SlideShare uma empresa Scribd logo
1 de 30
Baixar para ler offline
Non-commutative Gauge Theories
                                  and
                   Seiberg–Witten Map to All Orders1

                                                   ¨
                                            Kayhan ULKER
                                            Feza G¨rsey Institute *
                                                   u
                                               Istanbul, Turkey
                                        (savefezagursey.wordpress.com)

                            The SEENET-MTP Workshop JW2011



      1
          K. Ulker, B Yapiskan Phys. Rev. D 77, 065006 (2008) [arXiv:0712.0506 ]
       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                      All order solution of SW–map       BW’11   1/1
NC Field Theory


 Outline



         Moyal ∗–product.
                                     ˆ ˆ
         Non-commutative Yang–Mills (A , Λ)
                               ˆ   ˆ         ˆ   ˆ
         Seiberg – Witten Map (A → A(A, θ) , Λ → Λ(A, α, θ))
         Construction of the maps order by order leads to all order solutions
         All order solutions can be obtained from SW differential equation
                                   ˆ    ˆ
         SW map of other fields (Ψ → Ψ(A, ψ, θ))
         Conclusion




       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map   BW’11   2/1
NC Field Theory    Moyal *-product


 Moyal ∗-product

         The simplest way to introduce non-commutativity is to use (Moyal)
         *–product

                                                          i µν ∂ ∂
                           f (x) ∗ g (x) ≡ exp              θ                f (x)g (y )|y →x
                                                          2   ∂x µ ∂y ν
                                            i
                           = f (x) · g (x) + θµν ∂µ f (x)∂ν g (x) + · · ·
                                            2
         for real CONSTANT antisymmetric parameter θ !
         *–commutator of the ordinary coordinates :

                               [x µ , x ν ]∗ ≡ x µ ∗ x ν − x ν ∗ x µ = iθµν .



  NC QFT models can then be obtained by replacing the ordinary product
  with the *–product !
       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map                   BW’11   3/1
NC Field Theory    NC-YM theories


 NC Yang–Mills Theory

         The action of NC YM theory is written as :

                       ˆ    1                    ˆ      ˆ      1                  ˆ ˆ
                       S = − Tr            d 4 x F µν ∗ Fµν = − Tr          d 4 x F µν Fµν
                            4                                  4
         where
                                    ˆ        ˆ       ˆ      ˆ ˆ
                                    Fµν = ∂µ Aν − ∂ν Aµ − i[Aµ , Aν ]∗
                                                      ˆ
         is the NC field strength of the NC gauge field A.




       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map                     BW’11   4/1
NC Field Theory    NC-YM theories


 NC Yang–Mills Theory

         The action of NC YM theory is written as :

                       ˆ    1                     ˆ      ˆ      1                  ˆ ˆ
                       S = − Tr             d 4 x F µν ∗ Fµν = − Tr          d 4 x F µν Fµν
                            4                                   4
         where
                                    ˆ        ˆ       ˆ      ˆ ˆ
                                    Fµν = ∂µ Aν − ∂ν Aµ − i[Aµ , Aν ]∗
                                                      ˆ
         is the NC field strength of the NC gauge field A.
         The action is invariant under the NC gauge transformations:
                                        ˆˆ ˆ        ˆ     ˆ ˆ         ˆ ˆ
                                        δΛ Aµ = ∂µ Λ − i[Aµ , Λ]∗ ≡ Dµ Λ
                                              ˆ ˆ         ˆ ˆ
                                              δ ˆ Fµν = i[Λ, Fµν ]∗ .
                                                 Λ

               ˆ
         Here, Λ is the NC gauge parameter.

       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                        All order solution of SW–map                     BW’11   4/1
NC Field Theory    SW–map


 Seiberg–Witten Map

  One can derive both conventional and NC gauge theories from string
  theory by using different regularization procedures (SW’99).
                                                  ˆ      ˆ
  Let Aµ and α to be the ordinary counterparts of Aµ and Λ respectively.

  ⇒There must be aˆmap from a commutative gauge field A to a
  noncommutative one A, that arises from the requirement that gauge
  invariance should be preserved !

                                   ˆ      ˆˆ ˆ      ˆ
                                   A(A) + δΛ A(A) = A(A + δα A)
  where δα is the ordinary gauge transformation :

                                  δα Aµ = ∂µ α − i[Aµ , α] ≡ Dµ α.



       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map   BW’11   5/1
NC Field Theory    SW–map




  This map can be rewritten as
                 ˆˆ ˆ           ˆ                  ˆ              ˆ
                 δΛ Aµ (A; θ) = Aµ (A + δα A; θ) − Aµ (A; θ) = δα Aµ (A; θ)


  Since SW map imposes the following functional dependence :
                              ˆ    ˆ
                              Aµ = Aµ (A; θ) ,               ˆ ˆ
                                                             Λ = Λα (α, A; θ).

  ⇒ one has to solve
                                        ˆˆ ˆ              ˆ
                                        δΛ Aµ (A; θ) = δα Aµ (A; θ)

                     ˆ      ˆ
  simultaneously for Aµ and Λα and it is difficult                           !

       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map         BW’11   6/1
NC Field Theory    SW–map




  Now, remember the ordinary gauge consistency condition

                                        δα δβ − δβ δα = δ−i[α,β] .

  (check for instance for δα ψ = iαψ)
  Let, Λ be a Lie algebra valued gauge parameter Λ = Λa T a . For the
  non-commutative case, we get

                     ˆ  1                             ˆ 1                             ˆ
  (δΛα δΛβ −δΛβ δΛα )Ψ = [T a , T b ]{Λα,a , Λβ,b }∗ ∗Ψ+ {T a , T b }[Λα,a , Λβ,b ]∗ ∗Ψ
                        2                               2

  Only a U(N) gauge theory allows to express {T a , T b } again in terms of
  T a . Therefore, two gauge transformations do not close in general !




       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map   BW’11   7/1
NC Field Theory    SW–map

  To able to generalize to any gauge group (J. Wess et.al. EPJ’01)
      let the parameters to be in the enveloping algebra of the Lie algebra :
                 ˆ
                 Λ = αa T a + Λ1 : T a T b : + · · · Λa1 ···an : T a1 · · · T an : + · · ·
                                                      n−1
                               ab



         let all NC fields and parameters depend only on Lie algebra valued
         fields A, ψ, · · · and parameter α i.e.
                       ˆ    ˆ
                       Aµ ≡ Aµ (A)          ,    ˆ    ˆ
                                                 Ψµ ≡ Ψµ (A, ψ) ,          ˆ ˆ
                                                                           Λ = Λ(A, α)


         impose NC gauge consistency condition:
                                    ˆ        ˆ     ˆ ˆ            ˆ
                                iδα Λβ − iδβ Λα − [Λα , Λβ ]∗ = i Λ−i[α,β] .


