SlideShare uma empresa Scribd logo
1 de 26
Baixar para ler offline
Unconventional Phase Transitions
in Frustrated Systems
Shu Tanaka (The University of Tokyo)
Collaborators:
Ryo Tamura (NIMS)
Naoki Kawashima (ISSP)
2D case: PRB 87, 214401 (2013), 3D case: PRE 88, 052138 (2013).
Main results
To investigate unconventional phase transition
behavior in geometrically frustrated systems.
2D 3D
SO(3)xZ2 SO(3)xC3
- Z2 vortex dissociation
- 2nd-order PT w/ Z2 breaking
(2-dim. Ising universality)
at the same temperature.
- 1st-order PT w/ SO(3)xC3
breaking
- increases, decreases.J E
Conventional phase transitions
Ferromagnets Antiferromagnets In the ground state, all spin
pairs form stable spin
configurations.
Type
Order parameter
space
1D 2D 3D
Ising Z2 × √ √
XY U(1) × KT √
Heisenberg S2 × × √
Temperature
Ordered phase
Tc
Disordered phase
Phase transition occurs.
Frustration: random spin systems
E. Vincent, Lecture Notes in Physics 716 (2007),
Slow relaxation Novel order
We study the universality classes of phase transitions of
our model. In the phase diagram (see Fig. 5), there are two
types of phase boundaries. To make clear the universality
classes of each phase transition, x is set to 3/16 = 0.1875 such
that transition temperatures are separated sufficiently. For this
parameter, the intermediate phase is the (πππ) ordered phase
(see the dotted arrow in Fig. 5).
First, we investigate the higher-temperature phase transition
from the paramagnetic phase to the (πππ) ordered phase.
From the Harris criterion,36
we expect that the higher-
temperature phase transition belongs to the three-dimensional
Heisenberg universality class. This is because the critical
exponent α is negative in the three-dimensional Heisenberg
model, and thus the disorder should not affect the universality
class. To obtain the transition temperature and confirm the
critical exponents, we calculate the correlation function Gc
(rc),
a
b
c
(a) (b)
Random Fan-Out State
θ
θ
FIG. 9. (Color online) (a) “Average” spin directions in the spin
configuration of the random fan-out state. In each layer (ab plane),
R. Tamura, N. Kawashima, H. Kageyama et al.,
PRB 84, 214408 (2011)
Ferromagnetic
interaction
Antiferromagnetic
interaction
Even in the GS,
locally unstable spin state
appears due to frustration.
layered perovskite
SrFe1-xMnxO2
H. Takano and S. Miyashita, JPSJ 64, 423 (1995).
Frustration: geometrically frustrated systems
Ising model Heisenberg model
Residual entropy
(macroscopically degenerated states)
Single-q state
(120-degree structure, spiral spin texture)
Antiferromagnets on triangle-based
lattice structures
Geometrical frustration
Unconventional behaviors in GFMs
Chirality and Z2 vortex Reentrant phase transition
ParaAntiferroParaFerro
Temperature
Slow relaxation
T ! 0þ, we expect that nloop must be the maximum value
and the spin structure becomes the so-called
ffiffiffi
3
p
Â
ffiffiffi
3
p
structure.
Next, we study the relaxation of magnetization and nloop.
We ready the three types of initial configurations, i.e., (a) theffiffiffi
3
p
Â
ffiffiffi
3
p
structure, (b) the q ¼ 0 structure, and (c) a random
structure. The configurations (a) and (b) are typical ground
states of the present model, and the configuration (c)
corresponds to a state just after quench the temperature
from a high temperature.
In Fig. 4, the relaxation processes at T ¼ 0:05J are
plotted. In the cases (a) and (b), the magnetization is
maximum at t ¼ 0, and it relaxes very fast to uniformly
magnetized ordered state. The relaxation of magnetization to
the equilibrium is depicted in the inset. In contrast, in the
case (c), i.e., from a random state, it takes some time to
realize the uniformly magnetized state. Thus we regard
the relaxation time in the case (c) as the intrinsic relaxation
time of the magnetization mag.
0 [×10
+7
]
0
0.04
0.08
0.12
0.16
0 5000 10000
0
0.04
0.08
0.12
0.16
Monte Carlo Step (MCS)
Magnetization
Monte Carlo Step (MCS)
Magnetization
0 [×10
+7
]
0
0.5
1
Monte Carlo Step (MCS)
NumberofWeathervaneLoops
(a)
(c)
(b)
54321 54321
Fig. 4. (Color online) Relaxation of the magnetization and nloop at T ¼ 0:05J from (a)
ffiffiffi
3
p
Â
ffiffiffi
3
p
configuration, (b) q ¼ 0 configuration, and (c) random
configuration.
10
0
10
2
10
4
10
6
10
8
10
10
0
0.5
1
NumberofWeathervaneloops
Monte Carlo Step (MCS)
T=0.0425J
T=0.04J
T=0.045J
T=0.0475J
T=0.05J
T=0.055J
T=0.06J
T=0.065J
T=0.07J
T=0.1J
T=0.09J
T=0.08J
Fig. 5. (Color online) Relaxation of nloop from
ffiffiffi
3
p
Â
ffiffiffi
3
p
structure at
several temperatures. Dashed lines denote the fittling curves estimated
by eq. (2).
J. Phys. Soc. Jpn., Vol. 76, No. 10 LETTERS S. TANAKA and S. MIYASHITA
A. Kuroda and S. Miyashita, JPSJ 64, 4509 (1995).
S. Tanaka and S. Miyashita, JPSJ 76, 103001 (2007).
S. Miyashita and H. Shiba, JPSJ 53, 1145 (1984).
H. Kawamura and S. Miyashita, JPSJ 53, 4138 (1984).
X. Hu, S. Miyashita, and M. Tachiki, PRL 79, 3498 (1997).
R. Tamura, S. Tanaka, and N. Kawashima, PRB 87, 214401 (2013).
H. Kitatani, S. Miyashita, and M. Suzuki, JPSJ 55, 865 (1986).
S. Miyashita, S. Tanaka, and M. Hirano, JPSJ 76, 083001 (2007).
Successive phase transitions
MoO4)3 featuring (a) MnO5 polyhedra, (b) equilateral triangular lattices
rlayer distances between Mn2+
ions are given by a = 6.099 ˚Aand c/2 =
S. Miyashita and H. Kawamura, JPSJ 54, 3385 (1985).
S. Miyashita, JPSJ 55, 3605 (1986).
R. Ishii, S. Tanaka, S. Nakatsuji et al. EPL 94, 17001 (2011).
Phase transition in 2D GFMs
H = J1
i,j
si · sj J3
i,j 3
si · sj
The 1st n.n. interaction The 3rd n.n. interaction
J3/J10-1/4
Ferromagnetic (S2) Spiral-spin structure (SO(3)xC3)
J1: Ferro
J3/J10-1/9
Degenerated GSs 120-degree structure (SO(3))
Order by disorder
J1: Antiferro
2D triangular lattice
NiGa2S4
S. Nakatsuji, Y. Nambu, Y. Maeno et al.,
Science 309, 1697 (2005).
1st-order PT w/ 3-fold symmetry breaking and
Z2 vortex dissociation occur.
R. Tamura and N. Kawashima,
JPSJ 77, 103002 (2008), JPSJ 80, 074008 (2011).
Z2 vortex dissociation
Main results
To investigate unconventional phase transition
behavior in geometrically frustrated systems.
2D 3D
SO(3)xZ2 SO(3)xC3
- Z2 vortex dissociation
- 2nd-order PT w/ Z2 breaking
(2-dim. Ising universality)
at the same temperature.
- 1st-order PT w/ SO(3)xC3
breaking
- increases, decreases.J E
Model
H = J1
i,j axis 1
si · sj J1
i,j axis 2,3
si · sj J3
i,j 3
si · sj
The 1st n.n. interaction
along axes 2 and 3
The 3rd n.n. interactionThe 1st n.n. interaction
along axis 1
Model
H = J1
i,j axis 1
si · sj J1
i,j axis 2,3
si · sj J3
i,j 3
si · sj
The 1st n.n. interaction
along axes 2 and 3
The 3rd n.n. interactionThe 1st n.n. interaction
along axis 1
4 types of ground states for ferromagnetic J1
1. Ferromagnetic state (S2)
2. Single-q spiral state (SO(3))
3. double-q spiral state (SO(3)xZ2)
4. triple-q spiral state (SO(3)xC3)
No phase transition occurs at finite T (Mermin-Wagner theorem).
Z2 vortex dissociation occurs at finite T.
1st-order PT and Z2 vortex dissociation occur at the same T.
N. D. Mermin and H. Wagner, PRL 17, 1133 (1966).
H. Kawamura and S. Miyashita, JPSJ 53, 4138 (1984).
R. Tamura and N. Kawashima, JPSJ 77, 103002 (2008).
R. Tamura and N. Kawashima, JPSJ 80, 074008 (2011).
Ground state phase diagram
SO(3)xC3
SO(3)xZ2
(i) ferromagnetic
(ii) single-k spiral
(iii) double-k spiral
(iv)triple-kspiral
(ii) single-k spiral
4 independent
sublattices
structure
structure
H = J1
i,j axis 1
si · sj J1
i,j axis 2,3
si · sj J3
i,j 3
si · sj
The 1st n.n. interaction
along axes 2 and 3
The 3rd n.n. interactionThe 1st n.n. interaction
along axis 1
Model
H = J1
i,j axis 1
si · sj J1
i,j axis 2,3
si · sj J3
i,j 3
si · sj
axis 1
axis2
axis3
The 1st n.n. interaction
along axes 2 and 3
The 3rd n.n. interactionThe 1st n.n. interaction
along axis 1
Order parameter space: SO(3)xZ2
J1/J3 = 0.4926 · · · , = 1.308 · · ·
Physical quantities
SECOND-ORDER PHASE TRANSITION IN THE . . .
1
2
3
0.49 0.495 0.5
U4
T/J3
(c)
0
0.05
0.1
m
2

