SlideShare uma empresa Scribd logo
1 de 117
Baixar para ler offline
Full Stack Deep Learning
Josh Tobin, Sergey Karayev, Pieter Abbeel
Setting up Machine Learning Projects
Full Stack Deep Learning
Machine Learning Projects
2ML Projects - overview
Full Stack Deep Learning
Machine Learning Projects
3ML Projects - overview
85% of AI projects fail1
1 Pactera Technologies
Full Stack Deep Learning
Why do so many projects fail?
• ML is still research - you shouldn’t aim for 100% success rate

• But, many are doomed to fail:

• Technically infeasible or poorly scoped

• Never make the leap to production

• Unclear success criteria

• Poor team management
4ML Projects - overview
Full Stack Deep Learning
Module overview
5
Lifecycle
• How to think about all of the activities in an
ML project
Prioritizing
projects
• Assessing the feasibility and impact of your
projects
Archetypes
• The main categories of ML projects, and the
implications for project management
Metrics
• How to pick a single number to optimize
Baselines
• How to know if your model is performing
well
ML Projects - overview
Full Stack Deep Learning
Running case study - pose estimation
Position (L2 loss)
6
(x, y, z)<latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit>
( , ✓, )<latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit>
Orientation (L2 loss)
Xiang, Yu, et al. "PoseCNN: A Convolutional Neural
Network for 6D Object Pose Estimation in Cluttered
Scenes." arXiv preprint arXiv:1711.00199 (2017).
Position (L2 loss)
ML Projects - overview
Full Stack Deep Learning
Full Stack Robotics works on grasping
7
(x, y, z)<latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit>
( , ✓, )<latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit>
Grasp
model Motor commands
ML Projects - overview
Full Stack Deep Learning
Metrics
Module overview
8
Prioritizing
projects
Lifecycle
Archetypes
Baselines
• How to think about all of the activities in an
ML project
• Assessing the feasibility and impact of your
projects
• The main categories of ML projects, and the
implications for project management
• How to pick a single number to optimize
• How to know if your model is performing
well
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
9
Planning & 

project setup
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
10
• Decide to work on pose estimation

• Determine requirements & goals

• Allocate resources

• Etc.
Planning & 

project setup
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
11
Planning & 

project setup
Data collection &
labeling
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
12
• Collect training objects

• Set up sensors (e.g., cameras)

• Capture images of objects

• Annotate with ground truth (how?)
Planning & 

project setup
Data collection &
labeling
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
13
Planning & 

project setup
Data collection &
labeling
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
14
• Too hard to get data. 

• Easier to label a different task (e.g.,
hard to annotate pose, easier to
annotate per-pixel segmentation)
Planning & 

project setup
Data collection &
labeling
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
15
Planning & 

project setup
Data collection &
labeling
Training &
debugging
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
16
• Implement baseline in OpenCV

• Find SoTA model & reproduce

• Debug our implementation

• Improve model for our task
Planning & 

project setup
Data collection &
labeling
Training &
debugging
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
17
Planning & 

project setup
Data collection &
labeling
Training &
debugging
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
18
• Collect more data

• Realize data labeling is unreliable
Planning & 

project setup
Data collection &
labeling
Training &
debugging
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
19
Planning & 

project setup
Data collection &
labeling
Training &
debugging
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
20
• Realize task is too hard

• Requirements trade off with each
other - revisit which are most
important
Planning & 

project setup
Data collection &
labeling
Training &
debugging
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
21
• Pilot in grasping system in the lab

• Write tests to prevent regressions

• Roll out in production
Planning & 

project setup
Data collection &
labeling
Training &
debugging
Deploying & 

testing
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
22
• Doesn’t work in the lab - keep
improving accuracy of model
Planning & 

project setup
Data collection &
labeling
Training &
debugging
Deploying & 

testing
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
23
• Fix data mismatch between
training data and data seen
in deployment

• Collect more data

• Mine hard cases
Planning & 

project setup
Data collection &
labeling
Training &
debugging
Deploying & 

testing
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
24
• The metric you picked doesn’t
actually drive downstream user
behavior. Revisit the metric.

• Performance in the real world isn’t
great - revisit requirements (e.g., do
we need to be faster or more
accurate?
Planning & 

project setup
Data collection &
labeling
Training &
debugging
Deploying & 

testing
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
25
Planning & 

project setup
Data collection &
labeling
Training &
debugging
Deploying & 

testing
Per-project
activities
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
26
Planning & 

project setup
Data collection &
labeling
Training &
debugging
Deploying & 

testing
Per-project
activities
ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
27
Planning & 

project setup
Data collection &
labeling
Training &
debugging
Deploying & 

testing
Per-project
activities
Team & hiring
Infra & tooling
Cross-project
infrastructure
ML Projects - lifecycle
Full Stack Deep Learning
What else do you need to know?
• Understand state of the art in your domain

• Understand what’s possible

• Know what to try next

• We will introduce most promising research areas
28ML Projects - lifecycle
Full Stack Deep Learning
Lifecycle of a ML project
29
Planning & 

project setup
Data collection &
labeling
Training &
debugging
Deploying & 

testing
Per-project
activities
Team & hiring
Infra & tooling
Cross-project
infrastructure
ML Projects - lifecycle
Full Stack Deep Learning
Questions?
30ML Projects - lifecycle
Full Stack Deep Learning
Metrics
Module overview
31
Prioritizing
projects
Lifecycle
Archetypes
Baselines
• How to think about all of the activities in an
ML project
• Assessing the feasibility and impact of your
projects
• The main categories of ML projects, and the
implications for project management
• How to pick a single number to optimize
• How to know if your model is performing
well
ML Projects - prioritizing
Full Stack Deep Learning
Key points for prioritizing projects
A. High-impact ML problems

• Complex parts of your pipeline

• Places where cheap prediction is valuable 

B. Cost of ML projects is driven by data availability, but
accuracy requirement also plays a big role
32ML Projects - prioritizing
Full Stack Deep Learning
A (general) framework for prioritizing projects
33
Feasibility (e.g., cost)
Low
High
Low High
High priority
Impact
ML Projects - prioritizing
Full Stack Deep Learning
Mental models for high-impact ML projects
1. Where can you take advantage of cheap prediction?

2. Where can you automate complicated manual processes?
34ML Projects - prioritizing
Full Stack Deep Learning
Mental models for high-impact ML projects
35
Prediction Machines: The Simple Economics of Artificial Intelligence (Agrawal, Gans, Goldfarb)
• AI reduces cost of prediction

• Prediction is central for decision making

• Cheap prediction means 

• Prediction will be everywhere

• Even in problems where it was too expensive
before (e.g., for most people, hiring a driver)

• Implication: Look for projects where cheap
prediction will have a huge business impact
The economics of AI

(Agrawal, Gans, Goldfarb)
ML Projects - prioritizing
Full Stack Deep Learning
Mental models for high-impact ML projects
36
Software 2.0 (Andrej Karpathy): https://medium.com/@karpathy/software-2-0-a64152b37c35
Software 2.0

(Andrej Karpathy)
ML Projects - prioritizing
Full Stack Deep Learning
Mental models for high-impact ML projects
37
Software 2.0 (Andrej Karpathy): https://medium.com/@karpathy/software-2-0-a64152b37c35
• Software 1.0 = traditional programs with explicit instructions
(python / c++ / etc)

• Software 2.0 = humans specify goals, and algorithm
searches for a program that works

• 2.0 programmers work with datasets, which get compiled via
optimization

• Why? Works better, more general, computational advantages

• Implication: look for complicated rule-based software where
we can learn the rules instead of programming them
Software 2.0

(Andrej Karpathy)
ML Projects - prioritizing
Full Stack Deep Learning
A (general) framework for prioritizing projects
38
Feasibility (e.g., cost)
Low
High
Low High
High priority
Impact
ML Projects - prioritizing
Full Stack Deep Learning
Assessing feasibility of ML projects
39
Data availability
Accuracy requirement
Problem
difficulty
Cost drivers Main considerations
• How hard is it to acquire data?

• How expensive is data labeling?

• How much data will be needed?
• How costly are wrong predictions?

• How frequently does the system need to be
right to be useful?
• Good published work on similar problems? 

(newer problems mean more risk & more
technical effort)

• Compute needed for training?

• Compute available for deployment?
ML Projects - prioritizing
Full Stack Deep Learning
Why are accuracy requirements so important?
40
Required accuracy
Project
cost
50% 90% 99% 99.9% …
ML Projects - prioritizing
Full Stack Deep Learning
Why are accuracy requirements so important?
41
Required accuracy
Project
cost
50% 90% 99% 99.9% …
ML project costs tend
to scale super-linearly
in the accuracy
requirement
ML Projects - prioritizing
Full Stack Deep Learning
Assessing feasibility of ML projects
42
Data availability
Accuracy requirement
Problem
difficulty
Cost drivers Main considerations
• How hard is it to acquire data?

• How expensive is data labeling?

• How much data will be needed?
• How costly are wrong predictions?

• How frequently does the system need to be
right to be useful?
• Good published work on similar problems? 

(newer problems mean more risk & more
technical effort)

• Compute needed for training?

• Compute available for deployment?
ML Projects - prioritizing
Full Stack Deep Learning
What’s still hard in machine learning?
43ML Projects - prioritizing
Full Stack Deep Learning
What’s still hard in machine learning?
44ML Projects - prioritizing
Full Stack Deep Learning
What’s still hard in machine learning?
45
• Recognize content of
images

• Understand speech

• Translate speech 

• Grasp objects

• etc.
Examples Counter-examples?
• Understand humor /
sarcasm

• In-hand robotic
manipulation

• Generalize to new
scenarios

• etc.
ML Projects - prioritizing
Full Stack Deep Learning
What’s still hard in machine learning?
• Unsupervised learning

• Reinforcement learning

• Both are showing promise in limited domains where tons of data and
compute are available
46ML Projects - prioritizing
Full Stack Deep Learning
What’s still hard in supervised learning?
• Answering questions

• Summarizing text

• Predicting video

• Building 3D models

• Real-world speech recognition

• Resisting adversarial examples

• Doing math

• Solving word puzzles

• Bongard problems

• Etc
47ML Projects - prioritizing
Full Stack Deep Learning
What types of problems are hard?
48
Output is complex
Reliability is
required
Generalization is
required
Instances Examples
• High-dimensional output
• Ambiguous output
• 3D reconstruction
• Video prediction
• Dialog systems
• High precision is required
• Robustness is required
• Failing safely out-of-distribution
• Robustness to adversarial attacks
• High-precision pose estimation
• Out of distribution data
• Reasoning, planning, causality
• Self-driving: edge cases
• Self-driving: control
• Small data
ML Projects - prioritizing
Full Stack Deep Learning
Why is FSR focusing on pose estimation?
49
• FSR’s goal is grasping - requires reliable
pose estimation

• Traditional robotics pipeline uses hand-
designed heuristics & online optimization

• Slow

• Brittle

• Great candidate for Software 2.0!
Impact Feasibility
• Data availability

• Easy to collect data

• Labeling data could be a challenge, but
can instrument lab with sensors

• Accuracy requirement

• Require high accuracy to grasp an object:
<0.5cm

• However, low cost of failure - picks per
hour important, not % successes

• Problem difficulty

• Similar published results exist but need to
adapt to our objects and robot
ML Projects - prioritizing
Full Stack Deep Learning
Key points for prioritizing projects
A. To find high-impact ML problems, look for complex parts
of your pipeline and places where cheap prediction is
valuable 

