PROBLEMAS SELECIONADOS SOBRE FUNÇÕES EM GERAL




  Professor Helanderson
                  Sousa
                                 NÍVEL 1 E 2
                                   helanderson




                                                 Data / /




            [DIGITE   O ENDEREÇO DA EMPRESA]
1ª (EEAR) Seja uma função f do primeiro            a) 3       b) 8 c) 16 d)         32
grau. Se f(-1) = 3 e f(1) = 1 Determine:
                                               10ª(AFA) Se f for uma função tal que f tal
      a) f(3)                                  que f((x -1)/(x + 1)) = x + 3. Determine f(x)
      b) o gráfico da função f(x)
                                               11ª Se f(x +1) = f(x) + f(1) é uma função de
2ª Sendo f uma função real de variável         variável real e f(2) = 1, Determine o valor
real tal que:                                  de f(5).

f(x + 3) = 2x + 3, prove que f(2x + 3) = 4x    12ª Suponha que f(x+ y) = f(x).f(y) para
+3                                             todos os valores reais de x e y. Se f(1) = 8,
                                               calcule f(2/3)
3ª A função f é tal que f(2x + 3) = 3x + 2.
Nestas condições, f(x) é igual a:              13ª (UFES) Sendo f uma função definida
                                               por f(x-1) = 2f(x) + f(x + 1) ,tal que f(0) = 2
      a) 3x + 3 b) 3x + 2 c) (2x + 3)/2
                                               e f(1) = -1, o valor absoluto de f(3) é:
         d) (9x + 1)/2 e) (9x – 1)/3
                                                   a) 1 b) 3 c) 16 d) 18 e) 9
4ª. Dado f(11) = 11 e f(x + 3) = (f(x) –
1)/(f(x) + 1) para todo x, determine           14ª Se f(x) = 1 – 1/x, com x 0, então
f(1979).                                       determine o valor de R =
                                               96.f(2).f(3).f(4).....f(14).f(15).f(16).
5ª Seja f uma função satisfazendo a
equação f(x) + 1999.f(2 – x) =             .   15ª (UECE) Seja f uma função real de
                                               variável real tal que f(a+b) = f(a) + f(b) +
6ª Suponha que 2f(x) + 3f((2x + 29)/(x – 2))
                                               a.b, se f(2) = 3, então f(11) é igual a :
= 100x + 80. Calcule f(3)
                                                   a) 33 b) 44 c) 55 d) 66
7ª Seja f uma função definida no conjunto
dos números inteiros positivos por:            16ª Obtenha a equação da reta que passa
                                               pelos pontos (1,2) e (3,-2),em seguida
f(3n) = 1, se n = 1                            desenhe o gráfico da função f(3x -2) e
                                               ache as raízes dessa função.
f(3n) = n + f(3n – 3), se n      1.
                                               17ª Dada a função f(x) definida para todo
Encontre o valor de f(1998)
                                               n inteiro, e sabendo-se que f(0) = 1 e f(n +
8ª (UFV) Seja a função f definida no           1) = f(n) + 2, o valor de f(200) é:
conjunto dos números naturais, dada por
                                                   a) 2001 b) 401 c) 40001
f( n + 1) =f(n)/3 , f(0) = 2.
                                                   d) 1.020.000
      a) Calcule f(5).
      b) Qual o menor valor de n para qual     18ª Seja f uma função real decrescente
         a função f(n) 1/90                    definida para todos os valores de x com
                                               0       1 ,f(x/3) = f(x)/2 e f(1 – x) = 1 – f(x).
9ª   (EXPCEX) Se f é uma função real, tal     Calcule f(1/3)
que:
                                               19ª Suponha que f(x) é uma função tal
   i.     f(a + b) = f(a).f(b)                 que para todo número real x:
  ii.     f(1) = 2
 iii.     f( ) = 4                             f(x) + f(1-x) = 11 e f(1+x) = 3 + f(x)

Então pode-se afirmar que o valor de f(3       Então f(x) + f(-x) deve ser igual a:
+       ) vale:
                                                   a) 8 b ) 9 c) 10 d) 11 e) 12

