.39 97.5 Bus281 0.400 0.392 98 0.3932 98.3 Bus282 0.400 0.3912 97.8 0.392 98 Bus283 0.400 0.392 98 0.3932 98.3 Bus284 0.400 0.3888 97.2 0.3896 97.4 Bus286 0.400 0.3872 96.8 0.3884 97.1 Bus287 0.400 0.3844 96.1 0.3852 96.3 Bus288 0.400 0.3912 97.8 0.392 98 Bus289 0.400 0.3896 97.4 0.3912 97.8 Bus295 0.400 0.3856 96.4 0.3864 96.6 Bus296 0.400 0.3872 96.8 0.388 97 Bus297 0.400 0.3868 96.7 0.388 97 Bus298 0.400 0.3868 96.7 0.388 97 Bus299 0.400 0.3888 97.2 0.3896 97.4 Bus300 0.400 0.3912 97.8 0.392 98 Bus301 0.400 0.3896 97.4 0.3904 97.6 Bus302 0.400 0.3956 98.9 0.3988 99.7 Bus303 0.400 0.3908 97.7 0.3916 97.9 Bus304 0.400 0.3892 97.3 0.3896 97.4 Bus305 0.400 0.3896 97.4 0.3904 97.6 Bus306 0.400 0.3884 97.1 0.3892 97.3 Bus307 0.400 0.3924 98.1 0.3932 98.3 Bus308 0.400 0.3892 97.3 0.39 97.5 Bus309 0.400 0.386 96.5 0.3868 96.7 Bus310 0.400 0.3852 96.3 0.386 96.5 Bus311 0.400 0.3892 97.3 0.39 97.5 Bus312 0.400 0.392 98 0.3928 98.2 Bus313 0.400 0.3836 95.9 20 0.3856 96.4 Bus314 0.400 0.3876 96.9 0.3884 97.1 Bus315 0.400 0.3928 98.2 0.3936 98.4 Bus316 0.400 0.3852 96.3 0.386 96.5 Bus317 0.400 0.3868 96.7 0.388 97 Bus318 0.400 0.3864 96.6 0.3872 96.8 Bus320 0.400 0.3824 95.6 20 0.3828 95.7 Bus321 0.400 0.3944 98.6 0.3952 98.8 Bus324 0.400 0.39 97.5 50 0.3904 97.6 Bus327 0.400 0.3844 96.1 50 0.3864 96.6 Bus328 0.400 0.3848 96.2 0.386 96.5 Bus65 0.400 0.3844 96.1 50 0.3876 96.9 Bus69 0.400 0.382 95.5 40 0.386 96.5
  • 63. Page 62 Appendix 7 Maximum case voltages after taps and capacitors Bus number V rated (KV) Operating % Bus65 0.4 97.646 Bus68 0.4 99.519 Bus69 0.4 97.426 Bus70 0.4 97.275 Bus73 0.4 97.309 Bus179 0.4 99.029 Bus180 0.4 99.483 Bus181 0.4 100.755
  • 64. Page 63 Bus182 0.4 97.209 Bus183 0.4 97.114 Bus184 0.4 96.815 Bus185 0.4 97.207 Bus186 0.4 99.632 Bus187 0.4 100.218 Bus188 0.4 97.264 Bus189 0.4 100.444 Bus190 0.4 100.526 Bus191 0.4 99.557 Bus192 0.4 97.197 Bus193 0.4 97.617 Bus195 0.4 94.478 Bus196 0.4 99.841 Bus197 0.4 99.029 Bus198 0.4 100.029 Bus199 0.4 99.619 Bus200 0.4 99.01 Bus201 0.4 99.11 Bus202 0.400 99.299 Bus203 0.4 96.639 Bus204 0.400 96.793 Bus205 0.4 96.718 Bus206 0.400 96.653 Bus207 0.4 100.191 Bus208 0.4 100.601 Bus209 0.4 100.579 Bus210 0.4 99.762 Bus211 0.4 96.316 Bus212 0.4 100.199 Bus213 0.4 100.296 Bus214 0.4 99.876 Bus215 0.4 100.782 Bus216 0.4 100.815 Bus217 0.4 101.112 Bus218 0.4 99.482 Bus219 0.4 100.538
  • 65. Page 64 Bus220 0.4 100.467 Bus221 0.4 100.792 Bus222 0.4 98.578 Bus223 0.4 98.254 Bus224 0.4 99.171 Bus225 0.4 100.313 Bus226 0.4 100.649 Bus227 0.4 99.7 Bus228 0.4 96.582 Bus229 0.4 98.889 Bus230 0.4 99.296 Bus231 0.4 100.102 Bus232 0.4 100.883 Bus233 0.4 100.795 Bus234 0.4 100.766 Bus235 0.4 98.914 Bus236 0.4 100.977 Bus237 0.4 100.091 Bus238 0.4 99.263 Bus239 0.4 100.8 Bus240 0.4 100.09 Bus241 0.4 100.795 Bus242 0.4 96.525 Bus243 0.4 99.13 Bus244 0.4 98.712 Bus245 0.4 99.937 Bus246 0.4 99.815 Bus247 0.4 100.386 Bus248 0.4 98.206 Bus249 0.4 99.85 Bus250 0.4 99.588 Bus251 0.4 98.717 Bus252 0.4 98.643 Bus253 0.4 98.492 Bus254 0.4 99.202 Bus255 0.4 99.404 Bus256 0.4 98.612