B. The cost of ML projects is primarily driven by data
availability, but your accuracy requirement also plays a
big role
50ML Projects - prioritizing
Full Stack Deep Learning
Questions?
51ML Projects - prioritizing
Full Stack Deep Learning
Metrics
Module overview
52
Prioritizing
projects
Lifecycle
Archetypes
Baselines
• How to think about all of the activities in an
ML project
• Assessing the feasibility and impact of your
projects
• The main categories of ML projects, and the
implications for project management
• How to pick a single number to optimize
• How to know if your model is performing
well
ML Projects - archetypes
Full Stack Deep Learning
Machine learning project archetypes
53ML Projects - archetypes
Improve an
existing process
Examples
• Improve code completion in an IDE

• Build a customized recommendation system

• Build a better video game AI
Full Stack Deep Learning
Machine learning project archetypes
54ML Projects - archetypes
Improve an
existing process
Augment a manual
process
Examples
• Improve code completion in an IDE

• Build a customized recommendation system

• Build a better video game AI
• Turn sketches into slides

• Email auto-completion

• Help a radiologist do their job faster
Full Stack Deep Learning
Machine learning project archetypes
55ML Projects - archetypes
Improve an
existing process
Augment a manual
process
Automate a
manual process
Examples
• Improve code completion in an IDE

• Build a customized recommendation system

• Build a better video game AI
• Turn sketches into slides

• Email auto-completion

• Help a radiologist do their job faster
• Full self-driving

• Automated customer support

• Automated website design
Full Stack Deep Learning
Machine learning project archetypes
56ML Projects - archetypes
Improve an
existing process
Key questions
• Do your models truly improve performance?

• Does performance improvement generate business value?

• Do performance improvements lead to a data flywheel?
Full Stack Deep Learning
Machine learning project archetypes
57ML Projects - archetypes
Improve an
existing process
Augment a manual
process
Key questions
• Do your models truly improve performance?

• Does performance improvement generate business value?

• Do performance improvements lead to a data flywheel?
• How good does the system need to be to be useful?

• How can you collect enough data to make it that good?
Full Stack Deep Learning
Machine learning project archetypes
58ML Projects - archetypes
Improve an
existing process
Augment a manual
process
Automate a
manual process
Key questions
• Do your models truly improve performance?

• Does performance improvement generate business value?

• Do performance improvements lead to a data flywheel?
• How good does the system need to be to be useful?

• How can you collect enough data to make it that good?
• What is an acceptable failure rate for the system?

• How can you guarantee that it won’t exceed that failure rate?

• How inexpensively can you label data from the system?
Full Stack Deep Learning
Machine learning project archetypes
59ML Projects - archetypes
Improve an
existing process
Augment a manual
process
Automate a
manual process
Key questions
• Do your models truly improve performance?

• Does performance improvement generate business value?

• Do performance improvements lead to a data flywheel?
• How good does the system need to be to be useful?

• How can you collect enough data to make it that good?
• What is an acceptable failure rate for the system?

• How can you guarantee that it won’t exceed that failure rate?

• How inexpensively can you label data from the system?
Full Stack Deep Learning
Data flywheels
60ML Projects - archetypes
More users
More data
Better model
Full Stack Deep Learning
Data flywheels
61ML Projects - archetypes
More users
More data
Better model
Do you have a data
loop? Automatically
collect data (and ideally
labels) from your users
Full Stack Deep Learning
Data flywheels
62ML Projects - archetypes
More users
More data
Better model
Your job as ML
practitioner
Full Stack Deep Learning
Data flywheels
63ML Projects - archetypes
More users
More data
Better model
Do better
predictions make
the product better?
Full Stack Deep Learning
Machine learning project archetypes
64
Feasibility (e.g., cost)
Low
High
Low High
Impact
Improve an
existing process
Augment a
manual process
Automate a
manual process
ML Projects - archetypes
Full Stack Deep Learning
Machine learning project archetypes
65
Feasibility (e.g., cost)
Low
High
Low High
Impact
Improve an
existing process
Augment a
manual process
Automate a
manual process
ML Projects - archetypes
Implement a data
loop that allows
you to improve
on this task and
future ones
Full Stack Deep Learning
Machine learning project archetypes
66
Feasibility (e.g., cost)
Low
High
Low High
Impact
Improve an
existing process
Augment a
manual process
Automate a
manual process
ML Projects - archetypes
Good product
design. Release a
‘good enough’
version
Full Stack Deep Learning
Product design can reduce need for accuracy
67
See “Designing Collaborative AI” (Ben Reinhardt and Belmer Negrillo): 

https://medium.com/@Ben_Reinhardt/designing-collaborative-ai-5c1e8dbc8810
ML Projects - archetypes
Full Stack Deep Learning
Machine learning project archetypes
68
Feasibility (e.g., cost)
Low
High
Low High
Impact
Improve an
existing process
Augment a
manual process
Automate a
manual process
ML Projects - archetypes
Add humans in
the loop. Add
guardrails and/or
limit initial scope.
Full Stack Deep Learning
Questions?
69ML Projects - archetypes
Full Stack Deep Learning
Metrics
Module overview
70
Prioritizing
projects
Lifecycle
Archetypes
Baselines
• How to think about all of the activities in an
ML project
• Assessing the feasibility and impact of your
projects
• The main categories of ML projects, and the
implications for project management
• How to pick a single number to optimize
• How to know if your model is performing
well
ML Projects - metrics
Full Stack Deep Learning
Key points for choosing a metric
A. The real world is messy; you usually care about lots of
metrics

B. However, ML systems work best when optimizing a single
number

C. As a result, you need to pick a formula for combining
metrics

D. This formula can and will change!
71ML Projects - metrics
Full Stack Deep Learning
Review of accuracy, precision, and recall
72
n=100
Predicted:
NO
Predicted:
YES
Actual: 

NO
5 5 10
Actual: 

YES
45 45 90
50 50
Confusion matrix
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Review of accuracy, precision, and recall
73
n=100
Predicted:
NO
Predicted:
YES
Actual: 

NO
5 5 10
Actual: 

YES
45 45 90
50 50
Confusion matrix
Accuracy
Correct
Total
50%
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Review of accuracy, precision, and recall
74
n=100
Predicted:
NO
Predicted:
YES
Actual: 

NO
5 5 10
Actual: 

YES
45 45 90
50 50
Confusion matrix
Precision
true positives
true positives + false positives
90%
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Review of accuracy, precision, and recall
75
n=100
Predicted:
NO
Predicted:
YES
Actual: 

NO
5 5 10
Actual: 

YES
45 45 90
50 50
Confusion matrix
Recall
true positives
Actual YES
50%
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Why choose a single metric?
76
Model 2
Model 3
Precision Recall
0.9 0.5
0.8 0.7
0.7 0.9
Which is best?
Model 1
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
How to combine metrics
• Simple average / weighted average

• Threshold n-1 metrics, evaluate the nth

• More complex / domain-specific formula
77
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Combining precision and recall
78
Model 2
Model 3
Precision Recall
0.9 0.5
0.8 0.7
0.7 0.9
Model 1
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Combining precision and recall
79
Model 2
Model 3
Precision Recall
0.9 0.5
0.8 0.7
0.7 0.9
(p + r) / 2
0.7
0.75
0.8
Model 1
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Combining precision and recall
80
Model 2
Model 3
Precision Recall
0.9 0.5
0.8 0.7
0.7 0.9
(p + r) / 2
0.7
0.75
0.8
Model 1
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
How to combine metrics
• Simple average / weighted average

• Threshold n-1 metrics, evaluate the nth

• More complex / domain-specific formula
81
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
How to combine metrics
• Simple average / weighted average

• Threshold n-1 metrics, evaluate the nth

• More complex / domain-specific formula
82
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Thresholding metrics
Choosing which metrics
to threshold
Choosing threshold
values
83
• Domain judgment (e.g., what is an acceptable
tolerance downstream? What performance is
achievable?)

• How well does the baseline model do?

• How important is this metric right now?
2. Choosing metrics
• Domain judgment (e.g., which metrics can you
engineer around?)

• Which metrics are least sensitive to model
choice?

• Which metrics are closest to desirable values?
ML Projects - metrics
Full Stack Deep Learning
Combining precision and recall
84
Model 2
Model 3
Precision Recall
0.9 0.5
0.8 0.7
0.7 0.9
(p + r) / 2
0.7
0.75
0.8
Model 1
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Combining precision and recall
85
Model 2
Model 3
Precision Recall
0.9 0.5
0.8 0.7
0.7 0.9
(p + r) / 2
0.7
0.75
0.8
p @ (r > 0.6)
0.0
0.8
0.7
Model 1
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Combining precision and recall
86
Model 2
Model 3
Precision Recall
0.9 0.5
0.8 0.7
0.7 0.9
(p + r) / 2
0.7
0.75
0.8
p @ (r > 0.6)
0.0
0.8
0.7
Model 1
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
How to combine metrics
• Simple average / weighted average

• Threshold n-1 metrics, evaluate the nth

• More complex / domain-specific formula
87
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
How to combine metrics
• Simple average / weighted average

