SlideShare uma empresa Scribd logo
Lecture Notes for Calculus 101
Chapter 0 : Before Calculus
Feras Awad
Philadelphia University
Functions
Idea and Definition
Definition 1
A function f is a rule that associates with each input, a unique
(exactly ONE) output.
✓ ✗
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 2 / 81
Functions
Idea and Definition
Example 1
Let f (x) = 3x2
− 4x + 2. Then
f (−1) = 3(−1)2
− 4(−1) + 2
= 3 + 4 + 2 = 9
NOTE: There are 4-ways to represent functions:
Table of values
Words
Graph
Formula
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 3 / 81
Functions
Some Graphs
y = x
y = x2
y = x3
y =
√
x
y = 3
√
x y =
1
x
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 4 / 81
Functions
Vertical Line Test
A curve in the xy−plane is the graph of some function f if and only
if no vertical line intersects the curve more than once
Example 2
Which of the following graphs is a function?
✓ ✗ ✗
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 5 / 81
Functions
Domain (and Range) of Functions
The set of all allowable inputs
is the Domain of f .
The set of all resulting
outputs is the Range of f .
NOTE: If no domain is mentioned, we always assume the largest
possible domain, called the Natural Domain.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 6 / 81
Functions
Examples on Function Domain
Example 3
Find the natural domain of the function f (x) = x3
− 2x2
+ 1.
dom(f ) = all real numbers
= (−∞, ∞)
= R
−∞ ∞
-2 -1 0 1 2
NOTE: Any polynomial
P(x) = anxn
+ an−1xn−1
+ · · · + a1x + a0
has domain R.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 7 / 81
Functions
Examples on Function Domain
Example 4
Find the natural domain of the function f (x) =
1
(x + 1)(x − 3)
.
dom(f ) = all real numbers except −1 and 3
= R − {−1, 3}
= (−∞, −1) ∪ (−1, 3) ∪ (3, ∞)
−∞ ∞
-1 3
NOTE: For rational functions, avoid division by 0.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 8 / 81
Functions
Examples on Function Domain
Example 5
Find the natural domain of the function f (x) =
√
x − 1.
dom(f ) = all real numbers such that x − 1 ≥ 0
= all x ∈ R such that x ≥ 1
= [1, ∞)
−∞ ∞
1
NOTE: Avoid even roots of negative numbers.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 9 / 81
Functions
Examples on Function Domain
Example 6
Find the natural domain of the function f (x) =
√
x2 − 5x + 6.
dom(f ) = all real numbers such that x2
− 5x + 6 ≥ 0
(x − 2)(x − 3) ≥ 0
= (−∞, 2] ∪ [3, ∞)
−∞ ∞
2 3
+ − +
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 10 / 81
Functions
Examples on Function Domain
Example 7
Find the natural domain of the function f (x) = 3
√
4 − 3x2.
dom(f ) = all real numbers
= R
NOTE: Odd root accepts +, −, 0 but depends on the function inside
it.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 11 / 81
Functions
Examples on Function Domain
Example 8
Find the natural domain of the function f (x) = 3
s
1
x
.
dom(f ) = all real numbers except 0
= (−∞, 0) ∪ (0, ∞)
−∞ ∞
0
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 12 / 81
Functions
Examples on Function Domain
Example 9
Find the natural domain of the function f (x) =
√
x
x2 − 4
.
dom(f ) = all real numbers such that x ≥ 0 except ± 2
= [0, 2) ∪ (2, ∞)
−∞ ∞
-2 0 2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 13 / 81
Functions
Examples on Function Domain
Example 10
Find the natural domain of the function f (x) =
√
x + 1 −
√
2 − x.
dom
√
x + 1

= x ∈ R; x + 1 ≥ 0
x ≥ −1
= [−1, ∞)
dom
√
2 − x

= x ∈ R; 2 − x ≥ 0
− x ≥ −2
x ≤ 2
= (−∞, 2]
−∞ ∞
-1
−∞ ∞
2
−∞ ∞
-1 2
∴ dom(f ) = [−1, ∞) ∩ (−∞, 2] = [−1, 2]
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 14 / 81
Functions
Examples on Function Domain
Exercise 1
(1) Compare the domain of g(x) = x and f (x) =
x2
+ x
1 + x
.
(2) Find the domain of each of the following.
a) f (x) =
p
x2 + 2x + 4
b) g(x) =
x
x2 − x − 2
c) f (x) =
√
9 − x2
1 − x2
d) g(x) =
x − 3
1 −
√
x
e) f (x) =
x − 3
1 +
√
x
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 15 / 81
Functions
Piecewise Functions
Functions can be defined in pieces (cases).
Example 11
Let f (x) =





0 : x ≤ −1
√
1 − x2 : −1  x  1
x : x ≥ 1
f (0) =
√
1 − 02 = 1
f (−3) = 0
f (5) = 5
f (1) = 1
-1 1
1
NOTE: x = −1 and x = 1 are called piecewise points.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 16 / 81
Functions
Absolute Value
The absolute value of x ∈ R is defined by
|x| =
(
x : x ≥ 0
−x : x  0
For example, |4| = 4, |0| = 0, −1
2
= 1
2
. -1 1
1
NOTE:
(1) |x| = a ⇔ x = ±a. Ex. |x| = 4 ⇔ x = ±4
(2) |x| ≤ a ⇔ −a ≤ x ≤ a. Ex. |x| ≤ 4 ⇔ −4 ≤ x ≤ 4
(3) |x| ≥ a ⇔ x ≥ a or x ≤ −a. Ex. |x| ≥ 4 ⇔ x ≤ −4 or x ≥ 4
(4)
√
x2 = |x|
(5) dom|g(x)| = dom(g(x))
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 17 / 81
Functions
Absolute Value
Example 12
Write the function g(x) = |2x − 1| as piecewise function.
g(x) =
(
2x − 1 : 2x − 1 ≥ 0
−(2x − 1) : 2x − 1  0
=
(
2x − 1 : x ≥ 1/2
−2x + 1 : x  1/2
g(x) = 0 ⇒ |2x − 1| = 0
⇒ 2x − 1 = 0
⇒ x = 1/2
−∞ ∞
0.5
+
2x − 1
−
1 − 2x
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 18 / 81
Functions
Trigonometric Ratios (Right Triangle)
a
c b
θ
a : adjacent
b : opposite
c : hypotenuse
sin θ =
b
c
, cos θ =
a
c
, tan θ =
b
a
sec θ =
c
a
, csc θ =
c
b
, cot θ =
a
b
NOTE:
sec θ =
1
cos θ
, csc θ =
1
sin θ
, cot θ =
1
tan θ
tan θ =
sin θ
cos θ
, cot θ =
cos θ
sin θ
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 19 / 81
Functions
Angle Measures and Standard Position
We measure angles either by
degrees or by radians, where
π rad = 180◦
Example 13
90◦
= 90 ×
π
180
=
π
2
2π
3
=
2π
3
×
180
π
= 120◦
Initial Ray
Vertex
Terminal Ray
θ
Counterclockwise
θ is positive
Initial Ray
Vertex
Terminal Ray
θ
Clockwise
θ is negative
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 20 / 81
Functions
Angle Measures and Standard Position
Example 14
Right Acute Obtuse Straight
90◦
= π/2 30◦
= π/6 150◦
= 5π/6 180◦
= π
270◦
= 3π/2 −90◦
= −π/2 −45◦
= −π/4 −540◦
= −3π
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 21 / 81
Functions
Some Trigonometric Values
θ deg 0◦
30◦
45◦
60◦
90◦
θ rad 0 π/6 π/4 π/3 π/2
sin θ 0 1/2 1/
√
2
√
3/2 1
cos θ 1
√
3/2 1/
√
2 1/2 0
tan θ 0 1/
√
3 1
√
3 ✗
csc θ ✗ 2
√
2 2/
√
3 1
sec θ 1 2/
√
3
√
2 2 ✗
cot θ ✗
√
3 1 1/
√
3 0
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 22 / 81
Functions
Trigonometric Values in Coordinate Plane
-1 1
-1
1
0◦
90◦
180◦
270◦
(x, y)
1
θ
x
y
Q1
Q2
Q3 Q4
All +
sin +
csc +
tan +
cot +
cos +
sec +
(x, y) = (cos θ, sin θ)
4 Quadrants
θ Point sin cos
0◦
(1, 0) 0 1
90◦
(0, 1) 1 0
180◦
(−1, 0) 0 −1
270◦
(0, −1) −1 0
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 23 / 81
Functions
Trigonometric Functions
1 f (x) = sin x
Domain : R
Range :
h
− 1, 1
i
Period : 2π
-1
1
−2π − 3π
2
−π − π
2
2π
3π
2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 24 / 81
Functions
Trigonometric Functions
2 f (x) = cos x
Domain : R
Range :
h
− 1, 1
i
Period : 2π
-1
1
−2π − 3π
2
−π − π
2
2π
3π
2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 25 / 81
Functions
Trigonometric Functions
3 f (x) = tan x
Domain : x ̸= ±
π
2
, ±
3π
2
, · · ·
Range : R
Period : π
-1
1
−2π − 3π
2
−π − π
2
2π
3π
2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 26 / 81
Functions
Trigonometric Functions
4 f (x) = cot x
Domain : x ̸= 0, ±π, ±2π, · · ·
Range : R
Period : π
-1
1
−2π − 3π
2
−π − π
2
2π
3π
2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 27 / 81
Functions
Trigonometric Functions
5 f (x) = sec x
Domain : x ̸= ±
π
2
, ±
3π
2
, · · ·
Range : (−∞, −1] ∪ [1, ∞)
Period : 2π
-1
1
−2π − 3π
2
−π − π
2
2π
3π
2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 28 / 81
Functions
Trigonometric Functions
6 f (x) = csc x
Domain : x ̸= 0, ±π, ±2π, · · ·
Range : (−∞, −1] ∪ [1, ∞)
Period : 2π
-1
1
−2π − 3π
2
−π − π
2
2π
3π
2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 29 / 81
Functions
Trigonometric Identities
sin2
θ + cos2
θ = 1
tan2
θ + 1 = sec2
θ
1 + cot2
θ = csc2
θ
sin(2θ) = 2 sin θ cos θ
cos(2θ) = cos2
θ − sin2
θ
= 2 cos2
θ − 1
= 1 − 2 sin2
θ
cos2
θ =
1 + cos(2θ)
2
sin2
θ =
1 − cos(2θ)
2
sin(−θ) = − sin θ
cos(−θ) = cos θ
tan(−θ) = − tan θ
Ex: sin

