SlideShare uma empresa Scribd logo
1 de 119
Baixar para ler offline
Tensor Calculus
Differentials & Directional Derivatives
The Gateaux Differential


            We are presently concerned with Inner Product spaces
            in our treatment of the Mechanics of Continua.
            Consider a map,
                                     ๐‘ญ: V โ†’ W
            This maps from the domainV to W โ€“ both of which are
            Euclidean vector spaces. The concepts of limit and
            continuity carries naturally from the real space to any
            Euclidean vector space.

Dept of Systems Engineering, University of Lagos   2        oafak@unilag.edu.ng 12/27/2012
The Gateaux Differential


            Let ๐’—0 โˆˆ V and ๐’˜0 โˆˆ W, as usual we can say that the
            limit
                              lim ๐‘ญ ๐’— = ๐’˜0
                                                   ๐’—โ†’ ๐’—0
            if for any pre-assigned real number ๐œ– > 0, no matter
            how small, we can always find a real number ๐›ฟ > 0
            such that ๐‘ญ ๐’— โˆ’ ๐’˜0 โ‰ค ๐œ– whenever ๐’— โˆ’ ๐’—0 < ๐›ฟ.
            The function is said to be continuous at ๐’—0 if ๐‘ญ ๐’—0
            exists and ๐‘ญ ๐’—0 = ๐’˜0
Dept of Systems Engineering, University of Lagos           3   oafak@unilag.edu.ng 12/27/2012
The Gateaux Differential


            Specifically, for ๐›ผ โˆˆ โ„› let this map be:
                                  ๐‘ญ ๐’™ + ๐›ผ๐’‰ โˆ’ ๐‘ญ ๐’™        ๐‘‘
               ๐ท๐‘ญ ๐’™, ๐’‰ โ‰ก lim                         =    ๐‘ญ ๐’™ + ๐›ผ๐’‰
                             ๐›ผโ†’0           ๐›ผ           ๐‘‘๐›ผ              ๐›ผ=0
            We focus attention on the second variable โ„Ž while we allow
            the dependency on ๐’™ to be as general as possible. We shall
            show that while the above function can be any given function
            of ๐’™ (linear or nonlinear), the above map is always linear in ๐’‰
            irrespective of what kind of Euclidean space we are mapping
            from or into. It is called the Gateaux Differential.

Dept of Systems Engineering, University of Lagos   4             oafak@unilag.edu.ng 12/27/2012
The Gateaux Differential
            Let us make the Gateaux differential a little more familiar in
            real space in two steps: First, we move to the real space and
            allow โ„Ž โ†’ ๐‘‘๐‘ฅ and we obtain,
                                ๐น ๐‘ฅ + ๐›ผ๐‘‘๐‘ฅ โˆ’ ๐น ๐‘ฅ          ๐‘‘
              ๐ท๐น(๐‘ฅ, ๐‘‘๐‘ฅ) = lim                      =       ๐น ๐‘ฅ + ๐›ผ๐‘‘๐‘ฅ
                            ๐›ผโ†’0           ๐›ผ             ๐‘‘๐›ผ              ๐›ผ=0
            And let ๐›ผ๐‘‘๐‘ฅ โ†’ ฮ”๐‘ฅ, the middle term becomes,
                               ๐น ๐‘ฅ + ฮ”๐‘ฅ โˆ’ ๐น ๐‘ฅ          ๐‘‘๐น
                           lim                    ๐‘‘๐‘ฅ =      ๐‘‘๐‘ฅ
                         ฮ”๐‘ฅโ†’0          ฮ”๐‘ฅ              ๐‘‘๐‘ฅ
            from which it is obvious that the Gateaux derivative is a
            generalization of the well-known differential from
            elementary calculus. The Gateaux differential helps to
            compute a local linear approximation of any function (linear
            or nonlinear).
Dept of Systems Engineering, University of Lagos   5              oafak@unilag.edu.ng 12/27/2012
The Gateaux Differential


            It is easily shown that the Gateaux differential is linear
            in its second argument, ie, for ๐›ผ โˆˆ R
                                ๐ท๐‘ญ ๐’™, ๐›ผ๐’‰ = ๐›ผ๐ท๐‘ญ ๐’™, ๐’‰
            Furthermore,
                         ๐ท๐‘ญ ๐’™, ๐’ˆ + ๐’‰ = ๐ท๐‘ญ ๐’™, ๐’ˆ + ๐ท๐‘ญ ๐’™, ๐’‰
            and that for ๐›ผ, ๐›ฝ โˆˆ R
                     ๐ท๐‘ญ ๐’™, ๐›ผ๐’ˆ + ๐›ฝ๐’‰ = ๐›ผ๐ท๐‘ญ ๐’™, ๐’ˆ + ๐›ฝ๐ท๐‘ญ ๐’™, ๐’‰


Dept of Systems Engineering, University of Lagos   6           oafak@unilag.edu.ng 12/27/2012
The Frechรฉt Derivative


            The Frechรฉt derivative or gradient of a differentiable
            function is the linear operator, grad ๐‘ญ(๐’—) such that, for
             ๐‘‘๐’— โˆˆ V,
                     ๐‘‘๐‘ญ ๐’—
                              ๐‘‘๐’— โ‰ก grad ๐‘ญ ๐’— ๐‘‘๐’— โ‰ก ๐ท๐‘ญ ๐’—, ๐‘‘๐’—
                      ๐‘‘๐’—
            Obviously, grad ๐‘ญ(๐’—) is a tensor because it is a linear
            transformation from one Euclidean vector space to
            another. Its linearity derives from the second argument
            of the RHS.

Dept of Systems Engineering, University of Lagos   7         oafak@unilag.edu.ng 12/27/2012
Differentiable Real-Valued Function
       The Gradient of a Differentiable Real-Valued Function
       For a real vector function, we have the map:
                                   ๐‘“: V โ†’ R
       The Gateaux differential in this case takes two vector
       arguments and maps to a real value:
                               ๐ท๐‘“: V ร— V โ†’ R

            This is the classical definition of the inner product so that we
            can define the differential as,
                                                 ๐‘‘๐‘“(๐’—)
                                                       โ‹… ๐‘‘๐’— โ‰ก ๐ท๐‘“ ๐’—, ๐‘‘๐’—
                                                  ๐‘‘๐’—
            This quantity,
                                                          ๐‘‘๐‘“(๐’—)
                                                            ๐‘‘๐’—
            defined by the above equation, is clearly a vector. oafak@unilag.edu.ng 12/27/2012
Dept of Systems Engineering, University of Lagos            8
Real-Valued Function

            It is the gradient of the scalar valued function of the
            vector variable. We now proceed to find its components
            in general coordinates. To do this, we choose a basis
              ๐  ๐‘– โŠ‚ V. On such a basis, the function,
                                       ๐’— = ๐‘ฃ๐‘– ๐ ๐‘–
            and,
                                   ๐‘“ ๐’— = ๐‘“ ๐‘ฃ๐‘– ๐ ๐‘–
            we may also express the independent vector
                                     ๐‘‘๐’— = ๐‘‘๐‘ฃ ๐‘– ๐  ๐‘–
            on this basis.
Dept of Systems Engineering, University of Lagos   9       oafak@unilag.edu.ng 12/27/2012
Real-Valued Function

            The Gateaux differential in the direction of the basis vector ๐  ๐‘– is,
                                      ๐‘“ ๐’— + ๐›ผ๐  ๐‘– โˆ’ ๐‘“ ๐’—                ๐‘“ ๐‘ฃ ๐‘— ๐  ๐‘— + ๐›ผ๐  ๐‘– โˆ’ ๐‘“ ๐‘ฃ ๐‘– ๐  ๐‘–
                ๐ท๐‘“ ๐’—, ๐  ๐‘– = lim                           = lim
                                  ๐›ผโ†’0         ๐›ผ               ๐›ผโ†’0                   ๐›ผ
                                                    ๐‘—
                                      ๐‘“ ๐‘ฃ ๐‘— + ๐›ผ๐›ฟ ๐‘– ๐  ๐‘— โˆ’ ๐‘“ ๐‘ฃ ๐‘– ๐  ๐‘–
                               = lim
                                  ๐›ผโ†’0                 ๐›ผ
            As the function ๐‘“ does not depend on the vector basis, we can
            substitute the vector function by the real function of the components
             ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 so that,
                                           ๐‘“ ๐‘ฃ ๐‘– ๐  ๐‘– = ๐‘“ ๐‘ฃ1, ๐‘ฃ 2, ๐‘ฃ 3
            in which case, the above differential, similar to the real case discussed
            earlier becomes,
                                                        ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                                          ๐ท๐‘“ ๐’—, ๐  ๐‘– =
                                                              ๐œ•๐‘ฃ ๐‘–

Dept of Systems Engineering, University of Lagos       10                             oafak@unilag.edu.ng 12/27/2012
๐‘‘๐‘“(๐’—)
            Of course, it is now obvious that the gradient                    of
                                                                           ๐‘‘๐’—
            the scalar valued vector function, expressed in its dual
            basis must be,
                              ๐‘‘๐‘“(๐’—)      ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘–
                                     =               ๐‘–
                                                              ๐ 
                               ๐‘‘๐’—                 ๐œ•๐‘ฃ
            so that we can recover,
                                ๐‘‘๐‘“ ๐’—               ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘—
                  ๐ท๐‘“ ๐’—, ๐  ๐‘– =           โ‹… ๐‘‘๐’— =               ๐‘—
                                                                         ๐  โ‹… ๐ ๐‘–
                                  ๐‘‘๐’—                      ๐œ•๐‘ฃ
                                ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘—       ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                             =            ๐‘—
                                                    ๐›ฟ๐‘– =
                                      ๐œ•๐‘ฃ                            ๐œ•๐‘ฃ ๐‘–
            Hence we obtain the well-known result that
                                     ๐‘‘๐‘“(๐’—)         ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘–
                     grad ๐‘“ ๐’— =                =             ๐‘–
                                                                         ๐ 
                                        ๐‘‘๐’—                ๐œ•๐‘ฃ
            which defines the Frechรฉt derivative of a scalar valued
            function with respect to its vector argument.
Dept of Systems Engineering, University of Lagos   11                   oafak@unilag.edu.ng 12/27/2012
Vector valued Function
            ๏€ช The Gradient of a Differentiable Vector valued Function
            The definition of the Frechรฉt clearly shows that the gradient
            of a vector-valued function is itself a second order tensor. We
            now find the components of this tensor in general
            coordinates. To do this, we choose a basis ๐  ๐‘– โŠ‚ V. On such
            a basis, the function,
                                    ๐‘ญ ๐’— = ๐น๐‘˜ ๐’— ๐ ๐‘˜
            The functional dependency on the basis vectors are ignorable
            on account of the fact that the components themselves are
            fixed with respect to the basis. We can therefore write,
                                ๐‘ญ ๐’— = ๐น ๐‘˜ ๐‘ฃ1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐  ๐‘˜


Dept of Systems Engineering, University of Lagos   12            oafak@unilag.edu.ng 12/27/2012
Vector Derivatives
                                       ๐ท๐‘ญ ๐’—, ๐‘‘๐’— = ๐ท๐‘ญ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐‘‘๐‘ฃ ๐‘– ๐  ๐‘–
                                                = ๐ท๐‘ญ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐  ๐‘– ๐‘‘๐‘ฃ ๐‘–
                                                = ๐ท๐น ๐‘˜ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐  ๐‘– ๐  ๐‘˜ ๐‘‘๐‘ฃ ๐‘–
            Again, upon noting that the functions ๐ท๐น ๐‘˜ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐  ๐‘– ,
             ๐‘˜ = 1,2,3 are not functions of the vector basis, they can
            be written as functions of the scalar components alone
            so that we have, as before,
                         ๐ท๐‘ญ ๐’—, ๐‘‘๐’— = ๐ท๐น ๐‘˜ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐  ๐‘– ๐  ๐‘˜ ๐‘‘๐‘ฃ ๐‘–
                                   = ๐ท๐น ๐‘˜ ๐’—, ๐  ๐‘– ๐  ๐‘˜ ๐‘‘๐‘ฃ ๐‘–


Dept of Systems Engineering, University of Lagos         13                     oafak@unilag.edu.ng 12/27/2012
Which we can compare to the earlier case of scalar valued
          function and easily obtain,
                                                    ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘—
                                ๐ท๐‘ญ ๐’—, ๐‘‘๐’— =                                 ๐  โ‹… ๐  ๐‘– ๐  ๐‘˜ ๐‘‘๐‘ฃ ๐‘–
                                                           ๐œ•๐‘ฃ ๐‘—
                                                    ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                                                 =                         ๐  ๐‘˜ โŠ— ๐  ๐‘— ๐  ๐‘– ๐‘‘๐‘ฃ ๐‘–
                                                           ๐œ•๐‘ฃ ๐‘—
                                                    ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                                                 =                         ๐  ๐‘˜ โŠ— ๐  ๐‘— ๐‘‘๐’—
                                                           ๐œ•๐‘ฃ ๐‘—
                                                    ๐‘‘๐‘ญ ๐’—
                                                 =             ๐‘‘๐’— โ‰ก grad ๐‘ญ ๐’— ๐‘‘๐’—
                                                      ๐‘‘๐’—
          Clearly, the tensor gradient of the vector-valued vector function
          is,
                              ๐‘‘๐‘ญ ๐’—                             ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                                             = grad ๐‘ญ ๐’— =                           ๐  ๐‘˜ โŠ— ๐ ๐‘—
                                  ๐‘‘๐’—                                     ๐œ•๐‘ฃ ๐‘—
          Where due attention should be paid to the covariance of the
          quotient indices in contrast to the contravariance of the non
          quotient indices.
Dept of Systems Engineering, University of Lagos            14                            oafak@unilag.edu.ng 12/27/2012
The Trace & Divergence

            The trace of this gradient is called the divergence of the
            function:
                                     ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                    div ๐‘ญ ๐’— = tr                            ๐  ๐‘˜ โŠ— ๐ ๐‘—
                                              ๐œ•๐‘ฃ ๐‘—
                                 ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                              =                        ๐  ๐‘˜ โ‹… ๐ ๐‘—
                                        ๐œ•๐‘ฃ ๐‘—
                                 ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘—
                              =             ๐‘—
                                                       ๐›ฟ๐‘˜
                                        ๐œ•๐‘ฃ
                                 ๐œ•๐น ๐‘— ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                              =
                                        ๐œ•๐‘ฃ ๐‘—
Dept of Systems Engineering, University of Lagos   15         oafak@unilag.edu.ng 12/27/2012
Tensor-Valued Vector Function
            Consider the mapping,
                                            ๐‘ป: V โ†’ T
            Which maps from an inner product space to a tensor space. The
            Gateaux differential in this case now takes two vectors and
            produces a tensor:
                                         ๐ท๐‘ป: V ร— V โ†’ T
            With the usual notation, we may write,
                      ๐ท๐‘ป ๐’—, ๐‘‘๐’— = ๐ท๐‘ป ๐‘ฃ ๐‘– ๐  ๐‘– , ๐‘‘๐‘ฃ ๐‘– ๐  ๐‘– = ๐ท๐‘ป ๐‘ฃ ๐‘– ๐  ๐‘– , ๐‘‘๐‘ฃ ๐‘– ๐  ๐‘–
                                     ๐‘‘๐‘ป ๐’—
                                =              ๐‘‘๐’— โ‰ก grad ๐‘ป ๐’— ๐‘‘๐’—
                                       ๐‘‘๐’—
                                = ๐ท๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐‘‘๐‘ฃ ๐‘– ๐  ๐‘– ๐  ๐›ผ โŠ— ๐  ๐›ฝ
                             = ๐ท๐‘‡ ๐›ผ๐›ฝ ๐’—, ๐  ๐‘– ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐‘‘๐‘ฃ ๐‘–
            Each of these nine functions look like the real differential of several
            variables we considered earlier.

Dept of Systems Engineering, University of Lagos   16                   oafak@unilag.edu.ng 12/27/2012
The independence of the basis vectors imply, as usual, that
                                                     ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                               ๐ท๐‘‡ ๐›ผ๐›ฝ ๐’—, ๐  ๐‘– =
                                                             ๐œ•๐‘ฃ ๐‘–
            so that,
               ๐ท๐‘ป ๐’—, ๐‘‘๐’— = ๐ท๐‘‡ ๐›ผ๐›ฝ ๐’—, ๐  ๐‘– ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐‘‘๐‘ฃ ๐‘–
                         ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                      =                          ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐‘‘๐‘ฃ ๐‘–
                                ๐œ•๐‘ฃ ๐‘–
                         ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                      =                          ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐  ๐‘– โ‹… ๐‘‘๐’—
                                ๐œ•๐‘ฃ ๐‘–
                           ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3                                 ๐‘‘๐‘ป ๐’—
                      =                            ๐  ๐›ผ โŠ— ๐  ๐›ฝ โŠ— ๐  ๐‘– ๐‘‘๐’— =                    ๐‘‘๐’—
                                  ๐œ•๐‘ฃ ๐‘–                                            ๐‘‘๐’—
                      โ‰ก grad ๐‘ป ๐’— ๐‘‘๐’—
            Which defines the third-order tensor,
                   ๐‘‘๐‘ป ๐’—                         ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                         = grad ๐‘ป ๐’— =                                  ๐  ๐›ผ โŠ— ๐  ๐›ฝ โŠ— ๐ ๐‘–
                     ๐‘‘๐’—                                 ๐œ•๐‘ฃ ๐‘–
            and with no further ado, we can see that a third-order tensor
            transforms a vector into a second order tensor.
Dept of Systems Engineering, University of Lagos   17                           oafak@unilag.edu.ng 12/27/2012
The Divergence of a Tensor Function

            The divergence operation can be defined in several ways.
            Most common is achieved by the contraction of the last two
            basis so that,
                             ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                div ๐‘ป ๐’— =                          ๐  ๐›ผ โŠ— ๐  ๐›ฝ โ‹… ๐ ๐‘–
                                   ๐œ•๐‘ฃ ๐‘–
                             ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                          =                        ๐  ๐›ผ ๐  ๐›ฝ โ‹… ๐ ๐‘–
                                   ๐œ•๐‘ฃ ๐‘–
                             ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3      ๐‘–    ๐œ•๐‘‡ ๐›ผ๐‘– ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3
                          =             ๐‘–
                                                   ๐  ๐›ผ ๐›ฟ๐›ฝ =              ๐‘–
                                                                                   ๐ ๐›ผ
                                   ๐œ•๐‘ฃ                               ๐œ•๐‘ฃ
            It can easily be shown that this is the particular vector that
            gives, for all constant vectors ๐’‚,
                                   div ๐‘ป ๐’‚ โ‰ก div ๐‘ปT ๐’‚

Dept of Systems Engineering, University of Lagos   18                      oafak@unilag.edu.ng 12/27/2012
Real-Valued Tensor Functions

            Two other kinds of functions are critically important in
            our study. These are real valued functions of tensors
            and tensor-valued functions of tensors. Examples in the
            first case are the invariants of the tensor function that
            we have already seen. We can express stress in terms of
            strains and vice versa. These are tensor-valued functions
            of tensors. The derivatives of such real and tensor
            functions arise in our analysis of continua. In this section
            these are shown to result from the appropriate Gateaux
            differentials. The gradients or Frechรฉt derivatives will be
            extracted once we can obtain the Gateaux differentials.

Dept of Systems Engineering, University of Lagos   19          oafak@unilag.edu.ng 12/27/2012
Frechรฉt Derivative
            Consider the Map:
                                          ๐‘“: T โ†’ R
            The Gateaux differential in this case takes two vector
            arguments and maps to a real value:
                                     ๐ท๐‘“: T ร— T โ†’ R
            Which is, as usual, linear in the second argument. The Frechรฉt
            derivative can be expressed as the first component of the
            following scalar product:
                                                ๐‘‘๐‘“(๐‘ป)
                                  ๐ท๐‘“ ๐‘ป, ๐‘‘๐‘ป =          : ๐‘‘๐‘ป
                                                  ๐‘‘๐‘ป
            which, we recall, is the trace of the contraction of one tensor
            with the transpose of the other second-order tensors. This is
            a scalar quantity.

Dept of Systems Engineering, University of Lagos   20             oafak@unilag.edu.ng 12/27/2012
Guided by the previous result of the gradient of the scalar valued
            function of a vector, it is not difficult to see that,
                            ๐‘‘๐‘“(๐‘ป)      ๐œ•๐‘“(๐‘‡11 , ๐‘‡12 , โ€ฆ , ๐‘‡ 33 ) ๐›ผ
                                   =                            ๐  โŠ— ๐ ๐›ฝ
                              ๐‘‘๐‘ป                ๐œ•๐‘‡ ๐›ผ๐›ฝ
            In the dual to the same basis, we can write,
                                        ๐‘‘๐‘ป = ๐‘‘๐‘‡ ๐‘–๐‘— ๐  ๐‘– โŠ— ๐  ๐‘—
            Clearly,
                ๐‘‘๐‘“(๐‘ป)           ๐œ•๐‘“(๐‘‡11 , ๐‘‡12 , โ€ฆ , ๐‘‡ 33 ) ๐›ผ
                      : ๐‘‘๐‘ป =                              ๐  โŠ— ๐  ๐›ฝ : ๐‘‘๐‘‡ ๐‘–๐‘— ๐  ๐‘– โŠ— ๐  ๐‘—
                 ๐‘‘๐‘ป                      ๐œ•๐‘‡ ๐›ผ๐›ฝ
                              ๐œ•๐‘“(๐‘‡11 , ๐‘‡12 , โ€ฆ , ๐‘‡ 33 )
                           =                             ๐‘‘๐‘‡ ๐‘–๐‘—
                                        ๐œ•๐‘‡ ๐‘–๐‘—
            Again, note the covariance of the quotient indices.




Dept of Systems Engineering, University of Lagos   21                      oafak@unilag.edu.ng 12/27/2012
Examples
            Let ๐’ be a symmetric and positive definite tensor and let
            ๐ผ1 ๐‘บ , ๐ผ2 ๐‘บ and ๐ผ3 ๐‘บ be the three principal invariants of
                                                   ๐œ•๐‘ฐ1 ๐’
             ๐’ show that (a)                               = ๐Ÿ the identity tensor, (b)
                                                     ๐œ•๐’
             ๐œ•๐‘ฐ2 ๐’                                               ๐œ•๐ผ3 ๐’
                          = ๐ผ1 ๐’ ๐Ÿ โˆ’ ๐’ and (c)                           = ๐ผ3 ๐’ ๐’ โˆ’1
               ๐œ•๐’                                                  ๐œ•๐’
             ๐œ•๐‘ฐ1 ๐’
                          can be written in the invariant component form
               ๐œ•๐’
            as,
                                                   ๐œ•๐ผ1 ๐’   ๐œ•๐ผ1 ๐’
                                                         =        ๐‘—
                                                                    ๐ ๐‘– โŠ— ๐ ๐‘—
                                                     ๐œ•๐’      ๐œ•๐‘† ๐‘–


Dept of Systems Engineering, University of Lagos                 22                    oafak@unilag.edu.ng 12/27/2012
(a) Continued

                                           ฮฑ
            Recall that ๐ผ1 ๐’ = tr ๐’ = ๐‘†ฮฑ hence
                             ๐œ•๐ผ1 ๐’   ๐œ•๐ผ1 ๐’
                                   =          ๐‘—
                                                    ๐ ๐‘– โŠ— ๐ ๐‘—
                               ๐œ•๐’        ๐œ•๐‘† ๐‘–
                                          ฮฑ
                                     ๐œ•๐‘†ฮฑ
                                   =       ๐‘—
                                                ๐ ๐‘– โŠ— ๐ ๐‘—
                                     ๐œ•๐‘† ๐‘–
                                   = ๐›ฟ ๐‘–๐›ผ ๐›ฟ ๐‘— ๐›ผ ๐  ๐‘– โŠ— ๐  ๐‘—
                                   = ๐›ฟ ๐‘—๐‘– ๐  ๐‘– โŠ— ๐  ๐‘— = ๐Ÿ
            which is the identity tensor as expected.

Dept of Systems Engineering, University of Lagos         23        oafak@unilag.edu.ng 12/27/2012
๐œ•๐ผ2 ๐’
                              (b)                          = ๐ผ1 ๐’ ๐Ÿ โˆ’ ๐’
                                                     ๐œ•๐’
             ๐œ•๐ผ2 ๐’
                      in a similar way can be written in the invariant component form
               ๐œ•๐’
            as,
                           ๐œ•๐ผ2 ๐’         1 ๐œ•๐ผ1 ๐’        ฮฑ ๐›ฝ            ๐›ฝ
                                     =                ๐‘†ฮฑ ๐‘† ๐›ฝ โˆ’ ๐‘† ฮฑ ๐‘†ฮฑ ๐  ๐‘– โŠ— ๐  ๐‘—
                                                                  ๐›ฝ
                             ๐œ•๐’          2 ๐œ•๐‘† ๐‘—
                                                 ๐‘–
                                                                    1
            where we have utilized the fact that ๐ผ2 ๐’ = 2 tr 2 ๐’ โˆ’ tr(๐’ 2 ) .
            Consequently,
                 ๐œ•๐ผ2 ๐’    1 ๐œ•         ฮฑ ๐›ฝ            ๐›ฝ
                       =             ๐‘†ฮฑ ๐‘† ๐›ฝ โˆ’ ๐‘† ฮฑ ๐‘†ฮฑ ๐  ๐‘– โŠ— ๐  ๐‘—
                                                   ๐›ฝ
                   ๐œ•๐’     2 ๐œ•๐‘† ๐‘—
                                 ๐‘–
                          1 ๐‘– ๐›ผ ๐›ฝ               ๐‘– ๐›ฝ ฮฑ                ๐›ฝ          ๐›ฝ
                       =      ๐›ฟ ๐›ผ ๐›ฟ ๐‘— ๐‘† ๐›ฝ + ๐›ฟ ๐›ฝ ๐›ฟ ๐‘— ๐‘†ฮฑ โˆ’ ๐›ฟ ๐›ฝ ๐›ฟ ๐‘— ๐›ผ ๐‘†ฮฑ โˆ’ ๐›ฟ ๐‘–๐›ผ ๐›ฟ ๐‘— ๐‘† ฮฑ ๐  ๐‘– โŠ— ๐  ๐‘—
                                                               ๐‘–
                                                                                   ๐›ฝ
                          2
                          1 ๐‘– ๐›ฝ                       ๐‘—      ๐‘—
                       =      ๐›ฟ ๐‘— ๐‘† ๐›ฝ + ๐›ฟ ๐‘—๐‘– ๐‘†ฮฑ โˆ’ ๐‘† ๐‘– โˆ’ ๐‘† ๐‘– ๐  ๐‘– โŠ— ๐  ๐‘—
                                              ฮฑ
                          2
                                          ๐‘—
                       = ๐›ฟ ๐‘—๐‘– ๐‘†ฮฑ โˆ’ ๐‘† ๐‘– ๐  ๐‘– โŠ— ๐  ๐‘— = ๐ผ1 ๐’ ๐Ÿ โˆ’ ๐’
                                  ฮฑ



Dept of Systems Engineering, University of Lagos            24                         oafak@unilag.edu.ng 12/27/2012
๐œ•๐‘ฐ3 ๐’           ๐œ•det ๐’
๏€ช              =                 = ๐’๐œ
       ๐œ•๐’              ๐œ•๐’
๏€ช the cofactor of ๐’. Clearly ๐’ ๐œ = det ๐’ ๐’โˆ’1 = ๐‘ฐ3 ๐’ ๐’โˆ’1 as required. Details of
   this for the contravariant components of a tensor is presented below. Let
                                               1 ๐‘–๐‘—๐‘˜ ๐‘Ÿ๐‘ ๐‘ก
                               ๐’ = ๐‘†=               ๐‘’ ๐‘’ ๐‘† ๐‘–๐‘Ÿ ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก
                                               3!
Differentiating wrt ๐‘† ๐›ผ๐›ฝ , we obtain,
   ๐œ•๐‘†              1 ๐‘–๐‘—๐‘˜ ๐‘Ÿ๐‘ ๐‘ก ๐œ•๐‘† ๐‘–๐‘Ÿ                              ๐œ•๐‘† ๐‘—๐‘                    ๐œ•๐‘† ๐‘˜๐‘ก
         ๐  โŠ— ๐  ๐›ฝ=     ๐‘’ ๐‘’                     ๐‘† ๐‘† + ๐‘† ๐‘–๐‘Ÿ              ๐‘† + ๐‘† ๐‘–๐‘Ÿ ๐‘† ๐‘—๐‘            ๐  โŠ— ๐ ๐›ฝ
  ๐œ•๐‘† ๐›ผ๐›ฝ ๐›ผ          3!                ๐œ•๐‘† ๐›ผ๐›ฝ ๐‘—๐‘  ๐‘˜๐‘ก                ๐œ•๐‘† ๐›ผ๐›ฝ ๐‘˜๐‘ก               ๐œ•๐‘† ๐›ผ๐›ฝ ๐›ผ
             1 ๐‘–๐‘—๐‘˜ ๐‘Ÿ๐‘ ๐‘ก ๐›ผ ๐›ฝ                                 ๐›ฝ                         ๐›ฝ
          =     ๐‘’ ๐‘’      ๐›ฟ ๐‘– ๐›ฟ ๐‘Ÿ ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก + ๐‘† ๐‘–๐‘Ÿ ๐›ฟ ๐‘— ๐›ผ ๐›ฟ ๐‘  ๐‘† ๐‘˜๐‘ก + ๐‘† ๐‘–๐‘Ÿ ๐‘† ๐‘—๐‘  ๐›ฟ ๐‘˜๐›ผ ๐›ฟ ๐‘ก ๐  ๐›ผ โŠ— ๐  ๐›ฝ
             3!
                       1 ๐›ผ๐‘—๐‘˜ ๐›ฝ๐‘ ๐‘ก
                     =      ๐‘’      ๐‘’        ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก + ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก + ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก ๐  ๐›ผ โŠ— ๐  ๐›ฝ
                       3!
                        1 ๐›ผ๐‘—๐‘˜ ๐›ฝ๐‘ ๐‘ก
                     =       ๐‘’      ๐‘’      ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก ๐  ๐›ผ โŠ— ๐  ๐›ฝ โ‰ก ๐‘† c ๐›ผ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ
                       2!
Which is the cofactor of ๐‘† ๐›ผ๐›ฝ

Dept of Systems Engineering, University of Lagos   25                            oafak@unilag.edu.ng 12/27/2012
Real Tensor Functions


            Consider the function ๐‘“(๐‘บ) = tr ๐‘บ ๐‘˜ where ๐‘˜ โˆˆ โ„›, and
             ๐‘บ is a tensor.
                             ๐‘“ ๐‘บ = tr ๐‘บ ๐‘˜ = ๐‘บ ๐‘˜ : ๐Ÿ
            To be specific, let ๐‘˜ = 3.