(b)
0
5
10
15
20
C
(a)
L=144
L=216
L=288
0
0.2
0.4
0.6
-1.5 -1.0 -0.5 0 0.5 1.0 1.5
χLη-2
(T-Tc)L1/ν
/J3
(f)
1
2
3
U4
(e)
-2.6
-2.4
-2.2
-2.0
2.00 2.02 2.04 2.06 2.08
ln(nv)
J3/T
Arrhenius law
(d)
0
0.2
0.4
0.6
1
Tc/J3
(
FIG.
model fo
open squ
first-orde
solid circ
specific heat
order parameter
Binder ratio
H = J1
i,j axis 1
si · sj J1
i,j axis 2,3
si · sj J3
i,j 3
si · sj
axis 1
axis2
axis3
SECOND-ORDER PHASE TRANSITION IN THE . . .
3
4
0
0.05
0.1
m
2

(b)
0
5
10
15
20
C
(a)
L=144
L=216
L=288
0.6 (f)
1
2
3U4
(e)
-2.6
-2.4
-2.2
-2.0
2.00 2.02 2.04 2.06 2
ln(nv)
J3/T
Arrhenius law
(d)
(t)
:= s
(t)
1 · s
(t)
2 s
(t)
3 , m :=
t
(t)
/N
J1/J3 = 0.4926 · · · , = 1.308 · · ·
Order parameter detecting Z2 breaking
U4 :=
m4
m2 2
Binder ratio
Crossing point
Z2 vortex dissociation
-2.6
-2.4
-2.2
-2.0
2.00 2.02 2.04 2.06 2.08
ln(nv)
J3/T
Arrhenius law
H = J1
i,j axis 1
si · sj J1
i,j axis 2,3
si · sj J3
i,j 3
si · sj
The 1st n.n. interaction
along axes 2 and 3
The 3rd n.n. interactionThe 1st n.n. interaction
along axis 1
J1/J3 = 0.4926 · · · , = 1.308 · · ·
No phase transition w/ SO(3)
breaking occurs at finite T.
(Mermin-Wagner theorem)
Point defect: 1(SO(3)) = Z2
Z2 vortex dissociation can occur
at finite T.
Z2 vortex density
Z2 vortex dissociation occurs
at the 2nd-order PT point (Tc).
Finite size scaling
0
0.2
0.4
0.6
-1.5 -1.0 -0.5 0 0.5 1.0 1.5
L
-2
(T-Tc)L
1/
/J3
1
2
3
U4
= 1, = 1/4
H = J1
i,j axis 1
si · sj J1
i,j axis 2,3
si · sj J3
i,j 3
si · sj
The 1st n.n. interaction
along axes 2 and 3
The 3rd n.n. interactionThe 1st n.n. interaction
along axis 1
J1/J3 = 0.4926 · · · , = 1.308 · · ·
Binder ratio
Susceptibility
Finite size scaling relations
U4 f (T Tc)L1/
L2
g (T Tc)L1/
2D Ising universality class
= 1, = 1/4
Z2 vortex dissociation does not
affect the phase transition nature.
Phase diagram
E . . . PHYSICAL REVIEW B 87, 214401
(f)
(e)
2.04 2.06 2.08
J3/T
rhenius law
(d)
0
0.2
0.4
0.6
1 1.5 2 2.5 3
Tc/J3
λ
(a)
0.48
0.5
0.52
1 1.1 1.2
1.0
2.0
3.0
U4
(b)
L=108
L=144
L=180
L=216
0.0
0.2
0.4
-4 -2 0 2
χL
η-2
(T-Tc)L1/ν
/J3
(c)
FIG. 3. (Color online) (a) Phase diagram of the distorted
H = J1
i,j axis 1
si · sj J1
i,j axis 2,3
si · sj J3
i,j 3
si · sj
The 1st n.n. interaction
along axes 2 and 3
The 3rd n.n. interactionThe 1st n.n. interaction
along axis 1
J1/J3 = 0.7342 · · ·
SO(3)xC3
1st-order PT w/ C3
breaking 
Z2 vortex dissociation
occur at the same T.
SO(3)xZ2 SO(3)
R. Tamura and N. Kawashima,
JPSJ 77, 103002 (2008).
JPSJ 80, 074008 (2011).
SO(3)xZ2
2nd-order PT w/ Z2
breaking 
Z2 vortex dissociation
occur at the same T.
2D Ising universality
SO(3)
Z2 vortex dissociation
occur at finite T.
H. Kawamura and S. Miyashita,
JPSJ 53, 4138 (1984).
Main results
To investigate unconventional phase transition
behavior in geometrically frustrated systems.
2D 3D
SO(3)xZ2 SO(3)xC3
- Z2 vortex dissociation
- 2nd-order PT w/ Z2 breaking
(2-dim. Ising universality)
at the same temperature.
- 1st-order PT w/ SO(3)xC3
breaking
- increases, decreases.J E
Model
H = J1
i,j
si · sj J3
i,j 3
si · sj J
i,j
si · sj
The 3rd n.n. interaction
intralayer
The 1st n.n. interaction
interlayer
The 1st n.n. interaction
intralayer
Ground state
H = J1
i,j
si · sj J3
i,j 3
si · sj J
i,j
si · sj
/2 /2 /2
/2 /2
/2
Order parameter space: SO(3)xC3
The 3rd n.n. interaction
intralayer
The 1st n.n. interaction
interlayer
The 1st n.n. interaction
intralayer
Internal energy and specific heat
H = J1
i,j
si · sj J3
i,j 3
si · sj J
i,j
si · sj
J3/J1 = 0.85355 · · · , J /J1 = 2INTERLAYER-INTERACTION DEPENDENCE OF LATENT . .
20
30
40
-2.3
-2.2
-2.1
(a)
(d)
(b)
0
0.05
0.1
0 15 30 45
0
5
10
15
20
25
30
INTERLAYER-INTERACTION D
0.02
0
10
20
30
40
-2.3
-2.2
-2.1
(a)
(b)
(c)
INTERLAYER-INTERACTION DEPENDENCE OF LATENT . .
0
10
20
30
40
-2.3
-2.2
-2.1
1.53
1.54
1.55
0 0.00004 0.000
(a)
(d)
(e)
(b)
(c)
0
0.05
0.1
0 15 30 45
0
5
10
15
20
25
30
-2.3 -2.2 -2.1
Internal energy Specific heat
Phase transition occurs
at finite T.
0
0.01
0.02
1.52 1.53 1.54 1.55
0
10
20
30
40
-2.3
1.53
1.54
1.55
0 0.00004 0.0000
0
20
40
60
0 20000 40000 60000
(a)
(e)
(f)
(b)
(c)
0
5
10
15
-2.3 -2.2 -2.1
FIG. 4. (Color online) Temperature dependence of (a) intern
0
0.01
0.02
1.52 1.53 1.54 1.55
0
10
20
30
40
-2.3
-2.2
(a)
(b)
(c)
The 3rd n.n. interaction
intralayer
The 1st n.n. interaction
interlayer
The 1st n.n. interaction
intralayer
Order parameter (C3 and SO(3))
H = J1
i,j
si · sj J3
i,j 3
si · sj J
i,j
si · sj
J3/J1 = 0.85355 · · · , J /J1 = 2
0
0.01
0.02
1.52 1.53 1.54 1.55
0
10
20
30
1.53
1.54
1.55
0 0.00004 0.0
0
20
40
60
0 20000 40000 60000
(e)
(f)
(b)
(c)
0
5
10
-2.3 -2.2 -2
FIG. 4. (Color online) Temperature dependence of (a) inte
energy per site E/J1, (b) specific heat C, and (c) order par
2
INTERLAYER-INTERACTION DEPENDENCE OF LATENT . .
0
10
20
30
40
-2.3
-2.2
-2.1
1.54
1.55
(a)
(d)
(e)
(b)
0
0.05
0.1
0 15 30 45
0
5
10
15
20
25
30
-2.3 -2.2 -2.1
C3 symmetry breaks at Tc.
Order parameter (C3)
peaks E(L)/J1. (e) Plot of Tc(L)/J1 as a function of L−3
. (f) Plot
of Cmax(L) as a function of L3
. Lines are just visual guides and error
bars in all figures are omitted for clarity since their sizes are smaller
than the symbol size.
of analysis. One is the finite-size scaling and the other is
a naive analysis of the probability distribution P(E; Tc(L)).
The scaling relations for the first-order phase transition in
d-dimensional systems [82] are given by
Tc(L) = aL−d
+ Tc, (9)
Cmax(L) ∝
( E)2
Ld
4T 2
c
, (10)
where Tc and E are, respectively, the transition temperature
and the latent heat in the thermodynamic limit. The coefficient
of the first term in Eq. (9), a, is a constant. Figures 4(e)
and 4(f) show the scaling plots for Tc(L)/J1 and Cmax(L),
respectively. Figure 4(e) indicates that Tc is a nonzero value
in the thermodynamic limit. Figure 4(f) shows an almost
linear dependence of Cmax(L) as a function of L3
. However,
using the finite-size scaling, we cannot obtain the transition
temperature and latent heat in the thermodynamic limit with
high accuracy because of the strong finite-size effect. Next we
directly calculate the size dependence of the width between
bimodal peaks of the energy distribution shown in Fig. 4(d).
The width for the system size L is represented by E(L) =