−
π
6

= − sin

π
6

= −
1
2
tan

−
π
4

= − tan

π
4

= −1
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 30 / 81
Functions
Reference Angle
Example 15
Find all angles θ such that
cos θ = −1/2.
θ1 = π −
π
3
=
2π
3
± 2nπ
θ2 = π +
π
3
=
4π
3
± 2nπ
where n = 0, 1, 2, · · ·
0◦
90◦
180◦
270◦
α
π − α
π + α 2π − α
= π/3
✓
✓
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 31 / 81
Functions
Reference Angle
Example 16
Find all angles θ such that
sin θ = −1/
√
2.
θ1 = π +
π
4
=
5π
4
± 2nπ
θ2 = 2π −
π
4
=
7π
4
± 2nπ
where n = 0, 1, 2, · · ·
0◦
90◦
180◦
270◦
α
π − α
π + α 2π − α
= π/4
✓ ✓
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 32 / 81
Functions
Reference Angle
Example 17
Find all angles θ such that
tan θ =
√
3.
θ1 =
π
3
± 2nπ
θ2 = π +
π
3
=
4π
3
± 2nπ
∴ θ =
π
3
± nπ
where n = 0, 1, 2, · · ·
0◦
90◦
180◦
270◦
α
π − α
π + α 2π − α
= π/3
✓
✓
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 33 / 81
Functions
Reference Angle
Example 18
Find all angles θ such that sin θ = 0.
θ1 = 0 ± 2nπ
θ2 = π ± 2nπ
∴ θ = 0 ± nπ = ±nπ
where n = 0, 1, 2, · · ·
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 34 / 81
Functions
Reference Angle
Example 19
Find all angles θ such that cos θ = 0.
θ1 =
π
2
± 2nπ
θ2 =
3π
2
± 2nπ
∴ θ =
π
2
± nπ
where n = 0, 1, 2, · · ·
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 35 / 81
Functions
Reference Angle
Example 20
Find all angles θ such that cos θ = −1.
θ = π ± 2nπ =

1 ± 2n

π where n = 0, 1, 2, · · ·
Example 21
Find all angles θ such that sin θ = 1.
θ =
π
2
± 2nπ where n = 0, 1, 2, · · ·
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 36 / 81
Functions
Reference Angle
Example 22
Find the value of sin

5π
3

.
2π − α =
5π
3
α = 2π −
5π
3
=
π
3
∴ sin

5π
3

= − sin

π
3

= −
√
3
2
0◦
90◦
180◦
270◦
α
π − α
π + α 2π − α
= π/3
✓
5π/3 = 300◦
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 37 / 81
Functions
Reference Angle
Example 23
Find the value of
tan

−3π
4

= − tan

3π
4

π − α =
3π
4
α = π −
3π
4
=
π
4
∴ tan

−3π
4

= − tan

3π
4

= −(−) tan

π
4

= 1
0◦
90◦
180◦
270◦
α
π − α
π + α 2π − α
= π/4
✓
3π/4 = 135◦
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 38 / 81
Functions
Reference Angle
Example 24
Find the domain of f (x) = tan x =
sin x
cos x
dom(tan x) = R −
n
cos x = 0
o
= R −
n
x = π/2 ± nπ
o
= dom(sec x)
Example 25
Find the domain of f (x) = csc x =
1
sin x
dom(csc x) = R −
n
sin x = 0
o
= R −
n
x = ±nπ
o
= dom(cot x)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 39 / 81
New Functions from Old
Operations on Functions
Let f and g be functions, then

f
×
+
−
g

(x) = f (x)
×
+
−
g(x) ; x ∈ dom(f ) ∩ dom(g)
(f ÷ g)(x) = f (x) ÷ g(x) ; x ∈ dom(f ) ∩ dom(g) −
n
g(x) = 0
o
Example 26
Let f (x) =
√
x → dom(f ) = [0, ∞).
g(x) =
√
x → dom(g) = [0, ∞)
Find (f · g)(x) and its domain.
(f · g)(x) =
√
x ·
√
x =
√
x
2
= x
dom(f · g) = [0, ∞) ∩ [0, ∞) = [0, ∞)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 40 / 81
New Functions from Old
Composition of Functions
x
g
g(x)
f
f (g(x))
f ◦ g
f circle g of x
f after g of x
Definition 2
(f ◦ g)(x) = f (g(x))
dom(f ◦ g) = set of all x ∈ dom(g) such that g(x) ∈ dom(f )
NOTE: In general, f ◦ g ̸= g ◦ f .
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 41 / 81
New Functions from Old
Composition of Functions
Example 27
Given that f (1) = 1, f (−1) = 0, g(−1) = 1 and g(0) = 0. Find
(f ◦ g)(−1).
(f ◦ g)(−1) = f (g(−1)) = f (1) = 1
Example 28
Let f (x) = x2
+ 3 and g(x) =
√
x. then
(1) (f ◦ g)(x) = f (g(x)) = f (
√
x) =
√
x
2
+ 3 = x + 3
dom(f ◦ g) = [0, ∞) ∩ R = [0, ∞)
(2) (g ◦ f )(x) = g(f (x)) = g(x2
+ 3) =
√
x2 + 3
dom(g ◦ f ) = R ∩ R = R
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 42 / 81
New Functions from Old
How Operations Affect Functions Graphs
(Translation)
Example f (x) + c f (x) − c f (x + c) f (x − c)
f (x) = x2
up down left right
x2
+ c x2
− c (x + c)2
(x − c)2
(0, 0)
(0, c)
(0, −c) (−c, 0) (c, 0)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 43 / 81
New Functions from Old
How Operations Affect Functions Graphs
(Translation)
Example 29
Draw the graph of f (x) = (x + 1)2
− 1.
(0, 0) (−1, 0)
(−1, −1)
x2
(x + 1)2
(x + 1)2
− 1
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 44 / 81
New Functions from Old
How Operations Affect Functions Graphs
(Reflection)
About y−axis About x−axis
f (−x) −f (x)
f (x)
f (−x)
f (x)
−f (x)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 45 / 81
New Functions from Old
How Operations Affect Functions Graphs
(Reflection)
Example 30
Draw the graph of f (x) = 4 − |x − 2|
(0, 0) (2, 0)
(2, 0)
(2, 4)
|x| |x − 2| −|x − 2| 4 − |x − 2|
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 46 / 81
New Functions from Old
How Operations Affect Functions Graphs
(Reflection)
NOTE: Follow this order of transformations:
(1) Horizontal shifts: f (x ± c)
(2) Reflection: f (−x) and/or −f (x)
(3) Vertical shifts: f (x) ± c
Example 31
Draw the graph of f (x) = 2 −
√
3 − x
(0, 0) (−3, 0) (3, 0)
(3, 0)
(3, 2)
√
x
√
x + 3
√
−x + 3 −
√
3 − x 2 −
√
3 − x
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 47 / 81
New Functions from Old
Functions with Symmetric Graphs
Definition 3
f (x) is an even function if f (−x) = f (x). In this case, f is
symmetric about the y−axis.
−1 1 −3/2 3/2 −π/3 π/3
x2
|x| cos x
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 48 / 81
New Functions from Old
Functions with Symmetric Graphs
Definition 4
f (x) is an odd function if f (−x) = −f (x). In this case, f is
symmetric about the origin.
−1 1 −π/2 π/2 −π/4 π/4
x3
sin x − tan x = tan(−x)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 49 / 81
New Functions from Old
Functions with Symmetric Graphs
NOTE:
(1) Some functions are Odd, some are Even, and some neither Odd
nor Even like f (x) = x + 2 cos x.
(2) ▶ Odd ± Odd = Odd
▶ Even ± Even = Even
▶ Odd × Odd = Even , Odd ÷ Odd = Even
▶ Even × Even = Even , Even ÷ Even = Even
▶ Odd × Even = Odd , Odd ÷ Even = Odd
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 50 / 81
Inverse Functions
Idea of Inverse Functions
When two functions UNDO
each other.
The inverse function is denoted by
f −1
and read f −inverse.
NOTE:
* f −1
̸=
1
f
* If y = x3
, then x = 3
√
y
* The inputs of f , are the
outputs of f −1
and vice-versa.
x y = x3
f
f −inverse
domain