Dept of Systems Engineering, University of Lagos   26    oafak@unilag.edu.ng 12/27/2012
Real Tensor Functions
            The Gateaux differential in this case,
                           ๐‘‘                        ๐‘‘                        3
              ๐ท๐‘“ ๐‘บ, ๐‘‘๐‘บ =      ๐‘“ ๐‘บ + ๐›ผ๐‘‘๐‘บ         =     tr ๐‘บ + ๐›ผ๐‘‘๐‘บ
                          ๐‘‘๐›ผ                ๐›ผ=0
                                                   ๐‘‘๐›ผ                               ๐›ผ=0
                           ๐‘‘
                       =     tr ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ
                          ๐‘‘๐›ผ                                                  ๐›ผ=0
                               ๐‘‘
                       = tr       ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ
                              ๐‘‘๐›ผ                                              ๐›ผ=0
                       = tr ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ
                     + ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ
                     + ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐‘บ
                                                             ๐›ผ=0
                                      = tr ๐‘‘๐‘บ ๐‘บ ๐‘บ + ๐‘บ ๐‘‘๐‘บ ๐‘บ + ๐‘บ ๐‘บ ๐’…๐‘บ = 3 ๐‘บ2 T : ๐‘‘๐‘บ
Dept of Systems Engineering, University of Lagos       27                   oafak@unilag.edu.ng 12/27/2012
Real Tensor Functions
            With the last equality coming from the definition of the
            Inner product while noting that a circular permutation
            does not alter the value of the trace. It is easy to
            establish inductively that in the most general case, for
             ๐‘˜ > 0, we have,
                                                                    ๐‘˜โˆ’1 T
                                                   ๐ท๐‘“ ๐‘บ, ๐‘‘๐‘บ = ๐‘˜ ๐‘บ           : ๐‘‘๐‘บ
            Clearly,
                                                    ๐‘‘                        T
                                                       tr ๐‘บ ๐‘˜ = ๐‘˜ ๐‘บ ๐‘˜โˆ’1
                                                    ๐‘‘๐‘บ



Dept of Systems Engineering, University of Lagos              28                   oafak@unilag.edu.ng 12/27/2012
Real Tensor Functions

            When ๐‘˜ = 1,
                                                      ๐‘‘
                                         ๐ท๐‘“ ๐‘บ, ๐‘‘๐‘บ =      ๐‘“ ๐‘บ + ๐›ผ๐‘‘๐‘บ
                                                     ๐‘‘๐›ผ            ๐›ผ=0
                                                      ๐‘‘
                                                  =     tr ๐‘บ + ๐›ผ๐‘‘๐‘บ
                                                     ๐‘‘๐›ผ             ๐›ผ=0
                                                  = tr ๐Ÿ ๐‘‘๐‘บ = ๐Ÿ: ๐‘‘๐‘บ
            Or that,
                                                   ๐‘‘
                                                      tr ๐‘บ = ๐Ÿ.
                                                   ๐‘‘๐‘บ

Dept of Systems Engineering, University of Lagos        29                oafak@unilag.edu.ng 12/27/2012
Real Tensor Functions


            Derivatives of the other two invariants of the tensor ๐‘บ
            can be found as follows:
                       ๐‘‘
                           ๐ผ2 (๐‘บ)
                      ๐‘‘๐‘บ
                         1 ๐‘‘
                      =         tr 2 ๐‘บ โˆ’ tr ๐‘บ2
                         2 ๐‘‘๐‘บ
                         1
                      = 2tr ๐‘บ ๐Ÿ โˆ’ 2 ๐‘บT = tr ๐‘บ ๐Ÿ โˆ’ ๐‘บT
                         2
                                          .
Dept of Systems Engineering, University of Lagos   30        oafak@unilag.edu.ng 12/27/2012
Real Tensor Functions

            To Determine the derivative of the third invariant, we
            begin with the trace of the Cayley-Hamilton for ๐‘บ:
             tr ๐‘บ3 โˆ’ ๐ผ1 ๐‘บ2 + ๐ผ2 ๐‘บ โˆ’ ๐ผ3 ๐‘ฐ = tr(๐‘บ3 ) โˆ’ ๐ผ1 tr ๐‘บ2 + ๐ผ2 tr ๐‘บ
                    โˆ’ 3๐ผ3 = 0
            Therefore,
                         3๐ผ3 = tr(๐‘บ3 ) โˆ’ ๐ผ1 tr ๐‘บ2 + ๐ผ2 tr ๐‘บ
                                     1 2
                             ๐ผ2 ๐‘บ = tr ๐‘บ โˆ’ tr ๐‘บ2
                                     2

                                                   .
Dept of Systems Engineering, University of Lagos   31          oafak@unilag.edu.ng 12/27/2012
Differentiating the Invariants


            We can therefore write,
                       3๐ผ3 ๐‘บ = tr(๐‘บ3 ) โˆ’ tr ๐‘บ tr ๐‘บ2
                                   1 2
                              +      tr ๐‘บ โˆ’ tr ๐‘บ2   tr ๐‘บ
                                   2
            so that, in terms of traces only,
                            1 3
                   ๐ผ3 ๐‘บ = tr ๐‘บ โˆ’ 3tr ๐‘บ tr ๐‘บ2 + 2tr(๐‘บ3 )
                            6


Dept of Systems Engineering, University of Lagos   32   oafak@unilag.edu.ng 12/27/2012
Real Tensor Functions


  Clearly,
   ๐‘‘๐ผ3 (๐‘บ) 1
           = 3tr 2 ๐‘บ ๐Ÿ โˆ’ 3tr ๐‘บ2 โˆ’ 3tr ๐‘บ 2๐‘บ ๐‘‡ + 2 ร— 3 ๐‘บ2              ๐‘‡
     ๐‘‘๐‘บ     6
                   = ๐ผ2 ๐Ÿ โˆ’ tr ๐‘บ ๐‘บ ๐‘‡ + ๐‘บ2๐‘‡




Dept of Systems Engineering, University of Lagos   33   oafak@unilag.edu.ng 12/27/2012
Real Tensor Functions



                                                   .




Dept of Systems Engineering, University of Lagos   34   oafak@unilag.edu.ng 12/27/2012
The Euclidean Point Space


            In Classical Theory, the world is a Euclidean Point Space
            of dimension three. We shall define this concept now
            and consequently give specific meanings to related
            concepts such as
            ๏‚ง Frames of Reference,
            ๏‚ง Coordinate Systems and
            ๏‚ง Global Charts


Dept of Systems Engineering, University of Lagos   35        oafak@unilag.edu.ng 12/27/2012
The Euclidean Point Space


            ๏‚ง Scalars, Vectors and Tensors we will deal with in
              general vary from point to point in the material. They
              are therefore to be regarded as functions of position
              in the physical space occupied.
            ๏‚ง Such functions, associated with positions in the
              Euclidean point space, are called fields.
            ๏‚ง We will therefore be dealing with scalar, vector and
              tensor fields.

Dept of Systems Engineering, University of Lagos   36       oafak@unilag.edu.ng 12/27/2012
The Euclidean Point Space


            ๏€ช The Euclidean Point Space โ„ฐ is a set of elements
              called points. For each pair of points ๐’™, ๐’š โˆˆ โ„ฐ,
              โˆƒ ๐’– ๐’™, ๐’š โˆˆ E with the following two properties:
            1. ๐’– ๐’™, ๐’š = ๐’– ๐’™, ๐’› + ๐’– ๐’›, ๐’š        โˆ€๐’™, ๐’š, ๐’› โˆˆ โ„ฐ
            2. ๐’– ๐’™, ๐’š = ๐’– ๐’™, ๐’› โ‡” ๐’š = ๐’›
            Based on these two, we proceed to show that,
                                    ๐’– ๐’™, ๐’™ = ๐ŸŽ
            And that,
                                ๐’– ๐’™, ๐’› = โˆ’๐’– ๐’›, ๐’™
Dept of Systems Engineering, University of Lagos   37     oafak@unilag.edu.ng 12/27/2012
The Euclidean Point Space


            From property 1, let ๐’š โ†’ ๐’™ it is clear that,
                             ๐’– ๐’™, ๐’™ = ๐’– ๐’™, ๐’› + ๐’– ๐’›, ๐’™
            And it we further allow ๐’› โ†’ ๐’™, we find that,
                       ๐’– ๐’™, ๐’™ = ๐’– ๐’™, ๐’™ + ๐’– ๐’™, ๐’™ = 2๐’– ๐’™, ๐’™
            Which clearly shows that ๐’– ๐’™, ๐’™ = ๐’ the zero vector.
            Similarly, from the above, we find that,
                           ๐’– ๐’™, ๐’™ = ๐’ = ๐’– ๐’™, ๐’› + ๐’– ๐’›, ๐’™
            So that ๐’– ๐’™, ๐’› = โˆ’๐’– ๐’›, ๐’™

Dept of Systems Engineering, University of Lagos   38     oafak@unilag.edu.ng 12/27/2012
Dept of Systems Engineering, University of Lagos   39   oafak@unilag.edu.ng 12/27/2012
Coordinate System




Dept of Systems Engineering, University of Lagos   40    oafak@unilag.edu.ng 12/27/2012
Coordinate System




Dept of Systems Engineering, University of Lagos   41    oafak@unilag.edu.ng 12/27/2012
Position Vectors
            Note that โ„ฐ is NOT a vector space. In our discussion, the
            vector space E to which ๐’– belongs, is associated as we
            have shown. It is customary to oscillate between these
            two spaces. When we are talking about the vectors,
            they are in E while the points are in โ„ฐ.
            We adopt the convention that ๐’™ ๐’š โ‰ก ๐’– ๐’™, ๐’š referring
            to the vector ๐’–. If therefore we choose an arbitrarily
            fixed point ๐ŸŽ โˆˆ โ„ฐ, we are associating ๐’™ ๐ŸŽ , ๐’š ๐ŸŽ and
             ๐’› ๐ŸŽ respectively with ๐’– ๐’™, ๐ŸŽ , ๐’– ๐’š, ๐ŸŽ and ๐’– ๐’›, ๐ŸŽ .
            These are vectors based on the points ๐’™, ๐’š and ๐’› with
            reference to the origin chosen. To emphasize the
            association with both points of โ„ฐ as well as members of
            E they are called Position Vectors.

Dept of Systems Engineering, University of Lagos   42         oafak@unilag.edu.ng 12/27/2012
Length in the Point Space
            Recall that by property 1,
                        ๐’™ ๐’š โ‰ก ๐’– ๐’™, ๐’š = ๐’– ๐’™, ๐ŸŽ + ๐’– ๐ŸŽ, ๐’š
            Furthermore, we have deduced that ๐’– ๐ŸŽ, ๐’š = โˆ’๐’–(๐’š, ๐ŸŽ)
            We may therefore write that,
                               ๐’™ ๐’š = ๐’™ ๐ŸŽ โˆ’ ๐’š(๐ŸŽ)
            Which, when there is no ambiguity concerning the
            chosen origin, we can write as,
                                  ๐’™ ๐’š = ๐’™โˆ’ ๐’š
            And the distance between the two is,
                          ๐’… ๐’™ ๐’š = ๐’… ๐’™โˆ’ ๐’š = ๐’™โˆ’ ๐’š

Dept of Systems Engineering, University of Lagos   43   oafak@unilag.edu.ng 12/27/2012
Metric Properties


            ๏€ช The norm of a vector is the square root of the inner
              product of the vector with itself. If the coordinates of
               ๐’™ and ๐’š on a set of independent vectors are ๐‘ฅ ๐‘– and ๐‘ฆ ๐‘– ,
              then the distance we seek is,
                         ๐’… ๐’™โˆ’ ๐’š =                  ๐’™โˆ’ ๐’š =        ๐‘” ๐‘–๐‘— (๐‘ฅ ๐‘– โˆ’ ๐‘ฆ ๐‘– )(๐‘ฅ ๐‘— โˆ’ ๐‘ฆ ๐‘— )
            The more familiar Pythagorean form occurring only
            when ๐‘” ๐‘–๐‘— = 1.

Dept of Systems Engineering, University of Lagos            44                           oafak@unilag.edu.ng 12/27/2012
Coordinate Transformations


            ๏€ช Consider a Cartesian coordinate system
               ๐‘ฅ, ๐‘ฆ, ๐‘ง or ๐‘ฆ1 , ๐‘ฆ 2 and ๐‘ฆ 3 with an orthogonal basis. Let us
              now have the possibility of transforming to another
              coordinate system of an arbitrary nature: ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 .
              We can represent the transformation and its inverse
              in the equations:
            ๏€ช ๐‘ฆ ๐‘– = ๐‘ฆ ๐‘– ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 , ๐‘ฅ ๐‘– = ๐‘ฅ ๐‘– (๐‘ฆ1 , ๐‘ฆ 2 , ๐‘ฆ 3 )
            ๏€ช And if the Jacobian of transformation,

Dept of Systems Engineering, University of Lagos   45            oafak@unilag.edu.ng 12/27/2012
Jacobian Determinant


                                                        ๐œ•๐‘ฆ1 ๐œ•๐‘ฆ1 ๐œ•๐‘ฆ1
                                                        ๐œ•๐‘ฅ 1 ๐œ•๐‘ฅ 2 ๐œ•๐‘ฅ 3
                      ๐œ•๐‘ฆ ๐‘–     ๐œ• ๐‘ฆ1 , ๐‘ฆ 2 , ๐‘ฆ 3         ๐œ•๐‘ฆ 2 ๐œ•๐‘ฆ 2 ๐œ•๐‘ฆ 2
                         ๐‘—
                           โ‰ก       1, ๐‘ฅ2, ๐‘ฅ3 โ‰ก
                      ๐œ•๐‘ฅ       ๐œ• ๐‘ฅ                      ๐œ•๐‘ฅ 1 ๐œ•๐‘ฅ 2 ๐œ•๐‘ฅ 3
                                                        ๐œ•๐‘ฆ 3 ๐œ•๐‘ฆ 3 ๐œ•๐‘ฆ 3
                                                        ๐œ•๐‘ฅ 1 ๐œ•๐‘ฅ 2 ๐œ•๐‘ฅ 3
            does not vanish, then the inverse transformation will exist.
            So that,
                                   ๐‘ฅ ๐‘– = ๐‘ฅ ๐‘– (๐‘ฆ1 , ๐‘ฆ 2 , ๐‘ฆ 3 )

Dept of Systems Engineering, University of Lagos   46            oafak@unilag.edu.ng 12/27/2012
Given a position vector
                                       ๐ซ = ๐ซ(๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 )
            ๏€ช In the new coordinate system, we can form a set of three
               vectors,
                                            ๐œ•๐ซ
                                     ๐ ๐‘– =      ๐‘–
                                                 , ๐‘– = 1,2,3
                                           ๐œ•๐‘ฅ
            Which represent vectors along the tangents to the
            coordinate lines. (This is easily established for the Cartesian
            system and it is true in all systems. ๐ซ = ๐ซ ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 = ๐‘ฆ1 ๐ข +
             ๐‘ฆ2 ๐ฃ + ๐‘ฆ3 ๐ค
            So that
                                    ๐œ•๐ซ         ๐œ•๐ซ               ๐œ•๐ซ
                             ๐ข = 1 , ๐ฃ = 2 and ๐ค = 3
                                   ๐œ•๐‘ฆ        ๐œ•๐‘ฆ                ๐œ•๐‘ฆ
            The fact that this is true in the general case is easily seen
            when we consider that along those lines, only the variable we
            are differentiating with respect to varies. Consider the
            general case where,
                                       ๐ซ = ๐ซ ๐‘ฅ1 , ๐‘ฅ 2 , ๐‘ฅ 3
            The total differential of ๐ซ is simply,
Dept of Systems Engineering, University of Lagos   47                 oafak@unilag.edu.ng 12/27/2012
Natural Dual Bases
                                    ๐œ•๐ซ    1+
                                                 ๐œ•๐ซ     2+
                                                            ๐œ•๐ซ
                          ๐‘‘๐ซ = 1 ๐‘‘๐‘ฅ                  ๐‘‘๐‘ฅ         ๐‘‘๐‘ฅ 3
                                   ๐œ•๐‘ฅ           ๐œ•๐‘ฅ 2       ๐œ•๐‘ฅ 3
                             โ‰ก ๐‘‘๐‘ฅ 1 ๐ 1 + ๐‘‘๐‘ฅ 2 ๐  2 + ๐‘‘๐‘ฅ 3 ๐  3
            With ๐  ๐‘– ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 , ๐‘– = 1,2,3 now depending in general
            on ๐‘ฅ 1 , ๐‘ฅ 2 and ๐‘ฅ 3 now forming a basis on which we can
            describe other vectors in the coordinate system. We
            have no guarantees that this vectors are unit in length
            nor that they are orthogonal to one another. In the
            Cartesian case, ๐  ๐‘– , ๐‘– = 1,2,3 are constants, normalized
            and orthogonal. They are our familiar
                                    ๐œ•๐ซ         ๐œ•๐ซ            ๐œ•๐ซ
                            ๐ข = 1 , ๐ฃ = 2 and ๐ค = 3 .
                                   ๐œ•๐‘ฆ         ๐œ•๐‘ฆ            ๐œ•๐‘ฆ

Dept of Systems Engineering, University of Lagos   48            oafak@unilag.edu.ng 12/27/2012
We now proceed to show that the set of basis vectors,
                                               ๐  ๐‘– โ‰ก ๐›ป๐‘ฅ ๐‘–
            is reciprocal to ๐  ๐‘– . The total differential ๐‘‘๐ซ can be written in terms
            of partial differentials as,
                                                    ๐œ•๐ซ
                                             ๐‘‘๐ซ =        ๐‘‘๐‘ฆ ๐‘–
                                                    ๐œ•๐‘ฆ ๐‘–
            Which when expressed in component form yields,
                                       ๐œ•๐‘ฅ 1 1       ๐œ•๐‘ฅ 1 2       ๐œ•๐‘ฅ 1 3
                             ๐‘‘๐‘ฅ 1 = 1 ๐‘‘๐‘ฆ + 2 ๐‘‘๐‘ฆ + 3 ๐‘‘๐‘ฆ
                                       ๐œ•๐‘ฆ           ๐œ•๐‘ฆ           ๐œ•๐‘ฆ
                                       ๐œ•๐‘ฅ 2 1       ๐œ•๐‘ฅ 2 2       ๐œ•๐‘ฅ 2 3
                             ๐‘‘๐‘ฅ 2 = 1 ๐‘‘๐‘ฆ + 2 ๐‘‘๐‘ฆ + 3 ๐‘‘๐‘ฆ
                                       ๐œ•๐‘ฆ           ๐œ•๐‘ฆ           ๐œ•๐‘ฆ
                                       ๐œ•๐‘ฅ 3 1       ๐œ•๐‘ฅ 3 2       ๐œ•๐‘ฅ 3 3
                             ๐‘‘๐‘ฅ 3 = 1 ๐‘‘๐‘ฆ + 2 ๐‘‘๐‘ฆ + 3 ๐‘‘๐‘ฆ
                                       ๐œ•๐‘ฆ           ๐œ•๐‘ฆ           ๐œ•๐‘ฆ
            Or, more compactly that,
                                        ๐‘— =
                                             ๐œ•๐‘ฅ ๐‘—
                                     ๐‘‘๐‘ฅ            ๐‘‘๐‘ฆ ๐‘– = ๐›ป๐‘ฅ ๐‘— โ‹… ๐‘‘๐ซ
                                             ๐œ•๐‘ฆ ๐‘–
Dept of Systems Engineering, University of Lagos   49                      oafak@unilag.edu.ng 12/27/2012
In Cartesian coordinates, ๐‘ฆ ๐‘– , ๐‘– = 1, . . , 3 for any scalar field
             ๐œ™ (๐‘ฆ1 , ๐‘ฆ 2 , ๐‘ฆ 3 ),
                     ๐œ•๐œ™         ๐‘– =
                                      ๐œ•๐œ™         ๐œ•๐œ™         ๐œ•๐œ™
                            ๐‘‘๐‘ฆ             ๐‘‘๐‘ฅ +       ๐‘‘๐‘ฆ +       ๐‘‘๐‘ง = grad ๐œ™ โ‹… ๐‘‘๐ซ
                     ๐œ•๐‘ฆ ๐‘–             ๐œ•๐‘ฅ         ๐œ•๐‘ฆ          ๐œ•๐‘ง
            We are treating each curvilinear coordinate as a scalar field,
             ๐‘ฅ ๐‘— = ๐‘ฅ ๐‘— (๐‘ฆ1 , ๐‘ฆ 2 , ๐‘ฆ 3 ).
                                             ๐‘— = ๐›ป๐‘ฅ ๐‘— โ‹…
                                                          ๐œ•๐ซ
                                          ๐‘‘๐‘ฅ                    ๐‘‘๐‘ฅ ๐‘š
                                                         ๐œ•๐‘ฅ ๐‘š
                                               = ๐  ๐‘— โ‹… ๐  ๐‘š ๐‘‘๐‘ฅ ๐‘š
                                                   ๐‘—
                                               = ๐›ฟ ๐‘š ๐‘‘๐‘ฅ ๐‘š .
            The last equality arises from the fact that this is the only way
            one component of the coordinate differential can equal
            another.
                                                               ๐‘—
                                             โ‡’ ๐ ๐‘— โ‹… ๐  ๐‘š = ๐›ฟ ๐‘š
            Which recovers for us the reciprocity relationship and shows
            that ๐  ๐‘— and ๐  ๐‘š are reciprocal systems.


Dept of Systems Engineering, University of Lagos   50                   oafak@unilag.edu.ng 12/27/2012
The position vector in Cartesian coordinates is ๐’“ = ๐’™ ๐’Š ๐’† ๐’Š. Show
            that (a) ๐๐ข๐ฏ ๐’“ = ๐Ÿ‘, (b) ๐๐ข๐ฏ ๐’“ โŠ— ๐’“ = ๐Ÿ’๐’“, (c) ๐๐ข๐ฏ ๐’“ = ๐Ÿ‘, and (d)
             ๐ ๐ซ๐š๐ ๐’“ = ๐Ÿ and (e) ๐œ๐ฎ๐ซ๐ฅ ๐’“ โŠ— ๐’“ = โˆ’๐’“ ร—
                                   grad ๐’“ = ๐‘ฅ ๐‘– , ๐’‹ ๐’† ๐‘– โŠ— ๐’† ๐’‹
                                            = ๐›ฟ ๐‘–๐‘— ๐’† ๐‘– โŠ— ๐’† ๐’‹ = ๐Ÿ
                                    div ๐’“ = ๐‘ฅ ๐‘– , ๐’‹ ๐’† ๐‘– โ‹… ๐’† ๐’‹
                                            = ๐›ฟ ๐‘–๐‘— ๐›ฟ ๐‘–๐‘— = ๐›ฟ ๐‘—๐‘— = 3.
                             ๐’“ โŠ— ๐’“ = ๐‘ฅ ๐‘– ๐’† ๐‘– โŠ— ๐‘ฅ๐‘— ๐’†๐‘— = ๐‘ฅ ๐‘– ๐‘ฅ๐‘— ๐’† ๐‘– โŠ— ๐’† ๐’‹
                            grad ๐’“ โŠ— ๐’“ = ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— , ๐‘˜ ๐’† ๐‘– โŠ— ๐’† ๐’‹ โŠ— ๐’† ๐’Œ
                        div ๐’“ โŠ— ๐’“ = ๐‘ฅ ๐‘– , ๐‘˜ ๐‘ฅ ๐‘— + ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— , ๐‘˜ ๐’† ๐‘– โŠ— ๐’† ๐’‹ โ‹… ๐’† ๐’Œ
                        = ๐›ฟ ๐‘–๐‘˜ ๐’™ ๐’‹ + ๐’™ ๐’Š ๐›ฟ ๐‘—๐‘˜ ๐›ฟ ๐‘—๐‘˜ ๐’† ๐‘– = ๐›ฟ ๐‘–๐‘˜ ๐’™ ๐’Œ + ๐’™ ๐’Š ๐›ฟ ๐‘—๐‘— ๐’† ๐‘–
                        = 4๐‘ฅ ๐‘– ๐’† ๐‘– = 4๐’“
                      curl ๐’“ โŠ— ๐’“ = ๐œ– ๐›ผ๐›ฝ๐›พ ๐‘ฅ ๐‘– ๐‘ฅ ๐›พ , ๐›ฝ ๐’† ๐›ผ โŠ— ๐’† ๐’Š
                                     = ๐œ– ๐›ผ๐›ฝ๐›พ ๐‘ฅ ๐‘– , ๐›ฝ ๐‘ฅ ๐›พ + ๐‘ฅ ๐‘– ๐‘ฅ ๐›พ , ๐›ฝ ๐’† ๐›ผ โŠ— ๐’† ๐’Š
                                     = ๐œ– ๐›ผ๐›ฝ๐›พ ๐›ฟ ๐‘–๐›ฝ ๐‘ฅ ๐›พ + ๐‘ฅ ๐‘– ๐›ฟ ๐›พ๐›ฝ ๐’† ๐›ผ โŠ— ๐’† ๐’Š
                                     = ๐œ– ๐›ผ๐‘–๐›พ ๐‘ฅ ๐›พ ๐’† ๐›ผ โŠ— ๐’† ๐’Š + ๐œ– ๐›ผ๐›ฝ๐›ฝ ๐‘ฅ ๐‘– ๐’† ๐›ผ โŠ— ๐’† ๐’Š
                                  = โˆ’๐œ– ๐›ผ๐›พ๐‘– ๐‘ฅ ๐›พ ๐’† ๐›ผ โŠ— ๐’† ๐’Š = โˆ’๐’“ ร—

Dept of Systems Engineering, University of Lagos   51                     oafak@unilag.edu.ng 12/27/2012
For a scalar field ๐“ and a tensor field ๐“ show that ๐ ๐ซ๐š๐
              ๐“๐“ = ๐“๐ ๐ซ๐š๐ ๐“ + ๐“ โŠ— ๐ ๐ซ๐š๐๐“. Also show that ๐๐ข๐ฏ
              ๐“๐“ = ๐“ ๐๐ข๐ฏ ๐“ + ๐“๐ ๐ซ๐š๐๐“.
                  grad ๐œ™๐“ = ๐œ™๐‘‡ ๐‘–๐‘— , ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— โŠ— ๐  ๐‘˜
                             = ๐œ™, ๐‘˜ ๐‘‡ ๐‘–๐‘— + ๐œ™๐‘‡ ๐‘–๐‘— , ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— โŠ— ๐  ๐‘˜
                             = ๐“ โŠ— grad๐œ™ + ๐œ™grad ๐“
            Furthermore, we can contract the last two bases and
            obtain,
                   div ๐œ™๐“ = ๐œ™, ๐‘˜ ๐‘‡ ๐‘–๐‘— + ๐œ™๐‘‡ ๐‘–๐‘— , ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— โ‹… ๐  ๐‘˜
                             = ๐œ™, ๐‘˜ ๐‘‡ ๐‘–๐‘— + ๐œ™๐‘‡ ๐‘–๐‘— , ๐‘˜ ๐  ๐‘– ๐›ฟ ๐‘— ๐‘˜
                             = ๐‘‡ ๐‘–๐‘˜ ๐œ™, ๐‘˜ ๐  ๐‘– + ๐œ™๐‘‡ ๐‘–๐‘˜ , ๐‘˜ ๐  ๐‘–
                             = ๐“grad๐œ™ + ๐œ™ div ๐“

Dept of Systems Engineering, University of Lagos   52       oafak@unilag.edu.ng 12/27/2012
๏€ช For two arbitrary vectors, ๐’– and ๐’—, show that
               ๐ ๐ซ๐š๐ ๐’– โŠ— ๐’— = ๐’– ร— ๐ ๐ซ๐š๐๐’— โˆ’ ๐’— ร— ๐ ๐ซ๐š๐๐’–
            ๏€ช grad ๐’– โŠ— ๐’— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ , ๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘™
                    = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘™ ๐‘ฃ ๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ , ๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘™
                    = ๐‘ข ๐‘— , ๐‘™ ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ ๐‘˜ + ๐‘ฃ ๐‘˜ , ๐‘™ ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐  ๐‘– โŠ— ๐  ๐‘™
                    = โˆ’ ๐’— ร— grad๐’– + ๐’– ร— grad๐’—