  • 66. Page 65 Bus257 0.4 98.472 Bus258 0.4 98.163 Bus259 0.4 98.385 Bus260 0.4 98.502 Bus261 0.4 98.718 Bus262 0.4 99.003 Bus263 0.4 97.418 Bus264 0.4 98.897 Bus265 0.4 98.744 Bus266 0.4 98.734 Bus267 0.4 98.76 Bus268 0.4 99.223 Bus269 0.4 98.354 Bus270 0.4 98.766 Bus271 0.4 99.416 Bus272 0.4 98.653 Bus273 0.4 98.522 Bus274 0.4 99.837 Bus277 0.4 99.584 Bus278 0.4 99.738 Bus279 0.4 98.34 Bus280 0.4 99.08 Bus281 0.4 99.688 Bus282 0.4 99.479 Bus283 0.4 99.701 Bus284 0.4 99.01 Bus286 0.4 98.75 Bus287 0.4 98.194 Bus288 0.4 99.461 Bus289 0.4 99.207 Bus291 0.4 94.681 Bus295 0.4 98.364 Bus296 0.4 98.735 Bus297 0.4 98.674 Bus298 0.4 98.67 Bus299 0.4 99.006 Bus300 0.4 99.454
  • 67. Page 66 Bus301 0.4 99.164 Bus302 0.4 100.108 Bus303 0.4 99.446 Bus304 0.4 99.031 Bus305 0.4 99.136 Bus306 0.4 98.938 Bus307 0.4 99.742 Bus308 0.4 99.061 Bus309 0.4 98.44 Bus310 0.4 98.31 Bus311 0.4 99.039 Bus312 0.4 99.672 Bus313 0.4 98.343 Bus314 0.4 98.745 Bus315 0.4 99.825 Bus316 0.4 98.295 Bus317 0.4 98.628 Bus318 0.4 98.506 Bus319 0.4 96.317 Bus320 0.4 96.592 Bus321 0.4 100.114 Bus322 0.4 96.532 Bus323 0.4 97.181 Bus324 0.4 97.022 Bus325 0.4 97.196 Bus327 0.4 98.482 Bus328 0.4 98.269 Appendix 8
  • 68. Page 67 Transformers changing transformer Srated old Savg LF old Srated new LF new AAUJ1 400 402.5 1.00625 250+250 0.644 Serees Western 250 262.48625 1.049945 400 0.4824 Tamoon Albatmah 160 169.23125 1.057695 250 0.5415 Tamoon Almeshmas 250 423.1875 1.69275 250+250 0.6771 Tamoon Alrafeed 250 316.19625 1.264785 400 0.6323 Tamoon jalamet Albatmah 100 125.12 1.2512 160 0.6256 Tamoon first of the town 250 264.18625 1.056745 160+160 0.5885 Tamoon National Security 160 161.1725 1.007328 250 0.4837 Aqaba Eastern 400 439.45875 1.098647 630 0.558 Aqaba Western 400 485.9075 1.214769 630 0.617 Faraa Camp Old Station 630 854.8425 1.356893 630+400 0.6639 wadi alfaraa alhafreia 250 254.46 1.01784 400 0.4614 Wadi alfaraa gas station 400 409.465 1.023663 630 0.5199 Housing 250 261.975 1.0479 400 0.5239 Abu Omar 400 499.61625 1.249041 630 0.6344 Allan Alsood 250 281.54125 1.126165 250+250 0.4504 Almasaeed 250 459.51 1.83804 630 0.5835 Alhawooz 400 476.405 1.191013 630 0.6049 Althoghra 160 163.075 1.019219 250 0.4538 Almghier Marah Alkaras 100 114.276625 1.142766 160 0.5713 Tayaseer Main 250 305.65625 1.222625 400 0.6113 Aljarba Eastern 160 174.8675 1.092922 250 0.5595 Merkeh Abu Omar 50 64.561625 1.291233 100 0.5164
  • 69. Page 68 Appendix 9 The voltages on the buses after changing the transformers Bus number Vrated Operating (%) Bus65 0.4 98.353 Bus68 0.4 99.519 Bus69 0.4 97.774 Bus70 0.4 97.286 Bus73 0.4 97.322 Bus179 0.4 101.288 Bus180 0.4 100.658 Bus181 0.4 100.769 Bus182 0.4 97.223 Bus183 0.4 97.128 Bus184 0.4 96.829 Bus185 0.4 97.221 Bus186 0.4 100.719 Bus187 0.4 100.234 Bus188 0.4 97.279 Bus189 0.4 100.924
  • 70. Page 69 Bus190 0.4 100.543 Bus191 0.4 101.273 Bus192 0.4 97.209 Bus193 0.4 97.63 Bus195 0.4 95.529 Bus196 0.4 100.276 Bus197 0.4 99.045 Bus198 0.4 100.046 Bus199 0.4 100.403 Bus200 0.4 100.06 Bus201 0.4 100.469 Bus202 0.4 100.191 Bus203 0.4 96.653 Bus204 0.4 96.809 Bus205 0.4 96.735 Bus206 0.4 96.667 Bus207 0.4 100.206 Bus208 0.4 100.615 Bus209 0.4 100.593 Bus210 0.4 99.776 Bus211 0.4 96.33 Bus212 0.4 100.213 Bus213 0.4 100.31 Bus214 0.4 99.89 Bus215 0.4 100.796 Bus216 0.4 100.829 Bus217 0.4 101.126 Bus218 0.4 99.496 Bus219 0.4 100.552 Bus220 0.4 100.481 Bus221 0.4 100.806 Bus222 0.4 98.592 Bus223 0.4 99.332 Bus224 0.4 99.92 Bus225 0.4 100.327 Bus226 0.4 100.663 Bus227 0.4 99.714