  Note that, above construction of Wess et.al. is obtained entirely
  independent of string theory              !
       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map             BW’11   8/1
NC Field Theory    SW–map




  In contrast to SW we now have an equation only for the gauge parameter
                                 ˆ        ˆ     ˆ ˆ            ˆ
                             iδα Λβ − iδβ Λα − [Λα , Λβ ]∗ = i Λ−i[α,β] .

  and once we solve it we can then solve
                                        ˆˆ ˆ              ˆ
                                        δΛ Aµ (A; θ) = δα Aµ (A; θ)

  only for Aµ .
                                 ˆ      ˆ
  To find the solutions we expand Λα and Aµ as formal power series,
                              ˆ
                              Λα = α + Λ 1 + · · · + Λ n + · · · ,
                                         α             α
                              ˆ µ = Aµ + A1 + · · · + An + · · · ,
                              A            µ             µ

  The superscript n denotes the order of θ.


       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map    BW’11   9/1
NC Field Theory     SW–map



  NC gauge consistency condition and gauge equivalence condition
          ˆ        ˆ     ˆ ˆ            ˆ
      iδα Λβ − iδβ Λα − [Λα , Λβ ]∗ = i Λ−i[α,β]                        ,       ˆˆ ˆ              ˆ
                                                                                δΛ Aµ (A; θ) = δα Aµ (A; θ)

                                                  ˆ      ˆ
  can be written for the n–th order components of Λα and Aµ as

                      iδα Λn − iδβ Λn −
                           β        α                             [Λp , Λq ]∗r = i Λn
                                                                    α    β
                                                                                   ˆ
                                                                                     −i[α,β]
                                                     p+q+r =n


                              δα An = ∂µ Λn − i
                                  µ       α                                 [Ap , Λq ]∗r
                                                                              µ    α
                                                              p+q+r =n

  respectively. Here, ∗r denotes :
                                             r
                              1         i
       f (x) ∗r g (x) ≡                          θµ1 ν1 · · · θµr νr ∂µ1 · · · ∂µr f (x)∂ν1 · · · ∂νr g (x).
                              r!        2



       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                            All order solution of SW–map                      BW’11       10 / 1
NC Field Theory    SW–map



  We can rearrange the above Eq.s for any order n


              ˆ        ˆα       ˆ       ˆα          ˆ
    ∆Λn ≡ iδα Λn − iδβ Λn − [α, Λn ] − [Λn , β] − i Λn
                β                 β                   −i[α,β] =                                       [Λp , Λq ]∗r
                                                                                                        α    β
                                                                                          p+q+r =n,
                                                                                            p,q=n



                 ∆α An ≡ δα An − i[α, An ] = ∂µ Λn + i
                     µ       µ         µ         α                                     [Λp , Aq ]∗r
                                                                                         α    µ
                                                                           p+q+r =n,
                                                                             q=n


  so that the l.h.s contains only the n-th order components.
  However, note that one can extract the homogeneous parts such that
                                         ˜α
                                        ∆Λn = 0 ,               ˜µ
                                                             ∆α An = 0

                                                           ˜α ˜ µ
  It is clear that one can add any homogeneous solution Λn , An to the
  inhomogeneous solutions Λα µn , An with arbitrary coefficients.



       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map                              BW’11     11 / 1
NC Field Theory    1-st order solution

  First order solution given in the original paper (SW, JHEP’99 ) :
                                      1
                             Λ1 = − θκλ {Aκ , ∂λ α}
                               α
                                      4
                              1
                      A1 = − θκλ {Aκ , ∂λ Aγ + Fλγ }.
                        γ
                              4
  One can find the field strength form the definition :
                    1
           Fγρ = − θκλ {Aκ , ∂λ Fγρ + Dλ Fγρ } − 2{Fγκ , Fρλ } .
             1
                    4

         These solutions are not unique since one can add homogeneous
         solutions with arbitrary coefficients. i.e.
                      ˜                            ˜ρ
                      Λ1 = ic1 θµν [Aµ , ∂ν α] , A1 = c2 θµν Dρ Fµν

         Therefore,
                    A1 + ic1 θµν ([∂ρ Aµ , Aν ] − i[[Aρ , Aµ ], Aν ]) + c2 θµν Dρ Fµν
                     ρ
         is also a solution
       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map         BW’11   12 / 1
NC Field Theory    1-st order solution

  2nd order solutions (Moller’04 )          α   A2
                                       and Λ2 can be written in terms of lower
                                                 µ
                       ¨
  order solutions : (K.U ,B. Yapiskan PRD’08.)
                 1                                  i
           Λ2 = − θκλ {A1 , ∂λ α} + {Aκ , ∂λ Λ1 } − θκλ θµν [∂µ Aκ , ∂ν ∂λ α]
            α           κ                     α
                 8                                 16

                            1
                 A2
                  γ      = − θκλ {A1 , ∂λ Aγ + Fλγ } + {Aκ , ∂λ A1 + Fλγ }
                                   κ                             γ
                                                                      1
                            8
                                    i
                                  − θκλ θµν [∂µ Aκ , ∂ν (∂λ Aγ + Fλγ )].
                                   16

  The field strength at the second order can also be written in terms of first
  order solutions :
        2         1
       Fγρ     = − θκλ {Aκ , ∂λ Fγρ + (Dλ Fγρ )1 }
                                 1
                  8
                                 +{A1 , ∂λ Fγρ + Dλ Fγρ } − 2{Fγκ , Fρλ } − 2{Fγκ , Fρλ }
                                    κ
                                                                     1         1


                          i κλ µν
                     −      θ θ   [∂µ Aκ , ∂ν ∂λ Fγρ + Dλ Fγρ ] − 2[∂µ Fγκ , ∂ν Fρλ ] .
                         16
   Where, (Dλ Fγρ )1 = Dλ Fγρ − i[A1 , Fγρ ] + 1 θµν {∂µ Aλ , ∂ν Fγρ }.
                           1
                                   λ           2
       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map          BW’11     13 / 1
NC Field Theory    n-th order solutions




  By analyzing first two order solutions one can conjecture the general
               ¨
  structure (K.U ,B. Yapiskan PRD’08.) :
                                           1
                        Λn+1 = −
                         α                       θκλ          {Ap , ∂λ Λq }∗r
                                                                κ       α
                                        4(n + 1)     p+q+r =n

                                     1                                 q
                   An+1 = −
                    γ                      θκλ          {Ap , ∂λ Aq + Fλγ }∗r .
                                                          κ       γ
                                  4(n + 1)     p+q+r =n

  The overall constant −1/4(n + 1) is fixed uniquely with third order
  solutions.