20ª (Olimpíada Irlandesa) Uma função           = 40x + 4 em um ponto cuja abscissa
                                               tenha uma valor numérico igual a -1/2
natural f definida no conjunto dos
números naturais, satisfaz ás condições;
f(ab) = f(a).f(b) se o máximo divisor          30ª   (Romanian Mathematical
comum de a e b é 1 e f(p + q) =f(p) + f(q)     Olympiad) Determine whether there
para todos os números primos p e q.            exists a one-to-one function f : R R with
Calcule:                                       the property that for all x, f( ) - (x) 1/4

a)f(2)                                         31ª    (IME) Seja f uma função definida
b) f(3)
c) f(1999)                                     no conjunto dos inteiros positivos, tal que
                                               f(1) = 1 e
    
21ª (Prof.: Helanderson) Se a sequência
                                               f(2n) = 2f(n) + 1 para todo n       1;
a1, a2 , a3,..., an, é tal que a diferença
entre um termo e o seu antecessor é            f(f(n)) = 4n + 3 para todo n       2.
sempre 2 com a1 = 2. A função afim f é tal
que f(a1), f(a2), f(a3),...,f(na) forma uma    Determine f(1990)
sequência em que a diferença entre cada
termo e seu antecessor é sempre 6 e o          32ª
primeiro termo é 8. Determine f(2).

22ª Seja a função f(x) = ax + b tal que :
f(3) = 0 e f(4) 0, podemos afirmar que:               Função do 2ª Grau, Função
    a) a 0                                             composta e função inversa.
    b) b) f é crescente em todo o seu
       domínio
    c) f(3) = 0                                1ª Determine o zeros das funções abaixo:
    d) f(2) é maior que zero.
                                                     a)   f(x) =    - 3x + 2
23ª Considere a função cuja lei de                   b)   f(x) = - - 7x + 12
correspondência é f(x) = 1/(x(x + 3)).               c)   f(x) = 3 - 7x + 2
Calcule o valor de f(1) + f(2) + ...+f(99)           d)   f(x) =    - 3x + 2
                                                     e)   f(x) =    + 4x + 4
24ª    Seja a função f(n) = 225/(    + 5n +         f)   f(x) =    + (1 -    )x -
                                                     g)   f(x) =          - 50x + 1000
6). Determine o valor da soma:
f(1) + f(2) + f(3) + ...+ f(1000)                    h)   f(x) =-1169      +1280x - 111
                                                     i)   f(x) = 50n + 20nx – 70n
26ª (Cefet -Ce) Considere a função dada              j)   f(x) = (sen y)     – (49sen y) x
por :                                                     +(48sen y)
f( n+1) = 4, se n+1 e f(n+1) = 2f(n) -1, se
n 1, sabendo que n é uma número                2ª Determine os zeros das funções abaixo:
natural, determine o valor de f(3).
                                                     a)   F(x) = - 3 - 4
27ª (UECE) A área do triângulo cujos                 b)   F(x) = - 5 + 4
vértices são os pontos de interseção das             c)   F(x) = - - 6
funções f(x) = 2x + 4 e g(x) = -0,5x + 4 e           d)   F(x) = 3 - 12
com os eixos coordenados é:                          e)   F(x) = - 3 - 4
    a) 10 b) 15 c) 20 d) 25                          f)   F(x) = - 4 - 4
                                                     g)   F(x) =     - 3 - 45
28ª Determine o ponto de interseção das              h)   F(x) = - 7 - 8
funções h(x) = 20x + 50 e g(x) = -50x +20 e          i)   F(x) = 540 - 353 - 187
construa o gráfico correspondente.
                                               3ª Se as equações (1)   + ax + b =0 e (2)
29ª Determine o valor de m na função f(x)         + cx + d = 0 possuem exatamente uma
= mx - 3 para que intercepte a função g(x)     raiz comum, e abcd é diferente de zero.
                                               Determine a outra raiz da equação (2).
a)   n=5
4ª Determine a inversa de: f(x) = 2x + 4x -           b)   n=3
2
                                                      c)   n=1
5ª Se f(x) = (2x + 3) / (5x – 1) sabe-se que a        d)   n=0
inversa de f é uma função que pode ser
escrita na forma        (x) = (x +b) / (cx + d)
Determine o valor de c +b + d                     Máximos e mínimos, gráficos e tipos
    a) 6 b) 7 c) 8 d) 9 e) nda                               de funções
6ª Se f(x) = 3x/(3x + 4) e f(g(x)) = x calcule
g(x),     (x),   (x) e g(f(x)).                   1ª(prova do 3ª ano) Analise as afirmações.