• Threshold n-1 metrics, evaluate the nth

• More complex / domain-specific formula
88
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Domain-specific metrics: mAP
89
Recall
Precision
0% 25% 50% 75%
0%
25%
75%
100%
100%
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Domain-specific metrics: mAP
Recall
Precision
0% 25% 50% 75%
0%
25%
75%
100%
100%
90
mAP = mean AP,
e.g., over classes
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Combining precision and recall
91
Model 2
Model 3
Precision Recall
0.9 0.5
0.8 0.7
0.7 0.9
(p + r) / 2
0.7
0.75
0.8
p @ (r > 0.6)
0.0
0.8
0.7
Model 1
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Combining precision and recall
92
Model 2
Model 3
Precision Recall
0.9 0.5
0.8 0.7
0.7 0.9
(p + r) / 2
0.7
0.75
0.8
p @ (r > 0.6)
0.0
0.8
0.7
mAP
0.7
0.6
0.6
Model 1
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Combining precision and recall
93
Model 2
Model 3
Precision Recall
0.9 0.5
0.8 0.7
0.7 0.9
(p + r) / 2
0.7
0.75
0.8
p @ (r > 0.6)
0.0
0.8
0.7
mAP
0.7
0.6
0.6
Model 1
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Example: choosing a metric for pose estimation
(x, y, z)<latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit>
( , ✓, )<latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit>
94
Orientation (L2 loss)
t<latexit sha1_base64="Wn3278THpwSxwzLAYeJjstf3jaA=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eJIW7Ae0oWy2k3btZhN2J0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZemEphyPO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmOTZ4IhPdDplBKRQ2SJDEdqqRxaHEVji6nfmtJ9RGJOqBxikGMRsoEQnOyEp16pXKXsWbw10lfk7KkKPWK311+wnPYlTEJTOm43spBROmSXCJ02I3M5gyPmID7FiqWIwmmMwPnbrnVum7UaJtKXLn6u+JCYuNGceh7YwZDc2yNxP/8zoZRTfBRKg0I1R8sSjKpEuJO/va7QuNnOTYEsa1sLe6fMg042SzKdoQ/OWXV0nzsuJ7Fb9+Va7e53EU4BTO4AJ8uIYq3EENGsAB4Rle4c15dF6cd+dj0brm5DMn8AfO5w/jxY0E</latexit><latexit sha1_base64="Wn3278THpwSxwzLAYeJjstf3jaA=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eJIW7Ae0oWy2k3btZhN2J0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZemEphyPO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmOTZ4IhPdDplBKRQ2SJDEdqqRxaHEVji6nfmtJ9RGJOqBxikGMRsoEQnOyEp16pXKXsWbw10lfk7KkKPWK311+wnPYlTEJTOm43spBROmSXCJ02I3M5gyPmID7FiqWIwmmMwPnbrnVum7UaJtKXLn6u+JCYuNGceh7YwZDc2yNxP/8zoZRTfBRKg0I1R8sSjKpEuJO/va7QuNnOTYEsa1sLe6fMg042SzKdoQ/OWXV0nzsuJ7Fb9+Va7e53EU4BTO4AJ8uIYq3EENGsAB4Rle4c15dF6cd+dj0brm5DMn8AfO5w/jxY0E</latexit><latexit sha1_base64="Wn3278THpwSxwzLAYeJjstf3jaA=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eJIW7Ae0oWy2k3btZhN2J0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZemEphyPO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmOTZ4IhPdDplBKRQ2SJDEdqqRxaHEVji6nfmtJ9RGJOqBxikGMRsoEQnOyEp16pXKXsWbw10lfk7KkKPWK311+wnPYlTEJTOm43spBROmSXCJ02I3M5gyPmID7FiqWIwmmMwPnbrnVum7UaJtKXLn6u+JCYuNGceh7YwZDc2yNxP/8zoZRTfBRKg0I1R8sSjKpEuJO/va7QuNnOTYEsa1sLe6fMg042SzKdoQ/OWXV0nzsuJ7Fb9+Va7e53EU4BTO4AJ8uIYq3EENGsAB4Rle4c15dF6cd+dj0brm5DMn8AfO5w/jxY0E</latexit><latexit sha1_base64="Wn3278THpwSxwzLAYeJjstf3jaA=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eJIW7Ae0oWy2k3btZhN2J0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZemEphyPO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmOTZ4IhPdDplBKRQ2SJDEdqqRxaHEVji6nfmtJ9RGJOqBxikGMRsoEQnOyEp16pXKXsWbw10lfk7KkKPWK311+wnPYlTEJTOm43spBROmSXCJ02I3M5gyPmID7FiqWIwmmMwPnbrnVum7UaJtKXLn6u+JCYuNGceh7YwZDc2yNxP/8zoZRTfBRKg0I1R8sSjKpEuJO/va7QuNnOTYEsa1sLe6fMg042SzKdoQ/OWXV0nzsuJ7Fb9+Va7e53EU4BTO4AJ8uIYq3EENGsAB4Rle4c15dF6cd+dj0brm5DMn8AfO5w/jxY0E</latexit>
Prediction timeXiang, Yu, et al. "PoseCNN: A Convolutional Neural
Network for 6D Object Pose Estimation in Cluttered
Scenes." arXiv preprint arXiv:1711.00199 (2017).
Position (L2 loss)
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Example: choosing a metric for pose estimation
• Enumerate requirements
• Downstream goal is real-time robotic grasping

• Position error must be <1cm, not sure exactly how
precise is needed

• Angular error <5 degrees

• Must run in 100ms to work in real-time
95
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Example: choosing a metric for pose estimation
• Enumerate requirements

• Evaluate current performance
• Train a few models
96
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Example: choosing a metric for pose estimation
• Enumerate requirements

• Evaluate current performance

• Compare current performance to requirements
• Position error between 0.75 and 1.25cm (depending on
hyperparameters)

• All angular errors around 60 degrees

• Inference time ~300ms
97
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Example: choosing a metric for pose estimation
• Enumerate requirements

• Evaluate current performance

• Compare current performance to requirements
• Prioritize angular error

• Threshold position error at 1cm

• Ignore run time for now
98
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Example: choosing a metric for pose estimation
• Enumerate requirements

• Evaluate current performance

• Compare current performance to requirements

• Revisit metric as your numbers improve
99
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Key points for choosing a metric
A. The real world is messy; you usually care about lots of
metrics

B. However, ML systems work best when optimizing a single
number

C. As a result, you need to pick a formula for combining
metrics

D. This formula can and will change!
100
2. Choosing metrics
ML Projects - metrics
Full Stack Deep Learning
Questions?
101ML Projects - metrics
Full Stack Deep Learning
Metrics
Module overview
102
Prioritizing
projects
Lifecycle
Archetypes
Baselines
• How to think about all of the activities in an
ML project
• Assessing the feasibility and impact of your
projects
• The main categories of ML projects, and the
implications for project management
• How to pick a single number to optimize
• How to know if your model is performing
well
ML Projects - baselines
Full Stack Deep Learning
Key points for choosing baselines
A. Baselines give you a lower bound on expected model
performance

B. The tighter the lower bound, the more useful the baseline 

(e.g., published results, carefully tuned pipelines, & human
baselines are better)
103ML Projects - baselines
Full Stack Deep Learning
Why are baselines important?
104ML Projects - baselines
Full Stack Deep Learning
Why are baselines important?
105
Same model, different baseline —> different next steps
ML Projects - baselines
Full Stack Deep Learning
Where to look for baselines
106
External
baselines
• Business / engineering requirements
ML Projects - baselines
Full Stack Deep Learning
Where to look for baselines
107
External
baselines Make sure comparison
is fair!
• Business / engineering requirements

• Published results
ML Projects - baselines
Full Stack Deep Learning
Where to look for baselines
108
External
baselines
• Business / engineering requirements

• Published results

• Scripted baselines (e.g., OpenCV, rules-based)
Internal
baselines
ML Projects - baselines
Full Stack Deep Learning
Where to look for baselines
109
External
baselines
• Business / engineering requirements

• Published results

• Scripted baselines (e.g., OpenCV, rules-based)

• Simple ML baselines (e.g., bag of words, linear
regression)
Internal
baselines
ML Projects - baselines
Full Stack Deep Learning
Where to look for baselines
110
External
baselines
Internal
baselines
• Business / engineering requirements

• Published results

• Scripted baselines (e.g., OpenCV, rules-based)

• Simple ML baselines (e.g., bag of words, linear
regression)

• Human performance
ML Projects - baselines
Full Stack Deep Learning
How to create good human baselines
111
Low
Quality of
baseline
High
Ease of data
collection
Low
Random people (e.g., Amazon Turk)
Ensemble of random people
Domain experts (e.g., doctors)
Deep domain experts (e.g., specialists)
Mixture of experts
ML Projects - baselines
Full Stack Deep Learning
How to create good human baselines
• Highest quality that allows more data to be labeled easily

• More specialized domains need more skilled labelers

• Find cases where model performs worse and concentrate data collection
there
112
More on labeling in data lecture!
ML Projects - baselines
Full Stack Deep Learning
Key points for choosing baselines
A. Baselines give you a lower bound on expected model
performance

B. The tighter the lower bound, the more useful the baseline 

(e.g., published results, carefully tuned pipelines, human
baselines are better)
113ML Projects - baselines
Full Stack Deep Learning
Questions?
114ML Projects - baselines
Full Stack Deep Learning
Metrics
Conclusion
115
Prioritizing
projects
Lifecycle
Archetypes
Baselines
• ML projects are iterative. Deploy something
fast to begin the cycle.
• Choose projects that that are high impact
with low cost of wrong predictions
• The secret sauce to making projects work
well is to build automated data flywheels
• In the real world you care about many
things, but you should always have just one
you’re working on
• Good baselines help you invest your effort
the right way
ML Projects - baselines
Full Stack Deep Learning
Where to go to learn more
• Andrew Ng’s “Machine Learning Yearning”

• Andrej Karpathy’s “Software 2.0”

• Agrawal’s “The Economics of AI”
116ML Projects - conclusion
Full Stack Deep Learning
Thank you!
117

Mais conteúdo relacionado

Mais procurados

MLOps Using MLflow
MLOps Using MLflowMLOps Using MLflow
MLOps Using MLflowDatabricks
 
Vertex AI: Pipelines for your MLOps workflows
Vertex AI: Pipelines for your MLOps workflowsVertex AI: Pipelines for your MLOps workflows
Vertex AI: Pipelines for your MLOps workflowsMárton Kodok
 
Seamless MLOps with Seldon and MLflow
Seamless MLOps with Seldon and MLflowSeamless MLOps with Seldon and MLflow
Seamless MLOps with Seldon and MLflowDatabricks
 
The Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it WorkThe Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it WorkIvo Andreev
 
Machine Learning using Kubeflow and Kubernetes
Machine Learning using Kubeflow and KubernetesMachine Learning using Kubeflow and Kubernetes
Machine Learning using Kubeflow and KubernetesArun Gupta
 
End to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
End to end Machine Learning using Kubeflow - Build, Train, Deploy and ManageEnd to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
End to end Machine Learning using Kubeflow - Build, Train, Deploy and ManageAnimesh Singh
 
Training And Serving ML Model Using Kubeflow by Jayesh Sharma
Training And Serving ML Model Using Kubeflow by Jayesh SharmaTraining And Serving ML Model Using Kubeflow by Jayesh Sharma
Training And Serving ML Model Using Kubeflow by Jayesh SharmaCodeOps Technologies LLP
 
How to Utilize MLflow and Kubernetes to Build an Enterprise ML Platform
How to Utilize MLflow and Kubernetes to Build an Enterprise ML PlatformHow to Utilize MLflow and Kubernetes to Build an Enterprise ML Platform
How to Utilize MLflow and Kubernetes to Build an Enterprise ML PlatformDatabricks
 
General introduction to AI ML DL DS
General introduction to AI ML DL DSGeneral introduction to AI ML DL DS
General introduction to AI ML DL DSRoopesh Kohad
 
Large Language Models - Chat AI.pdf
Large Language Models - Chat AI.pdfLarge Language Models - Chat AI.pdf
Large Language Models - Chat AI.pdfDavid Rostcheck
 
OpenAI GPT in Depth - Questions and Misconceptions
OpenAI GPT in Depth - Questions and MisconceptionsOpenAI GPT in Depth - Questions and Misconceptions
OpenAI GPT in Depth - Questions and MisconceptionsIvo Andreev
 
Model serving made easy using Kedro pipelines - Mariusz Strzelecki, GetInData
Model serving made easy using Kedro pipelines - Mariusz Strzelecki, GetInDataModel serving made easy using Kedro pipelines - Mariusz Strzelecki, GetInData
Model serving made easy using Kedro pipelines - Mariusz Strzelecki, GetInDataGetInData
 
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...Ed Fernandez
 
Active Retrieval Augmented Generation.pdf
Active Retrieval Augmented Generation.pdfActive Retrieval Augmented Generation.pdf
Active Retrieval Augmented Generation.pdfPo-Chuan Chen
 
MLflow: A Platform for Production Machine Learning
MLflow: A Platform for Production Machine LearningMLflow: A Platform for Production Machine Learning
MLflow: A Platform for Production Machine LearningMatei Zaharia
 