Dept of Systems Engineering, University of Lagos   53                   oafak@unilag.edu.ng 12/27/2012
For any two tensor fields ๐ฎ and ๐ฏ, Show that,
             ๐ฎ ร— : grad ๐ฏ = ๐ฎ โ‹… curl ๐ฏ
                 ๐ฎ ร— : grad ๐ฏ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐  ๐‘– โŠ— ๐  ๐‘˜ : ๐‘ฃ ๐›ผ , ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ
                              = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐›ผ , ๐›ฝ ๐  ๐‘– โ‹… ๐  ๐›ผ ๐  ๐‘˜ โ‹… ๐  ๐›ฝ
                                                                              ๐›ฝ
                                                   = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐›ผ , ๐›ฝ ๐›ฟ ๐‘– ๐›ผ ๐›ฟ ๐‘˜ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘– , ๐‘˜
                                                   = ๐ฎ โ‹… curl ๐ฏ



Dept of Systems Engineering, University of Lagos                   54                              oafak@unilag.edu.ng 12/27/2012
For a vector field ๐’–, show that ๐ ๐ซ๐š๐ ๐’– ร— is a third
            ranked tensor. Hence or otherwise show that
             ๐๐ข๐ฏ ๐’– ร— = โˆ’๐œ๐ฎ๐ซ๐ฅ ๐’–.
            The secondโ€“order tensor ๐’– ร— is defined as ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐  ๐‘– โŠ—
             ๐  ๐‘˜ . Taking the covariant derivative with an independent
            base, we have
                          grad ๐’– ร— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘˜ โŠ— ๐  ๐‘™
            This gives a third order tensor as we have seen.
            Contracting on the last two bases,
                          div ๐’– ร— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘˜ โ‹… ๐  ๐‘™
                                   = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘™ ๐  ๐‘– ๐›ฟ ๐‘™๐‘˜
                                   = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘˜ ๐  ๐‘–
                                   = โˆ’curl ๐’–


Dept of Systems Engineering, University of Lagos   55               oafak@unilag.edu.ng 12/27/2012
Show that ๐œ๐ฎ๐ซ๐ฅ ๐œ™๐Ÿ = grad ๐œ™ ร—
            Note that ๐œ™๐Ÿ = ๐œ™๐‘” ๐›ผ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ , and that curl ๐‘ป =
            ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ so that,
                  curl ๐œ™๐Ÿ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™๐‘” ๐›ผ๐‘˜ , ๐’‹ ๐  ๐‘– โŠ— ๐  ๐›ผ
                                = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐’‹ ๐‘” ๐›ผ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐’‹ ๐  ๐‘– โŠ— ๐  ๐‘˜
                                = grad ๐œ™ ร—
            Show that curl ๐’— ร— = div ๐’— ๐Ÿ โˆ’ grad ๐’—
                                      ๐’— ร— = ๐œ– ๐›ผ๐›ฝ๐‘˜ ๐‘ฃ ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐‘˜
                                   curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
            so that
                            curl ๐’— ร— = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐›ผ๐›ฝ๐‘˜ ๐‘ฃ ๐›ฝ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
                                     = ๐‘” ๐‘–๐›ผ ๐‘” ๐‘—๐›ฝ โˆ’ ๐‘” ๐‘–๐›ฝ ๐‘” ๐‘—๐›ผ ๐‘ฃ ๐›ฝ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
                                     = ๐‘ฃ ๐‘—, ๐‘— ๐  ๐›ผ โŠ— ๐  ๐›ผ โˆ’ ๐‘ฃ ๐‘–, ๐‘— ๐  ๐‘– โŠ— ๐  ๐‘—
                                     = div ๐’— ๐Ÿ โˆ’ grad ๐’—

Dept of Systems Engineering, University of Lagos    56                      oafak@unilag.edu.ng 12/27/2012
Show that ๐๐ข๐ฏ ๐’– ร— ๐’— = ๐’— โ‹… ๐œ๐ฎ๐ซ๐ฅ ๐’– โˆ’ ๐’– โ‹… ๐œ๐ฎ๐ซ๐ฅ ๐’—
                         div ๐’– ร— ๐’— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ , ๐‘–
            Noting that the tensor ๐œ– ๐‘–๐‘—๐‘˜ behaves as a constant under
            a covariant differentiation, we can write,
                      div ๐’– ร— ๐’— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ , ๐‘–
                                   = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘– ๐‘ฃ ๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ , ๐‘–
                                   = ๐’— โ‹… curl ๐’– โˆ’ ๐’– โ‹… curl ๐’—
            Given a scalar point function ฯ• and a vector field ๐ฏ,
            show that ๐œ๐ฎ๐ซ๐ฅ ๐œ™๐ฏ = ๐œ™ curl ๐ฏ + grad๐œ™ ร— ๐ฏ.
                     curl ๐œ™๐ฏ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘–
                               = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐‘ฃ ๐‘˜ + ๐œ™๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘–
                               = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐‘ฃ ๐‘˜ ๐  ๐‘– + ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘–
                               = grad๐œ™ ร— ๐ฏ + ๐œ™ curl ๐ฏ

Dept of Systems Engineering, University of Lagos   57            oafak@unilag.edu.ng 12/27/2012
๐€
            Given that ๐œ‘ ๐‘ก = ๐€(๐‘ก) , Show that ๐œ‘ ๐‘ก =                     : ๐€
                                                               ๐€ ๐‘ก
                                                   ๐œ‘2 โ‰ก ๐€: ๐€
            Now,
                   ๐‘‘     2 = 2๐œ‘
                                 ๐‘‘๐œ‘     ๐‘‘๐€           ๐‘‘๐€       ๐‘‘๐€
                       ๐œ‘             =     : ๐€ + ๐€:     = 2๐€:
                   ๐‘‘๐‘ก             ๐‘‘๐‘ก    ๐‘‘๐‘ก           ๐‘‘๐‘ก       ๐‘‘๐‘ก
            as inner product is commutative. We can therefore
            write that
                             ๐‘‘๐œ‘      ๐€ ๐‘‘๐€       ๐€
                                 = :      =         : ๐€
                             ๐‘‘๐‘ก      ๐œ‘ ๐‘‘๐‘ก      ๐€ ๐‘ก
            as required.

Dept of Systems Engineering, University of Lagos      58             oafak@unilag.edu.ng 12/27/2012
Given a tensor field ๐‘ป, obtain the vector ๐’˜ โ‰ก ๐‘ป ๐“ ๐ฏ and
            show that its divergence is ๐‘ป: ๐›๐ฏ + ๐ฏ โ‹… ๐๐ข๐ฏ ๐‘ป
            The divergence of ๐’˜ is the scalar sum , ๐‘‡๐‘—๐‘– ๐‘ฃ ๐‘— , ๐‘– .
            Expanding the product covariant derivative we obtain,
                     div ๐‘ปT ๐ฏ = ๐‘‡๐‘—๐‘– ๐‘ฃ ๐‘— , ๐‘– = ๐‘‡๐‘—๐‘– , ๐‘– ๐‘ฃ ๐‘— + ๐‘‡๐‘—๐‘– ๐‘ฃ ๐‘— , ๐‘–
                                = div ๐‘ป โ‹… ๐ฏ + tr ๐‘ปT grad๐ฏ
                                = div ๐‘ป โ‹… ๐ฏ + ๐‘ป: grad ๐ฏ
            Recall that scalar product of two vectors is
            commutative so that
                       div ๐‘ปT ๐ฏ = ๐‘ป: grad๐ฏ + ๐ฏ โ‹… div ๐‘ป


Dept of Systems Engineering, University of Lagos   59           oafak@unilag.edu.ng 12/27/2012
For a second-order tensor ๐‘ป define
            curl ๐‘ป โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ป ๐›ผ๐‘˜ , ๐‘— ๐  ๐’Š โŠ— ๐  ๐œถ show that for any constant
            vector ๐’‚, curl ๐‘ป ๐’‚ = curl ๐‘ป ๐‘ป ๐’‚
            Express vector ๐’‚ in the invariant form with
            contravariant components as ๐’‚ = ๐‘Ž ๐›ฝ ๐  ๐›ฝ . It follows that
                      curl ๐‘ป ๐’‚ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ ๐’‚
                                    = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐‘Ž ๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ ๐  ๐›ฝ
                                    = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐‘Ž ๐›ฝ ๐  ๐‘– ๐›ฟ ๐›ฝ๐›ผ
                                    = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– ๐‘Ž ๐›ผ
                                    = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ ๐‘Ž ๐›ผ , ๐‘— ๐  ๐‘–
            The last equality resulting from the fact that vector ๐’‚ is
            a constant vector. Clearly,
                               curl ๐‘ป ๐’‚ = curl ๐‘ป ๐‘‡ ๐’‚

Dept of Systems Engineering, University of Lagos   60           oafak@unilag.edu.ng 12/27/2012
For any two vectors ๐ฎ and ๐ฏ, show that curl ๐ฎ โŠ— ๐ฏ =
              grad ๐ฎ ๐ฏ ร— ๐‘ป + curl ๐ฏ โŠ— ๐’– where ๐ฏ ร— is the skew tensor
            ๐œ– ๐‘–๐‘˜๐‘— ๐‘ฃ ๐‘˜ ๐  ๐’Š โŠ— ๐  ๐’‹ .
            Recall that the curl of a tensor ๐‘ป is defined by curl ๐‘ป โ‰ก
            ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ . Clearly therefore,
            curl ๐’– โŠ— ๐’— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐›ผ ๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
                         = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐›ผ , ๐‘— ๐‘ฃ ๐‘˜ + ๐‘ข ๐›ผ ๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
                         = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐›ผ , ๐‘— ๐‘ฃ ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐›ผ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐›ผ ๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
                         = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ ๐‘˜ ๐  ๐‘– โŠ— ๐‘ข ๐›ผ , ๐‘— ๐  ๐›ผ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐‘ข ๐›ผ ๐  ๐›ผ
                         = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— ๐‘ข ๐›ผ , ๐›ฝ ๐  ๐›ฝ โŠ— ๐  ๐›ผ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘–
                         โŠ— ๐‘ข ๐›ผ ๐  ๐›ผ = โˆ’ ๐’— ร— grad ๐’– ๐‘ป + curl ๐’— โŠ— ๐’–
                         = grad ๐’– ๐’— ร— ๐‘ป + curl ๐’— โŠ— ๐’–
            upon noting that the vector cross is a skew tensor.



Dept of Systems Engineering, University of Lagos   61                      oafak@unilag.edu.ng 12/27/2012
Show that curl ๐’– ร— ๐’— = div ๐’– โŠ— ๐’— โˆ’ ๐’— โŠ— ๐’–
            The vector ๐’˜ โ‰ก ๐’– ร— ๐’— = ๐‘ค ๐’Œ ๐  ๐’Œ = ๐œ– ๐‘˜๐›ผ๐›ฝ ๐‘ข ๐›ผ ๐‘ฃ ๐›ฝ ๐  ๐’Œ and
            curl ๐’˜ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ค ๐‘˜ , ๐‘— ๐  ๐‘– . Therefore,
             curl ๐’– ร— ๐’— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ค ๐‘˜ , ๐‘— ๐  ๐‘–
                           = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐‘˜๐›ผ๐›ฝ ๐‘ข ๐›ผ ๐‘ฃ ๐›ฝ , ๐‘— ๐  ๐‘–
                                                        ๐‘—       ๐‘–     ๐‘—
                                            =      ๐›ฟ ๐‘–๐›ผ ๐›ฟ ๐›ฝ โˆ’ ๐›ฟ ๐›ฝ ๐›ฟ ๐›ผ     ๐‘ข๐›ผ๐‘ฃ   ๐›ฝ   ,๐‘— ๐ ๐‘–
                                                        ๐‘—       ๐‘–     ๐‘—
                                            =      ๐›ฟ ๐‘–๐›ผ ๐›ฟ ๐›ฝ โˆ’ ๐›ฟ ๐›ฝ ๐›ฟ ๐›ผ     ๐‘ข ๐›ผ, ๐‘— ๐‘ฃ ๐›ฝ + ๐‘ข ๐›ผ ๐‘ฃ ๐›ฝ, ๐‘— ๐  ๐‘–
                                            = ๐‘ข ๐‘–, ๐‘— ๐‘ฃ ๐‘— + ๐‘ข ๐‘– ๐‘ฃ ๐‘—, ๐‘— โˆ’ ๐‘ข ๐‘—, ๐‘— ๐‘ฃ ๐‘– + ๐‘ข ๐‘— ๐‘ฃ ๐‘–, ๐‘—            ๐ ๐‘–
                                            = ๐‘ข๐‘– ๐‘ฃ ๐‘— ,๐‘— โˆ’ ๐‘ข ๐‘— ๐‘ฃ๐‘– ,๐‘— ๐ ๐‘–
                                            = div ๐’– โŠ— ๐’— โˆ’ ๐’— โŠ— ๐’–
            since div ๐’– โŠ— ๐’— =                           ๐‘ข๐‘– ๐‘ฃ ๐‘— , ๐›ผ ๐ ๐‘– โŠ— ๐  ๐‘— โ‹… ๐  ๐›ผ =         ๐‘ข ๐‘– ๐‘ฃ ๐‘— , ๐‘— ๐  ๐‘–.

Dept of Systems Engineering, University of Lagos                 62                            oafak@unilag.edu.ng 12/27/2012
Given a scalar point function ๐œ™ and a second-order tensor field ๐‘ป,
show that ๐œ๐ฎ๐ซ๐ฅ ๐œ™๐‘ป = ๐œ™ ๐œ๐ฎ๐ซ๐ฅ ๐‘ป + grad๐œ™ ร— ๐‘ป ๐‘ป where
  grad๐œ™ ร— is the skew tensor ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐  ๐’Š โŠ— ๐  ๐’Œ
curl ๐œ™๐‘ป โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
          = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐‘‡ ๐›ผ๐‘˜ + ๐œ™๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
          = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐‘‡ ๐›ผ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐›ผ + ๐œ™๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
          = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐  ๐‘– โŠ— ๐  ๐‘˜ ๐‘‡ ๐›ผ๐›ฝ ๐  ๐›ฝ โŠ— ๐  ๐›ผ + ๐œ™๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
          = ๐œ™ curl ๐‘ป + grad๐œ™ ร— ๐‘ป ๐‘‡

 Dept of Systems Engineering, University of Lagos   63     oafak@unilag.edu.ng 12/27/2012
For a second-order tensor field ๐‘ป, show that
            div curl ๐‘ป = curl div ๐‘ป ๐“
            Define the second order tensor ๐‘† as
                    curl ๐‘ป โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐‘†.๐›ผ ๐  ๐‘– โŠ— ๐  ๐›ผ
                                                          ๐‘–

            The gradient of ๐‘บ is
             ๐‘†.๐›ผ , ๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ โŠ— ๐  ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘—๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ โŠ— ๐  ๐›ฝ
               ๐‘–

            Clearly,
                   div curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘—๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ โ‹… ๐  ๐›ฝ
                          = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘—๐›ฝ ๐  ๐‘– ๐‘” ๐›ผ๐›ฝ
                               = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ฝ ๐‘˜ , ๐‘—๐›ฝ ๐  ๐‘– = curl div ๐‘ปT

Dept of Systems Engineering, University of Lagos   64                    oafak@unilag.edu.ng 12/27/2012
If the volume ๐‘ฝ is enclosed by the surface ๐‘บ, the position vector
             ๐’“ = ๐’™ ๐’Š ๐  ๐’Š and ๐’ is the external unit normal to each surface
                                     ๐Ÿ
            element, show that ๐‘บ ๐› ๐’“ โ‹… ๐’“ โ‹… ๐’๐’…๐‘บ equals the volume
                                     ๐Ÿ”
            contained in ๐‘ฝ.
                                    ๐’“ โ‹… ๐’“ = ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— ๐  ๐‘– โ‹… ๐  ๐‘— = ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— ๐‘” ๐‘–๐‘—
            By the Divergence Theorem,
                          ๐›ป ๐’“ โ‹… ๐’“ โ‹… ๐’๐‘‘๐‘† =                     ๐›ปโ‹… ๐›ป ๐’“โ‹… ๐’“           ๐‘‘๐‘‰
                      ๐‘†                                   ๐‘‰

                                    =           ๐œ• ๐‘™ ๐œ• ๐‘˜ ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— ๐‘” ๐‘–๐‘—       ๐  ๐‘™ โ‹… ๐  ๐‘˜ ๐‘‘๐‘‰
                                            ๐‘‰

                                    =           ๐œ• ๐‘™ ๐‘” ๐‘–๐‘— ๐‘ฅ ๐‘– , ๐‘˜ ๐‘ฅ ๐‘— + ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— , ๐‘˜     ๐  ๐‘™ โ‹… ๐  ๐‘˜ ๐‘‘๐‘‰
                                            ๐‘‰
                                                                              ๐‘—
                                    =            ๐‘” ๐‘–๐‘— ๐‘” ๐‘™๐‘˜ ๐›ฟ ๐‘–๐‘˜ ๐‘ฅ ๐‘— + ๐‘ฅ ๐‘– ๐›ฟ ๐‘˜ , ๐‘™ ๐‘‘๐‘‰ =           2๐‘” ๐‘–๐‘˜ ๐‘” ๐‘™๐‘˜ ๐‘ฅ ๐‘– , ๐‘™ ๐‘‘๐‘‰
                                            ๐‘‰                                                ๐‘‰

                                    =           2๐›ฟ ๐‘–๐‘™ ๐›ฟ ๐‘™๐‘– ๐‘‘๐‘‰ = 6            ๐‘‘๐‘‰
                                            ๐‘‰                          ๐‘‰


Dept of Systems Engineering, University of Lagos                        65                                   oafak@unilag.edu.ng 12/27/2012
For any Euclidean coordinate system, show that div ๐ฎ ร— ๐ฏ =
             ๐ฏ curl ๐ฎ โˆ’ ๐ฎ curl ๐ฏ
            Given the contravariant vector ๐‘ข ๐‘– and ๐‘ฃ ๐‘– with their associated
            vectors ๐‘ข ๐‘– and ๐‘ฃ ๐‘– , the contravariant component of the above cross
            product is ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ .The required divergence is simply the
            contraction of the covariant ๐‘ฅ ๐‘– derivative of this quantity:
                                 ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘—,๐‘– ๐‘ฃ ๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜,๐‘–
                                                   ,๐‘–
            where we have treated the tensor ๐œ– ๐‘–๐‘—๐‘˜ as a constant under the
            covariant derivative.
            Cyclically rearranging the RHS we obtain,
                 ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ = ๐‘ฃ ๐‘˜ ๐œ– ๐‘˜๐‘–๐‘— ๐‘ข ๐‘—,๐‘– + ๐‘ข ๐‘— ๐œ– ๐‘—๐‘˜๐‘– ๐‘ฃ ๐‘˜,๐‘– = ๐‘ฃ ๐‘˜ ๐œ– ๐‘˜๐‘–๐‘— ๐‘ข ๐‘—,๐‘– + ๐‘ข ๐‘— ๐œ– ๐‘—๐‘–๐‘˜ ๐‘ฃ ๐‘˜,๐‘–
                                       ,๐‘–
            where we have used the anti-symmetric property of the tensor
            ๐œ– ๐‘–๐‘—๐‘˜ . The last expression shows clearly that
                                 div ๐ฎ ร— ๐ฏ = ๐ฏ curl ๐ฎ โˆ’ ๐ฎ curl ๐ฏ
            as required.


Dept of Systems Engineering, University of Lagos          66                                oafak@unilag.edu.ng 12/27/2012
Liouville Formula

                                                                                       ๐‘‘๐“             ๐‘‘
            For a scalar variable ๐›ผ, if the tensor ๐“ = ๐“(๐›ผ) and ๐“ โ‰ก ๐‘‘๐›ผ, Show that ๐‘‘๐›ผ det ๐“ =
            det ๐“ tr(๐“ ๐“ โˆ’๐Ÿ )
            Proof:
            Let ๐€ โ‰ก ๐“ ๐“ โˆ’1 so that, ๐“ = ๐€๐“. In component form, we have ๐‘‡๐‘— ๐‘– = ๐ด ๐‘– ๐‘š ๐‘‡๐‘— ๐‘š .
            Therefore,
              ๐‘‘             ๐‘‘
                det ๐“ =         ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3 = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3
                                                ๐‘˜                   ๐‘˜               ๐‘˜           ๐‘˜
             ๐‘‘๐›ผ            ๐‘‘๐›ผ
                        = ๐œ– ๐‘–๐‘—๐‘˜ ๐ด1 ๐‘‡๐‘– ๐‘™ ๐‘‡๐‘—2 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐ด2๐‘š ๐‘‡๐‘— ๐‘š ๐‘‡ 3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐ด3๐‘› ๐‘‡ ๐‘˜๐‘›
                                   ๐‘™          ๐‘˜                  ๐‘˜
                              = ๐œ– ๐‘–๐‘—๐‘˜         ๐ด1 ๐‘‡๐‘–1 + ๐ด1 ๐‘‡๐‘–2 + ๐ด1 ๐‘‡๐‘–3
                                               1        2        3        ๐‘‡๐‘—2 ๐‘‡ 3
                                                                                ๐‘˜

                             + ๐‘‡๐‘–1        ๐ด1 ๐‘‡๐‘—1 + ๐ด2 ๐‘‡๐‘—2 + ๐ด2 ๐‘‡๐‘—3
                                           2
                                                    2        3         ๐‘‡ 3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2
                                                                         ๐‘˜              ๐ด1 ๐‘‡ 1 + ๐ด3 ๐‘‡ 2 + ๐ด3 ๐‘‡ 3
                                                                                         3
                                                                                             ๐‘˜    2 ๐‘˜      3 ๐‘˜
            ๏€ช All the boxed terms in the above equation vanish on account of the contraction
            of a symmetric tensor with an antisymmetric one.


Dept of Systems Engineering, University of Lagos                  67                                 oafak@unilag.edu.ng 12/27/2012
Liouville Theorem Contโ€™d

           (For example, the first boxed term yields, ๐œ– ๐‘–๐‘—๐‘˜ ๐ด1 ๐‘‡๐‘–2 ๐‘‡๐‘—2 ๐‘‡ 3
                                                             2           ๐‘˜
           Which is symmetric as well as antisymmetric in ๐‘– and ๐‘—. It
           therefore vanishes. The same is true for all other such terms.)
                   ๐‘‘
                     det ๐“ = ๐œ– ๐‘–๐‘—๐‘˜ ๐ด1 ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐ด2 ๐‘‡๐‘—2 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐ด3 ๐‘‡ 3
                                     1             ๐‘˜     2       ๐‘˜            3 ๐‘˜
                  ๐‘‘๐›ผ
                           = ๐ด ๐‘š ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3
                                ๐‘š                ๐‘˜
                                      = tr ๐“ ๐“ โˆ’1 det ๐“
           as required.


Dept of Systems Engineering, University of Lagos          68                 oafak@unilag.edu.ng 12/27/2012
For a general tensor field ๐‘ป show that,
   ๐œ๐ฎ๐ซ๐ฅ ๐œ๐ฎ๐ซ๐ฅ ๐‘ป =
      ๐Ÿ ๐ญ๐ซ ๐‘ป โˆ’ ๐๐ข๐ฏ ๐๐ข๐ฏ ๐‘ป ๐‘ฐ + ๐ ๐ซ๐š๐ ๐๐ข๐ฏ ๐‘ป +                                      ๐“
    ๐›                                                          ๐ ๐ซ๐š๐ ๐๐ข๐ฏ ๐‘ป        โˆ’
   ๐ ๐ซ๐š๐ ๐ ๐ซ๐š๐ ๐ญ๐ซ๐‘ป โˆ’ ๐› ๐Ÿ ๐‘ป ๐“
                                   curl ๐‘ป = ๐ ๐›ผ๐‘ ๐‘ก ๐‘‡ ๐›ฝ๐‘ก , ๐‘  ๐  ๐›ผ โŠ— ๐  ๐›ฝ
                                                 ๐›ผ
                                             = ๐‘† .๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ
                                                       ๐›ผ
                                   curl ๐‘บ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘† .๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
  so that
      curl ๐‘บ = curl curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐›ผ๐‘ ๐‘ก ๐‘‡ ๐‘˜๐‘ก , ๐‘ ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
                 ๐‘” ๐‘–๐›ผ      ๐‘” ๐‘–๐‘     ๐‘” ๐‘–๐‘ก
             = ๐‘” ๐‘—๐›ผ ๐‘” ๐‘—๐‘  ๐‘” ๐‘—๐‘ก ๐‘‡ ๐‘˜๐‘ก , ๐‘ ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
                ๐‘” ๐‘˜๐›ผ ๐‘” ๐‘˜๐‘  ๐‘” ๐‘˜๐‘ก
                ๐‘” ๐‘–๐›ผ ๐‘” ๐‘—๐‘  ๐‘” ๐‘˜๐‘ก โˆ’ ๐‘” ๐‘—๐‘ก ๐‘” ๐‘˜๐‘  + ๐‘” ๐‘–๐‘  ๐‘” ๐‘—๐‘ก ๐‘” ๐‘˜๐›ผ โˆ’ ๐‘” ๐‘—๐›ผ ๐‘” ๐‘˜๐‘ก
             =                         ๐‘–๐‘ก   ๐‘—๐›ผ ๐‘˜๐‘         ๐‘—๐‘  ๐‘˜๐›ผ
                                                                                 ๐‘‡ ๐‘˜๐‘ก , ๐‘ ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ
                                +๐‘” ๐‘” ๐‘” โˆ’ ๐‘” ๐‘”
                       ๐‘ก                                                   ๐‘ก
             = ๐‘” ๐‘—๐‘  ๐‘‡ .๐‘ก , ๐‘ ๐‘— โˆ’๐‘‡..๐‘ ๐‘— , ๐‘ ๐‘— ๐  ๐›ผ โŠ— ๐  ๐›ผ + ๐‘‡ ..๐›ผ๐‘— , ๐‘ ๐‘— โˆ’๐‘” ๐‘—๐›ผ ๐‘‡ .๐‘ก , ๐‘ ๐‘— ๐  ๐‘  โŠ— ๐  ๐›ผ
                            ๐‘ .            ๐›ผ.
               + ๐‘” ๐‘—๐›ผ ๐‘‡ .๐‘ก , ๐‘ ๐‘— โˆ’๐‘” ๐‘—๐‘  ๐‘‡ .๐‘ก , ๐‘ ๐‘— ๐  ๐‘ก โŠ— ๐  ๐›ผ
                                                                      T
                    = ๐›ป 2 tr ๐‘ป โˆ’ div div ๐‘ป ๐‘ฐ + grad div ๐‘ป                 โˆ’ grad grad tr๐‘ป
                     + grad div ๐‘ป โˆ’ ๐›ป 2 ๐‘ปT
Dept of Systems Engineering, University of Lagos    69                              oafak@unilag.edu.ng 12/27/2012
When ๐‘ป is symmetric, show that tr(curl ๐‘ป) vanishes.
                        curl ๐‘ป = ๐ ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ฝ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ฝ
                    tr curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ฝ๐‘˜ , ๐‘— ๐  ๐‘– โ‹… ๐  ๐›ฝ
                                                                          ๐›ฝ
                                                       = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ฝ๐‘˜ , ๐‘— ๐›ฟ ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐‘–๐‘˜ , ๐‘—
           which obviously vanishes on account of the symmetry
           and antisymmetry in ๐‘– and ๐‘˜. In this case,
            curl curl ๐‘ป
                   = ๐›ป 2 tr ๐‘ป โˆ’ div div ๐‘ป ๐‘ฐ โˆ’ grad grad tr๐‘ป
                   + 2 grad div ๐‘ป โˆ’ ๐›ป 2 ๐‘ป
                                                   T
           as grad div ๐‘ป       = grad div ๐‘ป if the order of
           differentiation is immaterial and T is symmetric.
Dept of Systems Engineering, University of Lagos                 70                           oafak@unilag.edu.ng 12/27/2012
For a scalar function ฮฆ and a vector ๐‘ฃ ๐‘– show that the
            divergence of the vector ๐‘ฃ ๐‘– ฮฆ is equal to, ๐ฏ โ‹… gradฮฆ +
            ฮฆ div ๐ฏ
                               ๐‘ฃ ๐‘– ฮฆ ,๐‘– = ฮฆ๐‘ฃ ๐‘– ,๐‘– + ๐‘ฃ ๐‘– ฮฆ,i
            Hence the result.