7ª   Seja fi(x), i = 1,2,3.... Definida por f1      I.    O gráfico de uma função
= 1/1-x e f i +1(x) = fi(f1(x)) então,                     quadrática é sempre uma
f1998(1998) é:                                             parábola.
                                                    II.    Todas as funções quadráticas
    a) 0 b) 1998 c) -1/1997 d)
       1997/1998 e) nda                                    possuem um valor máximo.
                                                   III.    Dada a função f(x) = + 6x + 15 , o
  
8ª (UECE) Sejam f e g funções reais                        ponto do gráfico onde esta
,cujos gráficos são retas tangentes à                      funções intercepta o eixo y possui
parábola y = - . Se f(0) = g(0) = 1                        coordenada (0,15).
Determine a lei de formação da a função
h(x) = f(x)g(x).                                   IV.     A função h(x) =                 é
                                                                                   –

9ª Nos itens a,b,c,d,e das questão 1                       quadrática.
determine as suas respectivas funções               V.     Toda função quadrática da forma
inversas.                                                  n(x) = a + 1, onde a 0 possui
                                                           gráfico com concavidade voltada
10ª  Suponha que f(x) = 1–1/(1-x).
                                                           para cima.
Determine f(f(f(f(f(...f(3)...)))), onde
existem 1998 f’s na composição.
                                                  Marque a alternativa correta
    a) 3 b) 3/2 c) 2/3 d) 1

11ª as equações 2007 + 2008x + 1 = 0 e
                                                      a) Todas as afirmações são
  + 2008x + 2007 = 0 têm uma raiz                        verdadeiras
comum. Qual é o valor do produto das                  b) IV é falsa
outras duas raízes que não são comuns?                c) II e IV são falsas
12ª (Prova do 3ª ano) O gráfico da função             d) Apenas II é falsa
f(x) = + 2mx –             não toca o eixo
                                                  2ª (prova do 3ª ano) Um avião de 100
dos x, então o valor de m é:                      lugares foi fretado para excursão. A
    a)   Igual a zero                             companhia exigiu de cada passageiro
    b)   Menor que 2                              R$800, 00 mais R$10, 00 por cada lugar
    c)   Maior que -1                             vago. Com que número máximo de
    d)   Maior que -5                             passageiros a rentabilidade da empresa
                                                  será máxima.
13ª (Prova do 3ª ano) Sejam a e b as raízes
da equação - 5x + n = 0, Sabendo que                  a) 45 pessoas
          = 243, indique o valor de n.                b) 90 pessoas
                                                      c) 100 pessoas
d) 145 pessoas

3ª (Prova do 3ª ano) Seja f : R R a função
definida por f(x) = -2 + 8x + 1. Se (a,b) é o
ponto do gráfico de f que tem maior
ordenada, então é igual a:

    a)   81
    b)   36
    c)   49
    d)   16

Exercícios sobre função

  • 1.
    PROBLEMAS SELECIONADOS SOBREFUNÇÕES EM GERAL Professor Helanderson Sousa NÍVEL 1 E 2 helanderson Data / / [DIGITE O ENDEREÇO DA EMPRESA]
  • 2.
    1ª (EEAR) Sejauma função f do primeiro a) 3 b) 8 c) 16 d) 32 grau. Se f(-1) = 3 e f(1) = 1 Determine: 10ª(AFA) Se f for uma função tal que f tal a) f(3) que f((x -1)/(x + 1)) = x + 3. Determine f(x) b) o gráfico da função f(x) 11ª Se f(x +1) = f(x) + f(1) é uma função de 2ª Sendo f uma função real de variável variável real e f(2) = 1, Determine o valor real tal que: de f(5). f(x + 3) = 2x + 3, prove que f(2x + 3) = 4x 12ª Suponha que f(x+ y) = f(x).f(y) para +3 todos os valores reais de x e y. Se f(1) = 8, calcule f(2/3) 3ª A função f é tal que f(2x + 3) = 3x + 2. Nestas condições, f(x) é igual a: 13ª (UFES) Sendo f uma função definida por f(x-1) = 2f(x) + f(x + 1) ,tal que f(0) = 2 a) 3x + 3 b) 3x + 2 c) (2x + 3)/2 e f(1) = -1, o valor absoluto de f(3) é: d) (9x + 1)/2 e) (9x – 1)/3 a) 1 b) 3 c) 16 d) 18 e) 9 4ª. Dado f(11) = 11 e f(x + 3) = (f(x) – 1)/(f(x) + 1) para todo x, determine 14ª Se f(x) = 1 – 1/x, com x 0, então f(1979). determine o valor de R = 96.f(2).f(3).f(4).....f(14).f(15).f(16). 5ª Seja f uma função satisfazendo a equação f(x) + 1999.f(2 – x) = . 15ª (UECE) Seja f uma função real de variável real tal que f(a+b) = f(a) + f(b) + 6ª Suponha que 2f(x) + 3f((2x + 29)/(x – 2)) a.b, se f(2) = 3, então f(11) é igual a : = 100x + 80. Calcule f(3) a) 33 b) 44 c) 55 d) 66 7ª Seja f uma função definida no conjunto dos números inteiros positivos por: 16ª Obtenha a equação da reta que passa pelos pontos (1,2) e (3,-2),em seguida f(3n) = 1, se n = 1 desenhe o gráfico da função f(3x -2) e ache as raízes dessa função. f(3n) = n + f(3n – 3), se n 1. 17ª Dada a função f(x) definida para todo Encontre o valor de f(1998) n inteiro, e sabendo-se que f(0) = 1 e f(n + 8ª (UFV) Seja a função f definida no 1) = f(n) + 2, o valor de f(200) é: conjunto dos números naturais, dada por a) 2001 b) 401 c) 40001 f( n + 1) =f(n)/3 , f(0) = 2. d) 1.020.000 a) Calcule f(5). b) Qual o menor valor de n para qual 18ª Seja f uma função real decrescente a função f(n) 1/90 definida para todos os valores de x com 0 1 ,f(x/3) = f(x)/2 e f(1 – x) = 1 – f(x). 9ª (EXPCEX) Se f é uma função real, tal Calcule f(1/3) que: 19ª Suponha que f(x) é uma função tal i. f(a + b) = f(a).f(b) que para todo número real x: ii. f(1) = 2 iii. f( ) = 4 f(x) + f(1-x) = 11 e f(1+x) = 3 + f(x) Então pode-se afirmar que o valor de f(3 Então f(x) + f(-x) deve ser igual a: + ) vale: a) 8 b ) 9 c) 10 d) 11 e) 12
  • 3.
     20ª (Olimpíada Irlandesa)Uma função = 40x + 4 em um ponto cuja abscissa tenha uma valor numérico igual a -1/2 natural f definida no conjunto dos números naturais, satisfaz ás condições; f(ab) = f(a).f(b) se o máximo divisor 30ª (Romanian Mathematical comum de a e b é 1 e f(p + q) =f(p) + f(q) Olympiad) Determine whether there para todos os números primos p e q. exists a one-to-one function f : R R with Calcule: the property that for all x, f( ) - (x) 1/4 a)f(2) 31ª  (IME) Seja f uma função definida b) f(3) c) f(1999) no conjunto dos inteiros positivos, tal que f(1) = 1 e  21ª (Prof.: Helanderson) Se a sequência f(2n) = 2f(n) + 1 para todo n 1; a1, a2 , a3,..., an, é tal que a diferença entre um termo e o seu antecessor é f(f(n)) = 4n + 3 para todo n 2. sempre 2 com a1 = 2. A função afim f é tal que f(a1), f(a2), f(a3),...,f(na) forma uma Determine f(1990) sequência em que a diferença entre cada termo e seu antecessor é sempre 6 e o 32ª primeiro termo é 8. Determine f(2). 