E+(L) − E−(L), where E+(L) and E−(L) are the averages of
the Gaussian function in the high-temperature phase and that in
the low-temperature phase, respectively. In the thermodynamic
limit, each Gaussian function becomes the δ function and then
E(L) converges to E [82]. The inset of Fig. 4(d) shows the
size dependence of the width E(L)/J1. The width enlarges as
value in the thermodynamic limit. Figure 5(a) shows the
temperature dependence of the largest value of structure factors
S(k∗
) calculated by six wave vectors in Eq. (4). Here S(k∗
)
becomes zero in the thermodynamic limit above the first-
order phase transition temperature. The structure factor S(k∗
)
becomes a nonzero value at the first-order phase transition
temperature. Moreover, as temperature decreases, the structure
factor S(k∗
) increases. The structure factors at kz = 0 in the
first Brillouin zone at several temperatures for L = 40 are also
shown in Fig. 5(b). As mentioned in Sec. II, the spiral-spin
structure represented by k is the same as that represented by
−k in the Heisenberg models. Figure 5(b) confirms that one
distinct wave vector is chosen from three types of ordered
(a)
(b)
0
0.1
0.2
0.3
0.4
0.5
0 0.5 1 1.5 2
10-5
10-4
10-3
10-2
10-1
FIG. 5. (Color online) (a) Temperature dependence of the largest
value of structure factors S(k∗
) calculated by six wave vectors in
Eq. (4) for J3/J1 = −0.853 55 . . . and J⊥/J1 = 2. Error bars are
Order parameter (SO(3))
SO(3) symmetry breaks at Tc.
The 3rd n.n. interaction
intralayer
The 1st n.n. interaction
interlayer
The 1st n.n. interaction
intralayer
Energy histogram
H = J1
i,j
si · sj J3
i,j 3
si · sj J
i,j
si · sj
J3/J1 = 0.85355 · · · , J /J1 = 2
N DEPENDENCE OF LATENT . . .
(d)
0
0.05
0.1
0 15 30 45
0
5
10
15
20
25
30
-2.3 -2.2 -2.1
first-order phase tr
finite temperature.
We further inv
mentioned above,
SO(3) × C3. It was
the first-order phas
Heisenberg model
a nearest-neighbor
space is SO(3), a s0.01
0.02
0
10
20
30
40
-2.3
-2.2
-2.1
1.53
1.54
1.55
0
40
60
(a)
(e)
(f)
(b)
(c)
0
0.05
0.1
0 1
0
5
10
15
20
25
30
-2.3
P(E; T) = D(E)e E/kBT
D(E) : density of states
E(L) : width between two peaks
Bimodal distribution
1st-order PT w/ SO(3)xC3
breaking occurs.
The 3rd n.n. interaction
intralayer
The 1st n.n. interaction
interlayer
The 1st n.n. interaction
intralayer
Finite size scaling
H = J1
i,j
si · sj J3
i,j 3
si · sj J
i,j
si · sj
J3/J1 = 0.85355 · · · , J /J1 = 2
5
1.53
1.54
1.55
0 0.00004 0.00008
0
20
40
60
0 20000 40000 60000
(d)
(e)
(f)
0
0.05
0 15 30 45
0
5
10
15
20
25
-2.3 -2.2 -2.1
mperature dependence of (a) internal
finite temperature.
We further investigate th
mentioned above, the order pa
SO(3) × C3. It was confirmed
the first-order phase transition
Heisenberg model on a stack
a nearest-neighbor interactio
space is SO(3), a single peak i
dependence of the specific heat
finite-temperature phase transi
state and magnetic ordered sta
is broken. Then, in our mode
break at the first-order phase tr
heat has a single peak corresp
transition. To confirm this w
dependence of the structure fac
1
0
0.01
0.02
1.52 1.53 1.54 1.55
0
10
20
30
40
1.53
1.54
1.55
0 0.00004 0.00008
0
20
40
60
0 20000 40000 60000
(e)
(f)
(b)
(c)
0
5
10
-2.3 -2.2 -2.1
FIG. 4. (Color online) Temperature dependence of (a) internal
energy per site E/J1, (b) specific heat C, and (c) order param-
eter |µ|2
, which can detect the C3 symmetry breaking of the
model with J3/J1 = −0.853 55 . . . and J⊥/J1 = 2 for L = 24,32,40.
(d) Probability distribution of the internal energy P(E; T (L)). The
Max of specific heatTc(L)
Tc(L) = aL d
+ Tc Cmax(L)
( E)2
Ld
4T2
c
M. S. S. Challa, D. P. Landau, and K. Binder, PRB 34, 1841 (1986).
1st-order PT w/ SO(3)xC3 breaking occurs.
The 3rd n.n. interaction
intralayer
The 1st n.n. interaction
interlayer
The 1st n.n. interaction
intralayer
Interlayer interaction dependence fixing J3/J1PHYSICAL REVIEW E 88, 052138 (2013)
0
0.1
0.2
0
0.05
0.1
0.15
0.7
0.75
0.8
0.85
0
20
40
-3
-2.5
-2
-1.5
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
(a)
(b)
(c)
(d)
(e)
0.25 0.50 0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
0.25
0.50
0.75
1.00
1.25 1.50 1.75 2.00 2.25 2.50
0.25
0.25
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
0.50
0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
2.50
FIG. 6. (Color online) Interlayer-interaction J⊥/J1 dependence
of (a) internal energy per site E/J1, (b) specific heat C, (c) uniform
magnetic susceptibility χ, (d) order parameter |µ|2
, which can
detect the C3 symmetry breaking, and (e) largest value of structure
factors S(k∗
) calculated by six wave vectors in Eq. (4) for L = 24.
Error bars in all figures are omitted for clarity since their sizes are
J /J1 increases
INTERLAYER-INTERACTION DEPENDENCE OF LATENT . . .
0
10
20
-2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4
0
10
20
0
10
20
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
0.04
0.08
0 1 2
0.5
1
1.5
(a) (b)
(c)
FIG. 7. (Color online) (a) Interlayer-interaction J⊥/J1 depen-
dence of the probability distribution of internal energy P(E; Tc(L))
when the specific heat becomes the maximum value for L = 24.
on
fir
J3
no
fo
In
ity
be
de
la
tri
or
bu
ob
th
Fo
in
m
tra
fie
in
an
in
ju
th
INTERLAYER-INTERACTION DEPENDENCE OF LATENT . . .
0
10
20
-2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4
0
10
20
0
10
20
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
0.04
0.08
0 1 2
0.5
1
1.5
(a) (b)
(c)
FIG. 7. (Color online) (a) Interlayer-interaction J⊥/J1 depen-
dence of the probability distribution of internal energy P(E; Tc(L))
when the specific heat becomes the maximum value for L = 24.
o
fi
J
n
fo
In
it
b
d
la
tr
o
b
o
th
F
in
m
tr
fi
in
an
in
ju
th
Transition
temperature
Latent heat
As the interlayer interaction increases,
transition temperature increases but latent heat decreases.
Conclusion
We investigated unconventional phase transition
behavior in geometrically frustrated systems.
2D 3D
SO(3)xZ2 SO(3)xC3
- Z2 vortex dissociation
- 2nd-order PT w/ Z2 breaking
(2-dim. Ising universality)
at the same temperature.
- 1st-order PT w/ SO(3)xC3
breaking
- increases, decreases.J E
Thank you for your attention!!
2D case: PRB 87, 214401 (2013), 3D case: PRE 88, 052138 (2013).