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMakerMLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMakerProvectus
 

Mais procurados (20)

MLOps for production-level machine learning
MLOps for production-level machine learningMLOps for production-level machine learning
MLOps for production-level machine learning
 
MLOps Using MLflow
MLOps Using MLflowMLOps Using MLflow
MLOps Using MLflow
 
Vertex AI: Pipelines for your MLOps workflows
Vertex AI: Pipelines for your MLOps workflowsVertex AI: Pipelines for your MLOps workflows
Vertex AI: Pipelines for your MLOps workflows
 
MLOps with Kubeflow
MLOps with Kubeflow MLOps with Kubeflow
MLOps with Kubeflow
 
Seamless MLOps with Seldon and MLflow
Seamless MLOps with Seldon and MLflowSeamless MLOps with Seldon and MLflow
Seamless MLOps with Seldon and MLflow
 
The Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it WorkThe Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it Work
 
Machine Learning using Kubeflow and Kubernetes
Machine Learning using Kubeflow and KubernetesMachine Learning using Kubeflow and Kubernetes
Machine Learning using Kubeflow and Kubernetes
 
End to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
End to end Machine Learning using Kubeflow - Build, Train, Deploy and ManageEnd to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
End to end Machine Learning using Kubeflow - Build, Train, Deploy and Manage
 
gpt3_presentation.pdf
gpt3_presentation.pdfgpt3_presentation.pdf
gpt3_presentation.pdf
 
Training And Serving ML Model Using Kubeflow by Jayesh Sharma
Training And Serving ML Model Using Kubeflow by Jayesh SharmaTraining And Serving ML Model Using Kubeflow by Jayesh Sharma
Training And Serving ML Model Using Kubeflow by Jayesh Sharma
 
How to Utilize MLflow and Kubernetes to Build an Enterprise ML Platform
How to Utilize MLflow and Kubernetes to Build an Enterprise ML PlatformHow to Utilize MLflow and Kubernetes to Build an Enterprise ML Platform
How to Utilize MLflow and Kubernetes to Build an Enterprise ML Platform
 
General introduction to AI ML DL DS
General introduction to AI ML DL DSGeneral introduction to AI ML DL DS
General introduction to AI ML DL DS
 
Large Language Models - Chat AI.pdf
Large Language Models - Chat AI.pdfLarge Language Models - Chat AI.pdf
Large Language Models - Chat AI.pdf
 
Kubeflow
KubeflowKubeflow
Kubeflow
 
OpenAI GPT in Depth - Questions and Misconceptions
OpenAI GPT in Depth - Questions and MisconceptionsOpenAI GPT in Depth - Questions and Misconceptions
OpenAI GPT in Depth - Questions and Misconceptions
 
Model serving made easy using Kedro pipelines - Mariusz Strzelecki, GetInData
Model serving made easy using Kedro pipelines - Mariusz Strzelecki, GetInDataModel serving made easy using Kedro pipelines - Mariusz Strzelecki, GetInData
Model serving made easy using Kedro pipelines - Mariusz Strzelecki, GetInData
 
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...
Machine Learning Platformization & AutoML: Adopting ML at Scale in the Enterp...
 
Active Retrieval Augmented Generation.pdf
Active Retrieval Augmented Generation.pdfActive Retrieval Augmented Generation.pdf
Active Retrieval Augmented Generation.pdf
 
MLflow: A Platform for Production Machine Learning
MLflow: A Platform for Production Machine LearningMLflow: A Platform for Production Machine Learning
MLflow: A Platform for Production Machine Learning
 
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMakerMLOps and Reproducible ML on AWS with Kubeflow and SageMaker
MLOps and Reproducible ML on AWS with Kubeflow and SageMaker
 

Semelhante a Setting up Machine Learning Projects - Full Stack Deep Learning

Lecture 5: ML Projects (Full Stack Deep Learning - Spring 2021)
Lecture 5: ML Projects (Full Stack Deep Learning - Spring 2021)Lecture 5: ML Projects (Full Stack Deep Learning - Spring 2021)
Lecture 5: ML Projects (Full Stack Deep Learning - Spring 2021)Sergey Karayev
 
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...Lviv Startup Club
 
HR Analytics: Using Machine Learning to Predict Employee Turnover - Matt Danc...
HR Analytics: Using Machine Learning to Predict Employee Turnover - Matt Danc...HR Analytics: Using Machine Learning to Predict Employee Turnover - Matt Danc...
HR Analytics: Using Machine Learning to Predict Employee Turnover - Matt Danc...Sri Ambati
 
Drifting Away: Testing ML Models in Production
Drifting Away: Testing ML Models in ProductionDrifting Away: Testing ML Models in Production
Drifting Away: Testing ML Models in ProductionDatabricks
 
ML platforms & auto ml - UEM annotated (2) - #digitalbusinessweek
ML platforms & auto ml - UEM annotated (2) - #digitalbusinessweekML platforms & auto ml - UEM annotated (2) - #digitalbusinessweek
ML platforms & auto ml - UEM annotated (2) - #digitalbusinessweekEd Fernandez
 
BigMLSchool: ML Platforms and AutoML in the Enterprise
BigMLSchool: ML Platforms and AutoML in the EnterpriseBigMLSchool: ML Platforms and AutoML in the Enterprise
BigMLSchool: ML Platforms and AutoML in the EnterpriseBigML, Inc
 
Rex Sprint 0 - how build the data model with 2 BA and 3 IT architects
Rex Sprint 0 - how build the data model with 2 BA and 3 IT architectsRex Sprint 0 - how build the data model with 2 BA and 3 IT architects
Rex Sprint 0 - how build the data model with 2 BA and 3 IT architectsJean-François Nguyen
 
Machine learning in production
Machine learning in productionMachine learning in production
Machine learning in productionTuri, Inc.
 
“Houston, we have a model...” Introduction to MLOps
“Houston, we have a model...” Introduction to MLOps“Houston, we have a model...” Introduction to MLOps
“Houston, we have a model...” Introduction to MLOpsRui Quintino
 
PAC 2019 virtual Alexander Podelko
PAC 2019 virtual Alexander Podelko PAC 2019 virtual Alexander Podelko
PAC 2019 virtual Alexander Podelko Neotys
 
Design Like a Pro: Machine Learning Basics
Design Like a Pro: Machine Learning BasicsDesign Like a Pro: Machine Learning Basics
Design Like a Pro: Machine Learning BasicsInductive Automation
 
Ideas spracklen-final
Ideas spracklen-finalIdeas spracklen-final
Ideas spracklen-finalsupportlogic
 
An Agile Approach to Machine Learning
An Agile Approach to Machine LearningAn Agile Approach to Machine Learning
An Agile Approach to Machine LearningRandy Shoup
 
Module_1_Slide_01.pdf
Module_1_Slide_01.pdfModule_1_Slide_01.pdf
Module_1_Slide_01.pdfFazleeKan
 
Design Like a Pro: Machine Learning Basics
Design Like a Pro: Machine Learning BasicsDesign Like a Pro: Machine Learning Basics
Design Like a Pro: Machine Learning BasicsInductive Automation
 
Machine Learning Teams - Full Stack Deep Learning
Machine Learning Teams - Full Stack Deep LearningMachine Learning Teams - Full Stack Deep Learning
Machine Learning Teams - Full Stack Deep LearningSergey Karayev
 
Introduction to ml ops in daily apps
Introduction to ml ops in daily appsIntroduction to ml ops in daily apps
Introduction to ml ops in daily appsVincent Tatan
 
Copyright © 2012 EMC Corporation. All Rights Reserved. EMC.docx
Copyright © 2012 EMC Corporation. All Rights Reserved. EMC.docxCopyright © 2012 EMC Corporation. All Rights Reserved. EMC.docx
Copyright © 2012 EMC Corporation. All Rights Reserved. EMC.docxbobbywlane695641
 
Apache Spark Model Deployment
Apache Spark Model Deployment Apache Spark Model Deployment
Apache Spark Model Deployment Databricks
 

Semelhante a Setting up Machine Learning Projects - Full Stack Deep Learning (20)

Lecture 5: ML Projects (Full Stack Deep Learning - Spring 2021)
Lecture 5: ML Projects (Full Stack Deep Learning - Spring 2021)Lecture 5: ML Projects (Full Stack Deep Learning - Spring 2021)
Lecture 5: ML Projects (Full Stack Deep Learning - Spring 2021)
 
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...
 
HR Analytics: Using Machine Learning to Predict Employee Turnover - Matt Danc...
HR Analytics: Using Machine Learning to Predict Employee Turnover - Matt Danc...HR Analytics: Using Machine Learning to Predict Employee Turnover - Matt Danc...
HR Analytics: Using Machine Learning to Predict Employee Turnover - Matt Danc...
 
Drifting Away: Testing ML Models in Production
Drifting Away: Testing ML Models in ProductionDrifting Away: Testing ML Models in Production
Drifting Away: Testing ML Models in Production
 
ML platforms & auto ml - UEM annotated (2) - #digitalbusinessweek
ML platforms & auto ml - UEM annotated (2) - #digitalbusinessweekML platforms & auto ml - UEM annotated (2) - #digitalbusinessweek
ML platforms & auto ml - UEM annotated (2) - #digitalbusinessweek
 
BigMLSchool: ML Platforms and AutoML in the Enterprise
BigMLSchool: ML Platforms and AutoML in the EnterpriseBigMLSchool: ML Platforms and AutoML in the Enterprise
BigMLSchool: ML Platforms and AutoML in the Enterprise
 
Rex Sprint 0 - how build the data model with 2 BA and 3 IT architects
Rex Sprint 0 - how build the data model with 2 BA and 3 IT architectsRex Sprint 0 - how build the data model with 2 BA and 3 IT architects
Rex Sprint 0 - how build the data model with 2 BA and 3 IT architects
 
Machine learning in production
Machine learning in productionMachine learning in production
Machine learning in production
 
“Houston, we have a model...” Introduction to MLOps
“Houston, we have a model...” Introduction to MLOps“Houston, we have a model...” Introduction to MLOps
“Houston, we have a model...” Introduction to MLOps
 
PAC 2019 virtual Alexander Podelko
PAC 2019 virtual Alexander Podelko PAC 2019 virtual Alexander Podelko
PAC 2019 virtual Alexander Podelko
 
Design Like a Pro: Machine Learning Basics
Design Like a Pro: Machine Learning BasicsDesign Like a Pro: Machine Learning Basics
Design Like a Pro: Machine Learning Basics
 
Ideas spracklen-final
Ideas spracklen-finalIdeas spracklen-final
Ideas spracklen-final
 
Artificial Intelligence (AI) in Project Management
Artificial Intelligence (AI) in Project ManagementArtificial Intelligence (AI) in Project Management
Artificial Intelligence (AI) in Project Management
 
An Agile Approach to Machine Learning
An Agile Approach to Machine LearningAn Agile Approach to Machine Learning
An Agile Approach to Machine Learning
 
Module_1_Slide_01.pdf
Module_1_Slide_01.pdfModule_1_Slide_01.pdf
Module_1_Slide_01.pdf
 
Design Like a Pro: Machine Learning Basics
Design Like a Pro: Machine Learning BasicsDesign Like a Pro: Machine Learning Basics
Design Like a Pro: Machine Learning Basics
 