Dept of Systems Engineering, University of Lagos   71        oafak@unilag.edu.ng 12/27/2012
Show that ๐’„๐’–๐’“๐’ ๐ฎ ร— ๐ฏ = ๐ฏ โˆ™ ๐›๐ฎ + ๐ฎ โ‹… div ๐ฏ โˆ’ ๐ฏ โ‹… div ๐ฎ โˆ’
              ๐ฎโˆ™ ๐› ๐ฏ
            Taking the associated (covariant) vector of the expression for
            the cross product in the last example, it is straightforward to
            see that the LHS in indicial notation is,
                                    ๐œ– ๐‘™๐‘š๐‘– ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜
                                                                          ,๐‘š
            Expanding in the usual way, noting the relation between the
            alternating tensors and the Kronecker deltas,
                                      ๐‘™๐‘š๐‘–
              ๐œ– ๐‘™๐‘š๐‘– ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ = ๐›ฟ ๐‘—๐‘˜๐‘– ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š
                                                   ,๐‘š

                   ๐‘™๐‘š                                              ๐›ฟ ๐‘—๐‘™   ๐›ฟ๐‘— ๐‘š
               = ๐›ฟ ๐‘—๐‘˜             ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š =                      ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š
                                                           ๐›ฟ ๐‘™๐‘˜ ๐›ฟ ๐‘˜๐‘š
             = ๐›ฟ ๐‘—๐‘™ ๐›ฟ ๐‘˜๐‘š โˆ’ ๐›ฟ ๐‘™๐‘˜ ๐›ฟ ๐‘— ๐‘š ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š
             = ๐›ฟ ๐‘—๐‘™ ๐›ฟ ๐‘˜๐‘š ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐›ฟ ๐‘—๐‘™ ๐›ฟ ๐‘˜๐‘š ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š + ๐›ฟ ๐‘™๐‘˜ ๐›ฟ ๐‘— ๐‘š ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜
                        โˆ’ ๐›ฟ ๐‘™๐‘˜ ๐›ฟ ๐‘— ๐‘š ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š
             = ๐‘ข ๐‘™ ,๐‘š ๐‘ฃ ๐‘š โˆ’ ๐‘ข ๐‘š ,๐‘š ๐‘ฃ ๐‘™ + ๐‘ข ๐‘™ ๐‘ฃ ๐‘š ,๐‘š โˆ’ ๐‘ข ๐‘š ๐‘ฃ ๐‘™ ,๐‘š
            Which is the result we seek in indicial notation.
Dept of Systems Engineering, University of Lagos              72                               oafak@unilag.edu.ng 12/27/2012
Differentiation of Fields
            Given a vector point function ๐’– ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 and its covariant
            components, ๐‘ข ๐›ผ ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 , ๐›ผ = 1,2,3, with ๐  ๐›ผ as the reciprocal
            basis vectors, Let
                                          ๐œ•                         ๐œ•๐‘ข ๐›ผ ๐›ผ    ๐œ•๐  ๐›ผ
              ๐’– = ๐‘ข ๐›ผ ๐  ๐›ผ , then ๐‘‘๐’– =            ๐‘ข ๐›ผ ๐  ๐›ผ ๐‘‘๐‘ฅ ๐‘˜ =          ๐  +        ๐‘ข ๐›ผ ๐‘‘๐‘ฅ ๐‘˜
                                        ๐œ•๐‘ฅ ๐‘˜                        ๐œ•๐‘ฅ ๐‘˜      ๐œ•๐‘ฅ ๐‘˜
            Clearly,
                                       ๐œ•๐’–        ๐œ•๐‘ข ๐›ผ ๐›ผ       ๐œ•๐  ๐›ผ
                                          ๐‘˜
                                            =        ๐‘˜
                                                        ๐  +        ๐‘ข
                                                                 ๐‘˜ ๐›ผ
                                       ๐œ•๐‘ฅ        ๐œ•๐‘ฅ           ๐œ•๐‘ฅ
            And the projection of this quantity on the ๐  ๐‘– direction is,
                ๐œ•๐’–             ๐œ•๐‘ข ๐›ผ ๐›ผ       ๐œ•๐  ๐›ผ                ๐œ•๐‘ข ๐›ผ ๐›ผ         ๐œ•๐  ๐›ผ
                     โˆ™ ๐  =           ๐  +          ๐‘ข โˆ™ ๐ ๐‘– =           ๐  โˆ™ ๐ ๐‘– +       โˆ™ ๐  ๐‘ข
                ๐œ•๐‘ฅ ๐‘˜ ๐‘–         ๐œ•๐‘ฅ ๐‘˜         ๐œ•๐‘ฅ ๐‘˜ ๐›ผ              ๐œ•๐‘ฅ ๐‘˜           ๐œ•๐‘ฅ ๐‘˜ ๐‘– ๐›ผ
                              ๐œ•๐‘ข ๐›ผ ๐›ผ      ๐œ•๐  ๐›ผ
                          =        ๐›ฟ +
                                 ๐‘˜ ๐‘–         ๐‘˜
                                               โˆ™ ๐ ๐‘– ๐‘ข ๐›ผ
                              ๐œ•๐‘ฅ          ๐œ•๐‘ฅ
Dept of Systems Engineering, University of Lagos    73                           oafak@unilag.edu.ng 12/27/2012
Christoffel Symbols

                                                   ๐‘—
            ๏€ช Now, ๐  ๐‘– โˆ™ ๐  ๐‘— = ๐›ฟ ๐‘– so that
                                  ๐œ•๐  ๐‘–          ๐‘–โˆ™
                                                    ๐œ•๐  ๐‘—
                                     ๐‘˜
                                       โˆ™ ๐ ๐‘— + ๐         ๐‘˜
                                                         = 0.
                                 ๐œ•๐‘ฅ                ๐œ•๐‘ฅ
                            ๐œ•๐  ๐‘–             ๐‘–
                                                 ๐œ•๐  ๐‘—         ๐‘–
                                 โˆ™ ๐  ๐‘— = โˆ’๐  โˆ™         โ‰กโˆ’        .
                           ๐œ•๐‘ฅ  ๐‘˜                 ๐œ•๐‘ฅ ๐‘˜        ๐‘—๐‘˜
            This important quantity, necessary to quantify the
            derivative of a tensor in general coordinates, is called
            the Christoffel Symbol of the second kind.


Dept of Systems Engineering, University of Lagos       74     oafak@unilag.edu.ng 12/27/2012
Derivatives in General Coordinates

            Using this, we can now write that,
                               ๐œ•๐’–            ๐œ•๐‘ข ๐›ผ ๐›ผ       ๐œ•๐  ๐›ผ               ๐œ•๐‘ข ๐‘–        ๐›ผ
                                    โˆ™ ๐ ๐‘– =          ๐›ฟ๐‘– +       โˆ™ ๐ ๐‘– ๐‘ข ๐›ผ =          โˆ’        ๐‘ข
                               ๐œ•๐‘ฅ ๐‘˜          ๐œ•๐‘ฅ ๐‘˜         ๐œ•๐‘ฅ ๐‘˜               ๐œ•๐‘ฅ ๐‘˜       ๐‘–๐‘˜ ๐›ผ
            ๏€ช The quantity on the RHS is the component of the derivative of vector ๐’–
               along the ๐  ๐‘– direction using covariant components. It is the covariant
               derivative of ๐’–. Using contravariant components, we could write,
                                  ๐œ•๐‘ข ๐‘–         ๐œ•๐  ๐‘– ๐‘–               ๐œ•๐‘ข ๐‘–            ๐›ผ
                          ๐‘‘๐’– =          ๐ ๐‘– +          ๐‘ข ๐‘‘๐‘ฅ ๐‘˜ =            ๐ ๐‘– +           ๐  ๐‘ข ๐‘– ๐‘‘๐‘ฅ ๐‘˜
                                  ๐œ•๐‘ฅ  ๐‘˜        ๐œ•๐‘ฅ ๐‘˜                 ๐œ•๐‘ฅ  ๐‘˜          ๐‘–๐‘˜ ๐›ผ
            ๏€ช So that,
                                                ๐œ•๐’–      ๐œ•๐‘ข ๐›ผ         ๐œ•๐  ๐›ผ ๐›ผ
                                                     =       ๐ ๐›ผ+           ๐‘ข
                                               ๐œ•๐‘ฅ ๐‘˜     ๐œ•๐‘ฅ ๐‘˜         ๐œ•๐‘ฅ ๐‘˜
            ๏€ช The components of this in the direction of ๐  ๐‘– can be obtained by taking a
               dot product as before:
              ๐œ•๐’–       ๐‘– =
                             ๐œ•๐‘ข ๐›ผ         ๐œ•๐  ๐›ผ ๐›ผ        ๐‘– =
                                                             ๐œ•๐‘ข ๐›ผ ๐‘–       ๐œ•๐  ๐›ผ        ๐‘– ๐‘ข๐›ผ =
                                                                                              ๐œ•๐‘ข ๐‘–   ๐‘–
                   โˆ™ ๐             ๐ ๐›ผ+           ๐‘ข โˆ™ ๐               ๐›ฟ๐›ผ +           โˆ™ ๐               +    ๐‘ข๐›ผ
              ๐œ•๐‘ฅ ๐‘˜           ๐œ•๐‘ฅ ๐‘˜         ๐œ•๐‘ฅ ๐‘˜               ๐œ•๐‘ฅ ๐‘˜         ๐œ•๐‘ฅ ๐‘˜                ๐œ•๐‘ฅ ๐‘˜   ๐›ผ๐‘˜


Dept of Systems Engineering, University of Lagos           75                                oafak@unilag.edu.ng 12/27/2012
Covariant Derivatives


            The two results above are represented symbolically as,
                            ๐œ•๐‘ข ๐‘–    ๐›ผ           ๐‘–    ๐œ•๐‘ข ๐›ผ     ๐‘–
                    ๐‘ข ๐‘–,๐‘˜ =      โˆ’     ๐‘ข ๐›ผ and ๐‘ข,๐‘˜ =      +      ๐‘ข๐›ผ
                            ๐œ•๐‘ฅ ๐‘˜   ๐‘–๐‘˜                ๐œ•๐‘ฅ ๐‘˜    ๐›ผ๐‘˜
            ๏€ช Which are the components of the covariant derivatives in
              terms of the covariant and contravariant components
              respectively.
            ๏€ช It now becomes useful to establish the fact that our
              definition of the Christoffel symbols here conforms to the
              definition you find in the books using the transformation
              rules to define the tensor quantities.

Dept of Systems Engineering, University of Lagos   76           oafak@unilag.edu.ng 12/27/2012
Christoffel Symbols
                                                                                                                  ๐œ•๐ซ
            ๏€ช We observe that the derivative of the covariant basis, ๐  ๐‘– = ๐‘– ,
                                                                                                              ๐œ•๐‘ฅ
                                              ๐œ•๐  ๐‘–        ๐œ• 2๐ซ              ๐œ• 2๐ซ       ๐œ•๐  ๐‘—
                                                     =              =               =
                                              ๐œ•๐‘ฅ ๐‘—      ๐œ•๐‘ฅ ๐‘— ๐œ•๐‘ฅ ๐‘–         ๐œ•๐‘ฅ ๐‘– ๐œ•๐‘ฅ ๐‘—    ๐œ•๐‘ฅ ๐‘–
            ๏€ช Taking the dot product with ๐  ๐‘˜ ,
                     ๐œ•๐  ๐‘–               1 ๐œ•๐  ๐‘—                 ๐œ•๐  ๐‘–
                          ๐‘—
                             โˆ™ ๐ ๐‘˜=                 ๐‘–
                                                     โˆ™ ๐ ๐‘˜+         ๐‘—
                                                                      โˆ™ ๐ ๐‘˜
                     ๐œ•๐‘ฅ                 2 ๐œ•๐‘ฅ                   ๐œ•๐‘ฅ
                               1 ๐œ•                             ๐œ•                         ๐œ•๐  ๐‘˜          ๐œ•๐  ๐‘˜
                           =                  ๐  โˆ™ ๐ ๐‘˜ +                 ๐  โˆ™ ๐ ๐‘˜ โˆ’ ๐ ๐‘— โˆ™          โˆ’ ๐ ๐‘– โˆ™
                               2 ๐œ•๐‘ฅ ๐‘– ๐‘—                       ๐œ•๐‘ฅ ๐‘— ๐‘–                     ๐œ•๐‘ฅ ๐‘–          ๐œ•๐‘ฅ ๐‘—
                               1 ๐œ•                             ๐œ•                         ๐œ•๐  ๐‘–          ๐œ•๐  ๐‘—
                           =                  ๐ ๐‘— โˆ™ ๐ ๐‘˜ +                ๐ ๐‘– โˆ™ ๐  ๐‘˜ โˆ’ ๐ ๐‘— โˆ™      ๐‘˜
                                                                                              โˆ’ ๐ ๐‘– โˆ™
                               2 ๐œ•๐‘ฅ       ๐‘–                   ๐œ•๐‘ฅ ๐‘—                       ๐œ•๐‘ฅ            ๐œ•๐‘ฅ ๐‘˜
                        1 ๐œ•                              ๐œ•                        ๐œ•
                    =                   ๐  โˆ™ ๐ ๐‘˜ +               ๐  โˆ™ ๐ ๐‘˜ โˆ’               ๐  โˆ™ ๐ ๐‘—
                        2 ๐œ•๐‘ฅ ๐‘– ๐‘—                        ๐œ•๐‘ฅ ๐‘— ๐‘–                  ๐œ•๐‘ฅ ๐‘˜ ๐‘–
                        1 ๐œ•๐‘” ๐‘—๐‘˜              ๐œ•๐‘” ๐‘˜๐‘–      ๐œ•๐‘” ๐‘–๐‘—
                    =                  +             โˆ’
Dept of Systems Engineering,
                                ๐œ•๐‘ฅ  ๐‘–
                        2 University of Lagos ๐œ•๐‘ฅ ๐‘—      ๐œ•๐‘ฅ ๐‘˜         77                              oafak@unilag.edu.ng 12/27/2012
The First Kind
            ๏€ช Which is the quantity defined as the Christoffel
                symbols of the first kind in the textbooks. It is
                therefore possible for us to write,
                        ๐œ•๐  ๐‘–         ๐œ•๐  ๐‘—        1 ๐œ•๐‘” ๐‘—๐‘˜   ๐œ•๐‘” ๐‘˜๐‘–    ๐œ•๐‘” ๐‘–๐‘—
               ๐‘–๐‘—, ๐‘˜ โ‰ก       โˆ™ ๐ ๐‘˜ =       โˆ™ ๐ ๐‘˜ =         +        โˆ’
                        ๐œ•๐‘ฅ ๐‘—         ๐œ•๐‘ฅ ๐‘–        2 ๐œ•๐‘ฅ  ๐‘–    ๐œ•๐‘ฅ ๐‘—    ๐œ•๐‘ฅ ๐‘˜
            It should be emphasized that the Christoffel symbols,
            even though the play a critical role in several tensor
            relationships, are themselves NOT tensor quantities.
            (Prove this). However, notice their symmetry in the
             ๐‘– and ๐‘—. The extension of this definition to the
            Christoffel symbols of the second kind is immediate:
Dept of Systems Engineering, University of Lagos         78         oafak@unilag.edu.ng 12/27/2012
The Second Kind
            ๏€ช Contract the above equation with the conjugate metric
                 tensor, we have,
                   ๐‘˜๐›ผ                          ๐‘˜๐›ผ
                                                     ๐œ•๐  ๐‘–             ๐‘˜๐›ผ
                                                                         ๐œ•๐  ๐‘—       ๐œ•๐  ๐‘–               ๐‘˜
                ๐‘”        ๐‘–๐‘—, ๐›ผ โ‰ก ๐‘”                        โˆ™ ๐ ๐›ผ= ๐‘”             โˆ™ ๐ ๐›ผ=      โˆ™ ๐ ๐‘˜=
                                                     ๐œ•๐‘ฅ ๐‘—                ๐œ•๐‘ฅ ๐‘–       ๐œ•๐‘ฅ ๐‘—              ๐‘–๐‘—
                                            ๐œ•๐  ๐‘˜
                               =โˆ’                ๐‘—
                                                   โˆ™ ๐ ๐‘–
                                            ๐œ•๐‘ฅ
            Which connects the common definition of the second
            Christoffel symbol with the one defined in the above
            derivation. The relationship,
                                                          ๐‘” ๐‘˜๐›ผ ๐‘–๐‘—, ๐›ผ = ๐‘˜
                                                                          ๐‘–๐‘—
            apart from defining the relationship between the Christoffel
            symbols of the first kind and that second kind, also
            highlights, once more, the index-raising property of the
            conjugate metric tensor.
Dept of Systems Engineering, University of Lagos                   79                       oafak@unilag.edu.ng 12/27/2012
Two Christoffel Symbols Related
            We contract the above equation with ๐‘” ๐‘˜๐›ฝ and obtain,
                                 ๐‘˜๐›ผ ๐‘–๐‘—, ๐›ผ = ๐‘”     ๐‘˜
                          ๐‘” ๐‘˜๐›ฝ ๐‘”              ๐‘˜๐›ฝ ๐‘–๐‘—

                             ๐›ผ                        ๐‘˜
                          ๐›ฟ ๐›ฝ ๐‘–๐‘—, ๐›ผ = ๐‘–๐‘—, ๐›ฝ = ๐‘” ๐‘˜๐›ฝ
                                                     ๐‘–๐‘—
            so that,
                                        ๐›ผ
                                  ๐‘” ๐‘˜๐›ผ ๐‘–๐‘— = ๐‘–๐‘—, ๐‘˜
            Showing that the metric tensor can be used to lower
            the contravariant index of the Christoffel symbol of the
            second kind to obtain the Christoffel symbol of the first
            kind.
Dept of Systems Engineering, University of Lagos   80        oafak@unilag.edu.ng 12/27/2012
Higher Order Tensors
            We are now in a position to express the derivatives of
            higher order tensor fields in terms of the Christoffel
            symbols.
            For a second-order tensor ๐“, we can express the
            components in dyadic form along the product basis as
            follows:
               ๐“ = ๐‘‡๐‘–๐‘— ๐  ๐‘– โŠ— ๐  ๐‘— = ๐‘‡ ๐‘–๐‘— ๐  ๐‘– โจ‚๐  ๐‘— = ๐‘‡.๐‘— ๐  ๐‘– โŠ— ๐  ๐‘— = ๐‘‡๐‘—.๐‘– ๐  ๐‘— โจ‚๐  ๐‘–
                                                     ๐‘–

            This is perfectly analogous to our expanding vectors in
            terms of basis and reciprocal bases. Derivatives of the
            tensor may therefore be expressible in any of these
            product bases. As an example, take the product
            covariant bases.
Dept of Systems Engineering, University of Lagos   81                   oafak@unilag.edu.ng 12/27/2012
Higher Order Tensors
            We have:
                 ๐œ•๐“         ๐œ•๐‘‡ ๐‘–๐‘—                 ๐‘–๐‘—
                                                      ๐œ•๐  ๐‘–           ๐‘–๐‘—
                                                                               ๐œ•๐  ๐‘—
                    ๐‘˜
                      =          ๐‘˜ ๐‘–
                                    ๐  โจ‚๐  ๐‘— + ๐‘‡            ๐‘˜
                                                            โจ‚๐  ๐‘— + ๐‘‡ ๐  ๐‘– โจ‚
                 ๐œ•๐‘ฅ         ๐œ•๐‘ฅ                        ๐œ•๐‘ฅ                       ๐œ•๐‘ฅ ๐‘˜
                             ๐œ•๐               ๐‘—
            Recall that, ๐‘–๐‘˜ โˆ™ ๐  ๐‘— =            . It follows therefore that,
                            ๐œ•๐‘ฅ              ๐‘–๐‘˜
                     ๐œ•๐  ๐‘–       ๐‘—โˆ’ ๐›ผ ๐›ฟ๐‘— =
                                                     ๐œ•๐  ๐‘–          ๐›ผ
                           โˆ™ ๐                             โˆ™ ๐ ๐‘— โˆ’        ๐  ๐›ผ โˆ™ ๐ ๐‘—
                    ๐œ•๐‘ฅ ๐‘˜              ๐‘–๐‘˜ ๐›ผ          ๐œ•๐‘ฅ ๐‘˜          ๐‘–๐‘˜
                                      ๐œ•๐  ๐‘–      ๐›ผ
                               =           โˆ’          ๐  ๐›ผ โˆ™ ๐  ๐‘— = 0.
                                      ๐œ•๐‘ฅ ๐‘˜     ๐‘–๐‘˜
                      ๐œ•๐  ๐‘–         ๐›ผ
            Clearly, ๐‘˜ =               ๐ ๐›ผ
                      ๐œ•๐‘ฅ          ๐‘–๐‘˜
            (Obviously since ๐  ๐‘— is a basis vector it cannot vanish)

Dept of Systems Engineering, University of Lagos   82                       oafak@unilag.edu.ng 12/27/2012
Higher Order Tensors
                ๐œ•๐“     ๐œ•๐‘‡ ๐‘–๐‘—              ๐‘–๐‘—
                                              ๐œ•๐  ๐‘–           ๐‘–๐‘— ๐  โจ‚
                                                                      ๐œ•๐  ๐‘—
                ๐œ•๐‘ฅ ๐‘˜ = ๐œ•๐‘ฅ ๐‘˜ ๐  ๐‘– โจ‚๐  ๐‘— + ๐‘‡     ๐œ•๐‘ฅ  ๐‘˜ โจ‚๐  ๐‘— + ๐‘‡      ๐‘–
                                                                      ๐œ•๐‘ฅ ๐‘˜
                       ๐œ•๐‘‡ ๐‘–๐‘—              ๐‘–๐‘—     ๐›ผ                  ๐‘–๐‘— ๐  โจ‚
                                                                                ๐›ผ
                     =       ๐  โจ‚๐  ๐‘— + ๐‘‡              ๐  โจ‚๐  ๐‘— + ๐‘‡ ๐‘–             ๐‘—๐‘˜ ๐  ๐›ผ
                       ๐œ•๐‘ฅ ๐‘˜ ๐‘–                  ๐‘–๐‘˜ ๐›ผ
                       ๐œ•๐‘‡ ๐‘–๐‘—                       ๐‘–                              ๐‘—
                     =    ๐‘˜
                             ๐  ๐‘– โจ‚๐  ๐‘— + ๐‘‡ ๐›ผ๐‘—          ๐  ๐‘– โจ‚๐  ๐‘— + ๐‘‡ ๐‘–๐›ผ ๐  ๐‘– โจ‚          ๐ ๐‘—
                       ๐œ•๐‘ฅ                        ๐›ผ๐‘˜                              ๐›ผ๐‘˜
                        ๐œ•๐‘‡ ๐‘–๐‘—           ๐‘–              ๐‘—                   ๐‘–๐‘—
                     =         +๐‘‡ ๐›ผ๐‘—         + ๐‘‡ ๐‘–๐›ผ         ๐  ๐‘– โจ‚๐  ๐‘— = ๐‘‡ ,๐‘˜ ๐  ๐‘– โจ‚๐  ๐‘—
                        ๐œ•๐‘ฅ ๐‘˜           ๐›ผ๐‘˜             ๐›ผ๐‘˜
   Where
              ๐œ•๐‘‡ ๐‘–๐‘—
                 ๐‘–๐‘—       ๐‘–          ๐‘—       ๐œ•๐‘‡ ๐‘–๐‘—         ๐‘–           ๐‘—
            =  ๐‘‡,๐‘˜  +๐‘‡ ๐›ผ๐‘—    + ๐‘‡ ๐‘–๐›ผ      or        +๐‘‡ ๐›ผ๐‘— ฮ“ ๐›ผ๐‘˜ + ๐‘‡ ๐‘–๐›ผ ฮ“ ๐›ผ๐‘˜
               ๐œ•๐‘ฅ ๐‘˜       ๐›ผ๐‘˜         ๐›ผ๐‘˜      ๐œ•๐‘ฅ ๐‘˜
   are the components of the covariant derivative of the tensor ๐“ in terms
   of contravariant components on the product covariant bases as shown.
Dept of Systems Engineering, University of Lagos   83                        oafak@unilag.edu.ng 12/27/2012
Higher Order Tensors
            In the same way, by taking the tensor expression in the dyadic form of its
            contravariant product bases, we can write,
                           ๐œ•๐“      ๐œ•๐‘‡๐‘–๐‘— ๐‘–           ๐‘—
                                                               ๐œ•๐  ๐‘–         ๐‘—           ๐‘–
                                                                                                  ๐œ•๐  ๐‘—
                          ๐œ•๐‘ฅ  ๐‘˜ = ๐œ•๐‘ฅ ๐‘˜ ๐  โŠ— ๐  +๐‘‡ ๐‘–๐‘— ๐œ•๐‘ฅ ๐‘˜ โŠ— ๐  +๐‘‡ ๐‘–๐‘— ๐  โŠ— ๐œ•๐‘ฅ ๐‘˜
                                            ๐œ•๐‘‡๐‘–๐‘— ๐‘–          ๐‘— +๐‘‡ ฮ“ ๐‘– โŠ— ๐  ๐‘— +๐‘‡ ๐  ๐‘– โŠ—
                                                                                                       ๐œ•๐  ๐‘—
                                       =          ๐  โŠ— ๐              ๐‘–๐‘— ๐›ผ๐‘˜                 ๐‘–๐‘—
                                            ๐œ•๐‘ฅ ๐‘˜                                                       ๐œ•๐‘ฅ ๐‘˜
                                                                               ๐‘–           ๐œ•๐  ๐‘–
            Again, notice from previous derivation above,                           = โˆ’ ๐œ•๐‘ฅ ๐‘˜ โˆ™ ๐  ๐‘— so that,
                                                                              ๐‘—๐‘˜
             ๐œ•๐  ๐‘–      ๐‘–               ๐‘–
                  =โˆ’       ๐  ๐›ผ = โˆ’ฮ“ ๐›ผ๐‘˜ ๐  ๐›ผ Therefore,
             ๐œ•๐‘ฅ ๐‘˜
                      ๐›ผ๐‘˜
                              ๐œ•๐“      ๐œ•๐‘‡๐‘–๐‘— ๐‘–          ๐‘— +๐‘‡
                                                                   ๐œ•๐  ๐‘–          ๐‘— +๐‘‡ ๐  ๐‘– โŠ—
                                                                                                    ๐œ•๐  ๐‘—
                                  =           ๐  โŠ— ๐            ๐‘–๐‘—          โŠ— ๐          ๐‘–๐‘—
                             ๐œ•๐‘ฅ ๐‘˜      ๐œ•๐‘ฅ ๐‘˜                        ๐œ•๐‘ฅ ๐‘˜                             ๐œ•๐‘ฅ ๐‘˜
                                ๐œ•๐‘‡๐‘–๐‘— ๐‘–                    ๐‘–                                       ๐‘—
                            =         ๐  โŠ— ๐  ๐‘— โˆ’๐‘‡๐‘–๐‘— ฮ“ ๐›ผ๐‘˜ ๐  ๐›ผ โŠ— ๐  ๐‘— + ๐‘‡๐‘–๐‘— ๐  ๐‘– โŠ— ฮ“ ๐›ผ๐‘˜ ๐  ๐›ผ
                                ๐œ•๐‘ฅ ๐‘˜
                                  ๐œ•๐‘‡๐‘–๐‘—            ๐›ผ              ๐›ผ      ๐‘–         ๐‘—             ๐‘–        ๐‘—
                            =        ๐‘˜ โˆ’ ๐‘‡ ๐›ผ๐‘— ฮ“๐‘–๐‘˜ โˆ’ ๐‘‡ ๐‘–๐›ผ ฮ“๐‘—๐‘˜ ๐  โŠ— ๐  = ๐‘‡ ๐‘–๐‘—,๐‘˜ ๐  โŠ— ๐ 
                                  ๐œ•๐‘ฅ
            So that
                                                      ๐œ•๐‘‡๐‘–๐‘—                ๐›ผ           ๐›ผ
                                            ๐‘‡๐‘–๐‘—,๐‘˜ =      ๐‘˜ โˆ’ ๐‘‡ ๐›ผ๐‘— ฮ“๐‘–๐‘˜ โˆ’ ๐‘‡ ๐‘–๐›ผ ฮ“๐‘—๐‘˜
                                                      ๐œ•๐‘ฅ

Dept of Systems Engineering, University of Lagos              84                                    oafak@unilag.edu.ng 12/27/2012
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013
3. tensor calculus jan 2013

Mais conteรบdo relacionado

Mais procurados

Ch 2-stress-strains and yield criterion
Ch 2-stress-strains and yield criterionCh 2-stress-strains and yield criterion
Ch 2-stress-strains and yield criterionVJTI Production
ย 
Fluent 13.0 lecture09-physics
Fluent 13.0 lecture09-physicsFluent 13.0 lecture09-physics
Fluent 13.0 lecture09-physicsRashed Kaiser
ย 
Les Sรฉries de Fourier
Les Sรฉries de FourierLes Sรฉries de Fourier
Les Sรฉries de FourierFrederic Jacobs
ย 
5 beams- Mechanics of Materials - 4th - Beer
5 beams- Mechanics of Materials - 4th - Beer5 beams- Mechanics of Materials - 4th - Beer
5 beams- Mechanics of Materials - 4th - BeerNhan Tran
ย 
A brief introduction to finite difference method
A brief introduction to finite difference methodA brief introduction to finite difference method
A brief introduction to finite difference methodPrateek Jha
ย 
aem : Fourier series of Even and Odd Function
aem :  Fourier series of Even and Odd Functionaem :  Fourier series of Even and Odd Function
aem : Fourier series of Even and Odd FunctionSukhvinder Singh
ย 
Lecture 1 stresses and strains
Lecture 1 stresses and strainsLecture 1 stresses and strains
Lecture 1 stresses and strainsDeepak Agarwal
ย 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
ย 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its applicationJaydrath Sindhav
ย 
Writing Fast MATLAB Code
Writing Fast MATLAB CodeWriting Fast MATLAB Code
Writing Fast MATLAB CodeJia-Bin Huang
ย 
The finite volume method for diffusion problems
The finite volume method for diffusion problemsThe finite volume method for diffusion problems
The finite volume method for diffusion problemsshivam choubey
ย 
Part 2 RANS.pdf
Part 2 RANS.pdfPart 2 RANS.pdf
Part 2 RANS.pdfSajawalNawaz5
ย 
Joukowski's airfoils, introduction to conformal mapping
Joukowski's  airfoils, introduction to conformal mappingJoukowski's  airfoils, introduction to conformal mapping
Joukowski's airfoils, introduction to conformal mappingRAHUL SINHA
ย 
Cfx12 09 turbulence
Cfx12 09 turbulenceCfx12 09 turbulence
Cfx12 09 turbulenceMarcushuynh66
ย 
Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...
Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...
Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...Masashi Imano
ย 
Power series
Power series Power series
Power series Pranav Veerani
ย 
Bifurcation
BifurcationBifurcation
BifurcationHamed Abdi
ย 
Real life application of Differential Equations, Laplace Transform in CSE
Real life application of Differential Equations, Laplace Transform in CSE Real life application of Differential Equations, Laplace Transform in CSE
Real life application of Differential Equations, Laplace Transform in CSE AlImran58344
ย 

Mais procurados (20)