       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map          BW’11   14 / 1
NC Field Theory    SW Differential Equation


 Solution of Seiberg-Witten Differential Equation
  Let us vary the deformation parameter infinitesimally

                                                 θ → θ + δθ
                             ˆ        ˆ
  To get equivalent physics, A(θ) and Λ(θ) should change when θ is varied,
  (SW’99):

                    ˆ        ˆ             ˆ
                  δ Aγ (θ) = Aγ (θ + δθ) − Aγ (θ)
                                     ˆ
                                   ∂ Aγ     1     ˆ    ˆ    ˆ
                           = δθµν µν = − δθκλ {Aκ , ∂λ Aγ + Fλγ }∗
                                  ∂θ        4


                           ˆ      ˆ           ˆ
                         δ Λ(θ) = Λ(θ + δθ) − Λ(θ)
                                       ∂Λˆ      1  ˆ       ˆ
                                = δθµν µν = − θκλ {Aκ , ∂λ Λ}∗                               (1)
                                      ∂θ        4
  These differential equations are commonly called SW differential equations.
       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map             BW’11   15 / 1
NC Field Theory     SW Differential Equation




  To find solutions of the differential equation
         expand NC gauge parameter and NC gauge field into a Taylor series:
                                        ˆα
                                        Λ(n) = α + Λ1 + · · · + Λn ,
                                                    α            α
                                        ˆµ
                                        A(n) = Aµ + A1 + · · · + An .
                                                      µ            µ

              ˆ (n)     ˆ (n)
         here Λα and Aµ denotes the sum up to order n !
         Then it is possible to write (Wulkenhaar et.al’01) :
                        n+1
   ˆα           1             1 µ1 ν1 µ2 ν2                          ∂ k−1           ˆ          ˆα
   Λ(n+1) = α −                  θ   θ      · · · θ µ k νk                          {A(k) , ∂ν1 Λ(k) }∗
                4             k!                               ∂θµ2 ν2 · · · ∂θµk νk µ1                   θ=0
                        k=1

                      n+1
ˆγ            1             1 µ1 ν1 µ2 ν2                          ∂ k−1           ˆ          ˆγ     ˆ (k)
A(n+1) = Aγ −                  θ   θ      · · · θµk νk                            {A(k) , ∂ν1 A(k) + Fν1 γ }∗
              4             k!                               ∂θµ2 ν2 · · · ∂θµk νk µ1                              θ
                      k=1




       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                        All order solution of SW–map                      BW’11      16 / 1
NC Field Theory    SW Differential Equation




  Contrary to the solutions presented in the previous section, these
  expressions explicitly contain
         derivatives w.r.t. θ
         ∗–product itself
         and given as a sum of all (n+1) orders.

  However, it is possible to extract our recursive solutions from the above
  expressions.




       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map             BW’11   17 / 1
NC Field Theory     SW Differential Equation

                                         ˆ (n+1) :
  Let us write the n + 1–st component of Λα


                     1                                               ∂n            ˆ          ˆα
  Λn+1 = −
   α                       θµν θµ1 ν1 · · · θµn νn                                {A(n) , ∂ν1 Λ(n) }∗                     .
                 4(n + 1)!                                   ∂θµ1 ν1 · · · ∂θµn νn µ1                             θ=0


  Since, θ is set to zero after taking the derivatives, the expression in the
  paranthesis can be written as a sum up to n-th order:


                     1                                              ∂n
   Λn+1 = −
    α                      θµν θµ1 ν1 · · · θµn νn                                             {Ap , ∂ν Λq }∗r
                                                                                                 µ       α         .
                 4(n + 1)!                                ∂θµ1 ν1   · · · ∂θµn νn   p+q+r =n


  It is then an easy exercise to show that the above equation reduces to the
  recursive formula :
                                           1
                        Λn+1 = −
                         α                       θµν          {Ap , ∂ν Λq }∗r .
                                                                µ       α
                                        4(n + 1)     p+q+r =n

       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map                             BW’11       18 / 1
NC Field Theory    SW Differential Equation




  With the same algebraic manipulation one can also derive the same
  recursive formula for the gauge field
                      1
   An+1 = −
    γ                       θµν θµ1 ν1 · · · θµn νn ×
                  4(n + 1)!
                                            ∂n          ˆ          ˆγ     ˆ (n)
                            ×                          {A(n) , ∂ν1 A(n) + Fν1 γ }∗
                                 ∂θµ1 ν1 · · · ∂θµn νn µ1                                    θ=0
                     1
              = −          θµν              {Ap , ∂ν Aq + Fνγ }∗r .
                                               µ      γ
                                                            q
                  4(n + 1)     p+q+r =n




       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map             BW’11    19 / 1
NC Field Theory    SW Map for matter fields


 Seiberg–Witten Map for Matter Fields


                           ˆ
  SW–map of a NC field Ψ in a gauge invariant theory can be derived from
  (J. Wess et.al. EPJ’01):

                                    ˆˆ ˆ               ˆ
                                    δΛ Ψ(ψ, A; θ) = δα Ψ(ψ, A; θ).


  The solution of this gauge equivalence relation can be found order by order
                                  ˆ
  by after expanding the NC field Ψ as formal power series in θ
                                   ˆ       ˆ            ˆ
                                   Ψ = ψ + Ψ1 + · · · + Ψn + · · ·




       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map             BW’11   20 / 1
NC Field Theory    SW Map for matter fields

  Fundamental Representation :
  Ordinary gauge transformation of ψ is written as

                                                δα ψ = iαψ.

  NC gauge transformation is defined with the help of ∗–product :
                                             ˆˆ ˆ     ˆ    ˆ
                                             δΛ Ψ = i Λα ∗ Ψ.