22ª Seja a função f(x) = ax + b tal que : f(3) = 0 e f(4) 0, podemos afirmar que: Função do 2ª Grau, Função a) a 0 composta e função inversa. b) b) f é crescente em todo o seu domínio c) f(3) = 0 1ª Determine o zeros das funções abaixo: d) f(2) é maior que zero. a) f(x) = - 3x + 2 23ª Considere a função cuja lei de b) f(x) = - - 7x + 12 correspondência é f(x) = 1/(x(x + 3)). c) f(x) = 3 - 7x + 2 Calcule o valor de f(1) + f(2) + ...+f(99) d) f(x) = - 3x + 2 e) f(x) = + 4x + 4 24ª  Seja a função f(n) = 225/( + 5n + f) f(x) = + (1 - )x - g) f(x) = - 50x + 1000 6). Determine o valor da soma: f(1) + f(2) + f(3) + ...+ f(1000) h) f(x) =-1169 +1280x - 111 i) f(x) = 50n + 20nx – 70n 26ª (Cefet -Ce) Considere a função dada j) f(x) = (sen y) – (49sen y) x por : +(48sen y) f( n+1) = 4, se n+1 e f(n+1) = 2f(n) -1, se n 1, sabendo que n é uma número 2ª Determine os zeros das funções abaixo: natural, determine o valor de f(3). a) F(x) = - 3 - 4 27ª (UECE) A área do triângulo cujos b) F(x) = - 5 + 4 vértices são os pontos de interseção das c) F(x) = - - 6 funções f(x) = 2x + 4 e g(x) = -0,5x + 4 e d) F(x) = 3 - 12 com os eixos coordenados é: e) F(x) = - 3 - 4 a) 10 b) 15 c) 20 d) 25 f) F(x) = - 4 - 4 g) F(x) = - 3 - 45 28ª Determine o ponto de interseção das h) F(x) = - 7 - 8 funções h(x) = 20x + 50 e g(x) = -50x +20 e i) F(x) = 540 - 353 - 187 construa o gráfico correspondente. 3ª Se as equações (1) + ax + b =0 e (2) 29ª Determine o valor de m na função f(x) + cx + d = 0 possuem exatamente uma = mx - 3 para que intercepte a função g(x) raiz comum, e abcd é diferente de zero. Determine a outra raiz da equação (2).
  • 4.
    a) n=5 4ª Determine a inversa de: f(x) = 2x + 4x - b) n=3 2 c) n=1 5ª Se f(x) = (2x + 3) / (5x – 1) sabe-se que a d) n=0 inversa de f é uma função que pode ser escrita na forma (x) = (x +b) / (cx + d) Determine o valor de c +b + d Máximos e mínimos, gráficos e tipos a) 6 b) 7 c) 8 d) 9 e) nda de funções 6ª Se f(x) = 3x/(3x + 4) e f(g(x)) = x calcule g(x), (x), (x) e g(f(x)). 1ª(prova do 3ª ano) Analise as afirmações. 7ª Seja fi(x), i = 1,2,3.... Definida por f1 I. O gráfico de uma função = 1/1-x e f i +1(x) = fi(f1(x)) então, quadrática é sempre uma f1998(1998) é: parábola. II. Todas as funções quadráticas a) 0 b) 1998 c) -1/1997 d) 1997/1998 e) nda possuem um valor máximo. III. Dada a função f(x) = + 6x + 15 , o  8ª (UECE) Sejam f e g funções reais ponto do gráfico onde esta ,cujos gráficos são retas tangentes à funções intercepta o eixo y possui parábola y = - . Se f(0) = g(0) = 1 coordenada (0,15). Determine a lei de formação da a função h(x) = f(x)g(x). IV. A função h(x) = é – 9ª Nos itens a,b,c,d,e das questão 1 quadrática. determine as suas respectivas funções V. Toda função quadrática da forma inversas. n(x) = a + 1, onde a 0 possui gráfico com concavidade voltada 10ª  Suponha que f(x) = 1–1/(1-x). para cima. Determine f(f(f(f(f(...f(3)...)))), onde existem 1998 f’s na composição. Marque a alternativa correta a) 3 b) 3/2 c) 2/3 d) 1 11ª as equações 2007 + 2008x + 1 = 0 e a) Todas as afirmações são + 2008x + 2007 = 0 têm uma raiz verdadeiras comum. Qual é o valor do produto das b) IV é falsa outras duas raízes que não são comuns? c) II e IV são falsas 12ª (Prova do 3ª ano) O gráfico da função d) Apenas II é falsa f(x) = + 2mx – não toca o eixo 2ª (prova do 3ª ano) Um avião de 100 dos x, então o valor de m é: lugares foi fretado para excursão. A a) Igual a zero companhia exigiu de cada passageiro b) Menor que 2 R$800, 00 mais R$10, 00 por cada lugar c) Maior que -1 vago. Com que número máximo de d) Maior que -5 passageiros a rentabilidade da empresa será máxima. 13ª (Prova do 3ª ano) Sejam a e b as raízes da equação - 5x + n = 0, Sabendo que a) 45 pessoas = 243, indique o valor de n. b) 90 pessoas c) 100 pessoas
  • 5.
    d) 145 pessoas 3ª(Prova do 3ª ano) Seja f : R R a função definida por f(x) = -2 + 8x + 1. Se (a,b) é o ponto do gráfico de f que tem maior ordenada, então é igual a: a) 81 b) 36 c) 49 d) 16