  • 71. Page 70 Bus228 0.4 96.596 Bus229 0.4 99.798 Bus230 0.4 99.31 Bus231 0.4 100.116 Bus232 0.4 100.897 Bus233 0.4 100.809 Bus234 0.4 100.78 Bus235 0.4 99.733 Bus236 0.4 100.991 Bus237 0.4 100.105 Bus238 0.4 99.277 Bus239 0.4 100.814 Bus240 0.4 100.104 Bus241 0.4 100.809 Bus242 0.4 96.542 Bus243 0.4 100.076 Bus244 0.4 99.721 Bus245 0.4 99.958 Bus246 0.4 99.836 Bus247 0.4 100.407 Bus248 0.4 98.228 Bus249 0.4 99.872 Bus250 0.4 99.609 Bus251 0.4 98.74 Bus252 0.4 98.665 Bus253 0.4 98.514 Bus254 0.4 99.227 Bus255 0.4 99.43 Bus256 0.4 98.638 Bus257 0.4 98.498 Bus258 0.4 98.189 Bus259 0.4 98.414 Bus260 0.4 98.376 Bus261 0.4 98.748 Bus262 0.4 99.038 Bus263 0.4 98.502 Bus264 0.4 98.934
  • 72. Page 71 Bus265 0.4 98.782 Bus266 0.4 98.771 Bus267 0.4 98.797 Bus268 0.4 99.259 Bus269 0.4 98.391 Bus270 0.4 98.802 Bus271 0.4 99.453 Bus272 0.4 98.69 Bus273 0.4 98.56 Bus274 0.4 99.859 Bus277 0.4 99.607 Bus278 0.4 99.761 Bus279 0.4 98.69 Bus280 0.4 99.103 Bus281 0.4 99.711 Bus282 0.4 99.502 Bus283 0.4 99.723 Bus284 0.4 99.033 Bus286 0.4 98.772 Bus287 0.4 99.006 Bus288 0.4 99.483 Bus289 0.4 99.23 Bus291 0.4 94.703 Bus294 33 97.385 Bus295 0.4 98.385 Bus296 0.4 98.757 Bus297 0.4 98.696 Bus298 0.4 98.692 Bus299 0.4 99.028 Bus300 0.4 99.475 Bus301 0.4 99.185 Bus302 0.4 100.128 Bus303 0.4 99.467 Bus304 0.4 99.051 Bus305 0.4 99.156 Bus306 0.4 98.959 Bus307 0.4 99.762
  • 73. Page 72 Bus308 0.4 99.082 Bus309 0.4 98.461 Bus310 0.4 98.331 Bus311 0.4 99.06 Bus312 0.4 99.693 Bus313 0.4 99.028 Bus314 0.4 98.767 Bus315 0.4 99.846 Bus316 0.4 98.316 Bus317 0.4 98.65 Bus318 0.4 98.528 Bus319 0.4 96.335 Bus320 0.4 96.606 Bus321 0.4 100.131 Bus322 0.4 96.548 Bus323 0.4 97.195 Bus324 0.4 97.036 Bus325 0.4 97.21 Bus327 0.4 98.504 Bus328 0.4 98.628
  • 74. Page 73 Appendix 10 Voltages on buses after the new connection point Bus Vrated Operating (%) Bus65 0.4 98.484 Bus68 0.4 99.519 Bus69 0.4 98.241 Bus70 0.4 97.853
  • 75. Page 74 Bus73 0.4 97.991 Bus179 0.4 102.013 Bus180 0.4 101.362 Bus181 0.4 101.475 Bus182 0.4 97.905 Bus183 0.4 97.81 Bus184 0.4 97.515 Bus185 0.4 97.962 Bus186 0.4 101.609 Bus187 0.4 101.211 Bus188 0.4 98.211 Bus189 0.4 102.067 Bus190 0.4 101.736 Bus191 0.4 101.924 Bus192 0.4 97.84 Bus193 0.4 98.259 Bus195 0.4 100.861 Bus196 0.4 100.981 Bus197 0.4 99.773 Bus198 0.4 100.769 Bus199 0.4 101.124 Bus200 0.4 100.783 Bus201 0.4 101.199 Bus202 0.4 100.913 Bus203 0.4 97.34 Bus204 0.4 97.49 Bus205 0.4 97.418 Bus206 0.4 97.352 Bus207 0.4 100.928 Bus208 0.4 101.325 Bus209 0.4 101.305 Bus210 0.4 100.499 Bus211 0.4 97.012 Bus212 0.4 100.934 Bus213 0.4 101.031 Bus214 0.4 100.613 Bus215 0.4 101.515