Ch 2-stress-strains and yield criterion
Ch 2-stress-strains and yield criterionCh 2-stress-strains and yield criterion
Ch 2-stress-strains and yield criterion
ย 
Fluent 13.0 lecture09-physics
Fluent 13.0 lecture09-physicsFluent 13.0 lecture09-physics
Fluent 13.0 lecture09-physics
ย 
Les Sรฉries de Fourier
Les Sรฉries de FourierLes Sรฉries de Fourier
Les Sรฉries de Fourier
ย 
Fem ppt
Fem pptFem ppt
Fem ppt
ย 
5 beams- Mechanics of Materials - 4th - Beer
5 beams- Mechanics of Materials - 4th - Beer5 beams- Mechanics of Materials - 4th - Beer
5 beams- Mechanics of Materials - 4th - Beer
ย 
E04112135
E04112135E04112135
E04112135
ย 
A brief introduction to finite difference method
A brief introduction to finite difference methodA brief introduction to finite difference method
A brief introduction to finite difference method
ย 
aem : Fourier series of Even and Odd Function
aem :  Fourier series of Even and Odd Functionaem :  Fourier series of Even and Odd Function
aem : Fourier series of Even and Odd Function
ย 
Lecture 1 stresses and strains
Lecture 1 stresses and strainsLecture 1 stresses and strains
Lecture 1 stresses and strains
ย 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
ย 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
ย 
Writing Fast MATLAB Code
Writing Fast MATLAB CodeWriting Fast MATLAB Code
Writing Fast MATLAB Code
ย 
The finite volume method for diffusion problems
The finite volume method for diffusion problemsThe finite volume method for diffusion problems
The finite volume method for diffusion problems
ย 
Part 2 RANS.pdf
Part 2 RANS.pdfPart 2 RANS.pdf
Part 2 RANS.pdf
ย 
Joukowski's airfoils, introduction to conformal mapping
Joukowski's  airfoils, introduction to conformal mappingJoukowski's  airfoils, introduction to conformal mapping
Joukowski's airfoils, introduction to conformal mapping
ย 
Cfx12 09 turbulence
Cfx12 09 turbulenceCfx12 09 turbulence
Cfx12 09 turbulence
ย 
Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...
Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...
Optimization of relaxation factor for simple solver, OpenFOAM Study Meeting f...
ย 
Power series
Power series Power series
Power series
ย 
Bifurcation
BifurcationBifurcation
Bifurcation
ย 
Real life application of Differential Equations, Laplace Transform in CSE
Real life application of Differential Equations, Laplace Transform in CSE Real life application of Differential Equations, Laplace Transform in CSE
Real life application of Differential Equations, Laplace Transform in CSE
ย 

Destaque

Generalization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsGeneralization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsKohei Hayashi
ย 
Originan
OriginanOriginan
OriginanTensor
ย 
07 Tensor Visualization
07 Tensor Visualization07 Tensor Visualization
07 Tensor VisualizationValerii Klymchuk
ย 
Metric tensor in general relativity
Metric tensor in general relativityMetric tensor in general relativity
Metric tensor in general relativityHalo Anwar
ย 
1. Vectors and Linear Spaces Jan 2013
1. Vectors and Linear Spaces Jan 20131. Vectors and Linear Spaces Jan 2013
1. Vectors and Linear Spaces Jan 2013Olowosulu Emmanuel
ย 
Legendre
LegendreLegendre
Legendredfsolanol
ย 
Legendre functions
Legendre functionsLegendre functions
Legendre functionsSolo Hermelin
ย 
Tensor board
Tensor boardTensor board
Tensor boardSung Kim
ย 
Besselโ€™s equation
Besselโ€™s equationBesselโ€™s equation
Besselโ€™s equationkishor pokar
ย 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's functionOneirosErebus
ย 
Mecanica del medio continuo 1
Mecanica del medio continuo 1Mecanica del medio continuo 1
Mecanica del medio continuo 1jlararu
ย 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applicationsPratik Gadhiya
ย 
(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics
(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics
(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanicsAntonio Vinnie
ย 
tensor-decomposition
tensor-decompositiontensor-decomposition
tensor-decompositionKenta Oono
ย 
Application of differential equation in real life
Application of differential equation in real   lifeApplication of differential equation in real   life
Application of differential equation in real lifeTanjil Hasan
ย 
Physics 1.3 scalars and vectors
Physics 1.3 scalars and vectorsPhysics 1.3 scalars and vectors
Physics 1.3 scalars and vectorsJohnPaul Kennedy
ย 
6. balance laws jan 2013
6. balance laws jan 20136. balance laws jan 2013
6. balance laws jan 2013Olowosulu Emmanuel
ย 
Chapter 1(4)SCALAR AND VECTOR
Chapter 1(4)SCALAR AND VECTORChapter 1(4)SCALAR AND VECTOR
Chapter 1(4)SCALAR AND VECTORFIKRI RABIATUL ADAWIAH
ย 
Object Oriented Programming Implementation of Scalar, Vector, and Tensor Vari...
Object Oriented Programming Implementation of Scalar, Vector, and Tensor Vari...Object Oriented Programming Implementation of Scalar, Vector, and Tensor Vari...
Object Oriented Programming Implementation of Scalar, Vector, and Tensor Vari...LLGYeo
ย 
Tensor Decomposition and its Applications
Tensor Decomposition and its ApplicationsTensor Decomposition and its Applications
Tensor Decomposition and its ApplicationsKeisuke OTAKI
ย 

Destaque (20)

Generalization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsGeneralization of Tensor Factorization and Applications
Generalization of Tensor Factorization and Applications
ย 
Originan
OriginanOriginan
Originan
ย 
07 Tensor Visualization
07 Tensor Visualization07 Tensor Visualization
07 Tensor Visualization
ย 
Metric tensor in general relativity
Metric tensor in general relativityMetric tensor in general relativity
Metric tensor in general relativity
ย 
1. Vectors and Linear Spaces Jan 2013
1. Vectors and Linear Spaces Jan 20131. Vectors and Linear Spaces Jan 2013
1. Vectors and Linear Spaces Jan 2013
ย 
Legendre
LegendreLegendre
Legendre
ย 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
ย 
Tensor board
Tensor boardTensor board
Tensor board
ย 
Besselโ€™s equation
Besselโ€™s equationBesselโ€™s equation
Besselโ€™s equation
ย 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's function
ย 
Mecanica del medio continuo 1
Mecanica del medio continuo 1Mecanica del medio continuo 1
Mecanica del medio continuo 1
ย 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applications
ย 
(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics
(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics
(Ebook pdf) - physics - introduction to tensor calculus and continuum mechanics
ย 
tensor-decomposition
tensor-decompositiontensor-decomposition
tensor-decomposition
ย 
Application of differential equation in real life
Application of differential equation in real   lifeApplication of differential equation in real   life
Application of differential equation in real life
ย 
Physics 1.3 scalars and vectors
Physics 1.3 scalars and vectorsPhysics 1.3 scalars and vectors
Physics 1.3 scalars and vectors
ย 
6. balance laws jan 2013
6. balance laws jan 20136. balance laws jan 2013
6. balance laws jan 2013
ย 
Chapter 1(4)SCALAR AND VECTOR
Chapter 1(4)SCALAR AND VECTORChapter 1(4)SCALAR AND VECTOR
Chapter 1(4)SCALAR AND VECTOR
ย 
Object Oriented Programming Implementation of Scalar, Vector, and Tensor Vari...
Object Oriented Programming Implementation of Scalar, Vector, and Tensor Vari...Object Oriented Programming Implementation of Scalar, Vector, and Tensor Vari...
Object Oriented Programming Implementation of Scalar, Vector, and Tensor Vari...
ย 
Tensor Decomposition and its Applications
Tensor Decomposition and its ApplicationsTensor Decomposition and its Applications
Tensor Decomposition and its Applications
ย 

Semelhante a 3. tensor calculus jan 2013

Machine Learning 1
Machine Learning 1Machine Learning 1
Machine Learning 1cairo university
ย 
Application of Convolution Theorem
Application of Convolution TheoremApplication of Convolution Theorem
Application of Convolution Theoremijtsrd
ย 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
ย 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationIJERA Editor
ย 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
ย 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recapFarzad Javidanrad
ย 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Kevin Johnson
ย 
Iclr2016 vaeใพใจใ‚
Iclr2016 vaeใพใจใ‚Iclr2016 vaeใพใจใ‚
Iclr2016 vaeใพใจใ‚Deep Learning JP
ย 
Aplicaciones de Espacios y Subespacios Vectoriales en la Carrera de Mecatrรณnica
Aplicaciones de Espacios y Subespacios Vectoriales en la Carrera de MecatrรณnicaAplicaciones de Espacios y Subespacios Vectoriales en la Carrera de Mecatrรณnica
Aplicaciones de Espacios y Subespacios Vectoriales en la Carrera de MecatrรณnicaBRYANDAVIDCUBIACEDEO
ย 
Classification of Almost Linear Equation in n-Independent 1111111 Variables....
Classification of Almost Linear Equation in n-Independent  1111111 Variables....Classification of Almost Linear Equation in n-Independent  1111111 Variables....
Classification of Almost Linear Equation in n-Independent 1111111 Variables....jia888
ย 
Aplicaciones y subespacios y subespacios vectoriales en la
Aplicaciones y subespacios y subespacios vectoriales en laAplicaciones y subespacios y subespacios vectoriales en la
Aplicaciones y subespacios y subespacios vectoriales en laemojose107
ย 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2foxtrot jp R
ย 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralRich Elle
ย 
Admission in India 2014
Admission in India 2014Admission in India 2014
Admission in India 2014Edhole.com
ย 
Maxwell's formulation - differential forms on euclidean space
Maxwell's formulation  - differential forms on euclidean spaceMaxwell's formulation  - differential forms on euclidean space
Maxwell's formulation - differential forms on euclidean spacegreentask
ย 
Proyecto grupal algebra parcial ii
Proyecto grupal algebra parcial iiProyecto grupal algebra parcial ii
Proyecto grupal algebra parcial iiJHANDRYALCIVARGUAJAL
ย 
A simple numerical procedure for estimating nonlinear uncertainty propagation
A simple numerical procedure for estimating nonlinear uncertainty propagationA simple numerical procedure for estimating nonlinear uncertainty propagation
A simple numerical procedure for estimating nonlinear uncertainty propagationISA Interchange
ย 
2 borgs
2 borgs2 borgs
2 borgsYandex
ย 

Semelhante a 3. tensor calculus jan 2013 (20)

Machine Learning 1
Machine Learning 1Machine Learning 1
Machine Learning 1
ย 
Application of Convolution Theorem
Application of Convolution TheoremApplication of Convolution Theorem
Application of Convolution Theorem
ย 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
ย 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
ย 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
ย 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
ย 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
ย 
Iclr2016 vaeใพใจใ‚
Iclr2016 vaeใพใจใ‚Iclr2016 vaeใพใจใ‚
Iclr2016 vaeใพใจใ‚
ย 
Aplicaciones de Espacios y Subespacios Vectoriales en la Carrera de Mecatrรณnica
Aplicaciones de Espacios y Subespacios Vectoriales en la Carrera de MecatrรณnicaAplicaciones de Espacios y Subespacios Vectoriales en la Carrera de Mecatrรณnica
Aplicaciones de Espacios y Subespacios Vectoriales en la Carrera de Mecatrรณnica
ย 
Classification of Almost Linear Equation in n-Independent 1111111 Variables....
Classification of Almost Linear Equation in n-Independent  1111111 Variables....Classification of Almost Linear Equation in n-Independent  1111111 Variables....
Classification of Almost Linear Equation in n-Independent 1111111 Variables....
ย 
Aplicaciones y subespacios y subespacios vectoriales en la
Aplicaciones y subespacios y subespacios vectoriales en laAplicaciones y subespacios y subespacios vectoriales en la
Aplicaciones y subespacios y subespacios vectoriales en la
ย 
Mohammad Sabawi ICETS-2018 Presentation
Mohammad Sabawi ICETS-2018 PresentationMohammad Sabawi ICETS-2018 Presentation
Mohammad Sabawi ICETS-2018 Presentation
ย 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2
ย 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
ย 
Admission in India 2014
Admission in India 2014Admission in India 2014
Admission in India 2014
ย 
Maxwell's formulation - differential forms on euclidean space
Maxwell's formulation  - differential forms on euclidean spaceMaxwell's formulation  - differential forms on euclidean space
Maxwell's formulation - differential forms on euclidean space
ย 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
ย 
Proyecto grupal algebra parcial ii
Proyecto grupal algebra parcial iiProyecto grupal algebra parcial ii
Proyecto grupal algebra parcial ii
ย 
A simple numerical procedure for estimating nonlinear uncertainty propagation
A simple numerical procedure for estimating nonlinear uncertainty propagationA simple numerical procedure for estimating nonlinear uncertainty propagation
A simple numerical procedure for estimating nonlinear uncertainty propagation
ย 
2 borgs
2 borgs2 borgs
2 borgs
ย 

รšltimo

Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
ย 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
ย 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
ย 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
ย 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
ย 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
ย 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
ย 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
ย 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
ย 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
ย 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
ย 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
ย 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
ย 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
ย 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxPooja Bhuva
ย 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
ย 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
ย 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
ย 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
ย 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
ย 

รšltimo (20)

Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
ย 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
ย 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
ย 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
ย 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
ย 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
ย 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
ย 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
ย 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
ย 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
ย 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
ย 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
ย 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
ย 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
ย 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
ย 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
ย 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
ย 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
ย 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
ย 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
ย 