  Following the general strategy the gauge equivalence relation reads

                         ∆α Ψn ≡ δα Ψn − iαΨn = i                              Λp ∗r Ψq ,
                                                                                α
                                                                   p+q+r =n,
                                                                     q=n


  for all orders.
                                                                   ˜
  As discussed before, one is free to add any homogeneous solution Ψn of
  the equation
                                       ˜
                                   ∆α Ψn = 0
  to the solutions Ψn .
       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map                    BW’11   21 / 1
NC Field Theory    SW Map for matter fields

  A solution for the first order is given by Wess et.al :
                              1
                        Ψ1 = − θκλ Aκ (∂λ + Dλ )ψ
                              4
  where Dµ ψ = ∂µ ψ − iAµ ψ .

  The SW differential equation from the first order solution reads :

                                     ˆ
                                    ∂Ψ      1
                           δθµν                   ˆ        ˆ   ˆ ˆ
                                         = − δθκλ Aκ ∗ (∂λ Ψ + Dλ Ψ)
                                   ∂θ µν    4

  which can also be written as
            ∂Ψˆ       1ˆ                  1ˆ
                               ˆ   ˆ ˆ              ˆ   ˆ ˆ
                  = − Aκ ∗ (∂λ Ψ + Dλ Ψ) + Aλ ∗ (∂κ Ψ + Dκ Ψ)
           ∂θκλ       8                   8

  The NC covariant derivative here is defined as :
                                        ˆ ˆ       ˆ     ˆ    ˆ
                                        Dµ Ψ = ∂µ Ψ − i Aµ ∗ Ψ .

       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map             BW’11   22 / 1
NC Field Theory    SW Map for matter fields

                                       ˆ
  By using a similar method, we expand Ψ in Taylor series :
  ˆ
  Ψ(n+1) = ψ + Ψ1 + Ψ2 + · · · + Ψn+1
                            n+1
                                  1 µ 1 ν1 µ 2 ν2                              ∂k              ˆ
               = ψ+                  θ    θ       · · · θµk νk                                 Ψ(n+1)
                                  k!                                   ∂θµ1 ν1 · · · ∂θµk νk               θ=0
                            k=1

  From the differential equation we get
                                n+1
   ˆ            1                       1 µ 1 ν1 µ 2 ν2
   Ψ(n+1) = ψ −                            θ    θ       · · · θµk νk ×
                4                       k!
                                k=1
                                              ∂ k−1          ˆ           ˆ       ˆ ˆ
                                 ×                           A(k) ∗ (∂ν1 Ψ(k) + (Dν1 Ψ)(k) )
                                        ∂θµ2 ν2 · · · ∂θµk νk µ1                                        θ=0

  where
                                 ˆ ˆ           ˆ        ˆµ     ˆ
                                (Dµ Ψ)(n) = ∂µ Ψ(n) − i A(n) ∗ Ψ(n) .

  For the abelian case this solution differs from the one given in Wulkenhaar
  et.al. by a homogeneous solution.
       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                        All order solution of SW–map                      BW’11     23 / 1
NC Field Theory     SW Map for matter fields




  To find the all order recursive solution we write the n + 1–st component :
                                        1
                        Ψn+1 = −               θµν θµ1 ν1 · · · θµn νn ×
                                  4(n + 1)!
                                      ∂n             ˆ           ˆ       ˆ ˆ
                          ×                         A(n) ∗ (∂ν Ψ(n) + (Dν Ψ)(n) )
                              ∂θµ1 ν1 · · · ∂θµn νn µ                                     θ=0
                              1
                  =     −           θµν θµ1 ν1 · · · θµn νn ×
                          4(n + 1)!
                                        ∂n
                        ×                                          Ap ∗r (∂ν Ψ(q) + (Dν Ψ)q )
                                                                    µ
                              ∂θµ1 ν1   · · · ∂θµn νn   p+q+r =n

   where
                             (Dµ Ψ)n = ∂Ψn − i                              Ap ∗r Ψq .
                                                                             µ
                                                           p+q+r =n




       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                        All order solution of SW–map                       BW’11   24 / 1
NC Field Theory    SW Map for matter fields




  After taking derivatives w.r.t. θ’s we obtain the all order recursive solution
  of the gauge equivalence relation :
                                  1
               ψ n+1 = −                θκλ          Ap ∗r (∂λ Ψ(q) + (Dλ Ψ)q ).
                                                      κ
                               4(n + 1)     p+q+r =n


         The first order solution of Wess et.al. is obtained by setting n = 0.
         By setting n = 1 we find the second order solution of M¨ller .
                                                               o




       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map             BW’11   25 / 1
NC Field Theory    SW Map for matter fields

  Adjoint representation :
  The gauge transformation reads as
                                               δα ψ = i[α, ψ]
  Non–commutative generalization can be written as
                                            ˆˆ ˆ     ˆ ˆ
                                            δΛ Ψ = i[Λα , Ψ]∗ .
  Following the general strategy, the gauge equivalence relation can be
  written as
                       ∆α Ψn := δα Ψn − i[α, Ψ] = i                            [Λp , Ψq ]∗r
                                                                                 α
                                                                   p+q+r =n,
                                                                     q=n


  for all orders. The solutions can be found
       either by directly solving this equation order by order
       by solving the respective differential equation
       However, possibly the easiest way to obtain the solution is to use
       dimensional reduction. (K.U, Saka PRD’07)
       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map                      BW’11   26 / 1
NC Field Theory    SW Map for matter fields




  By setting the components of the deformation parameter θ on the
  compactified dimensions zero, i.e.

                                                          θµν      0
                                         ΘMN =                             ,
                                                          0        0

  the trivial dimensional reduction (i.e. from six to four dimensions) leads to
  the general n–th order solution for a complex scalar field :
                                1
             ψ n+1 = −                θκλ          {Ap , (∂λ Ψ(q) + (Dλ Ψ)q )}∗r .
                                                     κ
                             4(n + 1)     p+q+r =n

  Since the structure of the solutions are the same for both the scalar and
  fermionic fields, this solution can also be used for the fermionic fields.



       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map             BW’11   27 / 1
NC Field Theory    SW Map for matter fields




  Note that, after introducing the anticommutators / commutators properly,
  the form of the solution is similar with the one given for the fundamental
  case except that now
                             Dµ ψ = ∂µ ψ − i[Aµ , ψ]
  and hence
                            (Dµ Ψ)n = ∂µ Ψn − i                        [Ap , Ψq ]∗r .
                                                                         µ
                                                          p+q+r =n

  The same result can also be obtained by solving the differential equation :

              ∂Ψˆ     1 ˆ                     1 ˆ
                                 ˆ   ˆ ˆ                 ˆ   ˆ ˆ
                   = − {Aκ , (∂λ Ψ + Dλ Ψ)}∗ + {Aλ , (∂κ Ψ + Dκ Ψ)}∗ .
             ∂θ κλ    8                       8

  Therefore, the result obtained above via dimensional reduction can also be
  thought as an independent check of the aforementioned results.