Mais conteúdo relacionado

Mais procurados

2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqwRene Kotze
 
Solution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First EquationSolution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First EquationIJRES Journal
 
Cij strain 15%
Cij strain 15%Cij strain 15%
Cij strain 15%sharebk
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsUniversity of Glasgow
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...Rene Kotze
 
Decrease hysteresis for Shape Memory Alloys
Decrease hysteresis for Shape Memory AlloysDecrease hysteresis for Shape Memory Alloys
Decrease hysteresis for Shape Memory Alloyshongcai20072008
 
Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...PFHub PFHub
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsDaniel Wheeler
 
Introduction to Quantum Monte Carlo
Introduction to Quantum Monte CarloIntroduction to Quantum Monte Carlo
Introduction to Quantum Monte CarloClaudio Attaccalite
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Rene Kotze
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Rene Kotze
 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Qiang LI
 
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...arj_online
 
-type and -type four dimensional plane wave solutions of Einstein's field eq...
-type and  -type four dimensional plane wave solutions of Einstein's field eq...-type and  -type four dimensional plane wave solutions of Einstein's field eq...
-type and -type four dimensional plane wave solutions of Einstein's field eq...inventy
 
TwoLevelMedium
TwoLevelMediumTwoLevelMedium
TwoLevelMediumJohn Paul
 

Mais procurados (19)

2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
 
Solution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First EquationSolution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First Equation
 
Quantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž ProsenQuantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž Prosen
 
Cij strain 15%
Cij strain 15%Cij strain 15%
Cij strain 15%
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 
Decrease hysteresis for Shape Memory Alloys
Decrease hysteresis for Shape Memory AlloysDecrease hysteresis for Shape Memory Alloys
Decrease hysteresis for Shape Memory Alloys
 
Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methods
 
Introduction to Quantum Monte Carlo
Introduction to Quantum Monte CarloIntroduction to Quantum Monte Carlo
Introduction to Quantum Monte Carlo
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
 
Angularmomentum
AngularmomentumAngularmomentum
Angularmomentum
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
 
SV-InclusionSOcouplinginNaCs
SV-InclusionSOcouplinginNaCsSV-InclusionSOcouplinginNaCs
SV-InclusionSOcouplinginNaCs
 
UCSD NANO106 - 01 - Introduction to Crystallography
UCSD NANO106 - 01 - Introduction to CrystallographyUCSD NANO106 - 01 - Introduction to Crystallography
UCSD NANO106 - 01 - Introduction to Crystallography
 
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
Microscopic Mechanisms of Superconducting Flux Quantum and Superconducting an...
 
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
 
-type and -type four dimensional plane wave solutions of Einstein's field eq...
-type and  -type four dimensional plane wave solutions of Einstein's field eq...-type and  -type four dimensional plane wave solutions of Einstein's field eq...
-type and -type four dimensional plane wave solutions of Einstein's field eq...
 