3. tensor calculus jan 2013

  • 1. Tensor Calculus Differentials & Directional Derivatives
  • 2. The Gateaux Differential We are presently concerned with Inner Product spaces in our treatment of the Mechanics of Continua. Consider a map, ๐‘ญ: V โ†’ W This maps from the domainV to W โ€“ both of which are Euclidean vector spaces. The concepts of limit and continuity carries naturally from the real space to any Euclidean vector space. Dept of Systems Engineering, University of Lagos 2 oafak@unilag.edu.ng 12/27/2012
  • 3. The Gateaux Differential Let ๐’—0 โˆˆ V and ๐’˜0 โˆˆ W, as usual we can say that the limit lim ๐‘ญ ๐’— = ๐’˜0 ๐’—โ†’ ๐’—0 if for any pre-assigned real number ๐œ– > 0, no matter how small, we can always find a real number ๐›ฟ > 0 such that ๐‘ญ ๐’— โˆ’ ๐’˜0 โ‰ค ๐œ– whenever ๐’— โˆ’ ๐’—0 < ๐›ฟ. The function is said to be continuous at ๐’—0 if ๐‘ญ ๐’—0 exists and ๐‘ญ ๐’—0 = ๐’˜0 Dept of Systems Engineering, University of Lagos 3 oafak@unilag.edu.ng 12/27/2012
  • 4. The Gateaux Differential Specifically, for ๐›ผ โˆˆ โ„› let this map be: ๐‘ญ ๐’™ + ๐›ผ๐’‰ โˆ’ ๐‘ญ ๐’™ ๐‘‘ ๐ท๐‘ญ ๐’™, ๐’‰ โ‰ก lim = ๐‘ญ ๐’™ + ๐›ผ๐’‰ ๐›ผโ†’0 ๐›ผ ๐‘‘๐›ผ ๐›ผ=0 We focus attention on the second variable โ„Ž while we allow the dependency on ๐’™ to be as general as possible. We shall show that while the above function can be any given function of ๐’™ (linear or nonlinear), the above map is always linear in ๐’‰ irrespective of what kind of Euclidean space we are mapping from or into. It is called the Gateaux Differential. Dept of Systems Engineering, University of Lagos 4 oafak@unilag.edu.ng 12/27/2012
  • 5. The Gateaux Differential Let us make the Gateaux differential a little more familiar in real space in two steps: First, we move to the real space and allow โ„Ž โ†’ ๐‘‘๐‘ฅ and we obtain, ๐น ๐‘ฅ + ๐›ผ๐‘‘๐‘ฅ โˆ’ ๐น ๐‘ฅ ๐‘‘ ๐ท๐น(๐‘ฅ, ๐‘‘๐‘ฅ) = lim = ๐น ๐‘ฅ + ๐›ผ๐‘‘๐‘ฅ ๐›ผโ†’0 ๐›ผ ๐‘‘๐›ผ ๐›ผ=0 And let ๐›ผ๐‘‘๐‘ฅ โ†’ ฮ”๐‘ฅ, the middle term becomes, ๐น ๐‘ฅ + ฮ”๐‘ฅ โˆ’ ๐น ๐‘ฅ ๐‘‘๐น lim ๐‘‘๐‘ฅ = ๐‘‘๐‘ฅ ฮ”๐‘ฅโ†’0 ฮ”๐‘ฅ ๐‘‘๐‘ฅ from which it is obvious that the Gateaux derivative is a generalization of the well-known differential from elementary calculus. The Gateaux differential helps to compute a local linear approximation of any function (linear or nonlinear). Dept of Systems Engineering, University of Lagos 5 oafak@unilag.edu.ng 12/27/2012
  • 6. The Gateaux Differential It is easily shown that the Gateaux differential is linear in its second argument, ie, for ๐›ผ โˆˆ R ๐ท๐‘ญ ๐’™, ๐›ผ๐’‰ = ๐›ผ๐ท๐‘ญ ๐’™, ๐’‰ Furthermore, ๐ท๐‘ญ ๐’™, ๐’ˆ + ๐’‰ = ๐ท๐‘ญ ๐’™, ๐’ˆ + ๐ท๐‘ญ ๐’™, ๐’‰ and that for ๐›ผ, ๐›ฝ โˆˆ R ๐ท๐‘ญ ๐’™, ๐›ผ๐’ˆ + ๐›ฝ๐’‰ = ๐›ผ๐ท๐‘ญ ๐’™, ๐’ˆ + ๐›ฝ๐ท๐‘ญ ๐’™, ๐’‰ Dept of Systems Engineering, University of Lagos 6 oafak@unilag.edu.ng 12/27/2012
  • 7. The Frechรฉt Derivative The Frechรฉt derivative or gradient of a differentiable function is the linear operator, grad ๐‘ญ(๐’—) such that, for ๐‘‘๐’— โˆˆ V, ๐‘‘๐‘ญ ๐’— ๐‘‘๐’— โ‰ก grad ๐‘ญ ๐’— ๐‘‘๐’— โ‰ก ๐ท๐‘ญ ๐’—, ๐‘‘๐’— ๐‘‘๐’— Obviously, grad ๐‘ญ(๐’—) is a tensor because it is a linear transformation from one Euclidean vector space to another. Its linearity derives from the second argument of the RHS. Dept of Systems Engineering, University of Lagos 7 oafak@unilag.edu.ng 12/27/2012
  • 8. Differentiable Real-Valued Function The Gradient of a Differentiable Real-Valued Function For a real vector function, we have the map: ๐‘“: V โ†’ R The Gateaux differential in this case takes two vector arguments and maps to a real value: ๐ท๐‘“: V ร— V โ†’ R This is the classical definition of the inner product so that we can define the differential as, ๐‘‘๐‘“(๐’—) โ‹… ๐‘‘๐’— โ‰ก ๐ท๐‘“ ๐’—, ๐‘‘๐’— ๐‘‘๐’— This quantity, ๐‘‘๐‘“(๐’—) ๐‘‘๐’— defined by the above equation, is clearly a vector. oafak@unilag.edu.ng 12/27/2012 Dept of Systems Engineering, University of Lagos 8
  • 9. Real-Valued Function It is the gradient of the scalar valued function of the vector variable. We now proceed to find its components in general coordinates. To do this, we choose a basis ๐  ๐‘– โŠ‚ V. On such a basis, the function, ๐’— = ๐‘ฃ๐‘– ๐ ๐‘– and, ๐‘“ ๐’— = ๐‘“ ๐‘ฃ๐‘– ๐ ๐‘– we may also express the independent vector ๐‘‘๐’— = ๐‘‘๐‘ฃ ๐‘– ๐  ๐‘– on this basis. Dept of Systems Engineering, University of Lagos 9 oafak@unilag.edu.ng 12/27/2012
  • 10. Real-Valued Function The Gateaux differential in the direction of the basis vector ๐  ๐‘– is, ๐‘“ ๐’— + ๐›ผ๐  ๐‘– โˆ’ ๐‘“ ๐’— ๐‘“ ๐‘ฃ ๐‘— ๐  ๐‘— + ๐›ผ๐  ๐‘– โˆ’ ๐‘“ ๐‘ฃ ๐‘– ๐  ๐‘– ๐ท๐‘“ ๐’—, ๐  ๐‘– = lim = lim ๐›ผโ†’0 ๐›ผ ๐›ผโ†’0 ๐›ผ ๐‘— ๐‘“ ๐‘ฃ ๐‘— + ๐›ผ๐›ฟ ๐‘– ๐  ๐‘— โˆ’ ๐‘“ ๐‘ฃ ๐‘– ๐  ๐‘– = lim ๐›ผโ†’0 ๐›ผ As the function ๐‘“ does not depend on the vector basis, we can substitute the vector function by the real function of the components ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 so that, ๐‘“ ๐‘ฃ ๐‘– ๐  ๐‘– = ๐‘“ ๐‘ฃ1, ๐‘ฃ 2, ๐‘ฃ 3 in which case, the above differential, similar to the real case discussed earlier becomes, ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐ท๐‘“ ๐’—, ๐  ๐‘– = ๐œ•๐‘ฃ ๐‘– Dept of Systems Engineering, University of Lagos 10 oafak@unilag.edu.ng 12/27/2012
  • 11. ๐‘‘๐‘“(๐’—) Of course, it is now obvious that the gradient of ๐‘‘๐’— the scalar valued vector function, expressed in its dual basis must be, ๐‘‘๐‘“(๐’—) ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘– = ๐‘– ๐  ๐‘‘๐’— ๐œ•๐‘ฃ so that we can recover, ๐‘‘๐‘“ ๐’— ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘— ๐ท๐‘“ ๐’—, ๐  ๐‘– = โ‹… ๐‘‘๐’— = ๐‘— ๐  โ‹… ๐ ๐‘– ๐‘‘๐’— ๐œ•๐‘ฃ ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘— ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = ๐‘— ๐›ฟ๐‘– = ๐œ•๐‘ฃ ๐œ•๐‘ฃ ๐‘– Hence we obtain the well-known result that ๐‘‘๐‘“(๐’—) ๐œ•๐‘“ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘– grad ๐‘“ ๐’— = = ๐‘– ๐  ๐‘‘๐’— ๐œ•๐‘ฃ which defines the Frechรฉt derivative of a scalar valued function with respect to its vector argument. Dept of Systems Engineering, University of Lagos 11 oafak@unilag.edu.ng 12/27/2012
  • 12. Vector valued Function ๏€ช The Gradient of a Differentiable Vector valued Function The definition of the Frechรฉt clearly shows that the gradient of a vector-valued function is itself a second order tensor. We now find the components of this tensor in general coordinates. To do this, we choose a basis ๐  ๐‘– โŠ‚ V. On such a basis, the function, ๐‘ญ ๐’— = ๐น๐‘˜ ๐’— ๐ ๐‘˜ The functional dependency on the basis vectors are ignorable on account of the fact that the components themselves are fixed with respect to the basis. We can therefore write, ๐‘ญ ๐’— = ๐น ๐‘˜ ๐‘ฃ1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐  ๐‘˜ Dept of Systems Engineering, University of Lagos 12 oafak@unilag.edu.ng 12/27/2012
  • 13. Vector Derivatives ๐ท๐‘ญ ๐’—, ๐‘‘๐’— = ๐ท๐‘ญ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐‘‘๐‘ฃ ๐‘– ๐  ๐‘– = ๐ท๐‘ญ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐  ๐‘– ๐‘‘๐‘ฃ ๐‘– = ๐ท๐น ๐‘˜ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐  ๐‘– ๐  ๐‘˜ ๐‘‘๐‘ฃ ๐‘– Again, upon noting that the functions ๐ท๐น ๐‘˜ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐  ๐‘– , ๐‘˜ = 1,2,3 are not functions of the vector basis, they can be written as functions of the scalar components alone so that we have, as before, ๐ท๐‘ญ ๐’—, ๐‘‘๐’— = ๐ท๐น ๐‘˜ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐  ๐‘– ๐  ๐‘˜ ๐‘‘๐‘ฃ ๐‘– = ๐ท๐น ๐‘˜ ๐’—, ๐  ๐‘– ๐  ๐‘˜ ๐‘‘๐‘ฃ ๐‘– Dept of Systems Engineering, University of Lagos 13 oafak@unilag.edu.ng 12/27/2012
  • 14. Which we can compare to the earlier case of scalar valued function and easily obtain, ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘— ๐ท๐‘ญ ๐’—, ๐‘‘๐’— = ๐  โ‹… ๐  ๐‘– ๐  ๐‘˜ ๐‘‘๐‘ฃ ๐‘– ๐œ•๐‘ฃ ๐‘— ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = ๐  ๐‘˜ โŠ— ๐  ๐‘— ๐  ๐‘– ๐‘‘๐‘ฃ ๐‘– ๐œ•๐‘ฃ ๐‘— ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = ๐  ๐‘˜ โŠ— ๐  ๐‘— ๐‘‘๐’— ๐œ•๐‘ฃ ๐‘— ๐‘‘๐‘ญ ๐’— = ๐‘‘๐’— โ‰ก grad ๐‘ญ ๐’— ๐‘‘๐’— ๐‘‘๐’— Clearly, the tensor gradient of the vector-valued vector function is, ๐‘‘๐‘ญ ๐’— ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = grad ๐‘ญ ๐’— = ๐  ๐‘˜ โŠ— ๐ ๐‘— ๐‘‘๐’— ๐œ•๐‘ฃ ๐‘— Where due attention should be paid to the covariance of the quotient indices in contrast to the contravariance of the non quotient indices. Dept of Systems Engineering, University of Lagos 14 oafak@unilag.edu.ng 12/27/2012
  • 15. The Trace & Divergence The trace of this gradient is called the divergence of the function: ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 div ๐‘ญ ๐’— = tr ๐  ๐‘˜ โŠ— ๐ ๐‘— ๐œ•๐‘ฃ ๐‘— ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = ๐  ๐‘˜ โ‹… ๐ ๐‘— ๐œ•๐‘ฃ ๐‘— ๐œ•๐น ๐‘˜ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘— = ๐‘— ๐›ฟ๐‘˜ ๐œ•๐‘ฃ ๐œ•๐น ๐‘— ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = ๐œ•๐‘ฃ ๐‘— Dept of Systems Engineering, University of Lagos 15 oafak@unilag.edu.ng 12/27/2012
  • 16. Tensor-Valued Vector Function Consider the mapping, ๐‘ป: V โ†’ T Which maps from an inner product space to a tensor space. The Gateaux differential in this case now takes two vectors and produces a tensor: ๐ท๐‘ป: V ร— V โ†’ T With the usual notation, we may write, ๐ท๐‘ป ๐’—, ๐‘‘๐’— = ๐ท๐‘ป ๐‘ฃ ๐‘– ๐  ๐‘– , ๐‘‘๐‘ฃ ๐‘– ๐  ๐‘– = ๐ท๐‘ป ๐‘ฃ ๐‘– ๐  ๐‘– , ๐‘‘๐‘ฃ ๐‘– ๐  ๐‘– ๐‘‘๐‘ป ๐’— = ๐‘‘๐’— โ‰ก grad ๐‘ป ๐’— ๐‘‘๐’— ๐‘‘๐’— = ๐ท๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ ๐‘– ๐  ๐‘– , ๐‘‘๐‘ฃ ๐‘– ๐  ๐‘– ๐  ๐›ผ โŠ— ๐  ๐›ฝ = ๐ท๐‘‡ ๐›ผ๐›ฝ ๐’—, ๐  ๐‘– ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐‘‘๐‘ฃ ๐‘– Each of these nine functions look like the real differential of several variables we considered earlier. Dept of Systems Engineering, University of Lagos 16 oafak@unilag.edu.ng 12/27/2012
  • 17. The independence of the basis vectors imply, as usual, that ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐ท๐‘‡ ๐›ผ๐›ฝ ๐’—, ๐  ๐‘– = ๐œ•๐‘ฃ ๐‘– so that, ๐ท๐‘ป ๐’—, ๐‘‘๐’— = ๐ท๐‘‡ ๐›ผ๐›ฝ ๐’—, ๐  ๐‘– ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐‘‘๐‘ฃ ๐‘– ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐‘‘๐‘ฃ ๐‘– ๐œ•๐‘ฃ ๐‘– ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐  ๐‘– โ‹… ๐‘‘๐’— ๐œ•๐‘ฃ ๐‘– ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘‘๐‘ป ๐’— = ๐  ๐›ผ โŠ— ๐  ๐›ฝ โŠ— ๐  ๐‘– ๐‘‘๐’— = ๐‘‘๐’— ๐œ•๐‘ฃ ๐‘– ๐‘‘๐’— โ‰ก grad ๐‘ป ๐’— ๐‘‘๐’— Which defines the third-order tensor, ๐‘‘๐‘ป ๐’— ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = grad ๐‘ป ๐’— = ๐  ๐›ผ โŠ— ๐  ๐›ฝ โŠ— ๐ ๐‘– ๐‘‘๐’— ๐œ•๐‘ฃ ๐‘– and with no further ado, we can see that a third-order tensor transforms a vector into a second order tensor. Dept of Systems Engineering, University of Lagos 17 oafak@unilag.edu.ng 12/27/2012
  • 18. The Divergence of a Tensor Function The divergence operation can be defined in several ways. Most common is achieved by the contraction of the last two basis so that, ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 div ๐‘ป ๐’— = ๐  ๐›ผ โŠ— ๐  ๐›ฝ โ‹… ๐ ๐‘– ๐œ•๐‘ฃ ๐‘– ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = ๐  ๐›ผ ๐  ๐›ฝ โ‹… ๐ ๐‘– ๐œ•๐‘ฃ ๐‘– ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 ๐‘– ๐œ•๐‘‡ ๐›ผ๐‘– ๐‘ฃ 1 , ๐‘ฃ 2 , ๐‘ฃ 3 = ๐‘– ๐  ๐›ผ ๐›ฟ๐›ฝ = ๐‘– ๐ ๐›ผ ๐œ•๐‘ฃ ๐œ•๐‘ฃ It can easily be shown that this is the particular vector that gives, for all constant vectors ๐’‚, div ๐‘ป ๐’‚ โ‰ก div ๐‘ปT ๐’‚ Dept of Systems Engineering, University of Lagos 18 oafak@unilag.edu.ng 12/27/2012
  • 19. Real-Valued Tensor Functions Two other kinds of functions are critically important in our study. These are real valued functions of tensors and tensor-valued functions of tensors. Examples in the first case are the invariants of the tensor function that we have already seen. We can express stress in terms of strains and vice versa. These are tensor-valued functions of tensors. The derivatives of such real and tensor functions arise in our analysis of continua. In this section these are shown to result from the appropriate Gateaux differentials. The gradients or Frechรฉt derivatives will be extracted once we can obtain the Gateaux differentials. Dept of Systems Engineering, University of Lagos 19 oafak@unilag.edu.ng 12/27/2012
  • 20. Frechรฉt Derivative Consider the Map: ๐‘“: T โ†’ R The Gateaux differential in this case takes two vector arguments and maps to a real value: ๐ท๐‘“: T ร— T โ†’ R Which is, as usual, linear in the second argument. The Frechรฉt derivative can be expressed as the first component of the following scalar product: ๐‘‘๐‘“(๐‘ป) ๐ท๐‘“ ๐‘ป, ๐‘‘๐‘ป = : ๐‘‘๐‘ป ๐‘‘๐‘ป which, we recall, is the trace of the contraction of one tensor with the transpose of the other second-order tensors. This is a scalar quantity. Dept of Systems Engineering, University of Lagos 20 oafak@unilag.edu.ng 12/27/2012
  • 21. Guided by the previous result of the gradient of the scalar valued function of a vector, it is not difficult to see that, ๐‘‘๐‘“(๐‘ป) ๐œ•๐‘“(๐‘‡11 , ๐‘‡12 , โ€ฆ , ๐‘‡ 33 ) ๐›ผ = ๐  โŠ— ๐ ๐›ฝ ๐‘‘๐‘ป ๐œ•๐‘‡ ๐›ผ๐›ฝ In the dual to the same basis, we can write, ๐‘‘๐‘ป = ๐‘‘๐‘‡ ๐‘–๐‘— ๐  ๐‘– โŠ— ๐  ๐‘— Clearly, ๐‘‘๐‘“(๐‘ป) ๐œ•๐‘“(๐‘‡11 , ๐‘‡12 , โ€ฆ , ๐‘‡ 33 ) ๐›ผ : ๐‘‘๐‘ป = ๐  โŠ— ๐  ๐›ฝ : ๐‘‘๐‘‡ ๐‘–๐‘— ๐  ๐‘– โŠ— ๐  ๐‘— ๐‘‘๐‘ป ๐œ•๐‘‡ ๐›ผ๐›ฝ ๐œ•๐‘“(๐‘‡11 , ๐‘‡12 , โ€ฆ , ๐‘‡ 33 ) = ๐‘‘๐‘‡ ๐‘–๐‘— ๐œ•๐‘‡ ๐‘–๐‘— Again, note the covariance of the quotient indices. Dept of Systems Engineering, University of Lagos 21 oafak@unilag.edu.ng 12/27/2012
  • 22. Examples Let ๐’ be a symmetric and positive definite tensor and let ๐ผ1 ๐‘บ , ๐ผ2 ๐‘บ and ๐ผ3 ๐‘บ be the three principal invariants of ๐œ•๐‘ฐ1 ๐’ ๐’ show that (a) = ๐Ÿ the identity tensor, (b) ๐œ•๐’ ๐œ•๐‘ฐ2 ๐’ ๐œ•๐ผ3 ๐’ = ๐ผ1 ๐’ ๐Ÿ โˆ’ ๐’ and (c) = ๐ผ3 ๐’ ๐’ โˆ’1 ๐œ•๐’ ๐œ•๐’ ๐œ•๐‘ฐ1 ๐’ can be written in the invariant component form ๐œ•๐’ as, ๐œ•๐ผ1 ๐’ ๐œ•๐ผ1 ๐’ = ๐‘— ๐ ๐‘– โŠ— ๐ ๐‘— ๐œ•๐’ ๐œ•๐‘† ๐‘– Dept of Systems Engineering, University of Lagos 22 oafak@unilag.edu.ng 12/27/2012
  • 23. (a) Continued ฮฑ Recall that ๐ผ1 ๐’ = tr ๐’ = ๐‘†ฮฑ hence ๐œ•๐ผ1 ๐’ ๐œ•๐ผ1 ๐’ = ๐‘— ๐ ๐‘– โŠ— ๐ ๐‘— ๐œ•๐’ ๐œ•๐‘† ๐‘– ฮฑ ๐œ•๐‘†ฮฑ = ๐‘— ๐ ๐‘– โŠ— ๐ ๐‘— ๐œ•๐‘† ๐‘– = ๐›ฟ ๐‘–๐›ผ ๐›ฟ ๐‘— ๐›ผ ๐  ๐‘– โŠ— ๐  ๐‘— = ๐›ฟ ๐‘—๐‘– ๐  ๐‘– โŠ— ๐  ๐‘— = ๐Ÿ which is the identity tensor as expected. Dept of Systems Engineering, University of Lagos 23 oafak@unilag.edu.ng 12/27/2012
  • 24. ๐œ•๐ผ2 ๐’ (b) = ๐ผ1 ๐’ ๐Ÿ โˆ’ ๐’ ๐œ•๐’ ๐œ•๐ผ2 ๐’ in a similar way can be written in the invariant component form ๐œ•๐’ as, ๐œ•๐ผ2 ๐’ 1 ๐œ•๐ผ1 ๐’ ฮฑ ๐›ฝ ๐›ฝ = ๐‘†ฮฑ ๐‘† ๐›ฝ โˆ’ ๐‘† ฮฑ ๐‘†ฮฑ ๐  ๐‘– โŠ— ๐  ๐‘— ๐›ฝ ๐œ•๐’ 2 ๐œ•๐‘† ๐‘— ๐‘– 1 where we have utilized the fact that ๐ผ2 ๐’ = 2 tr 2 ๐’ โˆ’ tr(๐’ 2 ) . Consequently, ๐œ•๐ผ2 ๐’ 1 ๐œ• ฮฑ ๐›ฝ ๐›ฝ = ๐‘†ฮฑ ๐‘† ๐›ฝ โˆ’ ๐‘† ฮฑ ๐‘†ฮฑ ๐  ๐‘– โŠ— ๐  ๐‘— ๐›ฝ ๐œ•๐’ 2 ๐œ•๐‘† ๐‘— ๐‘– 1 ๐‘– ๐›ผ ๐›ฝ ๐‘– ๐›ฝ ฮฑ ๐›ฝ ๐›ฝ = ๐›ฟ ๐›ผ ๐›ฟ ๐‘— ๐‘† ๐›ฝ + ๐›ฟ ๐›ฝ ๐›ฟ ๐‘— ๐‘†ฮฑ โˆ’ ๐›ฟ ๐›ฝ ๐›ฟ ๐‘— ๐›ผ ๐‘†ฮฑ โˆ’ ๐›ฟ ๐‘–๐›ผ ๐›ฟ ๐‘— ๐‘† ฮฑ ๐  ๐‘– โŠ— ๐  ๐‘— ๐‘– ๐›ฝ 2 1 ๐‘– ๐›ฝ ๐‘— ๐‘— = ๐›ฟ ๐‘— ๐‘† ๐›ฝ + ๐›ฟ ๐‘—๐‘– ๐‘†ฮฑ โˆ’ ๐‘† ๐‘– โˆ’ ๐‘† ๐‘– ๐  ๐‘– โŠ— ๐  ๐‘— ฮฑ 2 ๐‘— = ๐›ฟ ๐‘—๐‘– ๐‘†ฮฑ โˆ’ ๐‘† ๐‘– ๐  ๐‘– โŠ— ๐  ๐‘— = ๐ผ1 ๐’ ๐Ÿ โˆ’ ๐’ ฮฑ Dept of Systems Engineering, University of Lagos 24 oafak@unilag.edu.ng 12/27/2012
  • 25. ๐œ•๐‘ฐ3 ๐’ ๐œ•det ๐’ ๏€ช = = ๐’๐œ ๐œ•๐’ ๐œ•๐’ ๏€ช the cofactor of ๐’. Clearly ๐’ ๐œ = det ๐’ ๐’โˆ’1 = ๐‘ฐ3 ๐’ ๐’โˆ’1 as required. Details of this for the contravariant components of a tensor is presented below. Let 1 ๐‘–๐‘—๐‘˜ ๐‘Ÿ๐‘ ๐‘ก ๐’ = ๐‘†= ๐‘’ ๐‘’ ๐‘† ๐‘–๐‘Ÿ ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก 3! Differentiating wrt ๐‘† ๐›ผ๐›ฝ , we obtain, ๐œ•๐‘† 1 ๐‘–๐‘—๐‘˜ ๐‘Ÿ๐‘ ๐‘ก ๐œ•๐‘† ๐‘–๐‘Ÿ ๐œ•๐‘† ๐‘—๐‘  ๐œ•๐‘† ๐‘˜๐‘ก ๐  โŠ— ๐  ๐›ฝ= ๐‘’ ๐‘’ ๐‘† ๐‘† + ๐‘† ๐‘–๐‘Ÿ ๐‘† + ๐‘† ๐‘–๐‘Ÿ ๐‘† ๐‘—๐‘  ๐  โŠ— ๐ ๐›ฝ ๐œ•๐‘† ๐›ผ๐›ฝ ๐›ผ 3! ๐œ•๐‘† ๐›ผ๐›ฝ ๐‘—๐‘  ๐‘˜๐‘ก ๐œ•๐‘† ๐›ผ๐›ฝ ๐‘˜๐‘ก ๐œ•๐‘† ๐›ผ๐›ฝ ๐›ผ 1 ๐‘–๐‘—๐‘˜ ๐‘Ÿ๐‘ ๐‘ก ๐›ผ ๐›ฝ ๐›ฝ ๐›ฝ = ๐‘’ ๐‘’ ๐›ฟ ๐‘– ๐›ฟ ๐‘Ÿ ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก + ๐‘† ๐‘–๐‘Ÿ ๐›ฟ ๐‘— ๐›ผ ๐›ฟ ๐‘  ๐‘† ๐‘˜๐‘ก + ๐‘† ๐‘–๐‘Ÿ ๐‘† ๐‘—๐‘  ๐›ฟ ๐‘˜๐›ผ ๐›ฟ ๐‘ก ๐  ๐›ผ โŠ— ๐  ๐›ฝ 3! 1 ๐›ผ๐‘—๐‘˜ ๐›ฝ๐‘ ๐‘ก = ๐‘’ ๐‘’ ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก + ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก + ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก ๐  ๐›ผ โŠ— ๐  ๐›ฝ 3! 1 ๐›ผ๐‘—๐‘˜ ๐›ฝ๐‘ ๐‘ก = ๐‘’ ๐‘’ ๐‘† ๐‘—๐‘  ๐‘† ๐‘˜๐‘ก ๐  ๐›ผ โŠ— ๐  ๐›ฝ โ‰ก ๐‘† c ๐›ผ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ 2! Which is the cofactor of ๐‘† ๐›ผ๐›ฝ Dept of Systems Engineering, University of Lagos 25 oafak@unilag.edu.ng 12/27/2012
  • 26. Real Tensor Functions Consider the function ๐‘“(๐‘บ) = tr ๐‘บ ๐‘˜ where ๐‘˜ โˆˆ โ„›, and ๐‘บ is a tensor. ๐‘“ ๐‘บ = tr ๐‘บ ๐‘˜ = ๐‘บ ๐‘˜ : ๐Ÿ To be specific, let ๐‘˜ = 3. Dept of Systems Engineering, University of Lagos 26 oafak@unilag.edu.ng 12/27/2012
  • 27. Real Tensor Functions The Gateaux differential in this case, ๐‘‘ ๐‘‘ 3 ๐ท๐‘“ ๐‘บ, ๐‘‘๐‘บ = ๐‘“ ๐‘บ + ๐›ผ๐‘‘๐‘บ = tr ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐›ผ ๐›ผ=0 ๐‘‘๐›ผ ๐›ผ=0 ๐‘‘ = tr ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐›ผ ๐›ผ=0 ๐‘‘ = tr ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐›ผ ๐›ผ=0 = tr ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ + ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ + ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐‘บ ๐›ผ=0 = tr ๐‘‘๐‘บ ๐‘บ ๐‘บ + ๐‘บ ๐‘‘๐‘บ ๐‘บ + ๐‘บ ๐‘บ ๐’…๐‘บ = 3 ๐‘บ2 T : ๐‘‘๐‘บ Dept of Systems Engineering, University of Lagos 27 oafak@unilag.edu.ng 12/27/2012
  • 28. Real Tensor Functions With the last equality coming from the definition of the Inner product while noting that a circular permutation does not alter the value of the trace. It is easy to establish inductively that in the most general case, for ๐‘˜ > 0, we have, ๐‘˜โˆ’1 T ๐ท๐‘“ ๐‘บ, ๐‘‘๐‘บ = ๐‘˜ ๐‘บ : ๐‘‘๐‘บ Clearly, ๐‘‘ T tr ๐‘บ ๐‘˜ = ๐‘˜ ๐‘บ ๐‘˜โˆ’1 ๐‘‘๐‘บ Dept of Systems Engineering, University of Lagos 28 oafak@unilag.edu.ng 12/27/2012
  • 29. Real Tensor Functions When ๐‘˜ = 1, ๐‘‘ ๐ท๐‘“ ๐‘บ, ๐‘‘๐‘บ = ๐‘“ ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐›ผ ๐›ผ=0 ๐‘‘ = tr ๐‘บ + ๐›ผ๐‘‘๐‘บ ๐‘‘๐›ผ ๐›ผ=0 = tr ๐Ÿ ๐‘‘๐‘บ = ๐Ÿ: ๐‘‘๐‘บ Or that, ๐‘‘ tr ๐‘บ = ๐Ÿ. ๐‘‘๐‘บ Dept of Systems Engineering, University of Lagos 29 oafak@unilag.edu.ng 12/27/2012
  • 30. Real Tensor Functions Derivatives of the other two invariants of the tensor ๐‘บ can be found as follows: ๐‘‘ ๐ผ2 (๐‘บ) ๐‘‘๐‘บ 1 ๐‘‘ = tr 2 ๐‘บ โˆ’ tr ๐‘บ2 2 ๐‘‘๐‘บ 1 = 2tr ๐‘บ ๐Ÿ โˆ’ 2 ๐‘บT = tr ๐‘บ ๐Ÿ โˆ’ ๐‘บT 2 . Dept of Systems Engineering, University of Lagos 30 oafak@unilag.edu.ng 12/27/2012
  • 31. Real Tensor Functions To Determine the derivative of the third invariant, we begin with the trace of the Cayley-Hamilton for ๐‘บ: tr ๐‘บ3 โˆ’ ๐ผ1 ๐‘บ2 + ๐ผ2 ๐‘บ โˆ’ ๐ผ3 ๐‘ฐ = tr(๐‘บ3 ) โˆ’ ๐ผ1 tr ๐‘บ2 + ๐ผ2 tr ๐‘บ โˆ’ 3๐ผ3 = 0 Therefore, 3๐ผ3 = tr(๐‘บ3 ) โˆ’ ๐ผ1 tr ๐‘บ2 + ๐ผ2 tr ๐‘บ 1 2 ๐ผ2 ๐‘บ = tr ๐‘บ โˆ’ tr ๐‘บ2 2 . Dept of Systems Engineering, University of Lagos 31 oafak@unilag.edu.ng 12/27/2012
  • 32. Differentiating the Invariants We can therefore write, 3๐ผ3 ๐‘บ = tr(๐‘บ3 ) โˆ’ tr ๐‘บ tr ๐‘บ2 1 2 + tr ๐‘บ โˆ’ tr ๐‘บ2 tr ๐‘บ 2 so that, in terms of traces only, 1 3 ๐ผ3 ๐‘บ = tr ๐‘บ โˆ’ 3tr ๐‘บ tr ๐‘บ2 + 2tr(๐‘บ3 ) 6 Dept of Systems Engineering, University of Lagos 32 oafak@unilag.edu.ng 12/27/2012