  • 76. Page 75 Bus216 0.4 101.548 Bus217 0.4 101.843 Bus218 0.4 100.221 Bus219 0.4 101.272 Bus220 0.4 101.193 Bus221 0.4 101.524 Bus222 0.4 99.32 Bus223 0.4 100.036 Bus224 0.4 100.628 Bus225 0.4 101.047 Bus226 0.4 101.381 Bus227 0.4 100.437 Bus228 0.4 97.278 Bus229 0.4 100.507 Bus230 0.4 100.035 Bus231 0.4 100.837 Bus232 0.4 101.615 Bus233 0.4 101.526 Bus234 0.4 101.498 Bus235 0.4 100.455 Bus236 0.4 101.708 Bus237 0.4 100.826 Bus238 0.4 100.002 Bus239 0.4 101.532 Bus240 0.4 100.824 Bus241 0.4 101.525 Bus242 0.4 97.761 Bus243 0.4 101.547 Bus244 0.4 101.224 Bus245 0.4 101.888 Bus246 0.4 101.901 Bus247 0.4 102.465 Bus248 0.4 100.553 Bus249 0.4 102.245 Bus250 0.4 101.871 Bus251 0.4 101.2 Bus252 0.4 101.149
  • 77. Page 76 Bus253 0.4 100.97 Bus254 0.4 102.266 Bus255 0.4 102.627 Bus256 0.4 101.99 Bus257 0.4 101.828 Bus258 0.4 101.545 Bus259 0.4 102.465 Bus260 0.4 102.549 Bus261 0.4 103.021 Bus262 0.4 103.633 Bus263 0.4 103.285 Bus264 0.4 103.657 Bus265 0.4 103.509 Bus266 0.4 103.499 Bus267 0.4 103.524 Bus268 0.4 104.562 Bus269 0.4 103.812 Bus270 0.4 104.012 Bus271 0.4 104.162 Bus272 0.4 103.363 Bus273 0.4 103.292 Bus274 0.4 102.199 Bus277 0.4 101.948 Bus278 0.4 102.099 Bus279 0.4 101.062 Bus280 0.4 101.452 Bus281 0.4 102.043 Bus282 0.4 101.845 Bus283 0.4 102.063 Bus284 0.4 101.381 Bus286 0.4 101.124 Bus287 0.4 101.356 Bus288 0.4 101.813 Bus289 0.4 101.575 Bus291 0.4 96.934 Bus295 0.4 100.685 Bus296 0.4 101.112
  • 78. Page 77 Bus297 0.4 101.052 Bus298 0.4 101.048 Bus299 0.4 101.379 Bus300 0.4 101.375 Bus301 0.4 101.116 Bus302 0.4 102.049 Bus303 0.4 101.395 Bus304 0.4 100.949 Bus305 0.4 101.056 Bus306 0.4 100.891 Bus307 0.4 101.685 Bus308 0.4 101.013 Bus309 0.4 100.399 Bus310 0.4 100.271 Bus311 0.4 100.959 Bus312 0.4 101.603 Bus313 0.4 100.965 Bus314 0.4 100.7 Bus315 0.4 101.767 Bus316 0.4 100.256 Bus317 0.4 100.959 Bus318 0.4 100.834 Bus319 0.4 97.712 Bus320 0.4 97.451 Bus321 0.4 101.347 Bus322 0.4 97.698 Bus323 0.4 97.967 Bus324 0.4 97.814 Bus325 0.4 97.982 Bus327 0.4 100.961 Bus328 0.4 103.296
  • 80. Page 79 Appendix 11 Maximum new capacitors and taps after the connection point Bus number New capacitor (KVAR) New tap (%) 182 2.5 183 2.5
  • 81. Page 80 184 2.5 185 2.5 188 2.5 192 2.5 193 2.5 195 5 203 5 204 5 205 5 206 5 211 5 222 60 - 228 5 242 2.5 291 5 319 2.5 320 5 322 2.5 323 2.5 324 2.5 325 2.5 65 2.5 68 2.5 69 2.5 70 2.5 73 2.5
  • 82. Page 81 Appendix 12 Minimum case original voltages Bus number Vrated Operating (%) Bus65 0.400 98.454 Bus68 0.400 99.760 Bus69 0.400 98.284 Bus70 0.400 98.666 Bus73 0.400 98.682 Bus179 0.400 96.900 Bus180 0.400 97.504 Bus181 0.400 98.063 Bus182 0.400 98.635 Bus183 0.400 98.589 Bus184 0.400 98.367 Bus185 0.400 98.631 Bus186 0.400 97.630 Bus187 0.400 97.785 Bus188 0.400 98.303 Bus189 0.400 97.916 Bus190 0.400 97.917 Bus191 0.400 97.700 Bus192 0.400 98.626 Bus193 0.400 98.834 Bus195 0.400 97.247 Bus196 0.400 97.174 Bus197 0.400 97.239 Bus198 0.400 97.697 Bus199 0.400 97.512 Bus200 0.400 97.237 Bus201 0.400 96.532 Bus202 0.400 97.366 Bus203 0.400 98.241 Bus204 0.400 98.368 Bus205 0.400 98.333 Bus206 0.400 98.254 Bus207 0.400 97.774 Bus208 0.400 97.989 Bus209 0.400 97.974 Bus210 0.400 97.586 Bus211 0.400 98.207 Bus212 0.400 97.781 Bus213 0.400 97.826 Bus214 0.400 97.635 Bus215 0.400 98.048