TwoLevelMedium
TwoLevelMediumTwoLevelMedium
TwoLevelMedium
 

Semelhante a Unconventional phase transitions in frustrated systems (March, 2014)

Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Alexander Decker
 
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Alexander Decker
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsRyutaro Okuma
 
Textures and topological defects in nematic phases
Textures and topological defects in nematic phasesTextures and topological defects in nematic phases
Textures and topological defects in nematic phasesAmit Bhattacharjee
 
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...ijeljournal
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"Chad Orzel
 
Pharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptxPharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptxRyutaro Okuma
 
Singular rise and singular drop of cutoff frequencies in slot line and strip ...
Singular rise and singular drop of cutoff frequencies in slot line and strip ...Singular rise and singular drop of cutoff frequencies in slot line and strip ...
Singular rise and singular drop of cutoff frequencies in slot line and strip ...ijeljournal
 
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...ijeljournal
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Claudio Attaccalite
 
20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_distFujii Mikiya
 
La fisica dei motori molecolari
La fisica dei motori molecolariLa fisica dei motori molecolari
La fisica dei motori molecolarinipslab
 
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...IJERA Editor
 

Semelhante a Unconventional phase transitions in frustrated systems (March, 2014) (20)

Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnets
 
Seminor ansto-0730
Seminor ansto-0730Seminor ansto-0730
Seminor ansto-0730
 
Textures and topological defects in nematic phases
Textures and topological defects in nematic phasesTextures and topological defects in nematic phases
Textures and topological defects in nematic phases
 
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
Pharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptxPharmacosiderite_HFM.pptx
Pharmacosiderite_HFM.pptx
 
Singular rise and singular drop of cutoff frequencies in slot line and strip ...
Singular rise and singular drop of cutoff frequencies in slot line and strip ...Singular rise and singular drop of cutoff frequencies in slot line and strip ...
Singular rise and singular drop of cutoff frequencies in slot line and strip ...
 
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...
SINGULAR RISE AND SINGULAR DROP OF CUTOFF FREQUENCIES IN SLOT LINE AND STRIP ...
 
defense_2013
defense_2013defense_2013
defense_2013
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
 
Bk36372377
Bk36372377Bk36372377
Bk36372377
 
Nucleating Nematic Droplets
Nucleating Nematic DropletsNucleating Nematic Droplets
Nucleating Nematic Droplets
 
15 16
15 1615 16
15 16
 
Elecnem
ElecnemElecnem
Elecnem
 
20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist
 
K0457278
K0457278K0457278
K0457278
 
La fisica dei motori molecolari
La fisica dei motori molecolariLa fisica dei motori molecolari
La fisica dei motori molecolari
 
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...
 

Mais de Shu Tanaka

量子アニーリングの研究開発最前線
量子アニーリングの研究開発最前線量子アニーリングの研究開発最前線
量子アニーリングの研究開発最前線Shu Tanaka
 
量子アニーリングのこれまでとこれから -- ハード・ソフト・アプリ三方向からの協調的展開 --
量子アニーリングのこれまでとこれから -- ハード・ソフト・アプリ三方向からの協調的展開 --量子アニーリングのこれまでとこれから -- ハード・ソフト・アプリ三方向からの協調的展開 --
量子アニーリングのこれまでとこれから -- ハード・ソフト・アプリ三方向からの協調的展開 --Shu Tanaka
 
次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --
次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --
次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --Shu Tanaka
 
量子アニーリングを用いたクラスタ分析 (QIT32)
量子アニーリングを用いたクラスタ分析 (QIT32)量子アニーリングを用いたクラスタ分析 (QIT32)
量子アニーリングを用いたクラスタ分析 (QIT32)Shu Tanaka
 
2次元可解量子系のエンタングルメント特性
2次元可解量子系のエンタングルメント特性2次元可解量子系のエンタングルメント特性
2次元可解量子系のエンタングルメント特性Shu Tanaka
 
量子アニーリングを用いたクラスタ分析
量子アニーリングを用いたクラスタ分析量子アニーリングを用いたクラスタ分析
量子アニーリングを用いたクラスタ分析Shu Tanaka
 

Mais de Shu Tanaka (6)

量子アニーリングの研究開発最前線
量子アニーリングの研究開発最前線量子アニーリングの研究開発最前線
量子アニーリングの研究開発最前線
 
量子アニーリングのこれまでとこれから -- ハード・ソフト・アプリ三方向からの協調的展開 --
量子アニーリングのこれまでとこれから -- ハード・ソフト・アプリ三方向からの協調的展開 --量子アニーリングのこれまでとこれから -- ハード・ソフト・アプリ三方向からの協調的展開 --
量子アニーリングのこれまでとこれから -- ハード・ソフト・アプリ三方向からの協調的展開 --
 
次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --
次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --
次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --
 
量子アニーリングを用いたクラスタ分析 (QIT32)
量子アニーリングを用いたクラスタ分析 (QIT32)量子アニーリングを用いたクラスタ分析 (QIT32)
量子アニーリングを用いたクラスタ分析 (QIT32)
 
2次元可解量子系のエンタングルメント特性
2次元可解量子系のエンタングルメント特性2次元可解量子系のエンタングルメント特性
2次元可解量子系のエンタングルメント特性
 
量子アニーリングを用いたクラスタ分析
量子アニーリングを用いたクラスタ分析量子アニーリングを用いたクラスタ分析
量子アニーリングを用いたクラスタ分析
 

Último

High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑Damini Dixit
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Servicemonikaservice1
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
American Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxAmerican Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxabhishekdhamu51
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptxAlMamun560346
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...ssuser79fe74
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Joonhun Lee
 

Último (20)

High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
American Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxAmerican Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptx
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 

Unconventional phase transitions in frustrated systems (March, 2014)