Machine Learning Teams - Full Stack Deep Learning
Machine Learning Teams - Full Stack Deep LearningMachine Learning Teams - Full Stack Deep Learning
Machine Learning Teams - Full Stack Deep Learning
 
Introduction to ml ops in daily apps
Introduction to ml ops in daily appsIntroduction to ml ops in daily apps
Introduction to ml ops in daily apps
 
Copyright © 2012 EMC Corporation. All Rights Reserved. EMC.docx
Copyright © 2012 EMC Corporation. All Rights Reserved. EMC.docxCopyright © 2012 EMC Corporation. All Rights Reserved. EMC.docx
Copyright © 2012 EMC Corporation. All Rights Reserved. EMC.docx
 
Apache Spark Model Deployment
Apache Spark Model Deployment Apache Spark Model Deployment
Apache Spark Model Deployment
 

Mais de Sergey Karayev

Lecture 13: ML Teams (Full Stack Deep Learning - Spring 2021)
Lecture 13: ML Teams (Full Stack Deep Learning - Spring 2021)Lecture 13: ML Teams (Full Stack Deep Learning - Spring 2021)
Lecture 13: ML Teams (Full Stack Deep Learning - Spring 2021)Sergey Karayev
 
Lecture 12: Research Directions (Full Stack Deep Learning - Spring 2021)
Lecture 12: Research Directions (Full Stack Deep Learning - Spring 2021)Lecture 12: Research Directions (Full Stack Deep Learning - Spring 2021)
Lecture 12: Research Directions (Full Stack Deep Learning - Spring 2021)Sergey Karayev
 
Lecture 9: AI Ethics (Full Stack Deep Learning - Spring 2021)
Lecture 9: AI Ethics (Full Stack Deep Learning - Spring 2021)Lecture 9: AI Ethics (Full Stack Deep Learning - Spring 2021)
Lecture 9: AI Ethics (Full Stack Deep Learning - Spring 2021)Sergey Karayev
 
Lecture 8: Data Management (Full Stack Deep Learning - Spring 2021)
Lecture 8: Data Management (Full Stack Deep Learning - Spring 2021)Lecture 8: Data Management (Full Stack Deep Learning - Spring 2021)
Lecture 8: Data Management (Full Stack Deep Learning - Spring 2021)Sergey Karayev
 
Lecture 7: Troubleshooting Deep Neural Networks (Full Stack Deep Learning - S...
Lecture 7: Troubleshooting Deep Neural Networks (Full Stack Deep Learning - S...Lecture 7: Troubleshooting Deep Neural Networks (Full Stack Deep Learning - S...
Lecture 7: Troubleshooting Deep Neural Networks (Full Stack Deep Learning - S...Sergey Karayev
 
Lecture 4: Transformers (Full Stack Deep Learning - Spring 2021)
Lecture 4: Transformers (Full Stack Deep Learning - Spring 2021)Lecture 4: Transformers (Full Stack Deep Learning - Spring 2021)
Lecture 4: Transformers (Full Stack Deep Learning - Spring 2021)Sergey Karayev
 
Lecture 3: RNNs - Full Stack Deep Learning - Spring 2021
Lecture 3: RNNs - Full Stack Deep Learning - Spring 2021Lecture 3: RNNs - Full Stack Deep Learning - Spring 2021
Lecture 3: RNNs - Full Stack Deep Learning - Spring 2021Sergey Karayev
 
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...Sergey Karayev
 
Lecture 2.A: Convolutional Networks - Full Stack Deep Learning - Spring 2021
Lecture 2.A: Convolutional Networks - Full Stack Deep Learning - Spring 2021Lecture 2.A: Convolutional Networks - Full Stack Deep Learning - Spring 2021
Lecture 2.A: Convolutional Networks - Full Stack Deep Learning - Spring 2021Sergey Karayev
 
Lab 1: Intro and Setup - Full Stack Deep Learning - Spring 2021
Lab 1: Intro and Setup - Full Stack Deep Learning - Spring 2021Lab 1: Intro and Setup - Full Stack Deep Learning - Spring 2021
Lab 1: Intro and Setup - Full Stack Deep Learning - Spring 2021Sergey Karayev
 
Lecture 1: Deep Learning Fundamentals - Full Stack Deep Learning - Spring 2021
Lecture 1: Deep Learning Fundamentals - Full Stack Deep Learning - Spring 2021Lecture 1: Deep Learning Fundamentals - Full Stack Deep Learning - Spring 2021
Lecture 1: Deep Learning Fundamentals - Full Stack Deep Learning - Spring 2021Sergey Karayev
 
Research Directions - Full Stack Deep Learning
Research Directions - Full Stack Deep LearningResearch Directions - Full Stack Deep Learning
Research Directions - Full Stack Deep LearningSergey Karayev
 
Infrastructure and Tooling - Full Stack Deep Learning
Infrastructure and Tooling - Full Stack Deep LearningInfrastructure and Tooling - Full Stack Deep Learning
Infrastructure and Tooling - Full Stack Deep LearningSergey Karayev
 
AI Masterclass at ASU GSV 2019
AI Masterclass at ASU GSV 2019AI Masterclass at ASU GSV 2019
AI Masterclass at ASU GSV 2019Sergey Karayev
 
Attentional Object Detection - introductory slides.
Attentional Object Detection - introductory slides.Attentional Object Detection - introductory slides.
Attentional Object Detection - introductory slides.Sergey Karayev
 

Mais de Sergey Karayev (15)

Lecture 13: ML Teams (Full Stack Deep Learning - Spring 2021)
Lecture 13: ML Teams (Full Stack Deep Learning - Spring 2021)Lecture 13: ML Teams (Full Stack Deep Learning - Spring 2021)
Lecture 13: ML Teams (Full Stack Deep Learning - Spring 2021)
 
Lecture 12: Research Directions (Full Stack Deep Learning - Spring 2021)
Lecture 12: Research Directions (Full Stack Deep Learning - Spring 2021)Lecture 12: Research Directions (Full Stack Deep Learning - Spring 2021)
Lecture 12: Research Directions (Full Stack Deep Learning - Spring 2021)
 
Lecture 9: AI Ethics (Full Stack Deep Learning - Spring 2021)
Lecture 9: AI Ethics (Full Stack Deep Learning - Spring 2021)Lecture 9: AI Ethics (Full Stack Deep Learning - Spring 2021)
Lecture 9: AI Ethics (Full Stack Deep Learning - Spring 2021)
 
Lecture 8: Data Management (Full Stack Deep Learning - Spring 2021)
Lecture 8: Data Management (Full Stack Deep Learning - Spring 2021)Lecture 8: Data Management (Full Stack Deep Learning - Spring 2021)
Lecture 8: Data Management (Full Stack Deep Learning - Spring 2021)
 
Lecture 7: Troubleshooting Deep Neural Networks (Full Stack Deep Learning - S...
Lecture 7: Troubleshooting Deep Neural Networks (Full Stack Deep Learning - S...Lecture 7: Troubleshooting Deep Neural Networks (Full Stack Deep Learning - S...
Lecture 7: Troubleshooting Deep Neural Networks (Full Stack Deep Learning - S...
 
Lecture 4: Transformers (Full Stack Deep Learning - Spring 2021)
Lecture 4: Transformers (Full Stack Deep Learning - Spring 2021)Lecture 4: Transformers (Full Stack Deep Learning - Spring 2021)
Lecture 4: Transformers (Full Stack Deep Learning - Spring 2021)
 
Lecture 3: RNNs - Full Stack Deep Learning - Spring 2021
Lecture 3: RNNs - Full Stack Deep Learning - Spring 2021Lecture 3: RNNs - Full Stack Deep Learning - Spring 2021
Lecture 3: RNNs - Full Stack Deep Learning - Spring 2021
 
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
Lecture 2.B: Computer Vision Applications - Full Stack Deep Learning - Spring...
 
Lecture 2.A: Convolutional Networks - Full Stack Deep Learning - Spring 2021
Lecture 2.A: Convolutional Networks - Full Stack Deep Learning - Spring 2021Lecture 2.A: Convolutional Networks - Full Stack Deep Learning - Spring 2021
Lecture 2.A: Convolutional Networks - Full Stack Deep Learning - Spring 2021
 
Lab 1: Intro and Setup - Full Stack Deep Learning - Spring 2021
Lab 1: Intro and Setup - Full Stack Deep Learning - Spring 2021Lab 1: Intro and Setup - Full Stack Deep Learning - Spring 2021
Lab 1: Intro and Setup - Full Stack Deep Learning - Spring 2021
 
Lecture 1: Deep Learning Fundamentals - Full Stack Deep Learning - Spring 2021
Lecture 1: Deep Learning Fundamentals - Full Stack Deep Learning - Spring 2021Lecture 1: Deep Learning Fundamentals - Full Stack Deep Learning - Spring 2021
Lecture 1: Deep Learning Fundamentals - Full Stack Deep Learning - Spring 2021
 
Research Directions - Full Stack Deep Learning
Research Directions - Full Stack Deep LearningResearch Directions - Full Stack Deep Learning
Research Directions - Full Stack Deep Learning
 
Infrastructure and Tooling - Full Stack Deep Learning
Infrastructure and Tooling - Full Stack Deep LearningInfrastructure and Tooling - Full Stack Deep Learning
Infrastructure and Tooling - Full Stack Deep Learning
 
AI Masterclass at ASU GSV 2019
AI Masterclass at ASU GSV 2019AI Masterclass at ASU GSV 2019
AI Masterclass at ASU GSV 2019
 
Attentional Object Detection - introductory slides.
Attentional Object Detection - introductory slides.Attentional Object Detection - introductory slides.
Attentional Object Detection - introductory slides.
 