f −1

= range (f )
range

f −1

= domain (f )
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 51 / 81
Inverse Functions
When Do the Inverse Exist?
Function but NOT 1 − 1 Function and 1 − 1
A function f has inverse ⇔ it is one-to-one (1 − 1)
⇔ x1 ̸= x2, then f (x1) ̸= f (x2) .
⇔ The graph intersects any horizontal
⇔ line at most once (Horizontal Line Test)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 52 / 81
Inverse Functions
When Do the Inverse Exist?
Example 32
Let f (x) = x3
.
* The domain of f is R.
* If we take x1, x2 ∈ R such
that x1 ̸= x2, then
x3
1 ̸= x3
2 ⇒ f (x1) ̸= f (x1)
* So, x3
is 1 − 1 on R.
−1 1
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 53 / 81
Inverse Functions
When Do the Inverse Exist?
Example 33
Let f (x) = x2
.
* The domain of f is R.
* Note that −1 ̸= 1, but
(−1)2
= (1)2
.
* So, x2
is NOT 1 − 1 on R.
* But, x2
is 1 − 1 on [0, ∞).
−1 1
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 54 / 81
Inverse Functions
Definition of Inverse Function
Definition 5
The functions f , f −1
are inverses provided both

f ◦ f −1

(x) = f

f −1
(x)

= x ; x ∈ dom

f −1


f −1
◦ f

(x) = f −1
(f (x)) = x ; x ∈ dom (f )
Example 34
Let f (x) = 2x3
+ 5x + 3. Find x if f −1
(x) = 1.
f −1
(x) = 1 ⇒ f

f −1
(x)

= f (1)
⇒ x = f (1) = 10
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 55 / 81
Inverse Functions
Finding the Inverse Function
To find the inverse function of f (x):
(1) Write y = f (x).
(2) Solve the equation for x as a function of y.
(3) Replace x by f −1
(x), and y by x.
Example 35
Find f −1
(x) given that f (x) = x3
.
y = x3
3
√
y =
3
√
x3
x = 3
√
y
f −1
(x) = 3
√
x
x3
3
√
x
y = x
(3/4, 27/64)
(27/64, 3/4)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 56 / 81
Inverse Functions
Finding the Inverse Function
Example 36
Find f −1
(x) given that
f (x) =
√
1 + 2x.
y =
√
1 + 2x ⇒ y2
=
√
1 + 2x
2
⇒ y2
= 1 + 2x
⇒ x =
y2
− 1
2
⇒ f −1
(x) =
1
2

x2
− 1

√
1 + 2x
x2
− 1
2
y = x
(1, 0)
(0, 1)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 57 / 81
Inverse Functions
Finding the Inverse Function
Example 37
Find f −1
(x) given that f (x) =
x + 1
x − 1
.
y =
x + 1
x − 1
⇒ (x − 1)y = x + 1
⇒ xy − y = x + 1
⇒ xy − x = y + 1
⇒ x(y − 1) = y + 1
⇒ x =
y + 1
y − 1
⇒ f −1
(x) =
x + 1
x − 1
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 58 / 81
Inverse Functions
Inverse Trigonometric Functions
f −1
Domain Range Graph Note
sin−1
x [−1, 1]
h
−π
2
, π
2
i
−1 1
π/2
−π/2
arcsin x
cos−1
x [−1, 1] [0, π]
−1 1
π
arccos x
tan−1
x R

−π
2
, π
2

π/2
−π/2
arctan x
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 59 / 81
Inverse Functions
Inverse Trigonometric Functions
Example 38
Find the domain of f (x) = sin−1
(x − 1).
− 1 ≤ x − 1 ≤ 1 ⇒ −1
+1
≤ x−1
+1
≤ 1
+1
⇒ 0 ≤ x ≤ 2 ⇒ dom(f ) = [0, 2]
Example 39
Find the exact value.
(1) sin−1
(1/2) = π/6 ∈ [−π/2, π/2]
(2) cos−1
(1/2) = π/3 ∈ [0, π]
(3) tan−1
(1) = π/4 ∈ (−π/2, π/2)
(4) cos−1
(2) undefined
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 60 / 81
Inverse Functions
Inverse Trigonometric Functions
NOTE:
* sin−1
(−x) = − sin−1
x
* tan−1
(−x) = − tan−1
x
* cos−1
(−x) = π − cos−1
x
* sin−1
(x) + cos−1
(x) =
π
2
* tan−1
(x) ̸=
sin−1
(x)
cos−1(x)
Example 40
Find the exact value.
(1) sin−1
(−1/2) = − sin−1
(1/2) = −π/6 ∈ [−π/2, π/2]
(2) tan−1
(−1) = − tan−1
(1) = −π/4 ∈ (−π/2, π/2)
(3) cos−1
(−1/2) = π − cos−1
(1/2) = π − π/3 = 2π/3 ∈ [0, π]
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 61 / 81
Inverse Functions
Inverse Trigonometric Functions
Example 41
Find the exact value.
(1) sin

sin−1
(1/4)

= 1/4
Note that dom

sin−1

= [−1, 1] and 1/4 ∈ [−1, 1]
Also, sin and sin−1
are inverses and cancel each other
(2) tan (tan−1
(−17/9)) = −17/9
Note that dom(tan−1
) = R and −17/9 ∈ R
Also, tan and tan−1
are inverses and cancel each other
(3) cos (cos−1
(−2/3)) = −2/3
Note that dom(cos−1
) = [−1, 1] and −2/3 ∈ [−1, 1]
Also, cos and cos−1
are inverses and cancel each other
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 62 / 81
Inverse Functions
Inverse Trigonometric Functions
NOTE: sin−1
(sin x) =



π − x : π/2 ≤ x ≤ 3π/2
x − 2nπ : x ≥ 3π/2
cos−1
(cos x) = 2nπ − x ; if x ≥ π
Example 42
Find the exact value.
(1) sin−1
(sin (5π/3)) = sin−1
(sin (5π/3 − 2π)) = sin−1
(sin (−π/3))
= −π/3
(2) sin−1
(sin (4π/3)) = sin−1
(sin (π − 4π/3)) = sin−1
(sin (−π/3))
= −π/3
(3) cos−1
(cos (17π/4)) = cos−1
(cos (4π − 17π/4))
= cos−1
(cos (−π/4)) = cos−1
(cos (π/4)) = π/4
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 63 / 81
Inverse Functions
Inverse Trigonometric Functions
Example 43
Find the exact value of
tan−1

tan

5π
6

.
π − α =
5π
6
α = π −
5π
6
=
π
6
tan−1

tan

5π
6

= − tan−1

tan

π
6

=
−π
6
0◦
90◦
180◦
270◦
α
π − α
π + α 2π − α
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 64 / 81
Inverse Functions
Inverse Trigonometric Functions
Example 44
Simplify the expression tan

sin−1
x

.
Let θ = sin−1
x
sin θ = sin

sin−1
x

sin θ = x ; x ∈ [−1, 1]
∴ tan

sin−1
x

= tan θ =
x
√
1 − x2
where x ∈ (−1, 1)
θ
x
1
√
1 − x2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 65 / 81
Inverse Functions
Inverse Trigonometric Functions
Example 45
Find the exact value of sin (2 sec−1
3).
Let
θ = sec−1
3
sec θ = sec

sec−1
3

sec θ = 3
∴ sin

2 sec−1
3

= sin(2θ) = 2 sin θ cos θ
= 2 ×
√
8
3
×
1
3
=
4
√
2
9
θ
√
8
3
1
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 66 / 81
Exponential and Logarithmic Functions
The Exponential Function
Definition 6
The exponential function to the
base b is f (x) = bx
where b  0
and b ̸= 1.
domain of bx
= R
range of bx
= (0, ∞)
b  1
2x
0  b  1

1
2
x
(0, 1)
Example 46
2x
, πx
, (1/3)x
, · · · are exponential
x2
, xπ
, x
1/3
, · · · are NOT exponential
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 67 / 81
Exponential and Logarithmic Functions
The Exponential Function
Example 47
Find the domain of the function f (x) = 4
x
x2−4 .
dom(f ) = R − {x2
− 4 = 0} = R − {±2}
NOTE:
The number e ≈ 2.7182818285 · · · is
called the Natural Number.
The exponential function f (x) = ex
is
called the Natural Exponential
Function.
ex
(0, 1)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 68 / 81
Exponential and Logarithmic Functions
The Exponential Function: Properties
(1) b0
= 1
Ex: 20
= 1
(2) bx
· by
= bx+y
Ex: 24
· 23
= 27
(3) bx
÷ by
= bx−y
Ex: 35
/32 = 33
(4) b−x
= 1/bx
Ex: e−2
= 1/e2
(5) (bx
)y
= bxy
Ex:

32
3
= 36
(6)
n
√
bm = b
m/n
Ex:
3
√
26 = 2
6/3
= 22
(7) (a · b)x
= ax
· bx
Ex: (2e)3
= 23
· e3
= 8e3
(8) (a ÷ b)x
= ax
÷ bx
Ex: (5/2)2
= 52
/22
(9) bx
= by
⇔ x = y
One-to-One Property
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 69 / 81
Exponential and Logarithmic Functions
The Exponential Function: Properties
Example 48
Find the exact value:
(1) (−8)
2
3 = 3
q
(−8)2 = 3
√
64 = 4
(2) 9−1/2
=
1
91/2
=
1
√
9
=
1
3
Example 49
Solve the equation 2x
= 64.
2x
= 64 ⇒ 2x
= 26
⇒ x = 6
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 70 / 81
Exponential and Logarithmic Functions
The Logarithmic Function
Definition 7
The logarithmic function to the
base b is f (x) = logb x where
b  0 and b ̸= 1.
domain of logb x = (0, ∞)
range of logb x = R
b  1
log2 x
0  b  1
log1/2 x
(1, 0)
NOTE: The function loge x is called the Natural Logarithmic
Function and denoted by ln x.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 71 / 81
Exponential and Logarithmic Functions
The Logarithmic Function
NOTE: dom (logb g(x)) = All real numbers such that g(x)  0
and defined.
Example 50
Find the domain of f (x) = ln (9 − x2
).
dom ln

9 − x2

= All x ∈ R such that 9 − x2
 0
⇒ x2
 9
⇒
√
x2 
√
9
⇒ |x|  3
⇒ −3  x  3
⇒ x ∈ (−3, 3)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 72 / 81
Exponential and Logarithmic Functions
The Logarithmic Function: Properties
(1) logb 1 = 0
Ex: log10 1 = 0
(2) logb b = 1
Ex: ln e = loge e = 1
(3) logb (xn
) = n logb x
Ex: log3 9 = log3

32

= 2
(4) logb a =
ln a
ln b
Ex: log4 3 = ln 3/ln 4
(5) logb(xy) = logb x + logb y
(6) logb (x/y) = logb x − logb y
(7) logb x = logb y ⇔ x = y
One-to-One Property
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 73 / 81
Exponential and Logarithmic Functions
The Logarithmic Function: Properties
Example 51
Find the exact value.
(1) log2 32 = log2 (25
) = 5 log2 2 = 5
(2) log4 2 = log4
√
4 = log4

41/2

= 1/2
Example 52
Simplify the expression log6 9 − log6 5 + log6 20.
(log6 9 − log6 5) + log6 20 = log6

9
5

+ log6 20
= log6

9
5
× 20

= log6 36 = log6

62

= 2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 74 / 81
Exponential and Logarithmic Functions
Logarithmic  Exponential are Inverses
Function Domain Range
bx
R (0, ∞)
logb x (0, ∞) R
logb (bx
) = x ; x ∈ R
blogb x
= x ; x ∈ (0, ∞)
y = x
bx
logb x
Example 53
Find the exact value of 52 log5 4
.
52 log5 4
= 5log5(42
) = 42
= 16
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 75 / 81
Exponential and Logarithmic Functions
Logarithmic  Exponential are Inverses
Example 54
Solve the following equations.
(1) ex
= 7 ⇒ ln (ex
) = ln 7 ⇒ x = ln 7
(2) log10 x = −2 ⇒ 10log10 x
= 10−2
⇒ x =
1
102
= 0.01
(3) ln x = 3 ⇒ eln x
= e3
⇒ x = e3
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 76 / 81
Exponential and Logarithmic Functions
Logarithmic  Exponential are Inverses
Example 55
Solve the equation e2x
+ ex
− 6 = 0.
e2x
+ ex
− 6 = 0 ⇒ (ex
)2
+ ex
− 6 = 0 (Let y = ex
)
⇒ y2
+ y − 6 = 0
⇒ (y + 3)(y − 2) = 0
Solution (1) ⇒ y = −3
⇒ ex
= −3 ✗
Solution (2) ⇒ y = 2
⇒ ex
= 2 ✓
⇒ x = ln 2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 77 / 81
Exponential and Logarithmic Functions
Logarithmic  Exponential are Inverses
Example 56
Solve the equation ln(x − 2) + ln(2x − 3) = 2 ln x.
ln

(x − 2)(2x − 3)

= ln

x2

⇒ (x − 2)(2x − 3) = x2
⇒ 2x2
− 7x + 6 = x2
⇒ x2
− 7x + 6 = 0
⇒ (x − 6)(x − 1) = 0
⇒ x = 6 ✓ or x = 1 ✗
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 78 / 81
Exponential and Logarithmic Functions
Logarithmic  Exponential are Inverses
Example 57
True or False?
“The functions ln (x2
) and 2 ln x have the same domain !!”
domain of ln

x2

= R − {0}
domain of 2 ln (x) = (0, ∞) ∴ FALSE
Example 58
Find the inverse function of f (x) = ln(x + 3).
y = ln(x + 3) ⇒ ey
= eln(x+3)
⇒ x + 3 = ey
⇒ x = ey
− 3 ∴ f −1
(x) = ex
− 3
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 79 / 81
Exponential and Logarithmic Functions
Logarithmic  Exponential are Inverses
Example 59
Find the inverse function of g(x) = e2x−1
.
y = e2x−1
⇒ ln y = ln

e2x−1

⇒ 2x − 1 = ln y
⇒ x =
1 + ln y
2
∴ g−1
(x) =
1 + ln x
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 80 / 81
Exponential and Logarithmic Functions
One More Example
Example 60
Let f (x) = x2
− 2x − 3.
(1) Draw the graph of f by shifting the graph of x2
.

x2
− 2x

− 3 =

x2
− 2x + 1

− 1 − 3
= (x − 1)2
− 4
(2) Find f −1(x).
y = (x − 1)2
− 4
x =
p
y + 4 + 1
f −1
(x) =
√
x + 4 + 1
(3) What is the range of f .
range of f = [−4, ∞)
= domain of f −1
(1, −4)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 81 / 81

Mais conteúdo relacionado

Semelhante a CAL1-CH0-NEW-CAL1-CH0-NEWCAL1-CH0-NEW.pdf

100derivadasresueltasyosoytuprofe
100derivadasresueltasyosoytuprofe100derivadasresueltasyosoytuprofe
100derivadasresueltasyosoytuprofe
Javier Rangel
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
JelaiAujero
 
2 evaluating functions
2 evaluating functions2 evaluating functions
2 evaluating functions
joellerios48
 
Application of partial derivatives with two variables
Application of partial derivatives with two variablesApplication of partial derivatives with two variables
Application of partial derivatives with two variables
Sagar Patel
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
Charles Deledalle
 
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
KarmaX1
 
Applicationofpartialderivativeswithtwovariables 140225070102-phpapp01 (1)
Applicationofpartialderivativeswithtwovariables 140225070102-phpapp01 (1)Applicationofpartialderivativeswithtwovariables 140225070102-phpapp01 (1)
Applicationofpartialderivativeswithtwovariables 140225070102-phpapp01 (1)
shreemadghodasra
 
5.1 Quadratic Functions
5.1 Quadratic Functions5.1 Quadratic Functions
5.1 Quadratic Functions
smiller5
 
Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721
Glicerio Gavilan
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
Rizwan Kazi
 
The integral
The integralThe integral
Tam 2nd
Tam 2ndTam 2nd
Tam 2nd
canalculus
 
Regret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationRegret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function Maximization
Tasuku Soma
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
Dr Fereidoun Dejahang
 
Sadiq Hussain
Sadiq Hussain Sadiq Hussain
Sadiq Hussain
Sadiq Hussain
 
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptxLesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
ErlenaMirador1
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
Sufyan Sahoo
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
sudersana viswanathan
 
AppsDiff3c.pdf
AppsDiff3c.pdfAppsDiff3c.pdf
AppsDiff3c.pdf
AkashKumar616744
 
Introduction to comp.physics ch 3.pdf
Introduction to comp.physics ch 3.pdfIntroduction to comp.physics ch 3.pdf
Introduction to comp.physics ch 3.pdf
JifarRaya
 

Semelhante a CAL1-CH0-NEW-CAL1-CH0-NEWCAL1-CH0-NEW.pdf (20)

100derivadasresueltasyosoytuprofe
100derivadasresueltasyosoytuprofe100derivadasresueltasyosoytuprofe
100derivadasresueltasyosoytuprofe
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
2 evaluating functions
2 evaluating functions2 evaluating functions
2 evaluating functions
 
Application of partial derivatives with two variables
Application of partial derivatives with two variablesApplication of partial derivatives with two variables
Application of partial derivatives with two variables
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
 
Applicationofpartialderivativeswithtwovariables 140225070102-phpapp01 (1)
Applicationofpartialderivativeswithtwovariables 140225070102-phpapp01 (1)Applicationofpartialderivativeswithtwovariables 140225070102-phpapp01 (1)
Applicationofpartialderivativeswithtwovariables 140225070102-phpapp01 (1)
 
5.1 Quadratic Functions
5.1 Quadratic Functions5.1 Quadratic Functions
5.1 Quadratic Functions
 
Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721Mac2311 study guide-tcm6-49721
Mac2311 study guide-tcm6-49721
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
The integral
The integralThe integral
The integral
 
Tam 2nd
Tam 2ndTam 2nd
Tam 2nd
 
Regret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationRegret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function Maximization
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Sadiq Hussain
Sadiq Hussain Sadiq Hussain
Sadiq Hussain
 
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptxLesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
 
AppsDiff3c.pdf
AppsDiff3c.pdfAppsDiff3c.pdf
AppsDiff3c.pdf
 
Introduction to comp.physics ch 3.pdf
Introduction to comp.physics ch 3.pdfIntroduction to comp.physics ch 3.pdf
Introduction to comp.physics ch 3.pdf
 