  • 1. Unconventional Phase Transitions in Frustrated Systems Shu Tanaka (The University of Tokyo) Collaborators: Ryo Tamura (NIMS) Naoki Kawashima (ISSP) 2D case: PRB 87, 214401 (2013), 3D case: PRE 88, 052138 (2013).
  • 2. Main results To investigate unconventional phase transition behavior in geometrically frustrated systems. 2D 3D SO(3)xZ2 SO(3)xC3 - Z2 vortex dissociation - 2nd-order PT w/ Z2 breaking (2-dim. Ising universality) at the same temperature. - 1st-order PT w/ SO(3)xC3 breaking - increases, decreases.J E
  • 3. Conventional phase transitions Ferromagnets Antiferromagnets In the ground state, all spin pairs form stable spin configurations. Type Order parameter space 1D 2D 3D Ising Z2 × √ √ XY U(1) × KT √ Heisenberg S2 × × √ Temperature Ordered phase Tc Disordered phase Phase transition occurs.
  • 4. Frustration: random spin systems E. Vincent, Lecture Notes in Physics 716 (2007), Slow relaxation Novel order We study the universality classes of phase transitions of our model. In the phase diagram (see Fig. 5), there are two types of phase boundaries. To make clear the universality classes of each phase transition, x is set to 3/16 = 0.1875 such that transition temperatures are separated sufficiently. For this parameter, the intermediate phase is the (πππ) ordered phase (see the dotted arrow in Fig. 5). First, we investigate the higher-temperature phase transition from the paramagnetic phase to the (πππ) ordered phase. From the Harris criterion,36 we expect that the higher- temperature phase transition belongs to the three-dimensional Heisenberg universality class. This is because the critical exponent α is negative in the three-dimensional Heisenberg model, and thus the disorder should not affect the universality class. To obtain the transition temperature and confirm the critical exponents, we calculate the correlation function Gc (rc), a b c (a) (b) Random Fan-Out State θ θ FIG. 9. (Color online) (a) “Average” spin directions in the spin configuration of the random fan-out state. In each layer (ab plane), R. Tamura, N. Kawashima, H. Kageyama et al., PRB 84, 214408 (2011) Ferromagnetic interaction Antiferromagnetic interaction Even in the GS, locally unstable spin state appears due to frustration. layered perovskite SrFe1-xMnxO2 H. Takano and S. Miyashita, JPSJ 64, 423 (1995).
  • 5. Frustration: geometrically frustrated systems Ising model Heisenberg model Residual entropy (macroscopically degenerated states) Single-q state (120-degree structure, spiral spin texture) Antiferromagnets on triangle-based lattice structures Geometrical frustration
  • 6. Unconventional behaviors in GFMs Chirality and Z2 vortex Reentrant phase transition ParaAntiferroParaFerro Temperature Slow relaxation T ! 0þ, we expect that nloop must be the maximum value and the spin structure becomes the so-called ffiffiffi 3 p  ffiffiffi 3 p structure. Next, we study the relaxation of magnetization and nloop. We ready the three types of initial configurations, i.e., (a) theffiffiffi 3 p  ffiffiffi 3 p structure, (b) the q ¼ 0 structure, and (c) a random structure. The configurations (a) and (b) are typical ground states of the present model, and the configuration (c) corresponds to a state just after quench the temperature from a high temperature. In Fig. 4, the relaxation processes at T ¼ 0:05J are plotted. In the cases (a) and (b), the magnetization is maximum at t ¼ 0, and it relaxes very fast to uniformly magnetized ordered state. The relaxation of magnetization to the equilibrium is depicted in the inset. In contrast, in the case (c), i.e., from a random state, it takes some time to realize the uniformly magnetized state. Thus we regard the relaxation time in the case (c) as the intrinsic relaxation time of the magnetization mag. 0 [×10 +7 ] 0 0.04 0.08 0.12 0.16 0 5000 10000 0 0.04 0.08 0.12 0.16 Monte Carlo Step (MCS) Magnetization Monte Carlo Step (MCS) Magnetization 0 [×10 +7 ] 0 0.5 1 Monte Carlo Step (MCS) NumberofWeathervaneLoops (a) (c) (b) 54321 54321 Fig. 4. (Color online) Relaxation of the magnetization and nloop at T ¼ 0:05J from (a) ffiffiffi 3 p  ffiffiffi 3 p configuration, (b) q ¼ 0 configuration, and (c) random configuration. 10 0 10 2 10 4 10 6 10 8 10 10 0 0.5 1 NumberofWeathervaneloops Monte Carlo Step (MCS) T=0.0425J T=0.04J T=0.045J T=0.0475J T=0.05J T=0.055J T=0.06J T=0.065J T=0.07J T=0.1J T=0.09J T=0.08J Fig. 5. (Color online) Relaxation of nloop from ffiffiffi 3 p  ffiffiffi 3 p structure at several temperatures. Dashed lines denote the fittling curves estimated by eq. (2). J. Phys. Soc. Jpn., Vol. 76, No. 10 LETTERS S. TANAKA and S. MIYASHITA A. Kuroda and S. Miyashita, JPSJ 64, 4509 (1995). S. Tanaka and S. Miyashita, JPSJ 76, 103001 (2007). S. Miyashita and H. Shiba, JPSJ 53, 1145 (1984). H. Kawamura and S. Miyashita, JPSJ 53, 4138 (1984). X. Hu, S. Miyashita, and M. Tachiki, PRL 79, 3498 (1997). R. Tamura, S. Tanaka, and N. Kawashima, PRB 87, 214401 (2013). H. Kitatani, S. Miyashita, and M. Suzuki, JPSJ 55, 865 (1986). S. Miyashita, S. Tanaka, and M. Hirano, JPSJ 76, 083001 (2007). Successive phase transitions MoO4)3 featuring (a) MnO5 polyhedra, (b) equilateral triangular lattices rlayer distances between Mn2+ ions are given by a = 6.099 ˚Aand c/2 = S. Miyashita and H. Kawamura, JPSJ 54, 3385 (1985). S. Miyashita, JPSJ 55, 3605 (1986). R. Ishii, S. Tanaka, S. Nakatsuji et al. EPL 94, 17001 (2011).
  • 7. Phase transition in 2D GFMs H = J1 i,j si · sj J3 i,j 3 si · sj The 1st n.n. interaction The 3rd n.n. interaction J3/J10-1/4 Ferromagnetic (S2) Spiral-spin structure (SO(3)xC3) J1: Ferro J3/J10-1/9 Degenerated GSs 120-degree structure (SO(3)) Order by disorder J1: Antiferro 2D triangular lattice NiGa2S4 S. Nakatsuji, Y. Nambu, Y. Maeno et al., Science 309, 1697 (2005). 1st-order PT w/ 3-fold symmetry breaking and Z2 vortex dissociation occur. R. Tamura and N. Kawashima, JPSJ 77, 103002 (2008), JPSJ 80, 074008 (2011). Z2 vortex dissociation
  • 8. Main results To investigate unconventional phase transition behavior in geometrically frustrated systems. 2D 3D SO(3)xZ2 SO(3)xC3 - Z2 vortex dissociation - 2nd-order PT w/ Z2 breaking (2-dim. Ising universality) at the same temperature. - 1st-order PT w/ SO(3)xC3 breaking - increases, decreases.J E
  • 9. Model H = J1 i,j axis 1 si · sj J1 i,j axis 2,3 si · sj J3 i,j 3 si · sj The 1st n.n. interaction along axes 2 and 3 The 3rd n.n. interactionThe 1st n.n. interaction along axis 1