Último

Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilV3cube
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 

Último (20)

Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 

Setting up Machine Learning Projects - Full Stack Deep Learning

  • 1. Full Stack Deep Learning Josh Tobin, Sergey Karayev, Pieter Abbeel Setting up Machine Learning Projects
  • 2. Full Stack Deep Learning Machine Learning Projects 2ML Projects - overview
  • 3. Full Stack Deep Learning Machine Learning Projects 3ML Projects - overview 85% of AI projects fail1 1 Pactera Technologies
  • 4. Full Stack Deep Learning Why do so many projects fail? • ML is still research - you shouldn’t aim for 100% success rate • But, many are doomed to fail: • Technically infeasible or poorly scoped • Never make the leap to production • Unclear success criteria • Poor team management 4ML Projects - overview
  • 5. Full Stack Deep Learning Module overview 5 Lifecycle • How to think about all of the activities in an ML project Prioritizing projects • Assessing the feasibility and impact of your projects Archetypes • The main categories of ML projects, and the implications for project management Metrics • How to pick a single number to optimize Baselines • How to know if your model is performing well ML Projects - overview
  • 6. Full Stack Deep Learning Running case study - pose estimation Position (L2 loss) 6 (x, y, z)<latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit> ( , ✓, )<latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit> Orientation (L2 loss) Xiang, Yu, et al. "PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes." arXiv preprint arXiv:1711.00199 (2017). Position (L2 loss) ML Projects - overview
  • 7. Full Stack Deep Learning Full Stack Robotics works on grasping 7 (x, y, z)<latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit> ( , ✓, )<latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit> Grasp model Motor commands ML Projects - overview
  • 8. Full Stack Deep Learning Metrics Module overview 8 Prioritizing projects Lifecycle Archetypes Baselines • How to think about all of the activities in an ML project • Assessing the feasibility and impact of your projects • The main categories of ML projects, and the implications for project management • How to pick a single number to optimize • How to know if your model is performing well ML Projects - lifecycle
  • 9. Full Stack Deep Learning Lifecycle of a ML project 9 Planning & 
 project setup ML Projects - lifecycle
  • 10. Full Stack Deep Learning Lifecycle of a ML project 10 • Decide to work on pose estimation • Determine requirements & goals • Allocate resources • Etc. Planning & 
 project setup ML Projects - lifecycle
  • 11. Full Stack Deep Learning Lifecycle of a ML project 11 Planning & 
 project setup Data collection & labeling ML Projects - lifecycle
  • 12. Full Stack Deep Learning Lifecycle of a ML project 12 • Collect training objects • Set up sensors (e.g., cameras) • Capture images of objects • Annotate with ground truth (how?) Planning & 
 project setup Data collection & labeling ML Projects - lifecycle
  • 13. Full Stack Deep Learning Lifecycle of a ML project 13 Planning & 
 project setup Data collection & labeling ML Projects - lifecycle
  • 14. Full Stack Deep Learning Lifecycle of a ML project 14 • Too hard to get data. • Easier to label a different task (e.g., hard to annotate pose, easier to annotate per-pixel segmentation) Planning & 
 project setup Data collection & labeling ML Projects - lifecycle
  • 15. Full Stack Deep Learning Lifecycle of a ML project 15 Planning & 
 project setup Data collection & labeling Training & debugging ML Projects - lifecycle
  • 16. Full Stack Deep Learning Lifecycle of a ML project 16 • Implement baseline in OpenCV • Find SoTA model & reproduce • Debug our implementation • Improve model for our task Planning & 
 project setup Data collection & labeling Training & debugging ML Projects - lifecycle
  • 17. Full Stack Deep Learning Lifecycle of a ML project 17 Planning & 
 project setup Data collection & labeling Training & debugging ML Projects - lifecycle
  • 18. Full Stack Deep Learning Lifecycle of a ML project 18 • Collect more data • Realize data labeling is unreliable Planning & 
 project setup Data collection & labeling Training & debugging ML Projects - lifecycle
  • 19. Full Stack Deep Learning Lifecycle of a ML project 19 Planning & 
 project setup Data collection & labeling Training & debugging ML Projects - lifecycle
  • 20. Full Stack Deep Learning Lifecycle of a ML project 20 • Realize task is too hard • Requirements trade off with each other - revisit which are most important Planning & 
 project setup Data collection & labeling Training & debugging ML Projects - lifecycle
  • 21. Full Stack Deep Learning Lifecycle of a ML project 21 • Pilot in grasping system in the lab • Write tests to prevent regressions • Roll out in production Planning & 
 project setup Data collection & labeling Training & debugging Deploying & 
 testing ML Projects - lifecycle
  • 22. Full Stack Deep Learning Lifecycle of a ML project 22 • Doesn’t work in the lab - keep improving accuracy of model Planning & 
 project setup Data collection & labeling Training & debugging Deploying & 
 testing ML Projects - lifecycle
  • 23. Full Stack Deep Learning Lifecycle of a ML project 23 • Fix data mismatch between training data and data seen in deployment • Collect more data • Mine hard cases Planning & 
 project setup Data collection & labeling Training & debugging Deploying & 
 testing ML Projects - lifecycle
  • 24. Full Stack Deep Learning Lifecycle of a ML project 24 • The metric you picked doesn’t actually drive downstream user behavior. Revisit the metric. • Performance in the real world isn’t great - revisit requirements (e.g., do we need to be faster or more accurate? Planning & 
 project setup Data collection & labeling Training & debugging Deploying & 
 testing ML Projects - lifecycle
  • 25. Full Stack Deep Learning Lifecycle of a ML project 25 Planning & 
 project setup Data collection & labeling Training & debugging Deploying & 
 testing Per-project activities ML Projects - lifecycle
  • 26. Full Stack Deep Learning Lifecycle of a ML project 26 Planning & 
 project setup Data collection & labeling Training & debugging Deploying & 
 testing Per-project activities ML Projects - lifecycle
  • 27. Full Stack Deep Learning Lifecycle of a ML project 27 Planning & 
 project setup Data collection & labeling Training & debugging Deploying & 
 testing Per-project activities Team & hiring Infra & tooling Cross-project infrastructure ML Projects - lifecycle
  • 28. Full Stack Deep Learning What else do you need to know? • Understand state of the art in your domain • Understand what’s possible • Know what to try next • We will introduce most promising research areas 28ML Projects - lifecycle
  • 29. Full Stack Deep Learning Lifecycle of a ML project 29 Planning & 
 project setup Data collection & labeling Training & debugging Deploying & 
 testing Per-project activities Team & hiring Infra & tooling Cross-project infrastructure ML Projects - lifecycle
  • 30. Full Stack Deep Learning Questions? 30ML Projects - lifecycle
  • 31. Full Stack Deep Learning Metrics Module overview 31 Prioritizing projects Lifecycle Archetypes Baselines • How to think about all of the activities in an ML project • Assessing the feasibility and impact of your projects • The main categories of ML projects, and the implications for project management • How to pick a single number to optimize • How to know if your model is performing well ML Projects - prioritizing
  • 32. Full Stack Deep Learning Key points for prioritizing projects A. High-impact ML problems • Complex parts of your pipeline • Places where cheap prediction is valuable B. Cost of ML projects is driven by data availability, but accuracy requirement also plays a big role 32ML Projects - prioritizing
  • 33. Full Stack Deep Learning A (general) framework for prioritizing projects 33 Feasibility (e.g., cost) Low High Low High High priority Impact ML Projects - prioritizing
  • 34. Full Stack Deep Learning Mental models for high-impact ML projects 1. Where can you take advantage of cheap prediction? 2. Where can you automate complicated manual processes? 34ML Projects - prioritizing
  • 35. Full Stack Deep Learning Mental models for high-impact ML projects 35 Prediction Machines: The Simple Economics of Artificial Intelligence (Agrawal, Gans, Goldfarb) • AI reduces cost of prediction • Prediction is central for decision making • Cheap prediction means • Prediction will be everywhere • Even in problems where it was too expensive before (e.g., for most people, hiring a driver) • Implication: Look for projects where cheap prediction will have a huge business impact The economics of AI
 (Agrawal, Gans, Goldfarb) ML Projects - prioritizing
  • 36. Full Stack Deep Learning Mental models for high-impact ML projects 36 Software 2.0 (Andrej Karpathy): https://medium.com/@karpathy/software-2-0-a64152b37c35 Software 2.0
 (Andrej Karpathy) ML Projects - prioritizing
  • 37. Full Stack Deep Learning Mental models for high-impact ML projects 37 Software 2.0 (Andrej Karpathy): https://medium.com/@karpathy/software-2-0-a64152b37c35 • Software 1.0 = traditional programs with explicit instructions (python / c++ / etc) • Software 2.0 = humans specify goals, and algorithm searches for a program that works • 2.0 programmers work with datasets, which get compiled via optimization • Why? Works better, more general, computational advantages • Implication: look for complicated rule-based software where we can learn the rules instead of programming them Software 2.0
 (Andrej Karpathy) ML Projects - prioritizing
  • 38. Full Stack Deep Learning A (general) framework for prioritizing projects 38 Feasibility (e.g., cost) Low High Low High High priority Impact ML Projects - prioritizing
  • 39. Full Stack Deep Learning Assessing feasibility of ML projects 39 Data availability Accuracy requirement Problem difficulty Cost drivers Main considerations • How hard is it to acquire data? • How expensive is data labeling? • How much data will be needed? • How costly are wrong predictions? • How frequently does the system need to be right to be useful? • Good published work on similar problems? 
 (newer problems mean more risk & more technical effort) • Compute needed for training? • Compute available for deployment? ML Projects - prioritizing
  • 40. Full Stack Deep Learning Why are accuracy requirements so important? 40 Required accuracy Project cost 50% 90% 99% 99.9% … ML Projects - prioritizing
  • 41. Full Stack Deep Learning Why are accuracy requirements so important? 41 Required accuracy Project cost 50% 90% 99% 99.9% … ML project costs tend to scale super-linearly in the accuracy requirement ML Projects - prioritizing
  • 42. Full Stack Deep Learning Assessing feasibility of ML projects 42 Data availability Accuracy requirement Problem difficulty Cost drivers Main considerations • How hard is it to acquire data? • How expensive is data labeling? • How much data will be needed? • How costly are wrong predictions? • How frequently does the system need to be right to be useful? • Good published work on similar problems? 
 (newer problems mean more risk & more technical effort) • Compute needed for training? • Compute available for deployment? ML Projects - prioritizing
  • 43. Full Stack Deep Learning What’s still hard in machine learning? 43ML Projects - prioritizing
  • 44. Full Stack Deep Learning What’s still hard in machine learning? 44ML Projects - prioritizing