Mais de Abdallah Odeibat

CHAPTER -712543541318483844495646846.pdf
CHAPTER -712543541318483844495646846.pdfCHAPTER -712543541318483844495646846.pdf
CHAPTER -712543541318483844495646846.pdf
Abdallah Odeibat
 
Ch 3.pdf
Ch 3.pdfCh 3.pdf
Ch 2.pdf
Ch 2.pdfCh 2.pdf
Ch 1.pdf
Ch 1.pdfCh 1.pdf
Ch 1.pdf
Ch 1.pdfCh 1.pdf
Ch 8.pdf
Ch 8.pdfCh 8.pdf
Ch 4.pdf
Ch 4.pdfCh 4.pdf
Ch 3-c.pdf
Ch 3-c.pdfCh 3-c.pdf
Ch 3-c.pdf
Abdallah Odeibat
 
Ch 3-b.pdf
Ch 3-b.pdfCh 3-b.pdf
Ch 3-b.pdf
Abdallah Odeibat
 
Ch 3-a.pdf
Ch 3-a.pdfCh 3-a.pdf
Ch 3-a.pdf
Abdallah Odeibat
 
Ch 2.pdf
Ch 2.pdfCh 2.pdf
Ch 1.pdf
Ch 1.pdfCh 1.pdf

Mais de Abdallah Odeibat (12)

CHAPTER -712543541318483844495646846.pdf
CHAPTER -712543541318483844495646846.pdfCHAPTER -712543541318483844495646846.pdf
CHAPTER -712543541318483844495646846.pdf
 
Ch 3.pdf
Ch 3.pdfCh 3.pdf
Ch 3.pdf
 
Ch 2.pdf
Ch 2.pdfCh 2.pdf
Ch 2.pdf
 
Ch 1.pdf
Ch 1.pdfCh 1.pdf
Ch 1.pdf
 
Ch 1.pdf
Ch 1.pdfCh 1.pdf
Ch 1.pdf
 
Ch 8.pdf
Ch 8.pdfCh 8.pdf
Ch 8.pdf
 
Ch 4.pdf
Ch 4.pdfCh 4.pdf
Ch 4.pdf
 
Ch 3-c.pdf
Ch 3-c.pdfCh 3-c.pdf
Ch 3-c.pdf
 
Ch 3-b.pdf
Ch 3-b.pdfCh 3-b.pdf
Ch 3-b.pdf
 
Ch 3-a.pdf
Ch 3-a.pdfCh 3-a.pdf
Ch 3-a.pdf
 
Ch 2.pdf
Ch 2.pdfCh 2.pdf
Ch 2.pdf
 
Ch 1.pdf
Ch 1.pdfCh 1.pdf
Ch 1.pdf
 

Último

Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
European Sustainable Phosphorus Platform
 
Direct Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart AgricultureDirect Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart Agriculture
International Food Policy Research Institute- South Asia Office
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
Areesha Ahmad
 
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdfwaterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
LengamoLAppostilic
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
Sérgio Sacani
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
hozt8xgk
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
AbdullaAlAsif1
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
by6843629
 
Equivariant neural networks and representation theory
Equivariant neural networks and representation theoryEquivariant neural networks and representation theory
Equivariant neural networks and representation theory
Daniel Tubbenhauer
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
Texas Alliance of Groundwater Districts
 
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốtmô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
HongcNguyn6
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
MaheshaNanjegowda
 
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
Advanced-Concepts-Team
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
muralinath2
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
University of Hertfordshire
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
Leonel Morgado
 
Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)
Sciences of Europe
 
The cost of acquiring information by natural selection
The cost of acquiring information by natural selectionThe cost of acquiring information by natural selection
The cost of acquiring information by natural selection
Carl Bergstrom
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
KrushnaDarade1
 

Último (20)

Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
 
Direct Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart AgricultureDirect Seeded Rice - Climate Smart Agriculture
Direct Seeded Rice - Climate Smart Agriculture
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
 
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdfwaterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
 
Equivariant neural networks and representation theory
Equivariant neural networks and representation theoryEquivariant neural networks and representation theory
Equivariant neural networks and representation theory
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
 
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốtmô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
 
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
 
Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)
 
The cost of acquiring information by natural selection
The cost of acquiring information by natural selectionThe cost of acquiring information by natural selection
The cost of acquiring information by natural selection
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
 