  • 33. Real Tensor Functions Clearly, ๐‘‘๐ผ3 (๐‘บ) 1 = 3tr 2 ๐‘บ ๐Ÿ โˆ’ 3tr ๐‘บ2 โˆ’ 3tr ๐‘บ 2๐‘บ ๐‘‡ + 2 ร— 3 ๐‘บ2 ๐‘‡ ๐‘‘๐‘บ 6 = ๐ผ2 ๐Ÿ โˆ’ tr ๐‘บ ๐‘บ ๐‘‡ + ๐‘บ2๐‘‡ Dept of Systems Engineering, University of Lagos 33 oafak@unilag.edu.ng 12/27/2012
  • 34. Real Tensor Functions . Dept of Systems Engineering, University of Lagos 34 oafak@unilag.edu.ng 12/27/2012
  • 35. The Euclidean Point Space In Classical Theory, the world is a Euclidean Point Space of dimension three. We shall define this concept now and consequently give specific meanings to related concepts such as ๏‚ง Frames of Reference, ๏‚ง Coordinate Systems and ๏‚ง Global Charts Dept of Systems Engineering, University of Lagos 35 oafak@unilag.edu.ng 12/27/2012
  • 36. The Euclidean Point Space ๏‚ง Scalars, Vectors and Tensors we will deal with in general vary from point to point in the material. They are therefore to be regarded as functions of position in the physical space occupied. ๏‚ง Such functions, associated with positions in the Euclidean point space, are called fields. ๏‚ง We will therefore be dealing with scalar, vector and tensor fields. Dept of Systems Engineering, University of Lagos 36 oafak@unilag.edu.ng 12/27/2012
  • 37. The Euclidean Point Space ๏€ช The Euclidean Point Space โ„ฐ is a set of elements called points. For each pair of points ๐’™, ๐’š โˆˆ โ„ฐ, โˆƒ ๐’– ๐’™, ๐’š โˆˆ E with the following two properties: 1. ๐’– ๐’™, ๐’š = ๐’– ๐’™, ๐’› + ๐’– ๐’›, ๐’š โˆ€๐’™, ๐’š, ๐’› โˆˆ โ„ฐ 2. ๐’– ๐’™, ๐’š = ๐’– ๐’™, ๐’› โ‡” ๐’š = ๐’› Based on these two, we proceed to show that, ๐’– ๐’™, ๐’™ = ๐ŸŽ And that, ๐’– ๐’™, ๐’› = โˆ’๐’– ๐’›, ๐’™ Dept of Systems Engineering, University of Lagos 37 oafak@unilag.edu.ng 12/27/2012
  • 38. The Euclidean Point Space From property 1, let ๐’š โ†’ ๐’™ it is clear that, ๐’– ๐’™, ๐’™ = ๐’– ๐’™, ๐’› + ๐’– ๐’›, ๐’™ And it we further allow ๐’› โ†’ ๐’™, we find that, ๐’– ๐’™, ๐’™ = ๐’– ๐’™, ๐’™ + ๐’– ๐’™, ๐’™ = 2๐’– ๐’™, ๐’™ Which clearly shows that ๐’– ๐’™, ๐’™ = ๐’ the zero vector. Similarly, from the above, we find that, ๐’– ๐’™, ๐’™ = ๐’ = ๐’– ๐’™, ๐’› + ๐’– ๐’›, ๐’™ So that ๐’– ๐’™, ๐’› = โˆ’๐’– ๐’›, ๐’™ Dept of Systems Engineering, University of Lagos 38 oafak@unilag.edu.ng 12/27/2012
  • 39. Dept of Systems Engineering, University of Lagos 39 oafak@unilag.edu.ng 12/27/2012
  • 40. Coordinate System Dept of Systems Engineering, University of Lagos 40 oafak@unilag.edu.ng 12/27/2012
  • 41. Coordinate System Dept of Systems Engineering, University of Lagos 41 oafak@unilag.edu.ng 12/27/2012
  • 42. Position Vectors Note that โ„ฐ is NOT a vector space. In our discussion, the vector space E to which ๐’– belongs, is associated as we have shown. It is customary to oscillate between these two spaces. When we are talking about the vectors, they are in E while the points are in โ„ฐ. We adopt the convention that ๐’™ ๐’š โ‰ก ๐’– ๐’™, ๐’š referring to the vector ๐’–. If therefore we choose an arbitrarily fixed point ๐ŸŽ โˆˆ โ„ฐ, we are associating ๐’™ ๐ŸŽ , ๐’š ๐ŸŽ and ๐’› ๐ŸŽ respectively with ๐’– ๐’™, ๐ŸŽ , ๐’– ๐’š, ๐ŸŽ and ๐’– ๐’›, ๐ŸŽ . These are vectors based on the points ๐’™, ๐’š and ๐’› with reference to the origin chosen. To emphasize the association with both points of โ„ฐ as well as members of E they are called Position Vectors. Dept of Systems Engineering, University of Lagos 42 oafak@unilag.edu.ng 12/27/2012
  • 43. Length in the Point Space Recall that by property 1, ๐’™ ๐’š โ‰ก ๐’– ๐’™, ๐’š = ๐’– ๐’™, ๐ŸŽ + ๐’– ๐ŸŽ, ๐’š Furthermore, we have deduced that ๐’– ๐ŸŽ, ๐’š = โˆ’๐’–(๐’š, ๐ŸŽ) We may therefore write that, ๐’™ ๐’š = ๐’™ ๐ŸŽ โˆ’ ๐’š(๐ŸŽ) Which, when there is no ambiguity concerning the chosen origin, we can write as, ๐’™ ๐’š = ๐’™โˆ’ ๐’š And the distance between the two is, ๐’… ๐’™ ๐’š = ๐’… ๐’™โˆ’ ๐’š = ๐’™โˆ’ ๐’š Dept of Systems Engineering, University of Lagos 43 oafak@unilag.edu.ng 12/27/2012
  • 44. Metric Properties ๏€ช The norm of a vector is the square root of the inner product of the vector with itself. If the coordinates of ๐’™ and ๐’š on a set of independent vectors are ๐‘ฅ ๐‘– and ๐‘ฆ ๐‘– , then the distance we seek is, ๐’… ๐’™โˆ’ ๐’š = ๐’™โˆ’ ๐’š = ๐‘” ๐‘–๐‘— (๐‘ฅ ๐‘– โˆ’ ๐‘ฆ ๐‘– )(๐‘ฅ ๐‘— โˆ’ ๐‘ฆ ๐‘— ) The more familiar Pythagorean form occurring only when ๐‘” ๐‘–๐‘— = 1. Dept of Systems Engineering, University of Lagos 44 oafak@unilag.edu.ng 12/27/2012
  • 45. Coordinate Transformations ๏€ช Consider a Cartesian coordinate system ๐‘ฅ, ๐‘ฆ, ๐‘ง or ๐‘ฆ1 , ๐‘ฆ 2 and ๐‘ฆ 3 with an orthogonal basis. Let us now have the possibility of transforming to another coordinate system of an arbitrary nature: ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 . We can represent the transformation and its inverse in the equations: ๏€ช ๐‘ฆ ๐‘– = ๐‘ฆ ๐‘– ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 , ๐‘ฅ ๐‘– = ๐‘ฅ ๐‘– (๐‘ฆ1 , ๐‘ฆ 2 , ๐‘ฆ 3 ) ๏€ช And if the Jacobian of transformation, Dept of Systems Engineering, University of Lagos 45 oafak@unilag.edu.ng 12/27/2012
  • 46. Jacobian Determinant ๐œ•๐‘ฆ1 ๐œ•๐‘ฆ1 ๐œ•๐‘ฆ1 ๐œ•๐‘ฅ 1 ๐œ•๐‘ฅ 2 ๐œ•๐‘ฅ 3 ๐œ•๐‘ฆ ๐‘– ๐œ• ๐‘ฆ1 , ๐‘ฆ 2 , ๐‘ฆ 3 ๐œ•๐‘ฆ 2 ๐œ•๐‘ฆ 2 ๐œ•๐‘ฆ 2 ๐‘— โ‰ก 1, ๐‘ฅ2, ๐‘ฅ3 โ‰ก ๐œ•๐‘ฅ ๐œ• ๐‘ฅ ๐œ•๐‘ฅ 1 ๐œ•๐‘ฅ 2 ๐œ•๐‘ฅ 3 ๐œ•๐‘ฆ 3 ๐œ•๐‘ฆ 3 ๐œ•๐‘ฆ 3 ๐œ•๐‘ฅ 1 ๐œ•๐‘ฅ 2 ๐œ•๐‘ฅ 3 does not vanish, then the inverse transformation will exist. So that, ๐‘ฅ ๐‘– = ๐‘ฅ ๐‘– (๐‘ฆ1 , ๐‘ฆ 2 , ๐‘ฆ 3 ) Dept of Systems Engineering, University of Lagos 46 oafak@unilag.edu.ng 12/27/2012
  • 47. Given a position vector ๐ซ = ๐ซ(๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 ) ๏€ช In the new coordinate system, we can form a set of three vectors, ๐œ•๐ซ ๐ ๐‘– = ๐‘– , ๐‘– = 1,2,3 ๐œ•๐‘ฅ Which represent vectors along the tangents to the coordinate lines. (This is easily established for the Cartesian system and it is true in all systems. ๐ซ = ๐ซ ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 = ๐‘ฆ1 ๐ข + ๐‘ฆ2 ๐ฃ + ๐‘ฆ3 ๐ค So that ๐œ•๐ซ ๐œ•๐ซ ๐œ•๐ซ ๐ข = 1 , ๐ฃ = 2 and ๐ค = 3 ๐œ•๐‘ฆ ๐œ•๐‘ฆ ๐œ•๐‘ฆ The fact that this is true in the general case is easily seen when we consider that along those lines, only the variable we are differentiating with respect to varies. Consider the general case where, ๐ซ = ๐ซ ๐‘ฅ1 , ๐‘ฅ 2 , ๐‘ฅ 3 The total differential of ๐ซ is simply, Dept of Systems Engineering, University of Lagos 47 oafak@unilag.edu.ng 12/27/2012
  • 48. Natural Dual Bases ๐œ•๐ซ 1+ ๐œ•๐ซ 2+ ๐œ•๐ซ ๐‘‘๐ซ = 1 ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ 3 ๐œ•๐‘ฅ ๐œ•๐‘ฅ 2 ๐œ•๐‘ฅ 3 โ‰ก ๐‘‘๐‘ฅ 1 ๐ 1 + ๐‘‘๐‘ฅ 2 ๐  2 + ๐‘‘๐‘ฅ 3 ๐  3 With ๐  ๐‘– ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 , ๐‘– = 1,2,3 now depending in general on ๐‘ฅ 1 , ๐‘ฅ 2 and ๐‘ฅ 3 now forming a basis on which we can describe other vectors in the coordinate system. We have no guarantees that this vectors are unit in length nor that they are orthogonal to one another. In the Cartesian case, ๐  ๐‘– , ๐‘– = 1,2,3 are constants, normalized and orthogonal. They are our familiar ๐œ•๐ซ ๐œ•๐ซ ๐œ•๐ซ ๐ข = 1 , ๐ฃ = 2 and ๐ค = 3 . ๐œ•๐‘ฆ ๐œ•๐‘ฆ ๐œ•๐‘ฆ Dept of Systems Engineering, University of Lagos 48 oafak@unilag.edu.ng 12/27/2012
  • 49. We now proceed to show that the set of basis vectors, ๐  ๐‘– โ‰ก ๐›ป๐‘ฅ ๐‘– is reciprocal to ๐  ๐‘– . The total differential ๐‘‘๐ซ can be written in terms of partial differentials as, ๐œ•๐ซ ๐‘‘๐ซ = ๐‘‘๐‘ฆ ๐‘– ๐œ•๐‘ฆ ๐‘– Which when expressed in component form yields, ๐œ•๐‘ฅ 1 1 ๐œ•๐‘ฅ 1 2 ๐œ•๐‘ฅ 1 3 ๐‘‘๐‘ฅ 1 = 1 ๐‘‘๐‘ฆ + 2 ๐‘‘๐‘ฆ + 3 ๐‘‘๐‘ฆ ๐œ•๐‘ฆ ๐œ•๐‘ฆ ๐œ•๐‘ฆ ๐œ•๐‘ฅ 2 1 ๐œ•๐‘ฅ 2 2 ๐œ•๐‘ฅ 2 3 ๐‘‘๐‘ฅ 2 = 1 ๐‘‘๐‘ฆ + 2 ๐‘‘๐‘ฆ + 3 ๐‘‘๐‘ฆ ๐œ•๐‘ฆ ๐œ•๐‘ฆ ๐œ•๐‘ฆ ๐œ•๐‘ฅ 3 1 ๐œ•๐‘ฅ 3 2 ๐œ•๐‘ฅ 3 3 ๐‘‘๐‘ฅ 3 = 1 ๐‘‘๐‘ฆ + 2 ๐‘‘๐‘ฆ + 3 ๐‘‘๐‘ฆ ๐œ•๐‘ฆ ๐œ•๐‘ฆ ๐œ•๐‘ฆ Or, more compactly that, ๐‘— = ๐œ•๐‘ฅ ๐‘— ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ ๐‘– = ๐›ป๐‘ฅ ๐‘— โ‹… ๐‘‘๐ซ ๐œ•๐‘ฆ ๐‘– Dept of Systems Engineering, University of Lagos 49 oafak@unilag.edu.ng 12/27/2012
  • 50. In Cartesian coordinates, ๐‘ฆ ๐‘– , ๐‘– = 1, . . , 3 for any scalar field ๐œ™ (๐‘ฆ1 , ๐‘ฆ 2 , ๐‘ฆ 3 ), ๐œ•๐œ™ ๐‘– = ๐œ•๐œ™ ๐œ•๐œ™ ๐œ•๐œ™ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + ๐‘‘๐‘ฆ + ๐‘‘๐‘ง = grad ๐œ™ โ‹… ๐‘‘๐ซ ๐œ•๐‘ฆ ๐‘– ๐œ•๐‘ฅ ๐œ•๐‘ฆ ๐œ•๐‘ง We are treating each curvilinear coordinate as a scalar field, ๐‘ฅ ๐‘— = ๐‘ฅ ๐‘— (๐‘ฆ1 , ๐‘ฆ 2 , ๐‘ฆ 3 ). ๐‘— = ๐›ป๐‘ฅ ๐‘— โ‹… ๐œ•๐ซ ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘š ๐œ•๐‘ฅ ๐‘š = ๐  ๐‘— โ‹… ๐  ๐‘š ๐‘‘๐‘ฅ ๐‘š ๐‘— = ๐›ฟ ๐‘š ๐‘‘๐‘ฅ ๐‘š . The last equality arises from the fact that this is the only way one component of the coordinate differential can equal another. ๐‘— โ‡’ ๐ ๐‘— โ‹… ๐  ๐‘š = ๐›ฟ ๐‘š Which recovers for us the reciprocity relationship and shows that ๐  ๐‘— and ๐  ๐‘š are reciprocal systems. Dept of Systems Engineering, University of Lagos 50 oafak@unilag.edu.ng 12/27/2012
  • 51. The position vector in Cartesian coordinates is ๐’“ = ๐’™ ๐’Š ๐’† ๐’Š. Show that (a) ๐๐ข๐ฏ ๐’“ = ๐Ÿ‘, (b) ๐๐ข๐ฏ ๐’“ โŠ— ๐’“ = ๐Ÿ’๐’“, (c) ๐๐ข๐ฏ ๐’“ = ๐Ÿ‘, and (d) ๐ ๐ซ๐š๐ ๐’“ = ๐Ÿ and (e) ๐œ๐ฎ๐ซ๐ฅ ๐’“ โŠ— ๐’“ = โˆ’๐’“ ร— grad ๐’“ = ๐‘ฅ ๐‘– , ๐’‹ ๐’† ๐‘– โŠ— ๐’† ๐’‹ = ๐›ฟ ๐‘–๐‘— ๐’† ๐‘– โŠ— ๐’† ๐’‹ = ๐Ÿ div ๐’“ = ๐‘ฅ ๐‘– , ๐’‹ ๐’† ๐‘– โ‹… ๐’† ๐’‹ = ๐›ฟ ๐‘–๐‘— ๐›ฟ ๐‘–๐‘— = ๐›ฟ ๐‘—๐‘— = 3. ๐’“ โŠ— ๐’“ = ๐‘ฅ ๐‘– ๐’† ๐‘– โŠ— ๐‘ฅ๐‘— ๐’†๐‘— = ๐‘ฅ ๐‘– ๐‘ฅ๐‘— ๐’† ๐‘– โŠ— ๐’† ๐’‹ grad ๐’“ โŠ— ๐’“ = ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— , ๐‘˜ ๐’† ๐‘– โŠ— ๐’† ๐’‹ โŠ— ๐’† ๐’Œ div ๐’“ โŠ— ๐’“ = ๐‘ฅ ๐‘– , ๐‘˜ ๐‘ฅ ๐‘— + ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— , ๐‘˜ ๐’† ๐‘– โŠ— ๐’† ๐’‹ โ‹… ๐’† ๐’Œ = ๐›ฟ ๐‘–๐‘˜ ๐’™ ๐’‹ + ๐’™ ๐’Š ๐›ฟ ๐‘—๐‘˜ ๐›ฟ ๐‘—๐‘˜ ๐’† ๐‘– = ๐›ฟ ๐‘–๐‘˜ ๐’™ ๐’Œ + ๐’™ ๐’Š ๐›ฟ ๐‘—๐‘— ๐’† ๐‘– = 4๐‘ฅ ๐‘– ๐’† ๐‘– = 4๐’“ curl ๐’“ โŠ— ๐’“ = ๐œ– ๐›ผ๐›ฝ๐›พ ๐‘ฅ ๐‘– ๐‘ฅ ๐›พ , ๐›ฝ ๐’† ๐›ผ โŠ— ๐’† ๐’Š = ๐œ– ๐›ผ๐›ฝ๐›พ ๐‘ฅ ๐‘– , ๐›ฝ ๐‘ฅ ๐›พ + ๐‘ฅ ๐‘– ๐‘ฅ ๐›พ , ๐›ฝ ๐’† ๐›ผ โŠ— ๐’† ๐’Š = ๐œ– ๐›ผ๐›ฝ๐›พ ๐›ฟ ๐‘–๐›ฝ ๐‘ฅ ๐›พ + ๐‘ฅ ๐‘– ๐›ฟ ๐›พ๐›ฝ ๐’† ๐›ผ โŠ— ๐’† ๐’Š = ๐œ– ๐›ผ๐‘–๐›พ ๐‘ฅ ๐›พ ๐’† ๐›ผ โŠ— ๐’† ๐’Š + ๐œ– ๐›ผ๐›ฝ๐›ฝ ๐‘ฅ ๐‘– ๐’† ๐›ผ โŠ— ๐’† ๐’Š = โˆ’๐œ– ๐›ผ๐›พ๐‘– ๐‘ฅ ๐›พ ๐’† ๐›ผ โŠ— ๐’† ๐’Š = โˆ’๐’“ ร— Dept of Systems Engineering, University of Lagos 51 oafak@unilag.edu.ng 12/27/2012
  • 52. For a scalar field ๐“ and a tensor field ๐“ show that ๐ ๐ซ๐š๐ ๐“๐“ = ๐“๐ ๐ซ๐š๐ ๐“ + ๐“ โŠ— ๐ ๐ซ๐š๐๐“. Also show that ๐๐ข๐ฏ ๐“๐“ = ๐“ ๐๐ข๐ฏ ๐“ + ๐“๐ ๐ซ๐š๐๐“. grad ๐œ™๐“ = ๐œ™๐‘‡ ๐‘–๐‘— , ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— โŠ— ๐  ๐‘˜ = ๐œ™, ๐‘˜ ๐‘‡ ๐‘–๐‘— + ๐œ™๐‘‡ ๐‘–๐‘— , ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— โŠ— ๐  ๐‘˜ = ๐“ โŠ— grad๐œ™ + ๐œ™grad ๐“ Furthermore, we can contract the last two bases and obtain, div ๐œ™๐“ = ๐œ™, ๐‘˜ ๐‘‡ ๐‘–๐‘— + ๐œ™๐‘‡ ๐‘–๐‘— , ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— โ‹… ๐  ๐‘˜ = ๐œ™, ๐‘˜ ๐‘‡ ๐‘–๐‘— + ๐œ™๐‘‡ ๐‘–๐‘— , ๐‘˜ ๐  ๐‘– ๐›ฟ ๐‘— ๐‘˜ = ๐‘‡ ๐‘–๐‘˜ ๐œ™, ๐‘˜ ๐  ๐‘– + ๐œ™๐‘‡ ๐‘–๐‘˜ , ๐‘˜ ๐  ๐‘– = ๐“grad๐œ™ + ๐œ™ div ๐“ Dept of Systems Engineering, University of Lagos 52 oafak@unilag.edu.ng 12/27/2012
  • 53. ๏€ช For two arbitrary vectors, ๐’– and ๐’—, show that ๐ ๐ซ๐š๐ ๐’– โŠ— ๐’— = ๐’– ร— ๐ ๐ซ๐š๐๐’— โˆ’ ๐’— ร— ๐ ๐ซ๐š๐๐’– ๏€ช grad ๐’– โŠ— ๐’— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ , ๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘™ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘™ ๐‘ฃ ๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ , ๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘™ = ๐‘ข ๐‘— , ๐‘™ ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ ๐‘˜ + ๐‘ฃ ๐‘˜ , ๐‘™ ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐  ๐‘– โŠ— ๐  ๐‘™ = โˆ’ ๐’— ร— grad๐’– + ๐’– ร— grad๐’— Dept of Systems Engineering, University of Lagos 53 oafak@unilag.edu.ng 12/27/2012
  • 54. For any two tensor fields ๐ฎ and ๐ฏ, Show that, ๐ฎ ร— : grad ๐ฏ = ๐ฎ โ‹… curl ๐ฏ ๐ฎ ร— : grad ๐ฏ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐  ๐‘– โŠ— ๐  ๐‘˜ : ๐‘ฃ ๐›ผ , ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐›ผ , ๐›ฝ ๐  ๐‘– โ‹… ๐  ๐›ผ ๐  ๐‘˜ โ‹… ๐  ๐›ฝ ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐›ผ , ๐›ฝ ๐›ฟ ๐‘– ๐›ผ ๐›ฟ ๐‘˜ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘– , ๐‘˜ = ๐ฎ โ‹… curl ๐ฏ Dept of Systems Engineering, University of Lagos 54 oafak@unilag.edu.ng 12/27/2012
  • 55. For a vector field ๐’–, show that ๐ ๐ซ๐š๐ ๐’– ร— is a third ranked tensor. Hence or otherwise show that ๐๐ข๐ฏ ๐’– ร— = โˆ’๐œ๐ฎ๐ซ๐ฅ ๐’–. The secondโ€“order tensor ๐’– ร— is defined as ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐  ๐‘– โŠ— ๐  ๐‘˜ . Taking the covariant derivative with an independent base, we have grad ๐’– ร— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘˜ โŠ— ๐  ๐‘™ This gives a third order tensor as we have seen. Contracting on the last two bases, div ๐’– ร— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘™ ๐  ๐‘– โŠ— ๐  ๐‘˜ โ‹… ๐  ๐‘™ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘™ ๐  ๐‘– ๐›ฟ ๐‘™๐‘˜ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘˜ ๐  ๐‘– = โˆ’curl ๐’– Dept of Systems Engineering, University of Lagos 55 oafak@unilag.edu.ng 12/27/2012
  • 56. Show that ๐œ๐ฎ๐ซ๐ฅ ๐œ™๐Ÿ = grad ๐œ™ ร— Note that ๐œ™๐Ÿ = ๐œ™๐‘” ๐›ผ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ , and that curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ so that, curl ๐œ™๐Ÿ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™๐‘” ๐›ผ๐‘˜ , ๐’‹ ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐’‹ ๐‘” ๐›ผ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐’‹ ๐  ๐‘– โŠ— ๐  ๐‘˜ = grad ๐œ™ ร— Show that curl ๐’— ร— = div ๐’— ๐Ÿ โˆ’ grad ๐’— ๐’— ร— = ๐œ– ๐›ผ๐›ฝ๐‘˜ ๐‘ฃ ๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐‘˜ curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ so that curl ๐’— ร— = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐›ผ๐›ฝ๐‘˜ ๐‘ฃ ๐›ฝ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐‘” ๐‘–๐›ผ ๐‘” ๐‘—๐›ฝ โˆ’ ๐‘” ๐‘–๐›ฝ ๐‘” ๐‘—๐›ผ ๐‘ฃ ๐›ฝ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐‘ฃ ๐‘—, ๐‘— ๐  ๐›ผ โŠ— ๐  ๐›ผ โˆ’ ๐‘ฃ ๐‘–, ๐‘— ๐  ๐‘– โŠ— ๐  ๐‘— = div ๐’— ๐Ÿ โˆ’ grad ๐’— Dept of Systems Engineering, University of Lagos 56 oafak@unilag.edu.ng 12/27/2012
  • 57. Show that ๐๐ข๐ฏ ๐’– ร— ๐’— = ๐’— โ‹… ๐œ๐ฎ๐ซ๐ฅ ๐’– โˆ’ ๐’– โ‹… ๐œ๐ฎ๐ซ๐ฅ ๐’— div ๐’– ร— ๐’— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ , ๐‘– Noting that the tensor ๐œ– ๐‘–๐‘—๐‘˜ behaves as a constant under a covariant differentiation, we can write, div ๐’– ร— ๐’— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ , ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— , ๐‘– ๐‘ฃ ๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ , ๐‘– = ๐’— โ‹… curl ๐’– โˆ’ ๐’– โ‹… curl ๐’— Given a scalar point function ฯ• and a vector field ๐ฏ, show that ๐œ๐ฎ๐ซ๐ฅ ๐œ™๐ฏ = ๐œ™ curl ๐ฏ + grad๐œ™ ร— ๐ฏ. curl ๐œ™๐ฏ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐‘ฃ ๐‘˜ + ๐œ™๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐‘ฃ ๐‘˜ ๐  ๐‘– + ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– = grad๐œ™ ร— ๐ฏ + ๐œ™ curl ๐ฏ Dept of Systems Engineering, University of Lagos 57 oafak@unilag.edu.ng 12/27/2012
  • 58. ๐€ Given that ๐œ‘ ๐‘ก = ๐€(๐‘ก) , Show that ๐œ‘ ๐‘ก = : ๐€ ๐€ ๐‘ก ๐œ‘2 โ‰ก ๐€: ๐€ Now, ๐‘‘ 2 = 2๐œ‘ ๐‘‘๐œ‘ ๐‘‘๐€ ๐‘‘๐€ ๐‘‘๐€ ๐œ‘ = : ๐€ + ๐€: = 2๐€: ๐‘‘๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ก as inner product is commutative. We can therefore write that ๐‘‘๐œ‘ ๐€ ๐‘‘๐€ ๐€ = : = : ๐€ ๐‘‘๐‘ก ๐œ‘ ๐‘‘๐‘ก ๐€ ๐‘ก as required. Dept of Systems Engineering, University of Lagos 58 oafak@unilag.edu.ng 12/27/2012
  • 59. Given a tensor field ๐‘ป, obtain the vector ๐’˜ โ‰ก ๐‘ป ๐“ ๐ฏ and show that its divergence is ๐‘ป: ๐›๐ฏ + ๐ฏ โ‹… ๐๐ข๐ฏ ๐‘ป The divergence of ๐’˜ is the scalar sum , ๐‘‡๐‘—๐‘– ๐‘ฃ ๐‘— , ๐‘– . Expanding the product covariant derivative we obtain, div ๐‘ปT ๐ฏ = ๐‘‡๐‘—๐‘– ๐‘ฃ ๐‘— , ๐‘– = ๐‘‡๐‘—๐‘– , ๐‘– ๐‘ฃ ๐‘— + ๐‘‡๐‘—๐‘– ๐‘ฃ ๐‘— , ๐‘– = div ๐‘ป โ‹… ๐ฏ + tr ๐‘ปT grad๐ฏ = div ๐‘ป โ‹… ๐ฏ + ๐‘ป: grad ๐ฏ Recall that scalar product of two vectors is commutative so that div ๐‘ปT ๐ฏ = ๐‘ป: grad๐ฏ + ๐ฏ โ‹… div ๐‘ป Dept of Systems Engineering, University of Lagos 59 oafak@unilag.edu.ng 12/27/2012
  • 60. For a second-order tensor ๐‘ป define curl ๐‘ป โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ป ๐›ผ๐‘˜ , ๐‘— ๐  ๐’Š โŠ— ๐  ๐œถ show that for any constant vector ๐’‚, curl ๐‘ป ๐’‚ = curl ๐‘ป ๐‘ป ๐’‚ Express vector ๐’‚ in the invariant form with contravariant components as ๐’‚ = ๐‘Ž ๐›ฝ ๐  ๐›ฝ . It follows that curl ๐‘ป ๐’‚ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ ๐’‚ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐‘Ž ๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ ๐  ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐‘Ž ๐›ฝ ๐  ๐‘– ๐›ฟ ๐›ฝ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– ๐‘Ž ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ ๐‘Ž ๐›ผ , ๐‘— ๐  ๐‘– The last equality resulting from the fact that vector ๐’‚ is a constant vector. Clearly, curl ๐‘ป ๐’‚ = curl ๐‘ป ๐‘‡ ๐’‚ Dept of Systems Engineering, University of Lagos 60 oafak@unilag.edu.ng 12/27/2012
  • 61. For any two vectors ๐ฎ and ๐ฏ, show that curl ๐ฎ โŠ— ๐ฏ = grad ๐ฎ ๐ฏ ร— ๐‘ป + curl ๐ฏ โŠ— ๐’– where ๐ฏ ร— is the skew tensor ๐œ– ๐‘–๐‘˜๐‘— ๐‘ฃ ๐‘˜ ๐  ๐’Š โŠ— ๐  ๐’‹ . Recall that the curl of a tensor ๐‘ป is defined by curl ๐‘ป โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ . Clearly therefore, curl ๐’– โŠ— ๐’— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐›ผ ๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐›ผ , ๐‘— ๐‘ฃ ๐‘˜ + ๐‘ข ๐›ผ ๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐›ผ , ๐‘— ๐‘ฃ ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐›ผ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐›ผ ๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ ๐‘˜ ๐  ๐‘– โŠ— ๐‘ข ๐›ผ , ๐‘— ๐  ๐›ผ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐‘ข ๐›ผ ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐‘— ๐‘ข ๐›ผ , ๐›ฝ ๐  ๐›ฝ โŠ— ๐  ๐›ผ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ฃ ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐‘ข ๐›ผ ๐  ๐›ผ = โˆ’ ๐’— ร— grad ๐’– ๐‘ป + curl ๐’— โŠ— ๐’– = grad ๐’– ๐’— ร— ๐‘ป + curl ๐’— โŠ— ๐’– upon noting that the vector cross is a skew tensor. Dept of Systems Engineering, University of Lagos 61 oafak@unilag.edu.ng 12/27/2012
  • 62. Show that curl ๐’– ร— ๐’— = div ๐’– โŠ— ๐’— โˆ’ ๐’— โŠ— ๐’– The vector ๐’˜ โ‰ก ๐’– ร— ๐’— = ๐‘ค ๐’Œ ๐  ๐’Œ = ๐œ– ๐‘˜๐›ผ๐›ฝ ๐‘ข ๐›ผ ๐‘ฃ ๐›ฝ ๐  ๐’Œ and curl ๐’˜ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ค ๐‘˜ , ๐‘— ๐  ๐‘– . Therefore, curl ๐’– ร— ๐’— = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ค ๐‘˜ , ๐‘— ๐  ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐‘˜๐›ผ๐›ฝ ๐‘ข ๐›ผ ๐‘ฃ ๐›ฝ , ๐‘— ๐  ๐‘– ๐‘— ๐‘– ๐‘— = ๐›ฟ ๐‘–๐›ผ ๐›ฟ ๐›ฝ โˆ’ ๐›ฟ ๐›ฝ ๐›ฟ ๐›ผ ๐‘ข๐›ผ๐‘ฃ ๐›ฝ ,๐‘— ๐ ๐‘– ๐‘— ๐‘– ๐‘— = ๐›ฟ ๐‘–๐›ผ ๐›ฟ ๐›ฝ โˆ’ ๐›ฟ ๐›ฝ ๐›ฟ ๐›ผ ๐‘ข ๐›ผ, ๐‘— ๐‘ฃ ๐›ฝ + ๐‘ข ๐›ผ ๐‘ฃ ๐›ฝ, ๐‘— ๐  ๐‘– = ๐‘ข ๐‘–, ๐‘— ๐‘ฃ ๐‘— + ๐‘ข ๐‘– ๐‘ฃ ๐‘—, ๐‘— โˆ’ ๐‘ข ๐‘—, ๐‘— ๐‘ฃ ๐‘– + ๐‘ข ๐‘— ๐‘ฃ ๐‘–, ๐‘— ๐ ๐‘– = ๐‘ข๐‘– ๐‘ฃ ๐‘— ,๐‘— โˆ’ ๐‘ข ๐‘— ๐‘ฃ๐‘– ,๐‘— ๐ ๐‘– = div ๐’– โŠ— ๐’— โˆ’ ๐’— โŠ— ๐’– since div ๐’– โŠ— ๐’— = ๐‘ข๐‘– ๐‘ฃ ๐‘— , ๐›ผ ๐ ๐‘– โŠ— ๐  ๐‘— โ‹… ๐  ๐›ผ = ๐‘ข ๐‘– ๐‘ฃ ๐‘— , ๐‘— ๐  ๐‘–. Dept of Systems Engineering, University of Lagos 62 oafak@unilag.edu.ng 12/27/2012