  • 45. Full Stack Deep Learning What’s still hard in machine learning? 45 • Recognize content of images • Understand speech • Translate speech • Grasp objects • etc. Examples Counter-examples? • Understand humor / sarcasm • In-hand robotic manipulation • Generalize to new scenarios • etc. ML Projects - prioritizing
  • 46. Full Stack Deep Learning What’s still hard in machine learning? • Unsupervised learning • Reinforcement learning • Both are showing promise in limited domains where tons of data and compute are available 46ML Projects - prioritizing
  • 47. Full Stack Deep Learning What’s still hard in supervised learning? • Answering questions • Summarizing text • Predicting video • Building 3D models • Real-world speech recognition • Resisting adversarial examples • Doing math • Solving word puzzles • Bongard problems • Etc 47ML Projects - prioritizing
  • 48. Full Stack Deep Learning What types of problems are hard? 48 Output is complex Reliability is required Generalization is required Instances Examples • High-dimensional output • Ambiguous output • 3D reconstruction • Video prediction • Dialog systems • High precision is required • Robustness is required • Failing safely out-of-distribution • Robustness to adversarial attacks • High-precision pose estimation • Out of distribution data • Reasoning, planning, causality • Self-driving: edge cases • Self-driving: control • Small data ML Projects - prioritizing
  • 49. Full Stack Deep Learning Why is FSR focusing on pose estimation? 49 • FSR’s goal is grasping - requires reliable pose estimation • Traditional robotics pipeline uses hand- designed heuristics & online optimization • Slow • Brittle • Great candidate for Software 2.0! Impact Feasibility • Data availability • Easy to collect data • Labeling data could be a challenge, but can instrument lab with sensors • Accuracy requirement • Require high accuracy to grasp an object: <0.5cm • However, low cost of failure - picks per hour important, not % successes • Problem difficulty • Similar published results exist but need to adapt to our objects and robot ML Projects - prioritizing
  • 50. Full Stack Deep Learning Key points for prioritizing projects A. To find high-impact ML problems, look for complex parts of your pipeline and places where cheap prediction is valuable B. The cost of ML projects is primarily driven by data availability, but your accuracy requirement also plays a big role 50ML Projects - prioritizing
  • 51. Full Stack Deep Learning Questions? 51ML Projects - prioritizing
  • 52. Full Stack Deep Learning Metrics Module overview 52 Prioritizing projects Lifecycle Archetypes Baselines • How to think about all of the activities in an ML project • Assessing the feasibility and impact of your projects • The main categories of ML projects, and the implications for project management • How to pick a single number to optimize • How to know if your model is performing well ML Projects - archetypes
  • 53. Full Stack Deep Learning Machine learning project archetypes 53ML Projects - archetypes Improve an existing process Examples • Improve code completion in an IDE • Build a customized recommendation system • Build a better video game AI
  • 54. Full Stack Deep Learning Machine learning project archetypes 54ML Projects - archetypes Improve an existing process Augment a manual process Examples • Improve code completion in an IDE • Build a customized recommendation system • Build a better video game AI • Turn sketches into slides • Email auto-completion • Help a radiologist do their job faster
  • 55. Full Stack Deep Learning Machine learning project archetypes 55ML Projects - archetypes Improve an existing process Augment a manual process Automate a manual process Examples • Improve code completion in an IDE • Build a customized recommendation system • Build a better video game AI • Turn sketches into slides • Email auto-completion • Help a radiologist do their job faster • Full self-driving • Automated customer support • Automated website design
  • 56. Full Stack Deep Learning Machine learning project archetypes 56ML Projects - archetypes Improve an existing process Key questions • Do your models truly improve performance? • Does performance improvement generate business value? • Do performance improvements lead to a data flywheel?
  • 57. Full Stack Deep Learning Machine learning project archetypes 57ML Projects - archetypes Improve an existing process Augment a manual process Key questions • Do your models truly improve performance? • Does performance improvement generate business value? • Do performance improvements lead to a data flywheel? • How good does the system need to be to be useful? • How can you collect enough data to make it that good?
  • 58. Full Stack Deep Learning Machine learning project archetypes 58ML Projects - archetypes Improve an existing process Augment a manual process Automate a manual process Key questions • Do your models truly improve performance? • Does performance improvement generate business value? • Do performance improvements lead to a data flywheel? • How good does the system need to be to be useful? • How can you collect enough data to make it that good? • What is an acceptable failure rate for the system? • How can you guarantee that it won’t exceed that failure rate? • How inexpensively can you label data from the system?
  • 59. Full Stack Deep Learning Machine learning project archetypes 59ML Projects - archetypes Improve an existing process Augment a manual process Automate a manual process Key questions • Do your models truly improve performance? • Does performance improvement generate business value? • Do performance improvements lead to a data flywheel? • How good does the system need to be to be useful? • How can you collect enough data to make it that good? • What is an acceptable failure rate for the system? • How can you guarantee that it won’t exceed that failure rate? • How inexpensively can you label data from the system?
  • 60. Full Stack Deep Learning Data flywheels 60ML Projects - archetypes More users More data Better model
  • 61. Full Stack Deep Learning Data flywheels 61ML Projects - archetypes More users More data Better model Do you have a data loop? Automatically collect data (and ideally labels) from your users
  • 62. Full Stack Deep Learning Data flywheels 62ML Projects - archetypes More users More data Better model Your job as ML practitioner
  • 63. Full Stack Deep Learning Data flywheels 63ML Projects - archetypes More users More data Better model Do better predictions make the product better?
  • 64. Full Stack Deep Learning Machine learning project archetypes 64 Feasibility (e.g., cost) Low High Low High Impact Improve an existing process Augment a manual process Automate a manual process ML Projects - archetypes
  • 65. Full Stack Deep Learning Machine learning project archetypes 65 Feasibility (e.g., cost) Low High Low High Impact Improve an existing process Augment a manual process Automate a manual process ML Projects - archetypes Implement a data loop that allows you to improve on this task and future ones
  • 66. Full Stack Deep Learning Machine learning project archetypes 66 Feasibility (e.g., cost) Low High Low High Impact Improve an existing process Augment a manual process Automate a manual process ML Projects - archetypes Good product design. Release a ‘good enough’ version
  • 67. Full Stack Deep Learning Product design can reduce need for accuracy 67 See “Designing Collaborative AI” (Ben Reinhardt and Belmer Negrillo): 
 https://medium.com/@Ben_Reinhardt/designing-collaborative-ai-5c1e8dbc8810 ML Projects - archetypes
  • 68. Full Stack Deep Learning Machine learning project archetypes 68 Feasibility (e.g., cost) Low High Low High Impact Improve an existing process Augment a manual process Automate a manual process ML Projects - archetypes Add humans in the loop. Add guardrails and/or limit initial scope.
  • 69. Full Stack Deep Learning Questions? 69ML Projects - archetypes
  • 70. Full Stack Deep Learning Metrics Module overview 70 Prioritizing projects Lifecycle Archetypes Baselines • How to think about all of the activities in an ML project • Assessing the feasibility and impact of your projects • The main categories of ML projects, and the implications for project management • How to pick a single number to optimize • How to know if your model is performing well ML Projects - metrics
  • 71. Full Stack Deep Learning Key points for choosing a metric A. The real world is messy; you usually care about lots of metrics B. However, ML systems work best when optimizing a single number C. As a result, you need to pick a formula for combining metrics D. This formula can and will change! 71ML Projects - metrics
  • 72. Full Stack Deep Learning Review of accuracy, precision, and recall 72 n=100 Predicted: NO Predicted: YES Actual: 
 NO 5 5 10 Actual: 
 YES 45 45 90 50 50 Confusion matrix 2. Choosing metrics ML Projects - metrics
  • 73. Full Stack Deep Learning Review of accuracy, precision, and recall 73 n=100 Predicted: NO Predicted: YES Actual: 
 NO 5 5 10 Actual: 
 YES 45 45 90 50 50 Confusion matrix Accuracy Correct Total 50% 2. Choosing metrics ML Projects - metrics
  • 74. Full Stack Deep Learning Review of accuracy, precision, and recall 74 n=100 Predicted: NO Predicted: YES Actual: 
 NO 5 5 10 Actual: 
 YES 45 45 90 50 50 Confusion matrix Precision true positives true positives + false positives 90% 2. Choosing metrics ML Projects - metrics
  • 75. Full Stack Deep Learning Review of accuracy, precision, and recall 75 n=100 Predicted: NO Predicted: YES Actual: 
 NO 5 5 10 Actual: 
 YES 45 45 90 50 50 Confusion matrix Recall true positives Actual YES 50% 2. Choosing metrics ML Projects - metrics
  • 76. Full Stack Deep Learning Why choose a single metric? 76 Model 2 Model 3 Precision Recall 0.9 0.5 0.8 0.7 0.7 0.9 Which is best? Model 1 2. Choosing metrics ML Projects - metrics
  • 77. Full Stack Deep Learning How to combine metrics • Simple average / weighted average • Threshold n-1 metrics, evaluate the nth • More complex / domain-specific formula 77 2. Choosing metrics ML Projects - metrics
  • 78. Full Stack Deep Learning Combining precision and recall 78 Model 2 Model 3 Precision Recall 0.9 0.5 0.8 0.7 0.7 0.9 Model 1 2. Choosing metrics ML Projects - metrics
  • 79. Full Stack Deep Learning Combining precision and recall 79 Model 2 Model 3 Precision Recall 0.9 0.5 0.8 0.7 0.7 0.9 (p + r) / 2 0.7 0.75 0.8 Model 1 2. Choosing metrics ML Projects - metrics
  • 80. Full Stack Deep Learning Combining precision and recall 80 Model 2 Model 3 Precision Recall 0.9 0.5 0.8 0.7 0.7 0.9 (p + r) / 2 0.7 0.75 0.8 Model 1 2. Choosing metrics ML Projects - metrics
  • 81. Full Stack Deep Learning How to combine metrics • Simple average / weighted average • Threshold n-1 metrics, evaluate the nth • More complex / domain-specific formula 81 2. Choosing metrics ML Projects - metrics
  • 82. Full Stack Deep Learning How to combine metrics • Simple average / weighted average • Threshold n-1 metrics, evaluate the nth • More complex / domain-specific formula 82 2. Choosing metrics ML Projects - metrics
  • 83. Full Stack Deep Learning Thresholding metrics Choosing which metrics to threshold Choosing threshold values 83 • Domain judgment (e.g., what is an acceptable tolerance downstream? What performance is achievable?) • How well does the baseline model do? • How important is this metric right now? 2. Choosing metrics • Domain judgment (e.g., which metrics can you engineer around?) • Which metrics are least sensitive to model choice? • Which metrics are closest to desirable values? ML Projects - metrics