CAL1-CH0-NEW-CAL1-CH0-NEWCAL1-CH0-NEW.pdf

  • 1. Lecture Notes for Calculus 101 Chapter 0 : Before Calculus Feras Awad Philadelphia University
  • 2. Functions Idea and Definition Definition 1 A function f is a rule that associates with each input, a unique (exactly ONE) output. ✓ ✗ Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 2 / 81
  • 3. Functions Idea and Definition Example 1 Let f (x) = 3x2 − 4x + 2. Then f (−1) = 3(−1)2 − 4(−1) + 2 = 3 + 4 + 2 = 9 NOTE: There are 4-ways to represent functions: Table of values Words Graph Formula Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 3 / 81
  • 4. Functions Some Graphs y = x y = x2 y = x3 y = √ x y = 3 √ x y = 1 x Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 4 / 81
  • 5. Functions Vertical Line Test A curve in the xy−plane is the graph of some function f if and only if no vertical line intersects the curve more than once Example 2 Which of the following graphs is a function? ✓ ✗ ✗ Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 5 / 81
  • 6. Functions Domain (and Range) of Functions The set of all allowable inputs is the Domain of f . The set of all resulting outputs is the Range of f . NOTE: If no domain is mentioned, we always assume the largest possible domain, called the Natural Domain. Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 6 / 81
  • 7. Functions Examples on Function Domain Example 3 Find the natural domain of the function f (x) = x3 − 2x2 + 1. dom(f ) = all real numbers = (−∞, ∞) = R −∞ ∞ -2 -1 0 1 2 NOTE: Any polynomial P(x) = anxn + an−1xn−1 + · · · + a1x + a0 has domain R. Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 7 / 81
  • 8. Functions Examples on Function Domain Example 4 Find the natural domain of the function f (x) = 1 (x + 1)(x − 3) . dom(f ) = all real numbers except −1 and 3 = R − {−1, 3} = (−∞, −1) ∪ (−1, 3) ∪ (3, ∞) −∞ ∞ -1 3 NOTE: For rational functions, avoid division by 0. Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 8 / 81
  • 9. Functions Examples on Function Domain Example 5 Find the natural domain of the function f (x) = √ x − 1. dom(f ) = all real numbers such that x − 1 ≥ 0 = all x ∈ R such that x ≥ 1 = [1, ∞) −∞ ∞ 1 NOTE: Avoid even roots of negative numbers. Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 9 / 81
  • 10. Functions Examples on Function Domain Example 6 Find the natural domain of the function f (x) = √ x2 − 5x + 6. dom(f ) = all real numbers such that x2 − 5x + 6 ≥ 0 (x − 2)(x − 3) ≥ 0 = (−∞, 2] ∪ [3, ∞) −∞ ∞ 2 3 + − + Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 10 / 81
  • 11. Functions Examples on Function Domain Example 7 Find the natural domain of the function f (x) = 3 √ 4 − 3x2. dom(f ) = all real numbers = R NOTE: Odd root accepts +, −, 0 but depends on the function inside it. Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 11 / 81
  • 12. Functions Examples on Function Domain Example 8 Find the natural domain of the function f (x) = 3 s 1 x . dom(f ) = all real numbers except 0 = (−∞, 0) ∪ (0, ∞) −∞ ∞ 0 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 12 / 81
  • 13. Functions Examples on Function Domain Example 9 Find the natural domain of the function f (x) = √ x x2 − 4 . dom(f ) = all real numbers such that x ≥ 0 except ± 2 = [0, 2) ∪ (2, ∞) −∞ ∞ -2 0 2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 13 / 81
  • 14. Functions Examples on Function Domain Example 10 Find the natural domain of the function f (x) = √ x + 1 − √ 2 − x. dom √ x + 1 = x ∈ R; x + 1 ≥ 0 x ≥ −1 = [−1, ∞) dom √ 2 − x = x ∈ R; 2 − x ≥ 0 − x ≥ −2 x ≤ 2 = (−∞, 2] −∞ ∞ -1 −∞ ∞ 2 −∞ ∞ -1 2 ∴ dom(f ) = [−1, ∞) ∩ (−∞, 2] = [−1, 2] Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 14 / 81
  • 15. Functions Examples on Function Domain Exercise 1 (1) Compare the domain of g(x) = x and f (x) = x2 + x 1 + x . (2) Find the domain of each of the following. a) f (x) = p x2 + 2x + 4 b) g(x) = x x2 − x − 2 c) f (x) = √ 9 − x2 1 − x2 d) g(x) = x − 3 1 − √ x e) f (x) = x − 3 1 + √ x Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 15 / 81
  • 16. Functions Piecewise Functions Functions can be defined in pieces (cases). Example 11 Let f (x) =      0 : x ≤ −1 √ 1 − x2 : −1 x 1 x : x ≥ 1 f (0) = √ 1 − 02 = 1 f (−3) = 0 f (5) = 5 f (1) = 1 -1 1 1 NOTE: x = −1 and x = 1 are called piecewise points. Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 16 / 81
  • 17. Functions Absolute Value The absolute value of x ∈ R is defined by |x| = ( x : x ≥ 0 −x : x 0 For example, |4| = 4, |0| = 0, −1 2 = 1 2 . -1 1 1 NOTE: (1) |x| = a ⇔ x = ±a. Ex. |x| = 4 ⇔ x = ±4 (2) |x| ≤ a ⇔ −a ≤ x ≤ a. Ex. |x| ≤ 4 ⇔ −4 ≤ x ≤ 4 (3) |x| ≥ a ⇔ x ≥ a or x ≤ −a. Ex. |x| ≥ 4 ⇔ x ≤ −4 or x ≥ 4 (4) √ x2 = |x| (5) dom|g(x)| = dom(g(x)) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 17 / 81
  • 18. Functions Absolute Value Example 12 Write the function g(x) = |2x − 1| as piecewise function. g(x) = ( 2x − 1 : 2x − 1 ≥ 0 −(2x − 1) : 2x − 1 0 = ( 2x − 1 : x ≥ 1/2 −2x + 1 : x 1/2 g(x) = 0 ⇒ |2x − 1| = 0 ⇒ 2x − 1 = 0 ⇒ x = 1/2 −∞ ∞ 0.5 + 2x − 1 − 1 − 2x Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 18 / 81
  • 19. Functions Trigonometric Ratios (Right Triangle) a c b θ a : adjacent b : opposite c : hypotenuse sin θ = b c , cos θ = a c , tan θ = b a sec θ = c a , csc θ = c b , cot θ = a b NOTE: sec θ = 1 cos θ , csc θ = 1 sin θ , cot θ = 1 tan θ tan θ = sin θ cos θ , cot θ = cos θ sin θ Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 19 / 81
  • 20. Functions Angle Measures and Standard Position We measure angles either by degrees or by radians, where π rad = 180◦ Example 13 90◦ = 90 × π 180 = π 2 2π 3 = 2π 3 × 180 π = 120◦ Initial Ray Vertex Terminal Ray θ Counterclockwise θ is positive Initial Ray Vertex Terminal Ray θ Clockwise θ is negative Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 20 / 81
  • 21. Functions Angle Measures and Standard Position Example 14 Right Acute Obtuse Straight 90◦ = π/2 30◦ = π/6 150◦ = 5π/6 180◦ = π 270◦ = 3π/2 −90◦ = −π/2 −45◦ = −π/4 −540◦ = −3π Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 21 / 81
  • 22. Functions Some Trigonometric Values θ deg 0◦ 30◦ 45◦ 60◦ 90◦ θ rad 0 π/6 π/4 π/3 π/2 sin θ 0 1/2 1/ √ 2 √ 3/2 1 cos θ 1 √ 3/2 1/ √ 2 1/2 0 tan θ 0 1/ √ 3 1 √ 3 ✗ csc θ ✗ 2 √ 2 2/ √ 3 1 sec θ 1 2/ √ 3 √ 2 2 ✗ cot θ ✗ √ 3 1 1/ √ 3 0 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 22 / 81
  • 23. Functions Trigonometric Values in Coordinate Plane -1 1 -1 1 0◦ 90◦ 180◦ 270◦ (x, y) 1 θ x y Q1 Q2 Q3 Q4 All + sin + csc + tan + cot + cos + sec + (x, y) = (cos θ, sin θ) 4 Quadrants θ Point sin cos 0◦ (1, 0) 0 1 90◦ (0, 1) 1 0 180◦ (−1, 0) 0 −1 270◦ (0, −1) −1 0 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 23 / 81
  • 24. Functions Trigonometric Functions 1 f (x) = sin x Domain : R Range : h − 1, 1 i Period : 2π -1 1 −2π − 3π 2 −π − π 2 2π 3π 2 π π 2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 24 / 81
  • 25. Functions Trigonometric Functions 2 f (x) = cos x Domain : R Range : h − 1, 1 i Period : 2π -1 1 −2π − 3π 2 −π − π 2 2π 3π 2 π π 2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 25 / 81
  • 26. Functions Trigonometric Functions 3 f (x) = tan x Domain : x ̸= ± π 2 , ± 3π 2 , · · · Range : R Period : π -1 1 −2π − 3π 2 −π − π 2 2π 3π 2 π π 2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 26 / 81
  • 27. Functions Trigonometric Functions 4 f (x) = cot x Domain : x ̸= 0, ±π, ±2π, · · · Range : R Period : π -1 1 −2π − 3π 2 −π − π 2 2π 3π 2 π π 2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 27 / 81
  • 28. Functions Trigonometric Functions 5 f (x) = sec x Domain : x ̸= ± π 2 , ± 3π 2 , · · · Range : (−∞, −1] ∪ [1, ∞) Period : 2π -1 1 −2π − 3π 2 −π − π 2 2π 3π 2 π π 2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 28 / 81
  • 29. Functions Trigonometric Functions 6 f (x) = csc x Domain : x ̸= 0, ±π, ±2π, · · · Range : (−∞, −1] ∪ [1, ∞) Period : 2π -1 1 −2π − 3π 2 −π − π 2 2π 3π 2 π π 2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 29 / 81
  • 30. Functions Trigonometric Identities sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ sin(2θ) = 2 sin θ cos θ cos(2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1 − 2 sin2 θ cos2 θ = 1 + cos(2θ) 2 sin2 θ = 1 − cos(2θ) 2 sin(−θ) = − sin θ cos(−θ) = cos θ tan(−θ) = − tan θ Ex: sin − π 6 = − sin π 6 = − 1 2 tan − π 4 = − tan π 4 = −1 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 30 / 81
  • 31. Functions Reference Angle Example 15 Find all angles θ such that cos θ = −1/2. θ1 = π − π 3 = 2π 3 ± 2nπ θ2 = π + π 3 = 4π 3 ± 2nπ where n = 0, 1, 2, · · · 0◦ 90◦ 180◦ 270◦ α π − α π + α 2π − α = π/3 ✓ ✓ Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 31 / 81