       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map                BW’11   28 / 1
NC Field Theory    Conclusion


 CONCLUSION
  Equations,
                          ˆ           ˆˆ ˆ           ˆ
                          Aµ (A; θ) + δΛ Aµ (A; θ) = Aµ (A + δα A; θ).

                 ˆ            ˆˆ ˆ            ˆ
                 Ψ(A, ψ; θ) + δΛ Ψ(A, ψ; θ) = Ψ(A + δα A, ψ + δα ψ; θ).
  can be solved as
                                           1
                        Λn+1 = −
                         α                       θκλ          {Ap , ∂λ Λq }∗r
                                                                κ       α
                                        4(n + 1)     p+q+r =n

                                     1                                 q
                   An+1 = −
                    γ                      θκλ          {Ap , ∂λ Aq + Fλγ }∗r .
                                                          κ       γ
                                  4(n + 1)     p+q+r =n

                                  1
               ψ n+1 = −                θκλ          Ap ∗r (∂λ Ψ(q) + (Dλ Ψ)q ).
                                                      κ
                               4(n + 1)     p+q+r =n


       ¨
Kayhan ULKER (Feza G¨rsey Institute*)
                    u                       All order solution of SW–map          BW’11   29 / 1

Mais conteúdo relacionado

Mais procurados

Paper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelPaper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanel
Ram Mohan
 
M1 unit vii-jntuworld
M1 unit vii-jntuworldM1 unit vii-jntuworld
M1 unit vii-jntuworld
mrecedu
 
Vector calculus
Vector calculusVector calculus
Vector calculus
raghu ram
 
Signals and transforms in linear systems analysis
Signals and transforms in linear systems analysisSignals and transforms in linear systems analysis
Signals and transforms in linear systems analysis
Springer
 

Mais procurados (20)

Paper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelPaper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanel
 
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
 
M1 unit vii-jntuworld
M1 unit vii-jntuworldM1 unit vii-jntuworld
M1 unit vii-jntuworld
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
 
Adiabatic Theorem for Discrete Time Evolution
Adiabatic Theorem for Discrete Time EvolutionAdiabatic Theorem for Discrete Time Evolution
Adiabatic Theorem for Discrete Time Evolution
 
Fdtd
FdtdFdtd
Fdtd
 
Morales_21min_Talk
Morales_21min_TalkMorales_21min_Talk
Morales_21min_Talk
 
Signals and transforms in linear systems analysis
Signals and transforms in linear systems analysisSignals and transforms in linear systems analysis
Signals and transforms in linear systems analysis
 
Directional derivative and gradient
Directional derivative and gradientDirectional derivative and gradient
Directional derivative and gradient
 
Chapter5
Chapter5Chapter5
Chapter5
 
On the gravitational_field_of_a_point_mass_according_to_einstein_theory
On the gravitational_field_of_a_point_mass_according_to_einstein_theoryOn the gravitational_field_of_a_point_mass_according_to_einstein_theory
On the gravitational_field_of_a_point_mass_according_to_einstein_theory
 
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point GroupsUCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
 
vcla
vclavcla
vcla
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 

Destaque (7)

D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
 
Milan Bogosavljevic - AS Videojevica
Milan Bogosavljevic - AS VideojevicaMilan Bogosavljevic - AS Videojevica
Milan Bogosavljevic - AS Videojevica
 
D01L09 M Trajanovic - Mobilty of Researchers in Serbia
D01L09 M Trajanovic - Mobilty of Researchers in SerbiaD01L09 M Trajanovic - Mobilty of Researchers in Serbia
D01L09 M Trajanovic - Mobilty of Researchers in Serbia
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
 
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring CosmologyH. Partouche - Thermal Duality and non-Singular Superstring Cosmology
H. Partouche - Thermal Duality and non-Singular Superstring Cosmology
 
D02L04 V Jovanovic - Math research at University of Banja Luka
D02L04 V Jovanovic - Math research at University of Banja LukaD02L04 V Jovanovic - Math research at University of Banja Luka
D02L04 V Jovanovic - Math research at University of Banja Luka
 
C. Germani - Sub-Planckian Higgs and Axionic Inflations
C. Germani - Sub-Planckian Higgs and Axionic InflationsC. Germani - Sub-Planckian Higgs and Axionic Inflations
C. Germani - Sub-Planckian Higgs and Axionic Inflations
 

Semelhante a K. Ulker - Non-commutative Gauge Theories and Seiberg Witten Map

Single Phase Induction Type Energy Meter
Single Phase Induction Type Energy MeterSingle Phase Induction Type Energy Meter
Single Phase Induction Type Energy Meter
Vishal Thakur
 
tensor-decomposition
tensor-decompositiontensor-decomposition
tensor-decomposition
Kenta Oono
 

Semelhante a K. Ulker - Non-commutative Gauge Theories and Seiberg Witten Map (16)

gft_handout2_06.pptx
gft_handout2_06.pptxgft_handout2_06.pptx
gft_handout2_06.pptx
 
finite_element_analysis_formulas.pdf
finite_element_analysis_formulas.pdffinite_element_analysis_formulas.pdf
finite_element_analysis_formulas.pdf
 
Electromagnetic.pdf
Electromagnetic.pdfElectromagnetic.pdf
Electromagnetic.pdf
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
Single Phase Induction Type Energy Meter
Single Phase Induction Type Energy MeterSingle Phase Induction Type Energy Meter
Single Phase Induction Type Energy Meter
 
Peskin chap02
Peskin chap02Peskin chap02
Peskin chap02
 
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsStrong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
Convergence of ABC methods
Convergence of ABC methodsConvergence of ABC methods
Convergence of ABC methods
 
draft5
draft5draft5
draft5
 
A nonlinear approximation of the Bayesian Update formula
A nonlinear approximation of the Bayesian Update formulaA nonlinear approximation of the Bayesian Update formula
A nonlinear approximation of the Bayesian Update formula
 
tensor-decomposition
tensor-decompositiontensor-decomposition
tensor-decomposition
 
Problemas (67) del Capítulo III de física II Ley de Gauss
Problemas (67) del Capítulo III de física II   Ley de GaussProblemas (67) del Capítulo III de física II   Ley de Gauss
Problemas (67) del Capítulo III de física II Ley de Gauss
 