  • 10. Model H = J1 i,j axis 1 si · sj J1 i,j axis 2,3 si · sj J3 i,j 3 si · sj The 1st n.n. interaction along axes 2 and 3 The 3rd n.n. interactionThe 1st n.n. interaction along axis 1 4 types of ground states for ferromagnetic J1 1. Ferromagnetic state (S2) 2. Single-q spiral state (SO(3)) 3. double-q spiral state (SO(3)xZ2) 4. triple-q spiral state (SO(3)xC3) No phase transition occurs at finite T (Mermin-Wagner theorem). Z2 vortex dissociation occurs at finite T. 1st-order PT and Z2 vortex dissociation occur at the same T. N. D. Mermin and H. Wagner, PRL 17, 1133 (1966). H. Kawamura and S. Miyashita, JPSJ 53, 4138 (1984). R. Tamura and N. Kawashima, JPSJ 77, 103002 (2008). R. Tamura and N. Kawashima, JPSJ 80, 074008 (2011).
  • 11. Ground state phase diagram SO(3)xC3 SO(3)xZ2 (i) ferromagnetic (ii) single-k spiral (iii) double-k spiral (iv)triple-kspiral (ii) single-k spiral 4 independent sublattices structure structure H = J1 i,j axis 1 si · sj J1 i,j axis 2,3 si · sj J3 i,j 3 si · sj The 1st n.n. interaction along axes 2 and 3 The 3rd n.n. interactionThe 1st n.n. interaction along axis 1
  • 12. Model H = J1 i,j axis 1 si · sj J1 i,j axis 2,3 si · sj J3 i,j 3 si · sj axis 1 axis2 axis3 The 1st n.n. interaction along axes 2 and 3 The 3rd n.n. interactionThe 1st n.n. interaction along axis 1 Order parameter space: SO(3)xZ2 J1/J3 = 0.4926 · · · , = 1.308 · · ·
  • 13. Physical quantities SECOND-ORDER PHASE TRANSITION IN THE . . . 1 2 3 0.49 0.495 0.5 U4 T/J3 (c) 0 0.05 0.1 m 2 (b) 0 5 10 15 20 C (a) L=144 L=216 L=288 0 0.2 0.4 0.6 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 χLη-2 (T-Tc)L1/ν /J3 (f) 1 2 3 U4 (e) -2.6 -2.4 -2.2 -2.0 2.00 2.02 2.04 2.06 2.08 ln(nv) J3/T Arrhenius law (d) 0 0.2 0.4 0.6 1 Tc/J3 ( FIG. model fo open squ first-orde solid circ specific heat order parameter Binder ratio H = J1 i,j axis 1 si · sj J1 i,j axis 2,3 si · sj J3 i,j 3 si · sj axis 1 axis2 axis3 SECOND-ORDER PHASE TRANSITION IN THE . . . 3 4 0 0.05 0.1 m 2 (b) 0 5 10 15 20 C (a) L=144 L=216 L=288 0.6 (f) 1 2 3U4 (e) -2.6 -2.4 -2.2 -2.0 2.00 2.02 2.04 2.06 2 ln(nv) J3/T Arrhenius law (d) (t) := s (t) 1 · s (t) 2 s (t) 3 , m := t (t) /N J1/J3 = 0.4926 · · · , = 1.308 · · · Order parameter detecting Z2 breaking U4 := m4 m2 2 Binder ratio Crossing point
  • 14. Z2 vortex dissociation -2.6 -2.4 -2.2 -2.0 2.00 2.02 2.04 2.06 2.08 ln(nv) J3/T Arrhenius law H = J1 i,j axis 1 si · sj J1 i,j axis 2,3 si · sj J3 i,j 3 si · sj The 1st n.n. interaction along axes 2 and 3 The 3rd n.n. interactionThe 1st n.n. interaction along axis 1 J1/J3 = 0.4926 · · · , = 1.308 · · · No phase transition w/ SO(3) breaking occurs at finite T. (Mermin-Wagner theorem) Point defect: 1(SO(3)) = Z2 Z2 vortex dissociation can occur at finite T. Z2 vortex density Z2 vortex dissociation occurs at the 2nd-order PT point (Tc).
  • 15. Finite size scaling 0 0.2 0.4 0.6 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 L -2 (T-Tc)L 1/ /J3 1 2 3 U4 = 1, = 1/4 H = J1 i,j axis 1 si · sj J1 i,j axis 2,3 si · sj J3 i,j 3 si · sj The 1st n.n. interaction along axes 2 and 3 The 3rd n.n. interactionThe 1st n.n. interaction along axis 1 J1/J3 = 0.4926 · · · , = 1.308 · · · Binder ratio Susceptibility Finite size scaling relations U4 f (T Tc)L1/ L2 g (T Tc)L1/ 2D Ising universality class = 1, = 1/4 Z2 vortex dissociation does not affect the phase transition nature.
  • 16. Phase diagram E . . . PHYSICAL REVIEW B 87, 214401 (f) (e) 2.04 2.06 2.08 J3/T rhenius law (d) 0 0.2 0.4 0.6 1 1.5 2 2.5 3 Tc/J3 λ (a) 0.48 0.5 0.52 1 1.1 1.2 1.0 2.0 3.0 U4 (b) L=108 L=144 L=180 L=216 0.0 0.2 0.4 -4 -2 0 2 χL η-2 (T-Tc)L1/ν /J3 (c) FIG. 3. (Color online) (a) Phase diagram of the distorted H = J1 i,j axis 1 si · sj J1 i,j axis 2,3 si · sj J3 i,j 3 si · sj The 1st n.n. interaction along axes 2 and 3 The 3rd n.n. interactionThe 1st n.n. interaction along axis 1 J1/J3 = 0.7342 · · · SO(3)xC3 1st-order PT w/ C3 breaking Z2 vortex dissociation occur at the same T. SO(3)xZ2 SO(3) R. Tamura and N. Kawashima, JPSJ 77, 103002 (2008). JPSJ 80, 074008 (2011). SO(3)xZ2 2nd-order PT w/ Z2 breaking Z2 vortex dissociation occur at the same T. 2D Ising universality SO(3) Z2 vortex dissociation occur at finite T. H. Kawamura and S. Miyashita, JPSJ 53, 4138 (1984).
  • 17. Main results To investigate unconventional phase transition behavior in geometrically frustrated systems. 2D 3D SO(3)xZ2 SO(3)xC3 - Z2 vortex dissociation - 2nd-order PT w/ Z2 breaking (2-dim. Ising universality) at the same temperature. - 1st-order PT w/ SO(3)xC3 breaking - increases, decreases.J E
  • 18. Model H = J1 i,j si · sj J3 i,j 3 si · sj J i,j si · sj The 3rd n.n. interaction intralayer The 1st n.n. interaction interlayer The 1st n.n. interaction intralayer
  • 19. Ground state H = J1 i,j si · sj J3 i,j 3 si · sj J i,j si · sj /2 /2 /2 /2 /2 /2 Order parameter space: SO(3)xC3 The 3rd n.n. interaction intralayer The 1st n.n. interaction interlayer The 1st n.n. interaction intralayer
  • 20. Internal energy and specific heat H = J1 i,j si · sj J3 i,j 3 si · sj J i,j si · sj J3/J1 = 0.85355 · · · , J /J1 = 2INTERLAYER-INTERACTION DEPENDENCE OF LATENT . . 20 30 40 -2.3 -2.2 -2.1 (a) (d) (b) 0 0.05 0.1 0 15 30 45 0 5 10 15 20 25 30 INTERLAYER-INTERACTION D 0.02 0 10 20 30 40 -2.3 -2.2 -2.1 (a) (b) (c) INTERLAYER-INTERACTION DEPENDENCE OF LATENT . . 0 10 20 30 40 -2.3 -2.2 -2.1 1.53 1.54 1.55 0 0.00004 0.000 (a) (d) (e) (b) (c) 0 0.05 0.1 0 15 30 45 0 5 10 15 20 25 30 -2.3 -2.2 -2.1 Internal energy Specific heat Phase transition occurs at finite T. 0 0.01 0.02 1.52 1.53 1.54 1.55 0 10 20 30 40 -2.3 1.53 1.54 1.55 0 0.00004 0.0000 0 20 40 60 0 20000 40000 60000 (a) (e) (f) (b) (c) 0 5 10 15 -2.3 -2.2 -2.1 FIG. 4. (Color online) Temperature dependence of (a) intern 0 0.01 0.02 1.52 1.53 1.54 1.55 0 10 20 30 40 -2.3 -2.2 (a) (b) (c) The 3rd n.n. interaction intralayer The 1st n.n. interaction interlayer The 1st n.n. interaction intralayer
  • 21. Order parameter (C3 and SO(3)) H = J1 i,j si · sj J3 i,j 3 si · sj J i,j si · sj J3/J1 = 0.85355 · · · , J /J1 = 2 0 0.01 0.02 1.52 1.53 1.54 1.55 0 10 20 30 1.53 1.54 1.55 0 0.00004 0.0 0 20 40 60 0 20000 40000 60000 (e) (f) (b) (c) 0 5 10 -2.3 -2.2 -2 FIG. 4. (Color online) Temperature dependence of (a) inte energy per site E/J1, (b) specific heat C, and (c) order par 2 INTERLAYER-INTERACTION DEPENDENCE OF LATENT . . 