  • 32. Functions Reference Angle Example 16 Find all angles θ such that sin θ = −1/ √ 2. θ1 = π + π 4 = 5π 4 ± 2nπ θ2 = 2π − π 4 = 7π 4 ± 2nπ where n = 0, 1, 2, · · · 0◦ 90◦ 180◦ 270◦ α π − α π + α 2π − α = π/4 ✓ ✓ Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 32 / 81
  • 33. Functions Reference Angle Example 17 Find all angles θ such that tan θ = √ 3. θ1 = π 3 ± 2nπ θ2 = π + π 3 = 4π 3 ± 2nπ ∴ θ = π 3 ± nπ where n = 0, 1, 2, · · · 0◦ 90◦ 180◦ 270◦ α π − α π + α 2π − α = π/3 ✓ ✓ Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 33 / 81
  • 34. Functions Reference Angle Example 18 Find all angles θ such that sin θ = 0. θ1 = 0 ± 2nπ θ2 = π ± 2nπ ∴ θ = 0 ± nπ = ±nπ where n = 0, 1, 2, · · · Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 34 / 81
  • 35. Functions Reference Angle Example 19 Find all angles θ such that cos θ = 0. θ1 = π 2 ± 2nπ θ2 = 3π 2 ± 2nπ ∴ θ = π 2 ± nπ where n = 0, 1, 2, · · · Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 35 / 81
  • 36. Functions Reference Angle Example 20 Find all angles θ such that cos θ = −1. θ = π ± 2nπ = 1 ± 2n π where n = 0, 1, 2, · · · Example 21 Find all angles θ such that sin θ = 1. θ = π 2 ± 2nπ where n = 0, 1, 2, · · · Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 36 / 81
  • 37. Functions Reference Angle Example 22 Find the value of sin 5π 3 . 2π − α = 5π 3 α = 2π − 5π 3 = π 3 ∴ sin 5π 3 = − sin π 3 = − √ 3 2 0◦ 90◦ 180◦ 270◦ α π − α π + α 2π − α = π/3 ✓ 5π/3 = 300◦ Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 37 / 81
  • 38. Functions Reference Angle Example 23 Find the value of tan −3π 4 = − tan 3π 4 π − α = 3π 4 α = π − 3π 4 = π 4 ∴ tan −3π 4 = − tan 3π 4 = −(−) tan π 4 = 1 0◦ 90◦ 180◦ 270◦ α π − α π + α 2π − α = π/4 ✓ 3π/4 = 135◦ Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 38 / 81
  • 39. Functions Reference Angle Example 24 Find the domain of f (x) = tan x = sin x cos x dom(tan x) = R − n cos x = 0 o = R − n x = π/2 ± nπ o = dom(sec x) Example 25 Find the domain of f (x) = csc x = 1 sin x dom(csc x) = R − n sin x = 0 o = R − n x = ±nπ o = dom(cot x) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 39 / 81
  • 40. New Functions from Old Operations on Functions Let f and g be functions, then f × + − g (x) = f (x) × + − g(x) ; x ∈ dom(f ) ∩ dom(g) (f ÷ g)(x) = f (x) ÷ g(x) ; x ∈ dom(f ) ∩ dom(g) − n g(x) = 0 o Example 26 Let f (x) = √ x → dom(f ) = [0, ∞). g(x) = √ x → dom(g) = [0, ∞) Find (f · g)(x) and its domain. (f · g)(x) = √ x · √ x = √ x 2 = x dom(f · g) = [0, ∞) ∩ [0, ∞) = [0, ∞) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 40 / 81
  • 41. New Functions from Old Composition of Functions x g g(x) f f (g(x)) f ◦ g f circle g of x f after g of x Definition 2 (f ◦ g)(x) = f (g(x)) dom(f ◦ g) = set of all x ∈ dom(g) such that g(x) ∈ dom(f ) NOTE: In general, f ◦ g ̸= g ◦ f . Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 41 / 81
  • 42. New Functions from Old Composition of Functions Example 27 Given that f (1) = 1, f (−1) = 0, g(−1) = 1 and g(0) = 0. Find (f ◦ g)(−1). (f ◦ g)(−1) = f (g(−1)) = f (1) = 1 Example 28 Let f (x) = x2 + 3 and g(x) = √ x. then (1) (f ◦ g)(x) = f (g(x)) = f ( √ x) = √ x 2 + 3 = x + 3 dom(f ◦ g) = [0, ∞) ∩ R = [0, ∞) (2) (g ◦ f )(x) = g(f (x)) = g(x2 + 3) = √ x2 + 3 dom(g ◦ f ) = R ∩ R = R Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 42 / 81
  • 43. New Functions from Old How Operations Affect Functions Graphs (Translation) Example f (x) + c f (x) − c f (x + c) f (x − c) f (x) = x2 up down left right x2 + c x2 − c (x + c)2 (x − c)2 (0, 0) (0, c) (0, −c) (−c, 0) (c, 0) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 43 / 81
  • 44. New Functions from Old How Operations Affect Functions Graphs (Translation) Example 29 Draw the graph of f (x) = (x + 1)2 − 1. (0, 0) (−1, 0) (−1, −1) x2 (x + 1)2 (x + 1)2 − 1 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 44 / 81
  • 45. New Functions from Old How Operations Affect Functions Graphs (Reflection) About y−axis About x−axis f (−x) −f (x) f (x) f (−x) f (x) −f (x) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 45 / 81
  • 46. New Functions from Old How Operations Affect Functions Graphs (Reflection) Example 30 Draw the graph of f (x) = 4 − |x − 2| (0, 0) (2, 0) (2, 0) (2, 4) |x| |x − 2| −|x − 2| 4 − |x − 2| Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 46 / 81
  • 47. New Functions from Old How Operations Affect Functions Graphs (Reflection) NOTE: Follow this order of transformations: (1) Horizontal shifts: f (x ± c) (2) Reflection: f (−x) and/or −f (x) (3) Vertical shifts: f (x) ± c Example 31 Draw the graph of f (x) = 2 − √ 3 − x (0, 0) (−3, 0) (3, 0) (3, 0) (3, 2) √ x √ x + 3 √ −x + 3 − √ 3 − x 2 − √ 3 − x Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 47 / 81
  • 48. New Functions from Old Functions with Symmetric Graphs Definition 3 f (x) is an even function if f (−x) = f (x). In this case, f is symmetric about the y−axis. −1 1 −3/2 3/2 −π/3 π/3 x2 |x| cos x Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 48 / 81
  • 49. New Functions from Old Functions with Symmetric Graphs Definition 4 f (x) is an odd function if f (−x) = −f (x). In this case, f is symmetric about the origin. −1 1 −π/2 π/2 −π/4 π/4 x3 sin x − tan x = tan(−x) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 49 / 81
  • 50. New Functions from Old Functions with Symmetric Graphs NOTE: (1) Some functions are Odd, some are Even, and some neither Odd nor Even like f (x) = x + 2 cos x. (2) ▶ Odd ± Odd = Odd ▶ Even ± Even = Even ▶ Odd × Odd = Even , Odd ÷ Odd = Even ▶ Even × Even = Even , Even ÷ Even = Even ▶ Odd × Even = Odd , Odd ÷ Even = Odd Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 50 / 81
  • 51. Inverse Functions Idea of Inverse Functions When two functions UNDO each other. The inverse function is denoted by f −1 and read f −inverse. NOTE: * f −1 ̸= 1 f * If y = x3 , then x = 3 √ y * The inputs of f , are the outputs of f −1 and vice-versa. x y = x3 f f −inverse domain f −1 = range (f ) range f −1 = domain (f ) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 51 / 81
  • 52. Inverse Functions When Do the Inverse Exist? Function but NOT 1 − 1 Function and 1 − 1 A function f has inverse ⇔ it is one-to-one (1 − 1) ⇔ x1 ̸= x2, then f (x1) ̸= f (x2) . ⇔ The graph intersects any horizontal ⇔ line at most once (Horizontal Line Test) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 52 / 81
  • 53. Inverse Functions When Do the Inverse Exist? Example 32 Let f (x) = x3 . * The domain of f is R. * If we take x1, x2 ∈ R such that x1 ̸= x2, then x3 1 ̸= x3 2 ⇒ f (x1) ̸= f (x1) * So, x3 is 1 − 1 on R. −1 1 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 53 / 81
  • 54. Inverse Functions When Do the Inverse Exist? Example 33 Let f (x) = x2 . * The domain of f is R. * Note that −1 ̸= 1, but (−1)2 = (1)2 . * So, x2 is NOT 1 − 1 on R. * But, x2 is 1 − 1 on [0, ∞). −1 1 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 54 / 81
  • 55. Inverse Functions Definition of Inverse Function Definition 5 The functions f , f −1 are inverses provided both f ◦ f −1 (x) = f f −1 (x) = x ; x ∈ dom f −1 f −1 ◦ f (x) = f −1 (f (x)) = x ; x ∈ dom (f ) Example 34 Let f (x) = 2x3 + 5x + 3. Find x if f −1 (x) = 1. f −1 (x) = 1 ⇒ f f −1 (x) = f (1) ⇒ x = f (1) = 10 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 55 / 81
  • 56. Inverse Functions Finding the Inverse Function To find the inverse function of f (x): (1) Write y = f (x). (2) Solve the equation for x as a function of y. (3) Replace x by f −1 (x), and y by x. Example 35 Find f −1 (x) given that f (x) = x3 . y = x3 3 √ y = 3 √ x3 x = 3 √ y f −1 (x) = 3 √ x x3 3 √ x y = x (3/4, 27/64) (27/64, 3/4) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 56 / 81
  • 57. Inverse Functions Finding the Inverse Function Example 36 Find f −1 (x) given that f (x) = √ 1 + 2x. y = √ 1 + 2x ⇒ y2 = √ 1 + 2x 2 ⇒ y2 = 1 + 2x ⇒ x = y2 − 1 2 ⇒ f −1 (x) = 1 2 x2 − 1 √ 1 + 2x x2 − 1 2 y = x (1, 0) (0, 1) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 57 / 81
  • 58. Inverse Functions Finding the Inverse Function Example 37 Find f −1 (x) given that f (x) = x + 1 x − 1 . y = x + 1 x − 1 ⇒ (x − 1)y = x + 1 ⇒ xy − y = x + 1 ⇒ xy − x = y + 1 ⇒ x(y − 1) = y + 1 ⇒ x = y + 1 y − 1 ⇒ f −1 (x) = x + 1 x − 1 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 58 / 81