Optimal multi-configuration approximation of an N-fermion wave function
 Optimal multi-configuration approximation of an N-fermion wave function Optimal multi-configuration approximation of an N-fermion wave function
Optimal multi-configuration approximation of an N-fermion wave function
 
Directional Derivatives - vector differenciation
Directional Derivatives - vector differenciationDirectional Derivatives - vector differenciation
Directional Derivatives - vector differenciation
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 

Mais de SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
SEENET-MTP
 

Mais de SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 
Loriano Bonora "HS theories from effective actions"
Loriano Bonora "HS theories from effective actions"Loriano Bonora "HS theories from effective actions"
Loriano Bonora "HS theories from effective actions"
 

Último

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Último (20)

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 

K. Ulker - Non-commutative Gauge Theories and Seiberg Witten Map

  • 1. Non-commutative Gauge Theories and Seiberg–Witten Map to All Orders1 ¨ Kayhan ULKER Feza G¨rsey Institute * u Istanbul, Turkey (savefezagursey.wordpress.com) The SEENET-MTP Workshop JW2011 1 K. Ulker, B Yapiskan Phys. Rev. D 77, 065006 (2008) [arXiv:0712.0506 ] ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 1/1
  • 2. NC Field Theory Outline Moyal ∗–product. ˆ ˆ Non-commutative Yang–Mills (A , Λ) ˆ ˆ ˆ ˆ Seiberg – Witten Map (A → A(A, θ) , Λ → Λ(A, α, θ)) Construction of the maps order by order leads to all order solutions All order solutions can be obtained from SW differential equation ˆ ˆ SW map of other fields (Ψ → Ψ(A, ψ, θ)) Conclusion ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 2/1
  • 3. NC Field Theory Moyal *-product Moyal ∗-product The simplest way to introduce non-commutativity is to use (Moyal) *–product i µν ∂ ∂ f (x) ∗ g (x) ≡ exp θ f (x)g (y )|y →x 2 ∂x µ ∂y ν i = f (x) · g (x) + θµν ∂µ f (x)∂ν g (x) + · · · 2 for real CONSTANT antisymmetric parameter θ ! *–commutator of the ordinary coordinates : [x µ , x ν ]∗ ≡ x µ ∗ x ν − x ν ∗ x µ = iθµν . NC QFT models can then be obtained by replacing the ordinary product with the *–product ! ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 3/1
  • 4. NC Field Theory NC-YM theories NC Yang–Mills Theory The action of NC YM theory is written as : ˆ 1 ˆ ˆ 1 ˆ ˆ S = − Tr d 4 x F µν ∗ Fµν = − Tr d 4 x F µν Fµν 4 4 where ˆ ˆ ˆ ˆ ˆ Fµν = ∂µ Aν − ∂ν Aµ − i[Aµ , Aν ]∗ ˆ is the NC field strength of the NC gauge field A. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 4/1
  • 5. NC Field Theory NC-YM theories NC Yang–Mills Theory The action of NC YM theory is written as : ˆ 1 ˆ ˆ 1 ˆ ˆ S = − Tr d 4 x F µν ∗ Fµν = − Tr d 4 x F µν Fµν 4 4 where ˆ ˆ ˆ ˆ ˆ Fµν = ∂µ Aν − ∂ν Aµ − i[Aµ , Aν ]∗ ˆ is the NC field strength of the NC gauge field A. The action is invariant under the NC gauge transformations: ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ δΛ Aµ = ∂µ Λ − i[Aµ , Λ]∗ ≡ Dµ Λ ˆ ˆ ˆ ˆ δ ˆ Fµν = i[Λ, Fµν ]∗ . Λ ˆ Here, Λ is the NC gauge parameter. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 4/1
  • 6. NC Field Theory SW–map Seiberg–Witten Map One can derive both conventional and NC gauge theories from string theory by using different regularization procedures (SW’99). ˆ ˆ Let Aµ and α to be the ordinary counterparts of Aµ and Λ respectively. ⇒There must be aˆmap from a commutative gauge field A to a noncommutative one A, that arises from the requirement that gauge invariance should be preserved ! ˆ ˆˆ ˆ ˆ A(A) + δΛ A(A) = A(A + δα A) where δα is the ordinary gauge transformation : δα Aµ = ∂µ α − i[Aµ , α] ≡ Dµ α. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 5/1
  • 7. NC Field Theory SW–map This map can be rewritten as ˆˆ ˆ ˆ ˆ ˆ δΛ Aµ (A; θ) = Aµ (A + δα A; θ) − Aµ (A; θ) = δα Aµ (A; θ) Since SW map imposes the following functional dependence : ˆ ˆ Aµ = Aµ (A; θ) , ˆ ˆ Λ = Λα (α, A; θ). ⇒ one has to solve ˆˆ ˆ ˆ δΛ Aµ (A; θ) = δα Aµ (A; θ) ˆ ˆ simultaneously for Aµ and Λα and it is difficult ! ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 6/1
  • 8. NC Field Theory SW–map Now, remember the ordinary gauge consistency condition δα δβ − δβ δα = δ−i[α,β] . (check for instance for δα ψ = iαψ) Let, Λ be a Lie algebra valued gauge parameter Λ = Λa T a . For the non-commutative case, we get ˆ 1 ˆ 1 ˆ (δΛα δΛβ −δΛβ δΛα )Ψ = [T a , T b ]{Λα,a , Λβ,b }∗ ∗Ψ+ {T a , T b }[Λα,a , Λβ,b ]∗ ∗Ψ 2 2 Only a U(N) gauge theory allows to express {T a , T b } again in terms of T a . Therefore, two gauge transformations do not close in general ! ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 7/1