  • 83. Page 82 Bus216 0.400 98.063 Bus217 0.400 98.200 Bus218 0.400 97.457 Bus219 0.400 97.937 Bus220 0.400 97.916 Bus221 0.400 98.053 Bus222 0.400 97.041 Bus223 0.400 97.410 Bus224 0.400 97.413 Bus225 0.400 97.835 Bus226 0.400 97.988 Bus227 0.400 97.555 Bus228 0.400 98.336 Bus229 0.400 97.216 Bus230 0.400 97.367 Bus231 0.400 97.738 Bus232 0.400 98.095 Bus233 0.400 98.055 Bus234 0.400 98.042 Bus235 0.400 97.201 Bus236 0.400 98.139 Bus237 0.400 97.735 Bus238 0.400 97.357 Bus239 0.400 98.058 Bus240 0.400 97.732 Bus241 0.400 98.059 Bus242 0.400 98.257 Bus243 0.400 96.806 Bus244 0.400 97.117 Bus245 0.400 97.643 Bus246 0.400 97.575 Bus247 0.400 97.838 Bus248 0.400 96.891 Bus249 0.400 97.586 Bus250 0.400 97.470 Bus251 0.400 96.832 Bus252 0.400 97.036 Bus253 0.400 96.818 Bus254 0.400 97.285 Bus255 0.400 97.382 Bus256 0.400 97.015 Bus257 0.400 96.950 Bus258 0.400 96.660 Bus259 0.400 96.922 Bus260 0.400 96.107 Bus261 0.400 96.606
  • 84. Page 83 Bus262 0.400 97.199 Bus263 0.400 95.939 Bus264 0.400 97.145 Bus265 0.400 97.076 Bus266 0.400 97.070 Bus267 0.400 97.083 Bus268 0.400 97.296 Bus269 0.400 96.896 Bus270 0.400 97.085 Bus271 0.400 97.382 Bus272 0.400 97.043 Bus273 0.400 96.974 Bus274 0.400 97.580 Bus277 0.400 97.462 Bus278 0.400 97.533 Bus279 0.400 96.670 Bus280 0.400 97.234 Bus281 0.400 97.515 Bus282 0.400 97.416 Bus283 0.400 97.517 Bus284 0.400 97.203 Bus286 0.400 97.084 Bus287 0.400 96.971 Bus288 0.400 97.414 Bus289 0.400 97.295 Bus291 0.400 97.383 Bus294 33.000 98.713 Bus295 0.400 96.929 Bus296 0.400 97.080 Bus297 0.400 97.051 Bus298 0.400 97.049 Bus299 0.400 97.201 Bus300 0.400 97.427 Bus301 0.400 97.282 Bus302 0.400 97.712 Bus303 0.400 97.409 Bus304 0.400 97.238 Bus305 0.400 97.283 Bus306 0.400 97.180 Bus307 0.400 97.546 Bus308 0.400 97.234 Bus309 0.400 96.954 Bus310 0.400 96.899 Bus311 0.400 97.239 Bus312 0.400 97.519 Bus313 0.400 96.764
  • 85. Page 84 Bus314 0.400 97.092 Bus315 0.400 97.585 Bus316 0.400 96.890 Bus317 0.400 97.042 Bus318 0.400 96.991 Bus319 0.400 98.190 Bus320 0.400 98.328 Bus321 0.400 97.732 Bus322 0.400 98.297 Bus323 0.400 98.618 Bus324 0.400 98.392 Bus325 0.400 98.625 Bus327 0.400 96.814 Bus328 0.400 97.015
  • 86. Page 85 Appendix 13 Minimum after changing taps Bus number Vrated Operating (%) Bus65 0.400 98.445 Bus68 0.400 99.760 Bus69 0.400 98.251 Bus70 0.400 98.626 Bus73 0.400 101.099 Bus179 0.400 101.654 Bus180 0.400 102.194 Bus181 0.400 102.842 Bus182 0.400 98.582 Bus183 0.400 98.534 Bus184 0.400 98.318 Bus185 0.400 98.581 Bus186 0.400 102.434 Bus187 0.400 102.598 Bus188 0.400 98.247 Bus189 0.400 102.690 Bus190 0.400 102.736 Bus191 0.400 102.412 Bus192 0.400 98.582 Bus193 0.400 98.790 Bus195 0.400 97.188 Bus196 0.400 101.830 Bus197 0.400 102.012 Bus198 0.400 102.503 Bus199 0.400 102.304 Bus200 0.400 102.010 Bus201 0.400 101.254 Bus202 0.400 102.148 Bus203 0.400 98.185 Bus204 0.400 98.308 Bus205 0.400 98.273 Bus206 0.400 98.191 Bus207 0.400 102.581 Bus208 0.400 102.775 Bus209 0.400 102.764 Bus210 0.400 102.376 Bus211 0.400 98.136 Bus212 0.400 102.585 Bus213 0.400 102.633 Bus214 0.400 102.429 Bus215 0.400 102.871