  • 59. Inverse Functions Inverse Trigonometric Functions f −1 Domain Range Graph Note sin−1 x [−1, 1] h −π 2 , π 2 i −1 1 π/2 −π/2 arcsin x cos−1 x [−1, 1] [0, π] −1 1 π arccos x tan−1 x R −π 2 , π 2 π/2 −π/2 arctan x Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 59 / 81
  • 60. Inverse Functions Inverse Trigonometric Functions Example 38 Find the domain of f (x) = sin−1 (x − 1). − 1 ≤ x − 1 ≤ 1 ⇒ −1 +1 ≤ x−1 +1 ≤ 1 +1 ⇒ 0 ≤ x ≤ 2 ⇒ dom(f ) = [0, 2] Example 39 Find the exact value. (1) sin−1 (1/2) = π/6 ∈ [−π/2, π/2] (2) cos−1 (1/2) = π/3 ∈ [0, π] (3) tan−1 (1) = π/4 ∈ (−π/2, π/2) (4) cos−1 (2) undefined Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 60 / 81
  • 61. Inverse Functions Inverse Trigonometric Functions NOTE: * sin−1 (−x) = − sin−1 x * tan−1 (−x) = − tan−1 x * cos−1 (−x) = π − cos−1 x * sin−1 (x) + cos−1 (x) = π 2 * tan−1 (x) ̸= sin−1 (x) cos−1(x) Example 40 Find the exact value. (1) sin−1 (−1/2) = − sin−1 (1/2) = −π/6 ∈ [−π/2, π/2] (2) tan−1 (−1) = − tan−1 (1) = −π/4 ∈ (−π/2, π/2) (3) cos−1 (−1/2) = π − cos−1 (1/2) = π − π/3 = 2π/3 ∈ [0, π] Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 61 / 81
  • 62. Inverse Functions Inverse Trigonometric Functions Example 41 Find the exact value. (1) sin sin−1 (1/4) = 1/4 Note that dom sin−1 = [−1, 1] and 1/4 ∈ [−1, 1] Also, sin and sin−1 are inverses and cancel each other (2) tan (tan−1 (−17/9)) = −17/9 Note that dom(tan−1 ) = R and −17/9 ∈ R Also, tan and tan−1 are inverses and cancel each other (3) cos (cos−1 (−2/3)) = −2/3 Note that dom(cos−1 ) = [−1, 1] and −2/3 ∈ [−1, 1] Also, cos and cos−1 are inverses and cancel each other Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 62 / 81
  • 63. Inverse Functions Inverse Trigonometric Functions NOTE: sin−1 (sin x) =    π − x : π/2 ≤ x ≤ 3π/2 x − 2nπ : x ≥ 3π/2 cos−1 (cos x) = 2nπ − x ; if x ≥ π Example 42 Find the exact value. (1) sin−1 (sin (5π/3)) = sin−1 (sin (5π/3 − 2π)) = sin−1 (sin (−π/3)) = −π/3 (2) sin−1 (sin (4π/3)) = sin−1 (sin (π − 4π/3)) = sin−1 (sin (−π/3)) = −π/3 (3) cos−1 (cos (17π/4)) = cos−1 (cos (4π − 17π/4)) = cos−1 (cos (−π/4)) = cos−1 (cos (π/4)) = π/4 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 63 / 81
  • 64. Inverse Functions Inverse Trigonometric Functions Example 43 Find the exact value of tan−1 tan 5π 6 . π − α = 5π 6 α = π − 5π 6 = π 6 tan−1 tan 5π 6 = − tan−1 tan π 6 = −π 6 0◦ 90◦ 180◦ 270◦ α π − α π + α 2π − α Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 64 / 81
  • 65. Inverse Functions Inverse Trigonometric Functions Example 44 Simplify the expression tan sin−1 x . Let θ = sin−1 x sin θ = sin sin−1 x sin θ = x ; x ∈ [−1, 1] ∴ tan sin−1 x = tan θ = x √ 1 − x2 where x ∈ (−1, 1) θ x 1 √ 1 − x2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 65 / 81
  • 66. Inverse Functions Inverse Trigonometric Functions Example 45 Find the exact value of sin (2 sec−1 3). Let θ = sec−1 3 sec θ = sec sec−1 3 sec θ = 3 ∴ sin 2 sec−1 3 = sin(2θ) = 2 sin θ cos θ = 2 × √ 8 3 × 1 3 = 4 √ 2 9 θ √ 8 3 1 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 66 / 81
  • 67. Exponential and Logarithmic Functions The Exponential Function Definition 6 The exponential function to the base b is f (x) = bx where b 0 and b ̸= 1. domain of bx = R range of bx = (0, ∞) b 1 2x 0 b 1 1 2 x (0, 1) Example 46 2x , πx , (1/3)x , · · · are exponential x2 , xπ , x 1/3 , · · · are NOT exponential Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 67 / 81
  • 68. Exponential and Logarithmic Functions The Exponential Function Example 47 Find the domain of the function f (x) = 4 x x2−4 . dom(f ) = R − {x2 − 4 = 0} = R − {±2} NOTE: The number e ≈ 2.7182818285 · · · is called the Natural Number. The exponential function f (x) = ex is called the Natural Exponential Function. ex (0, 1) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 68 / 81
  • 69. Exponential and Logarithmic Functions The Exponential Function: Properties (1) b0 = 1 Ex: 20 = 1 (2) bx · by = bx+y Ex: 24 · 23 = 27 (3) bx ÷ by = bx−y Ex: 35 /32 = 33 (4) b−x = 1/bx Ex: e−2 = 1/e2 (5) (bx )y = bxy Ex: 32 3 = 36 (6) n √ bm = b m/n Ex: 3 √ 26 = 2 6/3 = 22 (7) (a · b)x = ax · bx Ex: (2e)3 = 23 · e3 = 8e3 (8) (a ÷ b)x = ax ÷ bx Ex: (5/2)2 = 52 /22 (9) bx = by ⇔ x = y One-to-One Property Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 69 / 81
  • 70. Exponential and Logarithmic Functions The Exponential Function: Properties Example 48 Find the exact value: (1) (−8) 2 3 = 3 q (−8)2 = 3 √ 64 = 4 (2) 9−1/2 = 1 91/2 = 1 √ 9 = 1 3 Example 49 Solve the equation 2x = 64. 2x = 64 ⇒ 2x = 26 ⇒ x = 6 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 70 / 81
  • 71. Exponential and Logarithmic Functions The Logarithmic Function Definition 7 The logarithmic function to the base b is f (x) = logb x where b 0 and b ̸= 1. domain of logb x = (0, ∞) range of logb x = R b 1 log2 x 0 b 1 log1/2 x (1, 0) NOTE: The function loge x is called the Natural Logarithmic Function and denoted by ln x. Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 71 / 81
  • 72. Exponential and Logarithmic Functions The Logarithmic Function NOTE: dom (logb g(x)) = All real numbers such that g(x) 0 and defined. Example 50 Find the domain of f (x) = ln (9 − x2 ). dom ln 9 − x2 = All x ∈ R such that 9 − x2 0 ⇒ x2 9 ⇒ √ x2 √ 9 ⇒ |x| 3 ⇒ −3 x 3 ⇒ x ∈ (−3, 3) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 72 / 81
  • 73. Exponential and Logarithmic Functions The Logarithmic Function: Properties (1) logb 1 = 0 Ex: log10 1 = 0 (2) logb b = 1 Ex: ln e = loge e = 1 (3) logb (xn ) = n logb x Ex: log3 9 = log3 32 = 2 (4) logb a = ln a ln b Ex: log4 3 = ln 3/ln 4 (5) logb(xy) = logb x + logb y (6) logb (x/y) = logb x − logb y (7) logb x = logb y ⇔ x = y One-to-One Property Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 73 / 81
  • 74. Exponential and Logarithmic Functions The Logarithmic Function: Properties Example 51 Find the exact value. (1) log2 32 = log2 (25 ) = 5 log2 2 = 5 (2) log4 2 = log4 √ 4 = log4 41/2 = 1/2 Example 52 Simplify the expression log6 9 − log6 5 + log6 20. (log6 9 − log6 5) + log6 20 = log6 9 5 + log6 20 = log6 9 5 × 20 = log6 36 = log6 62 = 2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 74 / 81
  • 75. Exponential and Logarithmic Functions Logarithmic Exponential are Inverses Function Domain Range bx R (0, ∞) logb x (0, ∞) R logb (bx ) = x ; x ∈ R blogb x = x ; x ∈ (0, ∞) y = x bx logb x Example 53 Find the exact value of 52 log5 4 . 52 log5 4 = 5log5(42 ) = 42 = 16 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 75 / 81
  • 76. Exponential and Logarithmic Functions Logarithmic Exponential are Inverses Example 54 Solve the following equations. (1) ex = 7 ⇒ ln (ex ) = ln 7 ⇒ x = ln 7 (2) log10 x = −2 ⇒ 10log10 x = 10−2 ⇒ x = 1 102 = 0.01 (3) ln x = 3 ⇒ eln x = e3 ⇒ x = e3 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 76 / 81
  • 77. Exponential and Logarithmic Functions Logarithmic Exponential are Inverses Example 55 Solve the equation e2x + ex − 6 = 0. e2x + ex − 6 = 0 ⇒ (ex )2 + ex − 6 = 0 (Let y = ex ) ⇒ y2 + y − 6 = 0 ⇒ (y + 3)(y − 2) = 0 Solution (1) ⇒ y = −3 ⇒ ex = −3 ✗ Solution (2) ⇒ y = 2 ⇒ ex = 2 ✓ ⇒ x = ln 2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 77 / 81
  • 78. Exponential and Logarithmic Functions Logarithmic Exponential are Inverses Example 56 Solve the equation ln(x − 2) + ln(2x − 3) = 2 ln x. ln (x − 2)(2x − 3) = ln x2 ⇒ (x − 2)(2x − 3) = x2 ⇒ 2x2 − 7x + 6 = x2 ⇒ x2 − 7x + 6 = 0 ⇒ (x − 6)(x − 1) = 0 ⇒ x = 6 ✓ or x = 1 ✗ Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 78 / 81
  • 79. Exponential and Logarithmic Functions Logarithmic Exponential are Inverses Example 57 True or False? “The functions ln (x2 ) and 2 ln x have the same domain !!” domain of ln x2 = R − {0} domain of 2 ln (x) = (0, ∞) ∴ FALSE Example 58 Find the inverse function of f (x) = ln(x + 3). y = ln(x + 3) ⇒ ey = eln(x+3) ⇒ x + 3 = ey ⇒ x = ey − 3 ∴ f −1 (x) = ex − 3 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 79 / 81
  • 80. Exponential and Logarithmic Functions Logarithmic Exponential are Inverses Example 59 Find the inverse function of g(x) = e2x−1 . y = e2x−1 ⇒ ln y = ln e2x−1 ⇒ 2x − 1 = ln y ⇒ x = 1 + ln y 2 ∴ g−1 (x) = 1 + ln x 2 Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 80 / 81
  • 81. Exponential and Logarithmic Functions One More Example Example 60 Let f (x) = x2 − 2x − 3. (1) Draw the graph of f by shifting the graph of x2 . x2 − 2x − 3 = x2 − 2x + 1 − 1 − 3 = (x − 1)2 − 4 (2) Find f −1(x). y = (x − 1)2 − 4 x = p y + 4 + 1 f −1 (x) = √ x + 4 + 1 (3) What is the range of f . range of f = [−4, ∞) = domain of f −1 (1, −4) Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 81 / 81