0 10 20 30 40 -2.3 -2.2 -2.1 1.54 1.55 (a) (d) (e) (b) 0 0.05 0.1 0 15 30 45 0 5 10 15 20 25 30 -2.3 -2.2 -2.1 C3 symmetry breaks at Tc. Order parameter (C3) peaks E(L)/J1. (e) Plot of Tc(L)/J1 as a function of L−3 . (f) Plot of Cmax(L) as a function of L3 . Lines are just visual guides and error bars in all figures are omitted for clarity since their sizes are smaller than the symbol size. of analysis. One is the finite-size scaling and the other is a naive analysis of the probability distribution P(E; Tc(L)). The scaling relations for the first-order phase transition in d-dimensional systems [82] are given by Tc(L) = aL−d + Tc, (9) Cmax(L) ∝ ( E)2 Ld 4T 2 c , (10) where Tc and E are, respectively, the transition temperature and the latent heat in the thermodynamic limit. The coefficient of the first term in Eq. (9), a, is a constant. Figures 4(e) and 4(f) show the scaling plots for Tc(L)/J1 and Cmax(L), respectively. Figure 4(e) indicates that Tc is a nonzero value in the thermodynamic limit. Figure 4(f) shows an almost linear dependence of Cmax(L) as a function of L3 . However, using the finite-size scaling, we cannot obtain the transition temperature and latent heat in the thermodynamic limit with high accuracy because of the strong finite-size effect. Next we directly calculate the size dependence of the width between bimodal peaks of the energy distribution shown in Fig. 4(d). The width for the system size L is represented by E(L) = E+(L) − E−(L), where E+(L) and E−(L) are the averages of the Gaussian function in the high-temperature phase and that in the low-temperature phase, respectively. In the thermodynamic limit, each Gaussian function becomes the δ function and then E(L) converges to E [82]. The inset of Fig. 4(d) shows the size dependence of the width E(L)/J1. The width enlarges as value in the thermodynamic limit. Figure 5(a) shows the temperature dependence of the largest value of structure factors S(k∗ ) calculated by six wave vectors in Eq. (4). Here S(k∗ ) becomes zero in the thermodynamic limit above the first- order phase transition temperature. The structure factor S(k∗ ) becomes a nonzero value at the first-order phase transition temperature. Moreover, as temperature decreases, the structure factor S(k∗ ) increases. The structure factors at kz = 0 in the first Brillouin zone at several temperatures for L = 40 are also shown in Fig. 5(b). As mentioned in Sec. II, the spiral-spin structure represented by k is the same as that represented by −k in the Heisenberg models. Figure 5(b) confirms that one distinct wave vector is chosen from three types of ordered (a) (b) 0 0.1 0.2 0.3 0.4 0.5 0 0.5 1 1.5 2 10-5 10-4 10-3 10-2 10-1 FIG. 5. (Color online) (a) Temperature dependence of the largest value of structure factors S(k∗ ) calculated by six wave vectors in Eq. (4) for J3/J1 = −0.853 55 . . . and J⊥/J1 = 2. Error bars are Order parameter (SO(3)) SO(3) symmetry breaks at Tc. The 3rd n.n. interaction intralayer The 1st n.n. interaction interlayer The 1st n.n. interaction intralayer
  • 22. Energy histogram H = J1 i,j si · sj J3 i,j 3 si · sj J i,j si · sj J3/J1 = 0.85355 · · · , J /J1 = 2 N DEPENDENCE OF LATENT . . . (d) 0 0.05 0.1 0 15 30 45 0 5 10 15 20 25 30 -2.3 -2.2 -2.1 first-order phase tr finite temperature. We further inv mentioned above, SO(3) × C3. It was the first-order phas Heisenberg model a nearest-neighbor space is SO(3), a s0.01 0.02 0 10 20 30 40 -2.3 -2.2 -2.1 1.53 1.54 1.55 0 40 60 (a) (e) (f) (b) (c) 0 0.05 0.1 0 1 0 5 10 15 20 25 30 -2.3 P(E; T) = D(E)e E/kBT D(E) : density of states E(L) : width between two peaks Bimodal distribution 1st-order PT w/ SO(3)xC3 breaking occurs. The 3rd n.n. interaction intralayer The 1st n.n. interaction interlayer The 1st n.n. interaction intralayer
  • 23. Finite size scaling H = J1 i,j si · sj J3 i,j 3 si · sj J i,j si · sj J3/J1 = 0.85355 · · · , J /J1 = 2 5 1.53 1.54 1.55 0 0.00004 0.00008 0 20 40 60 0 20000 40000 60000 (d) (e) (f) 0 0.05 0 15 30 45 0 5 10 15 20 25 -2.3 -2.2 -2.1 mperature dependence of (a) internal finite temperature. We further investigate th mentioned above, the order pa SO(3) × C3. It was confirmed the first-order phase transition Heisenberg model on a stack a nearest-neighbor interactio space is SO(3), a single peak i dependence of the specific heat finite-temperature phase transi state and magnetic ordered sta is broken. Then, in our mode break at the first-order phase tr heat has a single peak corresp transition. To confirm this w dependence of the structure fac 1 0 0.01 0.02 1.52 1.53 1.54 1.55 0 10 20 30 40 1.53 1.54 1.55 0 0.00004 0.00008 0 20 40 60 0 20000 40000 60000 (e) (f) (b) (c) 0 5 10 -2.3 -2.2 -2.1 FIG. 4. (Color online) Temperature dependence of (a) internal energy per site E/J1, (b) specific heat C, and (c) order param- eter |µ|2 , which can detect the C3 symmetry breaking of the model with J3/J1 = −0.853 55 . . . and J⊥/J1 = 2 for L = 24,32,40. (d) Probability distribution of the internal energy P(E; T (L)). The Max of specific heatTc(L) Tc(L) = aL d + Tc Cmax(L) ( E)2 Ld 4T2 c M. S. S. Challa, D. P. Landau, and K. Binder, PRB 34, 1841 (1986). 1st-order PT w/ SO(3)xC3 breaking occurs. The 3rd n.n. interaction intralayer The 1st n.n. interaction interlayer The 1st n.n. interaction intralayer
  • 24. Interlayer interaction dependence fixing J3/J1PHYSICAL REVIEW E 88, 052138 (2013) 0 0.1 0.2 0 0.05 0.1 0.15 0.7 0.75 0.8 0.85 0 20 40 -3 -2.5 -2 -1.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 (a) (b) (c) (d) (e) 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 0.25 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 FIG. 6. (Color online) Interlayer-interaction J⊥/J1 dependence of (a) internal energy per site E/J1, (b) specific heat C, (c) uniform magnetic susceptibility χ, (d) order parameter |µ|2 , which can detect the C3 symmetry breaking, and (e) largest value of structure factors S(k∗ ) calculated by six wave vectors in Eq. (4) for L = 24. Error bars in all figures are omitted for clarity since their sizes are J /J1 increases INTERLAYER-INTERACTION DEPENDENCE OF LATENT . . . 0 10 20 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 0 10 20 0 10 20 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 0.04 0.08 0 1 2 0.5 1 1.5 (a) (b) (c) FIG. 7. (Color online) (a) Interlayer-interaction J⊥/J1 depen- dence of the probability distribution of internal energy P(E; Tc(L)) when the specific heat becomes the maximum value for L = 24. on fir J3 no fo In ity be de la tri or bu ob th Fo in m tra fie in an in ju th INTERLAYER-INTERACTION DEPENDENCE OF LATENT . . . 0 10 20 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 0 10 20 0 10 20 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 0.04 0.08 0 1 2 0.5 1 1.5 (a) (b) (c) FIG. 7. (Color online) (a) Interlayer-interaction J⊥/J1 depen- dence of the probability distribution of internal energy P(E; Tc(L)) when the specific heat becomes the maximum value for L = 24. o fi J n fo In it b d la tr o b o th F in m tr fi in an in ju th Transition temperature Latent heat As the interlayer interaction increases, transition temperature increases but latent heat decreases.
  • 25. Conclusion We investigated unconventional phase transition behavior in geometrically frustrated systems. 2D 3D SO(3)xZ2 SO(3)xC3 - Z2 vortex dissociation - 2nd-order PT w/ Z2 breaking (2-dim. Ising universality) at the same temperature. - 1st-order PT w/ SO(3)xC3 breaking - increases, decreases.J E
  • 26. Thank you for your attention!! 2D case: PRB 87, 214401 (2013), 3D case: PRE 88, 052138 (2013).