  • 84. Full Stack Deep Learning Combining precision and recall 84 Model 2 Model 3 Precision Recall 0.9 0.5 0.8 0.7 0.7 0.9 (p + r) / 2 0.7 0.75 0.8 Model 1 2. Choosing metrics ML Projects - metrics
  • 85. Full Stack Deep Learning Combining precision and recall 85 Model 2 Model 3 Precision Recall 0.9 0.5 0.8 0.7 0.7 0.9 (p + r) / 2 0.7 0.75 0.8 p @ (r > 0.6) 0.0 0.8 0.7 Model 1 2. Choosing metrics ML Projects - metrics
  • 86. Full Stack Deep Learning Combining precision and recall 86 Model 2 Model 3 Precision Recall 0.9 0.5 0.8 0.7 0.7 0.9 (p + r) / 2 0.7 0.75 0.8 p @ (r > 0.6) 0.0 0.8 0.7 Model 1 2. Choosing metrics ML Projects - metrics
  • 87. Full Stack Deep Learning How to combine metrics • Simple average / weighted average • Threshold n-1 metrics, evaluate the nth • More complex / domain-specific formula 87 2. Choosing metrics ML Projects - metrics
  • 88. Full Stack Deep Learning How to combine metrics • Simple average / weighted average • Threshold n-1 metrics, evaluate the nth • More complex / domain-specific formula 88 2. Choosing metrics ML Projects - metrics
  • 89. Full Stack Deep Learning Domain-specific metrics: mAP 89 Recall Precision 0% 25% 50% 75% 0% 25% 75% 100% 100% 2. Choosing metrics ML Projects - metrics
  • 90. Full Stack Deep Learning Domain-specific metrics: mAP Recall Precision 0% 25% 50% 75% 0% 25% 75% 100% 100% 90 mAP = mean AP, e.g., over classes 2. Choosing metrics ML Projects - metrics
  • 91. Full Stack Deep Learning Combining precision and recall 91 Model 2 Model 3 Precision Recall 0.9 0.5 0.8 0.7 0.7 0.9 (p + r) / 2 0.7 0.75 0.8 p @ (r > 0.6) 0.0 0.8 0.7 Model 1 2. Choosing metrics ML Projects - metrics
  • 92. Full Stack Deep Learning Combining precision and recall 92 Model 2 Model 3 Precision Recall 0.9 0.5 0.8 0.7 0.7 0.9 (p + r) / 2 0.7 0.75 0.8 p @ (r > 0.6) 0.0 0.8 0.7 mAP 0.7 0.6 0.6 Model 1 2. Choosing metrics ML Projects - metrics
  • 93. Full Stack Deep Learning Combining precision and recall 93 Model 2 Model 3 Precision Recall 0.9 0.5 0.8 0.7 0.7 0.9 (p + r) / 2 0.7 0.75 0.8 p @ (r > 0.6) 0.0 0.8 0.7 mAP 0.7 0.6 0.6 Model 1 2. Choosing metrics ML Projects - metrics
  • 94. Full Stack Deep Learning Example: choosing a metric for pose estimation (x, y, z)<latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit><latexit sha1_base64="VzuaXkC3pMHYMgeFzgbdHYPD3xo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix4MWTVLAf0i4lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5ldW19Y38ZmFre2d3r7h/0NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGF1N/dYDVZpF8s6MY+oLPJAsZAQbK92XHytoXEFPp71iya26M6Bl4mWkBBnqveJXtx+RRFBpCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVGJBtZ/ODp6gE6v0URgpW9Kgmfp7IsVC67EIbKfAZqgXvan4n9dJTHjpp0zGiaGSzBeFCUcmQtPvUZ8pSgwfW4KJYvZWRIZYYWJsRgUbgrf48jJpnlU9t+rdnpdqN1kceTiCYyiDBxdQg2uoQwMICHiGV3hzlPPivDsf89ack80cwh84nz/sK480</latexit> ( , ✓, )<latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit><latexit sha1_base64="BmkDtqmIRxqts5HvJACOgh3GSEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0WoICURQZcFN66kgn1AE8pkOmmGTiZh5kaoofgrblwo4tb/cOffOG2z0NYDl3s4517mzglSwTU4zre1tLyyurZe2ihvbm3v7Np7+y2dZIqyJk1EojoB0UxwyZrAQbBOqhiJA8HawfB64rcfmNI8kfcwSpkfk4HkIacEjNSzD6teGvEz7EHEgJiean7asytOzZkCLxK3IBVUoNGzv7x+QrOYSaCCaN11nRT8nCjgVLBx2cs0SwkdkgHrGipJzLSfT68f4xOj9HGYKFMS8FT9vZGTWOtRHJjJmECk572J+J/XzSC88nMu0wyYpLOHwkxgSPAkCtznilEQI0MIVdzcimlEFKFgAiubENz5Ly+S1nnNdWru3UWlflvEUUJH6BhVkYsuUR3doAZqIooe0TN6RW/Wk/VivVsfs9Elq9g5QH9gff4AtECUHw==</latexit> 94 Orientation (L2 loss) t<latexit sha1_base64="Wn3278THpwSxwzLAYeJjstf3jaA=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eJIW7Ae0oWy2k3btZhN2J0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZemEphyPO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmOTZ4IhPdDplBKRQ2SJDEdqqRxaHEVji6nfmtJ9RGJOqBxikGMRsoEQnOyEp16pXKXsWbw10lfk7KkKPWK311+wnPYlTEJTOm43spBROmSXCJ02I3M5gyPmID7FiqWIwmmMwPnbrnVum7UaJtKXLn6u+JCYuNGceh7YwZDc2yNxP/8zoZRTfBRKg0I1R8sSjKpEuJO/va7QuNnOTYEsa1sLe6fMg042SzKdoQ/OWXV0nzsuJ7Fb9+Va7e53EU4BTO4AJ8uIYq3EENGsAB4Rle4c15dF6cd+dj0brm5DMn8AfO5w/jxY0E</latexit><latexit sha1_base64="Wn3278THpwSxwzLAYeJjstf3jaA=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eJIW7Ae0oWy2k3btZhN2J0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZemEphyPO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmOTZ4IhPdDplBKRQ2SJDEdqqRxaHEVji6nfmtJ9RGJOqBxikGMRsoEQnOyEp16pXKXsWbw10lfk7KkKPWK311+wnPYlTEJTOm43spBROmSXCJ02I3M5gyPmID7FiqWIwmmMwPnbrnVum7UaJtKXLn6u+JCYuNGceh7YwZDc2yNxP/8zoZRTfBRKg0I1R8sSjKpEuJO/va7QuNnOTYEsa1sLe6fMg042SzKdoQ/OWXV0nzsuJ7Fb9+Va7e53EU4BTO4AJ8uIYq3EENGsAB4Rle4c15dF6cd+dj0brm5DMn8AfO5w/jxY0E</latexit><latexit sha1_base64="Wn3278THpwSxwzLAYeJjstf3jaA=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eJIW7Ae0oWy2k3btZhN2J0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZemEphyPO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmOTZ4IhPdDplBKRQ2SJDEdqqRxaHEVji6nfmtJ9RGJOqBxikGMRsoEQnOyEp16pXKXsWbw10lfk7KkKPWK311+wnPYlTEJTOm43spBROmSXCJ02I3M5gyPmID7FiqWIwmmMwPnbrnVum7UaJtKXLn6u+JCYuNGceh7YwZDc2yNxP/8zoZRTfBRKg0I1R8sSjKpEuJO/va7QuNnOTYEsa1sLe6fMg042SzKdoQ/OWXV0nzsuJ7Fb9+Va7e53EU4BTO4AJ8uIYq3EENGsAB4Rle4c15dF6cd+dj0brm5DMn8AfO5w/jxY0E</latexit><latexit sha1_base64="Wn3278THpwSxwzLAYeJjstf3jaA=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa8eJIW7Ae0oWy2k3btZhN2J0Ip/QVePCji1Z/kzX/jts1BWx8MPN6bYWZemEphyPO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmOTZ4IhPdDplBKRQ2SJDEdqqRxaHEVji6nfmtJ9RGJOqBxikGMRsoEQnOyEp16pXKXsWbw10lfk7KkKPWK311+wnPYlTEJTOm43spBROmSXCJ02I3M5gyPmID7FiqWIwmmMwPnbrnVum7UaJtKXLn6u+JCYuNGceh7YwZDc2yNxP/8zoZRTfBRKg0I1R8sSjKpEuJO/va7QuNnOTYEsa1sLe6fMg042SzKdoQ/OWXV0nzsuJ7Fb9+Va7e53EU4BTO4AJ8uIYq3EENGsAB4Rle4c15dF6cd+dj0brm5DMn8AfO5w/jxY0E</latexit> Prediction timeXiang, Yu, et al. "PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes." arXiv preprint arXiv:1711.00199 (2017). Position (L2 loss) 2. Choosing metrics ML Projects - metrics
  • 95. Full Stack Deep Learning Example: choosing a metric for pose estimation • Enumerate requirements • Downstream goal is real-time robotic grasping • Position error must be <1cm, not sure exactly how precise is needed • Angular error <5 degrees • Must run in 100ms to work in real-time 95 2. Choosing metrics ML Projects - metrics
  • 96. Full Stack Deep Learning Example: choosing a metric for pose estimation • Enumerate requirements • Evaluate current performance • Train a few models 96 2. Choosing metrics ML Projects - metrics
  • 97. Full Stack Deep Learning Example: choosing a metric for pose estimation • Enumerate requirements • Evaluate current performance • Compare current performance to requirements • Position error between 0.75 and 1.25cm (depending on hyperparameters) • All angular errors around 60 degrees • Inference time ~300ms 97 2. Choosing metrics ML Projects - metrics
  • 98. Full Stack Deep Learning Example: choosing a metric for pose estimation • Enumerate requirements • Evaluate current performance • Compare current performance to requirements • Prioritize angular error • Threshold position error at 1cm • Ignore run time for now 98 2. Choosing metrics ML Projects - metrics
  • 99. Full Stack Deep Learning Example: choosing a metric for pose estimation • Enumerate requirements • Evaluate current performance • Compare current performance to requirements • Revisit metric as your numbers improve 99 2. Choosing metrics ML Projects - metrics
  • 100. Full Stack Deep Learning Key points for choosing a metric A. The real world is messy; you usually care about lots of metrics B. However, ML systems work best when optimizing a single number C. As a result, you need to pick a formula for combining metrics D. This formula can and will change! 100 2. Choosing metrics ML Projects - metrics
  • 101. Full Stack Deep Learning Questions? 101ML Projects - metrics
  • 102. Full Stack Deep Learning Metrics Module overview 102 Prioritizing projects Lifecycle Archetypes Baselines • How to think about all of the activities in an ML project • Assessing the feasibility and impact of your projects • The main categories of ML projects, and the implications for project management • How to pick a single number to optimize • How to know if your model is performing well ML Projects - baselines
  • 103. Full Stack Deep Learning Key points for choosing baselines A. Baselines give you a lower bound on expected model performance B. The tighter the lower bound, the more useful the baseline 
 (e.g., published results, carefully tuned pipelines, & human baselines are better) 103ML Projects - baselines
  • 104. Full Stack Deep Learning Why are baselines important? 104ML Projects - baselines
  • 105. Full Stack Deep Learning Why are baselines important? 105 Same model, different baseline —> different next steps ML Projects - baselines
  • 106. Full Stack Deep Learning Where to look for baselines 106 External baselines • Business / engineering requirements ML Projects - baselines
  • 107. Full Stack Deep Learning Where to look for baselines 107 External baselines Make sure comparison is fair! • Business / engineering requirements • Published results ML Projects - baselines
  • 108. Full Stack Deep Learning Where to look for baselines 108 External baselines • Business / engineering requirements • Published results • Scripted baselines (e.g., OpenCV, rules-based) Internal baselines ML Projects - baselines
  • 109. Full Stack Deep Learning Where to look for baselines 109 External baselines • Business / engineering requirements • Published results • Scripted baselines (e.g., OpenCV, rules-based) • Simple ML baselines (e.g., bag of words, linear regression) Internal baselines ML Projects - baselines
  • 110. Full Stack Deep Learning Where to look for baselines 110 External baselines Internal baselines • Business / engineering requirements • Published results • Scripted baselines (e.g., OpenCV, rules-based) • Simple ML baselines (e.g., bag of words, linear regression) • Human performance ML Projects - baselines
  • 111. Full Stack Deep Learning How to create good human baselines 111 Low Quality of baseline High Ease of data collection Low Random people (e.g., Amazon Turk) Ensemble of random people Domain experts (e.g., doctors) Deep domain experts (e.g., specialists) Mixture of experts ML Projects - baselines
  • 112. Full Stack Deep Learning How to create good human baselines • Highest quality that allows more data to be labeled easily • More specialized domains need more skilled labelers • Find cases where model performs worse and concentrate data collection there 112 More on labeling in data lecture! ML Projects - baselines
  • 113. Full Stack Deep Learning Key points for choosing baselines A. Baselines give you a lower bound on expected model performance B. The tighter the lower bound, the more useful the baseline 
 (e.g., published results, carefully tuned pipelines, human baselines are better) 113ML Projects - baselines
  • 114. Full Stack Deep Learning Questions? 114ML Projects - baselines
  • 115. Full Stack Deep Learning Metrics Conclusion 115 Prioritizing projects Lifecycle Archetypes Baselines • ML projects are iterative. Deploy something fast to begin the cycle. • Choose projects that that are high impact with low cost of wrong predictions • The secret sauce to making projects work well is to build automated data flywheels • In the real world you care about many things, but you should always have just one you’re working on • Good baselines help you invest your effort the right way ML Projects - baselines
  • 116. Full Stack Deep Learning Where to go to learn more • Andrew Ng’s “Machine Learning Yearning” • Andrej Karpathy’s “Software 2.0” • Agrawal’s “The Economics of AI” 116ML Projects - conclusion
  • 117. Full Stack Deep Learning Thank you! 117