  • 87. Page 86 Bus216 0.400 102.888 Bus217 0.400 103.033 Bus218 0.400 102.237 Bus219 0.400 102.752 Bus220 0.400 102.704 Bus221 0.400 102.875 Bus222 0.400 101.790 Bus223 0.400 102.118 Bus224 0.400 102.122 Bus225 0.400 102.640 Bus226 0.400 102.804 Bus227 0.400 102.341 Bus228 0.400 98.269 Bus229 0.400 101.896 Bus230 0.400 102.140 Bus231 0.400 102.537 Bus232 0.400 102.919 Bus233 0.400 102.876 Bus234 0.400 102.862 Bus235 0.400 101.961 Bus236 0.400 102.966 Bus237 0.400 102.533 Bus238 0.400 102.128 Bus239 0.400 102.879 Bus240 0.400 102.530 Bus241 0.400 102.874 Bus242 0.400 98.191 Bus243 0.400 101.543 Bus244 0.400 101.784 Bus245 0.400 102.412 Bus246 0.400 102.359 Bus247 0.400 102.641 Bus248 0.400 101.555 Bus249 0.400 102.368 Bus250 0.400 102.244 Bus251 0.400 101.560 Bus252 0.400 101.778 Bus253 0.400 101.545 Bus254 0.400 102.043 Bus255 0.400 102.133 Bus256 0.400 101.753 Bus257 0.400 101.683 Bus258 0.400 101.373 Bus259 0.400 101.607 Bus260 0.400 100.778 Bus261 0.400 101.312
  • 88. Page 87 Bus262 0.400 101.929 Bus263 0.400 100.597 Bus264 0.400 101.889 Bus265 0.400 101.815 Bus266 0.400 101.808 Bus267 0.400 101.822 Bus268 0.400 102.043 Bus269 0.400 101.622 Bus270 0.400 101.824 Bus271 0.400 102.142 Bus272 0.400 101.750 Bus273 0.400 101.705 Bus274 0.400 102.362 Bus277 0.400 102.234 Bus278 0.400 102.309 Bus279 0.400 101.385 Bus280 0.400 101.989 Bus281 0.400 102.282 Bus282 0.400 102.185 Bus283 0.400 102.292 Bus284 0.400 101.954 Bus286 0.400 101.827 Bus287 0.400 101.706 Bus288 0.400 102.168 Bus289 0.400 102.053 Bus291 0.400 97.287 Bus294 33.000 98.661 Bus295 0.400 101.603 Bus296 0.400 101.826 Bus297 0.400 101.795 Bus298 0.400 101.792 Bus299 0.400 101.955 Bus300 0.400 102.166 Bus301 0.400 102.044 Bus302 0.400 102.506 Bus303 0.400 102.182 Bus304 0.400 101.956 Bus305 0.400 102.007 Bus306 0.400 101.933 Bus307 0.400 102.325 Bus308 0.400 101.990 Bus309 0.400 101.690 Bus310 0.400 101.631 Bus311 0.400 101.957 Bus312 0.400 102.281 Bus313 0.400 101.487
  • 89. Page 88 Bus314 0.400 101.838 Bus315 0.400 102.366 Bus316 0.400 101.622 Bus317 0.400 101.737 Bus318 0.400 101.677 Bus319 0.400 98.120 Bus320 0.400 98.274 Bus321 0.400 102.538 Bus322 0.400 98.233 Bus323 0.400 98.567 Bus324 0.400 98.340 Bus325 0.400 98.574 Bus327 0.400 101.541 Bus328 0.400 101.717
  • 90. Page 89 Appendix14 Minimum after transformer change and connection point Bus Vrated Operating (%) Bus65 0.400 99.003 Bus68 0.400 99.760 Bus69 0.400 98.819 Bus70 0.400 98.920 Bus73 0.400 101.456 Bus179 0.400 103.328 Bus180 0.400 103.158 Bus181 0.400 103.214 Bus182 0.400 98.938 Bus183 0.400 98.890 Bus184 0.400 98.675 Bus185 0.400 98.967 Bus186 0.400 103.300 Bus187 0.400 103.105 Bus188 0.400 98.728 Bus189 0.400 103.517 Bus190 0.400 103.356 Bus191 0.400 103.439 Bus192 0.400 98.910 Bus193 0.400 99.118 Bus195 0.400 98.072 Bus196 0.400 102.961 Bus197 0.400 102.389 Bus198 0.400 102.879 Bus199 0.400 103.051 Bus200 0.400 102.882 Bus201 0.400 102.669 Bus202 0.400 102.946 Bus203 0.400 98.542 Bus204 0.400 98.665 Bus205 0.400 98.630 Bus206 0.400 98.548 Bus207 0.400 102.956 Bus208 0.400 103.147 Bus209 0.400 103.137 Bus210 0.400 102.752 Bus211 0.400 98.492 Bus212 0.400 102.960 Bus213 0.400 103.008 Bus214 0.400 102.805 Bus215 0.400 103.245