  • 9. NC Field Theory SW–map To able to generalize to any gauge group (J. Wess et.al. EPJ’01) let the parameters to be in the enveloping algebra of the Lie algebra : ˆ Λ = αa T a + Λ1 : T a T b : + · · · Λa1 ···an : T a1 · · · T an : + · · · n−1 ab let all NC fields and parameters depend only on Lie algebra valued fields A, ψ, · · · and parameter α i.e. ˆ ˆ Aµ ≡ Aµ (A) , ˆ ˆ Ψµ ≡ Ψµ (A, ψ) , ˆ ˆ Λ = Λ(A, α) impose NC gauge consistency condition: ˆ ˆ ˆ ˆ ˆ iδα Λβ − iδβ Λα − [Λα , Λβ ]∗ = i Λ−i[α,β] . Note that, above construction of Wess et.al. is obtained entirely independent of string theory ! ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 8/1
  • 10. NC Field Theory SW–map In contrast to SW we now have an equation only for the gauge parameter ˆ ˆ ˆ ˆ ˆ iδα Λβ − iδβ Λα − [Λα , Λβ ]∗ = i Λ−i[α,β] . and once we solve it we can then solve ˆˆ ˆ ˆ δΛ Aµ (A; θ) = δα Aµ (A; θ) only for Aµ . ˆ ˆ To find the solutions we expand Λα and Aµ as formal power series, ˆ Λα = α + Λ 1 + · · · + Λ n + · · · , α α ˆ µ = Aµ + A1 + · · · + An + · · · , A µ µ The superscript n denotes the order of θ. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 9/1
  • 11. NC Field Theory SW–map NC gauge consistency condition and gauge equivalence condition ˆ ˆ ˆ ˆ ˆ iδα Λβ − iδβ Λα − [Λα , Λβ ]∗ = i Λ−i[α,β] , ˆˆ ˆ ˆ δΛ Aµ (A; θ) = δα Aµ (A; θ) ˆ ˆ can be written for the n–th order components of Λα and Aµ as iδα Λn − iδβ Λn − β α [Λp , Λq ]∗r = i Λn α β ˆ −i[α,β] p+q+r =n δα An = ∂µ Λn − i µ α [Ap , Λq ]∗r µ α p+q+r =n respectively. Here, ∗r denotes : r 1 i f (x) ∗r g (x) ≡ θµ1 ν1 · · · θµr νr ∂µ1 · · · ∂µr f (x)∂ν1 · · · ∂νr g (x). r! 2 ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 10 / 1
  • 12. NC Field Theory SW–map We can rearrange the above Eq.s for any order n ˆ ˆα ˆ ˆα ˆ ∆Λn ≡ iδα Λn − iδβ Λn − [α, Λn ] − [Λn , β] − i Λn β β −i[α,β] = [Λp , Λq ]∗r α β p+q+r =n, p,q=n ∆α An ≡ δα An − i[α, An ] = ∂µ Λn + i µ µ µ α [Λp , Aq ]∗r α µ p+q+r =n, q=n so that the l.h.s contains only the n-th order components. However, note that one can extract the homogeneous parts such that ˜α ∆Λn = 0 , ˜µ ∆α An = 0 ˜α ˜ µ It is clear that one can add any homogeneous solution Λn , An to the inhomogeneous solutions Λα µn , An with arbitrary coefficients. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 11 / 1
  • 13. NC Field Theory 1-st order solution First order solution given in the original paper (SW, JHEP’99 ) : 1 Λ1 = − θκλ {Aκ , ∂λ α} α 4 1 A1 = − θκλ {Aκ , ∂λ Aγ + Fλγ }. γ 4 One can find the field strength form the definition : 1 Fγρ = − θκλ {Aκ , ∂λ Fγρ + Dλ Fγρ } − 2{Fγκ , Fρλ } . 1 4 These solutions are not unique since one can add homogeneous solutions with arbitrary coefficients. i.e. ˜ ˜ρ Λ1 = ic1 θµν [Aµ , ∂ν α] , A1 = c2 θµν Dρ Fµν Therefore, A1 + ic1 θµν ([∂ρ Aµ , Aν ] − i[[Aρ , Aµ ], Aν ]) + c2 θµν Dρ Fµν ρ is also a solution ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 12 / 1
  • 14. NC Field Theory 1-st order solution 2nd order solutions (Moller’04 ) α A2 and Λ2 can be written in terms of lower µ ¨ order solutions : (K.U ,B. Yapiskan PRD’08.) 1 i Λ2 = − θκλ {A1 , ∂λ α} + {Aκ , ∂λ Λ1 } − θκλ θµν [∂µ Aκ , ∂ν ∂λ α] α κ α 8 16 1 A2 γ = − θκλ {A1 , ∂λ Aγ + Fλγ } + {Aκ , ∂λ A1 + Fλγ } κ γ 1 8 i − θκλ θµν [∂µ Aκ , ∂ν (∂λ Aγ + Fλγ )]. 16 The field strength at the second order can also be written in terms of first order solutions : 2 1 Fγρ = − θκλ {Aκ , ∂λ Fγρ + (Dλ Fγρ )1 } 1 8 +{A1 , ∂λ Fγρ + Dλ Fγρ } − 2{Fγκ , Fρλ } − 2{Fγκ , Fρλ } κ 1 1 i κλ µν − θ θ [∂µ Aκ , ∂ν ∂λ Fγρ + Dλ Fγρ ] − 2[∂µ Fγκ , ∂ν Fρλ ] . 16 Where, (Dλ Fγρ )1 = Dλ Fγρ − i[A1 , Fγρ ] + 1 θµν {∂µ Aλ , ∂ν Fγρ }. 1 λ 2 ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 13 / 1
  • 15. NC Field Theory n-th order solutions By analyzing first two order solutions one can conjecture the general ¨ structure (K.U ,B. Yapiskan PRD’08.) : 1 Λn+1 = − α θκλ {Ap , ∂λ Λq }∗r κ α 4(n + 1) p+q+r =n 1 q An+1 = − γ θκλ {Ap , ∂λ Aq + Fλγ }∗r . κ γ 4(n + 1) p+q+r =n The overall constant −1/4(n + 1) is fixed uniquely with third order solutions. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 14 / 1
  • 16. NC Field Theory SW Differential Equation Solution of Seiberg-Witten Differential Equation Let us vary the deformation parameter infinitesimally θ → θ + δθ ˆ ˆ To get equivalent physics, A(θ) and Λ(θ) should change when θ is varied, (SW’99): ˆ ˆ ˆ δ Aγ (θ) = Aγ (θ + δθ) − Aγ (θ) ˆ ∂ Aγ 1 ˆ ˆ ˆ = δθµν µν = − δθκλ {Aκ , ∂λ Aγ + Fλγ }∗ ∂θ 4 ˆ ˆ ˆ δ Λ(θ) = Λ(θ + δθ) − Λ(θ) ∂Λˆ 1 ˆ ˆ = δθµν µν = − θκλ {Aκ , ∂λ Λ}∗ (1) ∂θ 4 These differential equations are commonly called SW differential equations. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 15 / 1