  • 63. Given a scalar point function ๐œ™ and a second-order tensor field ๐‘ป, show that ๐œ๐ฎ๐ซ๐ฅ ๐œ™๐‘ป = ๐œ™ ๐œ๐ฎ๐ซ๐ฅ ๐‘ป + grad๐œ™ ร— ๐‘ป ๐‘ป where grad๐œ™ ร— is the skew tensor ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐  ๐’Š โŠ— ๐  ๐’Œ curl ๐œ™๐‘ป โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐‘‡ ๐›ผ๐‘˜ + ๐œ™๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐‘‡ ๐›ผ๐‘˜ ๐  ๐‘– โŠ— ๐  ๐›ผ + ๐œ™๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ™, ๐‘— ๐  ๐‘– โŠ— ๐  ๐‘˜ ๐‘‡ ๐›ผ๐›ฝ ๐  ๐›ฝ โŠ— ๐  ๐›ผ + ๐œ™๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐œ™ curl ๐‘ป + grad๐œ™ ร— ๐‘ป ๐‘‡ Dept of Systems Engineering, University of Lagos 63 oafak@unilag.edu.ng 12/27/2012
  • 64. For a second-order tensor field ๐‘ป, show that div curl ๐‘ป = curl div ๐‘ป ๐“ Define the second order tensor ๐‘† as curl ๐‘ป โ‰ก ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ = ๐‘†.๐›ผ ๐  ๐‘– โŠ— ๐  ๐›ผ ๐‘– The gradient of ๐‘บ is ๐‘†.๐›ผ , ๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ โŠ— ๐  ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘—๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐‘– Clearly, div curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘—๐›ฝ ๐  ๐‘– โŠ— ๐  ๐›ผ โ‹… ๐  ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ผ๐‘˜ , ๐‘—๐›ฝ ๐  ๐‘– ๐‘” ๐›ผ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ฝ ๐‘˜ , ๐‘—๐›ฝ ๐  ๐‘– = curl div ๐‘ปT Dept of Systems Engineering, University of Lagos 64 oafak@unilag.edu.ng 12/27/2012
  • 65. If the volume ๐‘ฝ is enclosed by the surface ๐‘บ, the position vector ๐’“ = ๐’™ ๐’Š ๐  ๐’Š and ๐’ is the external unit normal to each surface ๐Ÿ element, show that ๐‘บ ๐› ๐’“ โ‹… ๐’“ โ‹… ๐’๐’…๐‘บ equals the volume ๐Ÿ” contained in ๐‘ฝ. ๐’“ โ‹… ๐’“ = ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— ๐  ๐‘– โ‹… ๐  ๐‘— = ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— ๐‘” ๐‘–๐‘— By the Divergence Theorem, ๐›ป ๐’“ โ‹… ๐’“ โ‹… ๐’๐‘‘๐‘† = ๐›ปโ‹… ๐›ป ๐’“โ‹… ๐’“ ๐‘‘๐‘‰ ๐‘† ๐‘‰ = ๐œ• ๐‘™ ๐œ• ๐‘˜ ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— ๐‘” ๐‘–๐‘— ๐  ๐‘™ โ‹… ๐  ๐‘˜ ๐‘‘๐‘‰ ๐‘‰ = ๐œ• ๐‘™ ๐‘” ๐‘–๐‘— ๐‘ฅ ๐‘– , ๐‘˜ ๐‘ฅ ๐‘— + ๐‘ฅ ๐‘– ๐‘ฅ ๐‘— , ๐‘˜ ๐  ๐‘™ โ‹… ๐  ๐‘˜ ๐‘‘๐‘‰ ๐‘‰ ๐‘— = ๐‘” ๐‘–๐‘— ๐‘” ๐‘™๐‘˜ ๐›ฟ ๐‘–๐‘˜ ๐‘ฅ ๐‘— + ๐‘ฅ ๐‘– ๐›ฟ ๐‘˜ , ๐‘™ ๐‘‘๐‘‰ = 2๐‘” ๐‘–๐‘˜ ๐‘” ๐‘™๐‘˜ ๐‘ฅ ๐‘– , ๐‘™ ๐‘‘๐‘‰ ๐‘‰ ๐‘‰ = 2๐›ฟ ๐‘–๐‘™ ๐›ฟ ๐‘™๐‘– ๐‘‘๐‘‰ = 6 ๐‘‘๐‘‰ ๐‘‰ ๐‘‰ Dept of Systems Engineering, University of Lagos 65 oafak@unilag.edu.ng 12/27/2012
  • 66. For any Euclidean coordinate system, show that div ๐ฎ ร— ๐ฏ = ๐ฏ curl ๐ฎ โˆ’ ๐ฎ curl ๐ฏ Given the contravariant vector ๐‘ข ๐‘– and ๐‘ฃ ๐‘– with their associated vectors ๐‘ข ๐‘– and ๐‘ฃ ๐‘– , the contravariant component of the above cross product is ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ .The required divergence is simply the contraction of the covariant ๐‘ฅ ๐‘– derivative of this quantity: ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘—,๐‘– ๐‘ฃ ๐‘˜ + ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜,๐‘– ,๐‘– where we have treated the tensor ๐œ– ๐‘–๐‘—๐‘˜ as a constant under the covariant derivative. Cyclically rearranging the RHS we obtain, ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ = ๐‘ฃ ๐‘˜ ๐œ– ๐‘˜๐‘–๐‘— ๐‘ข ๐‘—,๐‘– + ๐‘ข ๐‘— ๐œ– ๐‘—๐‘˜๐‘– ๐‘ฃ ๐‘˜,๐‘– = ๐‘ฃ ๐‘˜ ๐œ– ๐‘˜๐‘–๐‘— ๐‘ข ๐‘—,๐‘– + ๐‘ข ๐‘— ๐œ– ๐‘—๐‘–๐‘˜ ๐‘ฃ ๐‘˜,๐‘– ,๐‘– where we have used the anti-symmetric property of the tensor ๐œ– ๐‘–๐‘—๐‘˜ . The last expression shows clearly that div ๐ฎ ร— ๐ฏ = ๐ฏ curl ๐ฎ โˆ’ ๐ฎ curl ๐ฏ as required. Dept of Systems Engineering, University of Lagos 66 oafak@unilag.edu.ng 12/27/2012
  • 67. Liouville Formula ๐‘‘๐“ ๐‘‘ For a scalar variable ๐›ผ, if the tensor ๐“ = ๐“(๐›ผ) and ๐“ โ‰ก ๐‘‘๐›ผ, Show that ๐‘‘๐›ผ det ๐“ = det ๐“ tr(๐“ ๐“ โˆ’๐Ÿ ) Proof: Let ๐€ โ‰ก ๐“ ๐“ โˆ’1 so that, ๐“ = ๐€๐“. In component form, we have ๐‘‡๐‘— ๐‘– = ๐ด ๐‘– ๐‘š ๐‘‡๐‘— ๐‘š . Therefore, ๐‘‘ ๐‘‘ det ๐“ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3 = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3 ๐‘˜ ๐‘˜ ๐‘˜ ๐‘˜ ๐‘‘๐›ผ ๐‘‘๐›ผ = ๐œ– ๐‘–๐‘—๐‘˜ ๐ด1 ๐‘‡๐‘– ๐‘™ ๐‘‡๐‘—2 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐ด2๐‘š ๐‘‡๐‘— ๐‘š ๐‘‡ 3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐ด3๐‘› ๐‘‡ ๐‘˜๐‘› ๐‘™ ๐‘˜ ๐‘˜ = ๐œ– ๐‘–๐‘—๐‘˜ ๐ด1 ๐‘‡๐‘–1 + ๐ด1 ๐‘‡๐‘–2 + ๐ด1 ๐‘‡๐‘–3 1 2 3 ๐‘‡๐‘—2 ๐‘‡ 3 ๐‘˜ + ๐‘‡๐‘–1 ๐ด1 ๐‘‡๐‘—1 + ๐ด2 ๐‘‡๐‘—2 + ๐ด2 ๐‘‡๐‘—3 2 2 3 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘˜ ๐ด1 ๐‘‡ 1 + ๐ด3 ๐‘‡ 2 + ๐ด3 ๐‘‡ 3 3 ๐‘˜ 2 ๐‘˜ 3 ๐‘˜ ๏€ช All the boxed terms in the above equation vanish on account of the contraction of a symmetric tensor with an antisymmetric one. Dept of Systems Engineering, University of Lagos 67 oafak@unilag.edu.ng 12/27/2012
  • 68. Liouville Theorem Contโ€™d (For example, the first boxed term yields, ๐œ– ๐‘–๐‘—๐‘˜ ๐ด1 ๐‘‡๐‘–2 ๐‘‡๐‘—2 ๐‘‡ 3 2 ๐‘˜ Which is symmetric as well as antisymmetric in ๐‘– and ๐‘—. It therefore vanishes. The same is true for all other such terms.) ๐‘‘ det ๐“ = ๐œ– ๐‘–๐‘—๐‘˜ ๐ด1 ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐ด2 ๐‘‡๐‘—2 ๐‘‡ 3 + ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐ด3 ๐‘‡ 3 1 ๐‘˜ 2 ๐‘˜ 3 ๐‘˜ ๐‘‘๐›ผ = ๐ด ๐‘š ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐‘–1 ๐‘‡๐‘—2 ๐‘‡ 3 ๐‘š ๐‘˜ = tr ๐“ ๐“ โˆ’1 det ๐“ as required. Dept of Systems Engineering, University of Lagos 68 oafak@unilag.edu.ng 12/27/2012
  • 69. For a general tensor field ๐‘ป show that, ๐œ๐ฎ๐ซ๐ฅ ๐œ๐ฎ๐ซ๐ฅ ๐‘ป = ๐Ÿ ๐ญ๐ซ ๐‘ป โˆ’ ๐๐ข๐ฏ ๐๐ข๐ฏ ๐‘ป ๐‘ฐ + ๐ ๐ซ๐š๐ ๐๐ข๐ฏ ๐‘ป + ๐“ ๐› ๐ ๐ซ๐š๐ ๐๐ข๐ฏ ๐‘ป โˆ’ ๐ ๐ซ๐š๐ ๐ ๐ซ๐š๐ ๐ญ๐ซ๐‘ป โˆ’ ๐› ๐Ÿ ๐‘ป ๐“ curl ๐‘ป = ๐ ๐›ผ๐‘ ๐‘ก ๐‘‡ ๐›ฝ๐‘ก , ๐‘  ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐›ผ = ๐‘† .๐›ฝ ๐  ๐›ผ โŠ— ๐  ๐›ฝ ๐›ผ curl ๐‘บ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘† .๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ so that curl ๐‘บ = curl curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐œ– ๐›ผ๐‘ ๐‘ก ๐‘‡ ๐‘˜๐‘ก , ๐‘ ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ ๐‘” ๐‘–๐›ผ ๐‘” ๐‘–๐‘  ๐‘” ๐‘–๐‘ก = ๐‘” ๐‘—๐›ผ ๐‘” ๐‘—๐‘  ๐‘” ๐‘—๐‘ก ๐‘‡ ๐‘˜๐‘ก , ๐‘ ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ ๐‘” ๐‘˜๐›ผ ๐‘” ๐‘˜๐‘  ๐‘” ๐‘˜๐‘ก ๐‘” ๐‘–๐›ผ ๐‘” ๐‘—๐‘  ๐‘” ๐‘˜๐‘ก โˆ’ ๐‘” ๐‘—๐‘ก ๐‘” ๐‘˜๐‘  + ๐‘” ๐‘–๐‘  ๐‘” ๐‘—๐‘ก ๐‘” ๐‘˜๐›ผ โˆ’ ๐‘” ๐‘—๐›ผ ๐‘” ๐‘˜๐‘ก = ๐‘–๐‘ก ๐‘—๐›ผ ๐‘˜๐‘  ๐‘—๐‘  ๐‘˜๐›ผ ๐‘‡ ๐‘˜๐‘ก , ๐‘ ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ผ +๐‘” ๐‘” ๐‘” โˆ’ ๐‘” ๐‘” ๐‘ก ๐‘ก = ๐‘” ๐‘—๐‘  ๐‘‡ .๐‘ก , ๐‘ ๐‘— โˆ’๐‘‡..๐‘ ๐‘— , ๐‘ ๐‘— ๐  ๐›ผ โŠ— ๐  ๐›ผ + ๐‘‡ ..๐›ผ๐‘— , ๐‘ ๐‘— โˆ’๐‘” ๐‘—๐›ผ ๐‘‡ .๐‘ก , ๐‘ ๐‘— ๐  ๐‘  โŠ— ๐  ๐›ผ ๐‘ . ๐›ผ. + ๐‘” ๐‘—๐›ผ ๐‘‡ .๐‘ก , ๐‘ ๐‘— โˆ’๐‘” ๐‘—๐‘  ๐‘‡ .๐‘ก , ๐‘ ๐‘— ๐  ๐‘ก โŠ— ๐  ๐›ผ T = ๐›ป 2 tr ๐‘ป โˆ’ div div ๐‘ป ๐‘ฐ + grad div ๐‘ป โˆ’ grad grad tr๐‘ป + grad div ๐‘ป โˆ’ ๐›ป 2 ๐‘ปT Dept of Systems Engineering, University of Lagos 69 oafak@unilag.edu.ng 12/27/2012
  • 70. When ๐‘ป is symmetric, show that tr(curl ๐‘ป) vanishes. curl ๐‘ป = ๐ ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ฝ๐‘˜ , ๐‘— ๐  ๐‘– โŠ— ๐  ๐›ฝ tr curl ๐‘ป = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ฝ๐‘˜ , ๐‘— ๐  ๐‘– โ‹… ๐  ๐›ฝ ๐›ฝ = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡ ๐›ฝ๐‘˜ , ๐‘— ๐›ฟ ๐‘– = ๐œ– ๐‘–๐‘—๐‘˜ ๐‘‡๐‘–๐‘˜ , ๐‘— which obviously vanishes on account of the symmetry and antisymmetry in ๐‘– and ๐‘˜. In this case, curl curl ๐‘ป = ๐›ป 2 tr ๐‘ป โˆ’ div div ๐‘ป ๐‘ฐ โˆ’ grad grad tr๐‘ป + 2 grad div ๐‘ป โˆ’ ๐›ป 2 ๐‘ป T as grad div ๐‘ป = grad div ๐‘ป if the order of differentiation is immaterial and T is symmetric. Dept of Systems Engineering, University of Lagos 70 oafak@unilag.edu.ng 12/27/2012
  • 71. For a scalar function ฮฆ and a vector ๐‘ฃ ๐‘– show that the divergence of the vector ๐‘ฃ ๐‘– ฮฆ is equal to, ๐ฏ โ‹… gradฮฆ + ฮฆ div ๐ฏ ๐‘ฃ ๐‘– ฮฆ ,๐‘– = ฮฆ๐‘ฃ ๐‘– ,๐‘– + ๐‘ฃ ๐‘– ฮฆ,i Hence the result. Dept of Systems Engineering, University of Lagos 71 oafak@unilag.edu.ng 12/27/2012
  • 72. Show that ๐’„๐’–๐’“๐’ ๐ฎ ร— ๐ฏ = ๐ฏ โˆ™ ๐›๐ฎ + ๐ฎ โ‹… div ๐ฏ โˆ’ ๐ฏ โ‹… div ๐ฎ โˆ’ ๐ฎโˆ™ ๐› ๐ฏ Taking the associated (covariant) vector of the expression for the cross product in the last example, it is straightforward to see that the LHS in indicial notation is, ๐œ– ๐‘™๐‘š๐‘– ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š Expanding in the usual way, noting the relation between the alternating tensors and the Kronecker deltas, ๐‘™๐‘š๐‘– ๐œ– ๐‘™๐‘š๐‘– ๐œ– ๐‘–๐‘—๐‘˜ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ = ๐›ฟ ๐‘—๐‘˜๐‘– ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š ,๐‘š ๐‘™๐‘š ๐›ฟ ๐‘—๐‘™ ๐›ฟ๐‘— ๐‘š = ๐›ฟ ๐‘—๐‘˜ ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š = ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š ๐›ฟ ๐‘™๐‘˜ ๐›ฟ ๐‘˜๐‘š = ๐›ฟ ๐‘—๐‘™ ๐›ฟ ๐‘˜๐‘š โˆ’ ๐›ฟ ๐‘™๐‘˜ ๐›ฟ ๐‘— ๐‘š ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š = ๐›ฟ ๐‘—๐‘™ ๐›ฟ ๐‘˜๐‘š ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐›ฟ ๐‘—๐‘™ ๐›ฟ ๐‘˜๐‘š ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š + ๐›ฟ ๐‘™๐‘˜ ๐›ฟ ๐‘— ๐‘š ๐‘ข ๐‘— ,๐‘š ๐‘ฃ ๐‘˜ โˆ’ ๐›ฟ ๐‘™๐‘˜ ๐›ฟ ๐‘— ๐‘š ๐‘ข ๐‘— ๐‘ฃ ๐‘˜ ,๐‘š = ๐‘ข ๐‘™ ,๐‘š ๐‘ฃ ๐‘š โˆ’ ๐‘ข ๐‘š ,๐‘š ๐‘ฃ ๐‘™ + ๐‘ข ๐‘™ ๐‘ฃ ๐‘š ,๐‘š โˆ’ ๐‘ข ๐‘š ๐‘ฃ ๐‘™ ,๐‘š Which is the result we seek in indicial notation. Dept of Systems Engineering, University of Lagos 72 oafak@unilag.edu.ng 12/27/2012
  • 73. Differentiation of Fields Given a vector point function ๐’– ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 and its covariant components, ๐‘ข ๐›ผ ๐‘ฅ 1 , ๐‘ฅ 2 , ๐‘ฅ 3 , ๐›ผ = 1,2,3, with ๐  ๐›ผ as the reciprocal basis vectors, Let ๐œ• ๐œ•๐‘ข ๐›ผ ๐›ผ ๐œ•๐  ๐›ผ ๐’– = ๐‘ข ๐›ผ ๐  ๐›ผ , then ๐‘‘๐’– = ๐‘ข ๐›ผ ๐  ๐›ผ ๐‘‘๐‘ฅ ๐‘˜ = ๐  + ๐‘ข ๐›ผ ๐‘‘๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ Clearly, ๐œ•๐’– ๐œ•๐‘ข ๐›ผ ๐›ผ ๐œ•๐  ๐›ผ ๐‘˜ = ๐‘˜ ๐  + ๐‘ข ๐‘˜ ๐›ผ ๐œ•๐‘ฅ ๐œ•๐‘ฅ ๐œ•๐‘ฅ And the projection of this quantity on the ๐  ๐‘– direction is, ๐œ•๐’– ๐œ•๐‘ข ๐›ผ ๐›ผ ๐œ•๐  ๐›ผ ๐œ•๐‘ข ๐›ผ ๐›ผ ๐œ•๐  ๐›ผ โˆ™ ๐  = ๐  + ๐‘ข โˆ™ ๐ ๐‘– = ๐  โˆ™ ๐ ๐‘– + โˆ™ ๐  ๐‘ข ๐œ•๐‘ฅ ๐‘˜ ๐‘– ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐›ผ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐‘– ๐›ผ ๐œ•๐‘ข ๐›ผ ๐›ผ ๐œ•๐  ๐›ผ = ๐›ฟ + ๐‘˜ ๐‘– ๐‘˜ โˆ™ ๐ ๐‘– ๐‘ข ๐›ผ ๐œ•๐‘ฅ ๐œ•๐‘ฅ Dept of Systems Engineering, University of Lagos 73 oafak@unilag.edu.ng 12/27/2012
  • 74. Christoffel Symbols ๐‘— ๏€ช Now, ๐  ๐‘– โˆ™ ๐  ๐‘— = ๐›ฟ ๐‘– so that ๐œ•๐  ๐‘– ๐‘–โˆ™ ๐œ•๐  ๐‘— ๐‘˜ โˆ™ ๐ ๐‘— + ๐  ๐‘˜ = 0. ๐œ•๐‘ฅ ๐œ•๐‘ฅ ๐œ•๐  ๐‘– ๐‘– ๐œ•๐  ๐‘— ๐‘– โˆ™ ๐  ๐‘— = โˆ’๐  โˆ™ โ‰กโˆ’ . ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐‘—๐‘˜ This important quantity, necessary to quantify the derivative of a tensor in general coordinates, is called the Christoffel Symbol of the second kind. Dept of Systems Engineering, University of Lagos 74 oafak@unilag.edu.ng 12/27/2012
  • 75. Derivatives in General Coordinates Using this, we can now write that, ๐œ•๐’– ๐œ•๐‘ข ๐›ผ ๐›ผ ๐œ•๐  ๐›ผ ๐œ•๐‘ข ๐‘– ๐›ผ โˆ™ ๐ ๐‘– = ๐›ฟ๐‘– + โˆ™ ๐ ๐‘– ๐‘ข ๐›ผ = โˆ’ ๐‘ข ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐‘–๐‘˜ ๐›ผ ๏€ช The quantity on the RHS is the component of the derivative of vector ๐’– along the ๐  ๐‘– direction using covariant components. It is the covariant derivative of ๐’–. Using contravariant components, we could write, ๐œ•๐‘ข ๐‘– ๐œ•๐  ๐‘– ๐‘– ๐œ•๐‘ข ๐‘– ๐›ผ ๐‘‘๐’– = ๐ ๐‘– + ๐‘ข ๐‘‘๐‘ฅ ๐‘˜ = ๐ ๐‘– + ๐  ๐‘ข ๐‘– ๐‘‘๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐‘–๐‘˜ ๐›ผ ๏€ช So that, ๐œ•๐’– ๐œ•๐‘ข ๐›ผ ๐œ•๐  ๐›ผ ๐›ผ = ๐ ๐›ผ+ ๐‘ข ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๏€ช The components of this in the direction of ๐  ๐‘– can be obtained by taking a dot product as before: ๐œ•๐’– ๐‘– = ๐œ•๐‘ข ๐›ผ ๐œ•๐  ๐›ผ ๐›ผ ๐‘– = ๐œ•๐‘ข ๐›ผ ๐‘– ๐œ•๐  ๐›ผ ๐‘– ๐‘ข๐›ผ = ๐œ•๐‘ข ๐‘– ๐‘– โˆ™ ๐  ๐ ๐›ผ+ ๐‘ข โˆ™ ๐  ๐›ฟ๐›ผ + โˆ™ ๐  + ๐‘ข๐›ผ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐›ผ๐‘˜ Dept of Systems Engineering, University of Lagos 75 oafak@unilag.edu.ng 12/27/2012
  • 76. Covariant Derivatives The two results above are represented symbolically as, ๐œ•๐‘ข ๐‘– ๐›ผ ๐‘– ๐œ•๐‘ข ๐›ผ ๐‘– ๐‘ข ๐‘–,๐‘˜ = โˆ’ ๐‘ข ๐›ผ and ๐‘ข,๐‘˜ = + ๐‘ข๐›ผ ๐œ•๐‘ฅ ๐‘˜ ๐‘–๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐›ผ๐‘˜ ๏€ช Which are the components of the covariant derivatives in terms of the covariant and contravariant components respectively. ๏€ช It now becomes useful to establish the fact that our definition of the Christoffel symbols here conforms to the definition you find in the books using the transformation rules to define the tensor quantities. Dept of Systems Engineering, University of Lagos 76 oafak@unilag.edu.ng 12/27/2012
  • 77. Christoffel Symbols ๐œ•๐ซ ๏€ช We observe that the derivative of the covariant basis, ๐  ๐‘– = ๐‘– , ๐œ•๐‘ฅ ๐œ•๐  ๐‘– ๐œ• 2๐ซ ๐œ• 2๐ซ ๐œ•๐  ๐‘— = = = ๐œ•๐‘ฅ ๐‘— ๐œ•๐‘ฅ ๐‘— ๐œ•๐‘ฅ ๐‘– ๐œ•๐‘ฅ ๐‘– ๐œ•๐‘ฅ ๐‘— ๐œ•๐‘ฅ ๐‘– ๏€ช Taking the dot product with ๐  ๐‘˜ , ๐œ•๐  ๐‘– 1 ๐œ•๐  ๐‘— ๐œ•๐  ๐‘– ๐‘— โˆ™ ๐ ๐‘˜= ๐‘– โˆ™ ๐ ๐‘˜+ ๐‘— โˆ™ ๐ ๐‘˜ ๐œ•๐‘ฅ 2 ๐œ•๐‘ฅ ๐œ•๐‘ฅ 1 ๐œ• ๐œ• ๐œ•๐  ๐‘˜ ๐œ•๐  ๐‘˜ = ๐  โˆ™ ๐ ๐‘˜ + ๐  โˆ™ ๐ ๐‘˜ โˆ’ ๐ ๐‘— โˆ™ โˆ’ ๐ ๐‘– โˆ™ 2 ๐œ•๐‘ฅ ๐‘– ๐‘— ๐œ•๐‘ฅ ๐‘— ๐‘– ๐œ•๐‘ฅ ๐‘– ๐œ•๐‘ฅ ๐‘— 1 ๐œ• ๐œ• ๐œ•๐  ๐‘– ๐œ•๐  ๐‘— = ๐ ๐‘— โˆ™ ๐ ๐‘˜ + ๐ ๐‘– โˆ™ ๐  ๐‘˜ โˆ’ ๐ ๐‘— โˆ™ ๐‘˜ โˆ’ ๐ ๐‘– โˆ™ 2 ๐œ•๐‘ฅ ๐‘– ๐œ•๐‘ฅ ๐‘— ๐œ•๐‘ฅ ๐œ•๐‘ฅ ๐‘˜ 1 ๐œ• ๐œ• ๐œ• = ๐  โˆ™ ๐ ๐‘˜ + ๐  โˆ™ ๐ ๐‘˜ โˆ’ ๐  โˆ™ ๐ ๐‘— 2 ๐œ•๐‘ฅ ๐‘– ๐‘— ๐œ•๐‘ฅ ๐‘— ๐‘– ๐œ•๐‘ฅ ๐‘˜ ๐‘– 1 ๐œ•๐‘” ๐‘—๐‘˜ ๐œ•๐‘” ๐‘˜๐‘– ๐œ•๐‘” ๐‘–๐‘— = + โˆ’ Dept of Systems Engineering, ๐œ•๐‘ฅ ๐‘– 2 University of Lagos ๐œ•๐‘ฅ ๐‘— ๐œ•๐‘ฅ ๐‘˜ 77 oafak@unilag.edu.ng 12/27/2012
  • 78. The First Kind ๏€ช Which is the quantity defined as the Christoffel symbols of the first kind in the textbooks. It is therefore possible for us to write, ๐œ•๐  ๐‘– ๐œ•๐  ๐‘— 1 ๐œ•๐‘” ๐‘—๐‘˜ ๐œ•๐‘” ๐‘˜๐‘– ๐œ•๐‘” ๐‘–๐‘— ๐‘–๐‘—, ๐‘˜ โ‰ก โˆ™ ๐ ๐‘˜ = โˆ™ ๐ ๐‘˜ = + โˆ’ ๐œ•๐‘ฅ ๐‘— ๐œ•๐‘ฅ ๐‘– 2 ๐œ•๐‘ฅ ๐‘– ๐œ•๐‘ฅ ๐‘— ๐œ•๐‘ฅ ๐‘˜ It should be emphasized that the Christoffel symbols, even though the play a critical role in several tensor relationships, are themselves NOT tensor quantities. (Prove this). However, notice their symmetry in the ๐‘– and ๐‘—. The extension of this definition to the Christoffel symbols of the second kind is immediate: Dept of Systems Engineering, University of Lagos 78 oafak@unilag.edu.ng 12/27/2012
  • 79. The Second Kind ๏€ช Contract the above equation with the conjugate metric tensor, we have, ๐‘˜๐›ผ ๐‘˜๐›ผ ๐œ•๐  ๐‘– ๐‘˜๐›ผ ๐œ•๐  ๐‘— ๐œ•๐  ๐‘– ๐‘˜ ๐‘” ๐‘–๐‘—, ๐›ผ โ‰ก ๐‘” โˆ™ ๐ ๐›ผ= ๐‘” โˆ™ ๐ ๐›ผ= โˆ™ ๐ ๐‘˜= ๐œ•๐‘ฅ ๐‘— ๐œ•๐‘ฅ ๐‘– ๐œ•๐‘ฅ ๐‘— ๐‘–๐‘— ๐œ•๐  ๐‘˜ =โˆ’ ๐‘— โˆ™ ๐ ๐‘– ๐œ•๐‘ฅ Which connects the common definition of the second Christoffel symbol with the one defined in the above derivation. The relationship, ๐‘” ๐‘˜๐›ผ ๐‘–๐‘—, ๐›ผ = ๐‘˜ ๐‘–๐‘— apart from defining the relationship between the Christoffel symbols of the first kind and that second kind, also highlights, once more, the index-raising property of the conjugate metric tensor. Dept of Systems Engineering, University of Lagos 79 oafak@unilag.edu.ng 12/27/2012
  • 80. Two Christoffel Symbols Related We contract the above equation with ๐‘” ๐‘˜๐›ฝ and obtain, ๐‘˜๐›ผ ๐‘–๐‘—, ๐›ผ = ๐‘” ๐‘˜ ๐‘” ๐‘˜๐›ฝ ๐‘” ๐‘˜๐›ฝ ๐‘–๐‘— ๐›ผ ๐‘˜ ๐›ฟ ๐›ฝ ๐‘–๐‘—, ๐›ผ = ๐‘–๐‘—, ๐›ฝ = ๐‘” ๐‘˜๐›ฝ ๐‘–๐‘— so that, ๐›ผ ๐‘” ๐‘˜๐›ผ ๐‘–๐‘— = ๐‘–๐‘—, ๐‘˜ Showing that the metric tensor can be used to lower the contravariant index of the Christoffel symbol of the second kind to obtain the Christoffel symbol of the first kind. Dept of Systems Engineering, University of Lagos 80 oafak@unilag.edu.ng 12/27/2012
  • 81. Higher Order Tensors We are now in a position to express the derivatives of higher order tensor fields in terms of the Christoffel symbols. For a second-order tensor ๐“, we can express the components in dyadic form along the product basis as follows: ๐“ = ๐‘‡๐‘–๐‘— ๐  ๐‘– โŠ— ๐  ๐‘— = ๐‘‡ ๐‘–๐‘— ๐  ๐‘– โจ‚๐  ๐‘— = ๐‘‡.๐‘— ๐  ๐‘– โŠ— ๐  ๐‘— = ๐‘‡๐‘—.๐‘– ๐  ๐‘— โจ‚๐  ๐‘– ๐‘– This is perfectly analogous to our expanding vectors in terms of basis and reciprocal bases. Derivatives of the tensor may therefore be expressible in any of these product bases. As an example, take the product covariant bases. Dept of Systems Engineering, University of Lagos 81 oafak@unilag.edu.ng 12/27/2012
  • 82. Higher Order Tensors We have: ๐œ•๐“ ๐œ•๐‘‡ ๐‘–๐‘— ๐‘–๐‘— ๐œ•๐  ๐‘– ๐‘–๐‘— ๐œ•๐  ๐‘— ๐‘˜ = ๐‘˜ ๐‘– ๐  โจ‚๐  ๐‘— + ๐‘‡ ๐‘˜ โจ‚๐  ๐‘— + ๐‘‡ ๐  ๐‘– โจ‚ ๐œ•๐‘ฅ ๐œ•๐‘ฅ ๐œ•๐‘ฅ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐  ๐‘— Recall that, ๐‘–๐‘˜ โˆ™ ๐  ๐‘— = . It follows therefore that, ๐œ•๐‘ฅ ๐‘–๐‘˜ ๐œ•๐  ๐‘– ๐‘—โˆ’ ๐›ผ ๐›ฟ๐‘— = ๐œ•๐  ๐‘– ๐›ผ โˆ™ ๐  โˆ™ ๐ ๐‘— โˆ’ ๐  ๐›ผ โˆ™ ๐ ๐‘— ๐œ•๐‘ฅ ๐‘˜ ๐‘–๐‘˜ ๐›ผ ๐œ•๐‘ฅ ๐‘˜ ๐‘–๐‘˜ ๐œ•๐  ๐‘– ๐›ผ = โˆ’ ๐  ๐›ผ โˆ™ ๐  ๐‘— = 0. ๐œ•๐‘ฅ ๐‘˜ ๐‘–๐‘˜ ๐œ•๐  ๐‘– ๐›ผ Clearly, ๐‘˜ = ๐ ๐›ผ ๐œ•๐‘ฅ ๐‘–๐‘˜ (Obviously since ๐  ๐‘— is a basis vector it cannot vanish) Dept of Systems Engineering, University of Lagos 82 oafak@unilag.edu.ng 12/27/2012
  • 83. Higher Order Tensors ๐œ•๐“ ๐œ•๐‘‡ ๐‘–๐‘— ๐‘–๐‘— ๐œ•๐  ๐‘– ๐‘–๐‘— ๐  โจ‚ ๐œ•๐  ๐‘— ๐œ•๐‘ฅ ๐‘˜ = ๐œ•๐‘ฅ ๐‘˜ ๐  ๐‘– โจ‚๐  ๐‘— + ๐‘‡ ๐œ•๐‘ฅ ๐‘˜ โจ‚๐  ๐‘— + ๐‘‡ ๐‘– ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘‡ ๐‘–๐‘— ๐‘–๐‘— ๐›ผ ๐‘–๐‘— ๐  โจ‚ ๐›ผ = ๐  โจ‚๐  ๐‘— + ๐‘‡ ๐  โจ‚๐  ๐‘— + ๐‘‡ ๐‘– ๐‘—๐‘˜ ๐  ๐›ผ ๐œ•๐‘ฅ ๐‘˜ ๐‘– ๐‘–๐‘˜ ๐›ผ ๐œ•๐‘‡ ๐‘–๐‘— ๐‘– ๐‘— = ๐‘˜ ๐  ๐‘– โจ‚๐  ๐‘— + ๐‘‡ ๐›ผ๐‘— ๐  ๐‘– โจ‚๐  ๐‘— + ๐‘‡ ๐‘–๐›ผ ๐  ๐‘– โจ‚ ๐ ๐‘— ๐œ•๐‘ฅ ๐›ผ๐‘˜ ๐›ผ๐‘˜ ๐œ•๐‘‡ ๐‘–๐‘— ๐‘– ๐‘— ๐‘–๐‘— = +๐‘‡ ๐›ผ๐‘— + ๐‘‡ ๐‘–๐›ผ ๐  ๐‘– โจ‚๐  ๐‘— = ๐‘‡ ,๐‘˜ ๐  ๐‘– โจ‚๐  ๐‘— ๐œ•๐‘ฅ ๐‘˜ ๐›ผ๐‘˜ ๐›ผ๐‘˜ Where ๐œ•๐‘‡ ๐‘–๐‘— ๐‘–๐‘— ๐‘– ๐‘— ๐œ•๐‘‡ ๐‘–๐‘— ๐‘– ๐‘— = ๐‘‡,๐‘˜ +๐‘‡ ๐›ผ๐‘— + ๐‘‡ ๐‘–๐›ผ or +๐‘‡ ๐›ผ๐‘— ฮ“ ๐›ผ๐‘˜ + ๐‘‡ ๐‘–๐›ผ ฮ“ ๐›ผ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐›ผ๐‘˜ ๐›ผ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ are the components of the covariant derivative of the tensor ๐“ in terms of contravariant components on the product covariant bases as shown. Dept of Systems Engineering, University of Lagos 83 oafak@unilag.edu.ng 12/27/2012
  • 84. Higher Order Tensors In the same way, by taking the tensor expression in the dyadic form of its contravariant product bases, we can write, ๐œ•๐“ ๐œ•๐‘‡๐‘–๐‘— ๐‘– ๐‘— ๐œ•๐  ๐‘– ๐‘— ๐‘– ๐œ•๐  ๐‘— ๐œ•๐‘ฅ ๐‘˜ = ๐œ•๐‘ฅ ๐‘˜ ๐  โŠ— ๐  +๐‘‡ ๐‘–๐‘— ๐œ•๐‘ฅ ๐‘˜ โŠ— ๐  +๐‘‡ ๐‘–๐‘— ๐  โŠ— ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘‡๐‘–๐‘— ๐‘– ๐‘— +๐‘‡ ฮ“ ๐‘– โŠ— ๐  ๐‘— +๐‘‡ ๐  ๐‘– โŠ— ๐œ•๐  ๐‘— = ๐  โŠ— ๐  ๐‘–๐‘— ๐›ผ๐‘˜ ๐‘–๐‘— ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐‘– ๐œ•๐  ๐‘– Again, notice from previous derivation above, = โˆ’ ๐œ•๐‘ฅ ๐‘˜ โˆ™ ๐  ๐‘— so that, ๐‘—๐‘˜ ๐œ•๐  ๐‘– ๐‘– ๐‘– =โˆ’ ๐  ๐›ผ = โˆ’ฮ“ ๐›ผ๐‘˜ ๐  ๐›ผ Therefore, ๐œ•๐‘ฅ ๐‘˜ ๐›ผ๐‘˜ ๐œ•๐“ ๐œ•๐‘‡๐‘–๐‘— ๐‘– ๐‘— +๐‘‡ ๐œ•๐  ๐‘– ๐‘— +๐‘‡ ๐  ๐‘– โŠ— ๐œ•๐  ๐‘— = ๐  โŠ— ๐  ๐‘–๐‘— โŠ— ๐  ๐‘–๐‘— ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘‡๐‘–๐‘— ๐‘– ๐‘– ๐‘— = ๐  โŠ— ๐  ๐‘— โˆ’๐‘‡๐‘–๐‘— ฮ“ ๐›ผ๐‘˜ ๐  ๐›ผ โŠ— ๐  ๐‘— + ๐‘‡๐‘–๐‘— ๐  ๐‘– โŠ— ฮ“ ๐›ผ๐‘˜ ๐  ๐›ผ ๐œ•๐‘ฅ ๐‘˜ ๐œ•๐‘‡๐‘–๐‘— ๐›ผ ๐›ผ ๐‘– ๐‘— ๐‘– ๐‘— = ๐‘˜ โˆ’ ๐‘‡ ๐›ผ๐‘— ฮ“๐‘–๐‘˜ โˆ’ ๐‘‡ ๐‘–๐›ผ ฮ“๐‘—๐‘˜ ๐  โŠ— ๐  = ๐‘‡ ๐‘–๐‘—,๐‘˜ ๐  โŠ— ๐  ๐œ•๐‘ฅ So that ๐œ•๐‘‡๐‘–๐‘— ๐›ผ ๐›ผ ๐‘‡๐‘–๐‘—,๐‘˜ = ๐‘˜ โˆ’ ๐‘‡ ๐›ผ๐‘— ฮ“๐‘–๐‘˜ โˆ’ ๐‘‡ ๐‘–๐›ผ ฮ“๐‘—๐‘˜ ๐œ•๐‘ฅ Dept of Systems Engineering, University of Lagos 84 oafak@unilag.edu.ng 12/27/2012