  • 91. Page 90 Bus216 0.400 103.262 Bus217 0.400 103.407 Bus218 0.400 102.613 Bus219 0.400 103.126 Bus220 0.400 103.077 Bus221 0.400 103.249 Bus222 0.400 102.166 Bus223 0.400 102.489 Bus224 0.400 102.789 Bus225 0.400 103.015 Bus226 0.400 103.178 Bus227 0.400 102.716 Bus228 0.400 98.625 Bus229 0.400 102.728 Bus230 0.400 102.516 Bus231 0.400 102.912 Bus232 0.400 103.293 Bus233 0.400 103.250 Bus234 0.400 103.236 Bus235 0.400 102.725 Bus236 0.400 103.340 Bus237 0.400 102.908 Bus238 0.400 102.504 Bus239 0.400 103.253 Bus240 0.400 102.905 Bus241 0.400 103.248 Bus242 0.400 98.827 Bus243 0.400 102.924 Bus244 0.400 103.084 Bus245 0.400 103.423 Bus246 0.400 103.436 Bus247 0.400 103.716 Bus248 0.400 102.782 Bus249 0.400 103.607 Bus250 0.400 103.424 Bus251 0.400 102.832 Bus252 0.400 103.071 Bus253 0.400 102.817 Bus254 0.400 103.629 Bus255 0.400 103.808 Bus256 0.400 103.498 Bus257 0.400 103.417 Bus258 0.400 103.109 Bus259 0.400 103.736 Bus260 0.400 103.448 Bus261 0.400 103.510
  • 92. Page 91 Bus262 0.400 104.336 Bus263 0.400 103.853 Bus264 0.400 104.352 Bus265 0.400 104.279 Bus266 0.400 104.273 Bus267 0.400 104.286 Bus268 0.400 104.816 Bus269 0.400 104.445 Bus270 0.400 104.540 Bus271 0.400 104.602 Bus272 0.400 104.201 Bus273 0.400 104.171 Bus274 0.400 103.584 Bus277 0.400 103.457 Bus278 0.400 103.531 Bus279 0.400 102.818 Bus280 0.400 103.214 Bus281 0.400 103.502 Bus282 0.400 103.408 Bus283 0.400 103.514 Bus284 0.400 103.178 Bus286 0.400 103.052 Bus287 0.400 103.171 Bus288 0.400 103.388 Bus289 0.400 103.277 Bus291 0.400 98.451 Bus294 33.000 99.064 Bus295 0.400 102.815 Bus296 0.400 103.052 Bus297 0.400 103.021 Bus298 0.400 103.018 Bus299 0.400 103.180 Bus300 0.400 103.163 Bus301 0.400 103.049 Bus302 0.400 103.508 Bus303 0.400 103.186 Bus304 0.400 102.952 Bus305 0.400 103.004 Bus306 0.400 102.938 Bus307 0.400 103.328 Bus308 0.400 102.994 Bus309 0.400 102.696 Bus310 0.400 102.638 Bus311 0.400 102.953 Bus312 0.400 103.281 Bus313 0.400 102.870
  • 93. Page 92 Bus314 0.400 102.843 Bus315 0.400 103.368 Bus316 0.400 102.628 Bus317 0.400 102.952 Bus318 0.400 102.890 Bus319 0.400 98.838 Bus320 0.400 98.713 Bus321 0.400 103.170 Bus322 0.400 98.833 Bus323 0.400 98.970 Bus324 0.400 98.744 Bus325 0.400 98.977 Bus327 0.400 102.813 Bus328 0.400 104.166
  • 94. Page 93 Appendix 15 Minimum case final voltages Bus Vrated Operating (%) Bus65 0.400 101.435 Bus68 0.400 102.252 Bus69 0.400 101.283 Bus70 0.400 101.388 Bus73 0.400 101.455 Bus179 0.400 103.327 Bus180 0.400 103.157 Bus181 0.400 103.212 Bus182 0.400 101.409 Bus183 0.400 101.360 Bus184 0.400 101.136 Bus185 0.400 101.439 Bus186 0.400 103.299 Bus187 0.400 103.104 Bus188 0.400 101.192 Bus189 0.400 103.516 Bus190 0.400 103.355 Bus191 0.400 103.438 Bus192 0.400 101.379 Bus193 0.400 101.594 Bus195 0.400 102.897 Bus196 0.400 102.958 Bus197 0.400 102.387 Bus198 0.400 102.876 Bus199 0.400 103.048 Bus200 0.400 102.879 Bus201 0.400 102.666 Bus202 0.400 102.943 Bus203 0.400 103.459 Bus204 0.400 103.585 Bus205 0.400 103.556 Bus206 0.400 103.469 Bus207 0.400 102.954 Bus208 0.400 103.145 Bus209 0.400 103.135 Bus210 0.400 102.750 Bus211 0.400 103.410 Bus212 0.400 102.958 Bus213 0.400 103.006 Bus214 0.400 102.803 Bus215 0.400 103.243
  • 95. Page 94 Bus216 0.400 103.260 Bus217 0.400 103.405 Bus218 0.400 102.611 Bus219 0.400 103.124 Bus220 0.400 103.075 Bus221 0.400 103.247 Bus222 0.400 102.164 Bus223 0.400 102.487 Bus224 0.400 102.787 Bus225 0.400 103.013 Bus226 0.400 103.176 Bus227 0.400 102.714 Bus228 0.400 103.554 Bus229 0.400 102.726 Bus230 0.400 102.514 Bus231 0.400 102.910 Bus232 0.400 103.291 Bus233 0.400 103.248 Bus234 0.400 103.234 Bus235 0.400 102.723 Bus236 0.400 103.338 Bus237 0.400 102.905 Bus238 0.400 102.501 Bus239 0.400 103.251 Bus240 0.400 102.902 Bus241 0.400 103.246 Bus242 0.400 101.295 Bus243 0.400 102.923 Bus244 0.400 103.082 Bus245 0.400 103.422 Bus246 0.400 103.435 Bus247 0.400 103.715 Bus248 0.400 102.781 Bus249 0.400 103.606 Bus250 0.400 103.423 Bus251 0.400 102.831 Bus252 0.400 103.070 Bus253 0.400 102.816 Bus254 0.400 103.628 Bus255 0.400 103.807 Bus256 0.400 103.497 Bus257 0.400 103.416 Bus258 0.400 103.109 Bus259 0.400 103.736 Bus260 0.400 103.448 Bus261 0.400 103.509
  • 96. Page 95 Bus262 0.400 104.335 Bus263 0.400 103.853 Bus264 0.400 104.352 Bus265 0.400 104.279 Bus266 0.400 104.273 Bus267 0.400 104.286 Bus268 0.400 104.816 Bus269 0.400 104.445 Bus270 0.400 104.540 Bus271 0.400 104.602 Bus272 0.400 104.201 Bus273 0.400 104.171 Bus274 0.400 103.583 Bus277 0.400 103.456 Bus278 0.400 103.530 Bus279 0.400 102.817 Bus280 0.400 103.213 Bus281 0.400 103.501 Bus282 0.400 103.406 Bus283 0.400 103.513 Bus284 0.400 103.177 Bus286 0.400 103.051 Bus287 0.400 103.170 Bus288 0.400 103.387 Bus289 0.400 103.275 Bus291 0.400 103.369 Bus294 33.000 99.063 Bus295 0.400 102.814 Bus296 0.400 103.051 Bus297 0.400 103.020 Bus298 0.400 103.017 Bus299 0.400 103.179 Bus300 0.400 103.162 Bus301 0.400 103.048 Bus302 0.400 103.507 Bus303 0.400 103.185 Bus304 0.400 102.951 Bus305 0.400 103.003 Bus306 0.400 102.936 Bus307 0.400 103.326 Bus308 0.400 102.993 Bus309 0.400 102.695 Bus310 0.400 102.637 Bus311 0.400 102.952 Bus312 0.400 103.279 Bus313 0.400 102.868
  • 97. Page 96 Bus314 0.400 102.842 Bus315 0.400 103.367 Bus316 0.400 102.627 Bus317 0.400 102.950 Bus318 0.400 102.889 Bus319 0.400 101.308 Bus320 0.400 103.641 Bus321 0.400 103.168 Bus322 0.400 101.301 Bus323 0.400 101.442 Bus324 0.400 101.208 Bus325 0.400 101.449 Bus327 0.400 102.812 Bus328 0.400 104.166
  • 98. Page 97 Appendix 16 Photos of the monitoring system
  • 99. Page 98 Results for experiment on 40W lamp
  • 100. Page 99 Results for experiment on 100W lamp
  • 101. Page 100 References:  http://penra.gov.ps/  Elements of Power System Analysis by William D. Stevenson  Electric Power Generation, Transmission and Distribution, 2nd edition by Leonard L. Grigsby.  Power Systems, 2nd edition by Leonard L. Grigsby.  Supervisory control and data acquisition systems for command, control, communications, computer, By Headquarters Department of The Army Washington, DC, 21 January 2006.  What are amps, watts, volts and ohms?, HowStuffWorks.com, 31 October 2000. Last accessed: 27 June 2010  http://www.opamp-electronics.com/tutorials/energy_losses_2_09_09.htm  http://www.energyvortex.com/energydictionary/high_voltage_transmission_ lines.htm 