  • 17. NC Field Theory SW Differential Equation To find solutions of the differential equation expand NC gauge parameter and NC gauge field into a Taylor series: ˆα Λ(n) = α + Λ1 + · · · + Λn , α α ˆµ A(n) = Aµ + A1 + · · · + An . µ µ ˆ (n) ˆ (n) here Λα and Aµ denotes the sum up to order n ! Then it is possible to write (Wulkenhaar et.al’01) : n+1 ˆα 1 1 µ1 ν1 µ2 ν2 ∂ k−1 ˆ ˆα Λ(n+1) = α − θ θ · · · θ µ k νk {A(k) , ∂ν1 Λ(k) }∗ 4 k! ∂θµ2 ν2 · · · ∂θµk νk µ1 θ=0 k=1 n+1 ˆγ 1 1 µ1 ν1 µ2 ν2 ∂ k−1 ˆ ˆγ ˆ (k) A(n+1) = Aγ − θ θ · · · θµk νk {A(k) , ∂ν1 A(k) + Fν1 γ }∗ 4 k! ∂θµ2 ν2 · · · ∂θµk νk µ1 θ k=1 ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 16 / 1
  • 18. NC Field Theory SW Differential Equation Contrary to the solutions presented in the previous section, these expressions explicitly contain derivatives w.r.t. θ ∗–product itself and given as a sum of all (n+1) orders. However, it is possible to extract our recursive solutions from the above expressions. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 17 / 1
  • 19. NC Field Theory SW Differential Equation ˆ (n+1) : Let us write the n + 1–st component of Λα 1 ∂n ˆ ˆα Λn+1 = − α θµν θµ1 ν1 · · · θµn νn {A(n) , ∂ν1 Λ(n) }∗ . 4(n + 1)! ∂θµ1 ν1 · · · ∂θµn νn µ1 θ=0 Since, θ is set to zero after taking the derivatives, the expression in the paranthesis can be written as a sum up to n-th order: 1 ∂n Λn+1 = − α θµν θµ1 ν1 · · · θµn νn {Ap , ∂ν Λq }∗r µ α . 4(n + 1)! ∂θµ1 ν1 · · · ∂θµn νn p+q+r =n It is then an easy exercise to show that the above equation reduces to the recursive formula : 1 Λn+1 = − α θµν {Ap , ∂ν Λq }∗r . µ α 4(n + 1) p+q+r =n ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 18 / 1
  • 20. NC Field Theory SW Differential Equation With the same algebraic manipulation one can also derive the same recursive formula for the gauge field 1 An+1 = − γ θµν θµ1 ν1 · · · θµn νn × 4(n + 1)! ∂n ˆ ˆγ ˆ (n) × {A(n) , ∂ν1 A(n) + Fν1 γ }∗ ∂θµ1 ν1 · · · ∂θµn νn µ1 θ=0 1 = − θµν {Ap , ∂ν Aq + Fνγ }∗r . µ γ q 4(n + 1) p+q+r =n ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 19 / 1
  • 21. NC Field Theory SW Map for matter fields Seiberg–Witten Map for Matter Fields ˆ SW–map of a NC field Ψ in a gauge invariant theory can be derived from (J. Wess et.al. EPJ’01): ˆˆ ˆ ˆ δΛ Ψ(ψ, A; θ) = δα Ψ(ψ, A; θ). The solution of this gauge equivalence relation can be found order by order ˆ by after expanding the NC field Ψ as formal power series in θ ˆ ˆ ˆ Ψ = ψ + Ψ1 + · · · + Ψn + · · · ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 20 / 1
  • 22. NC Field Theory SW Map for matter fields Fundamental Representation : Ordinary gauge transformation of ψ is written as δα ψ = iαψ. NC gauge transformation is defined with the help of ∗–product : ˆˆ ˆ ˆ ˆ δΛ Ψ = i Λα ∗ Ψ. Following the general strategy the gauge equivalence relation reads ∆α Ψn ≡ δα Ψn − iαΨn = i Λp ∗r Ψq , α p+q+r =n, q=n for all orders. ˜ As discussed before, one is free to add any homogeneous solution Ψn of the equation ˜ ∆α Ψn = 0 to the solutions Ψn . ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 21 / 1
  • 23. NC Field Theory SW Map for matter fields A solution for the first order is given by Wess et.al : 1 Ψ1 = − θκλ Aκ (∂λ + Dλ )ψ 4 where Dµ ψ = ∂µ ψ − iAµ ψ . The SW differential equation from the first order solution reads : ˆ ∂Ψ 1 δθµν ˆ ˆ ˆ ˆ = − δθκλ Aκ ∗ (∂λ Ψ + Dλ Ψ) ∂θ µν 4 which can also be written as ∂Ψˆ 1ˆ 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ = − Aκ ∗ (∂λ Ψ + Dλ Ψ) + Aλ ∗ (∂κ Ψ + Dκ Ψ) ∂θκλ 8 8 The NC covariant derivative here is defined as : ˆ ˆ ˆ ˆ ˆ Dµ Ψ = ∂µ Ψ − i Aµ ∗ Ψ . ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 22 / 1
  • 24. NC Field Theory SW Map for matter fields ˆ By using a similar method, we expand Ψ in Taylor series : ˆ Ψ(n+1) = ψ + Ψ1 + Ψ2 + · · · + Ψn+1 n+1 1 µ 1 ν1 µ 2 ν2 ∂k ˆ = ψ+ θ θ · · · θµk νk Ψ(n+1) k! ∂θµ1 ν1 · · · ∂θµk νk θ=0 k=1 From the differential equation we get n+1 ˆ 1 1 µ 1 ν1 µ 2 ν2 Ψ(n+1) = ψ − θ θ · · · θµk νk × 4 k! k=1 ∂ k−1 ˆ ˆ ˆ ˆ × A(k) ∗ (∂ν1 Ψ(k) + (Dν1 Ψ)(k) ) ∂θµ2 ν2 · · · ∂θµk νk µ1 θ=0 where ˆ ˆ ˆ ˆµ ˆ (Dµ Ψ)(n) = ∂µ Ψ(n) − i A(n) ∗ Ψ(n) . For the abelian case this solution differs from the one given in Wulkenhaar et.al. by a homogeneous solution. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 23 / 1
  • 25. NC Field Theory SW Map for matter fields To find the all order recursive solution we write the n + 1–st component : 1 Ψn+1 = − θµν θµ1 ν1 · · · θµn νn × 4(n + 1)! ∂n ˆ ˆ ˆ ˆ × A(n) ∗ (∂ν Ψ(n) + (Dν Ψ)(n) ) ∂θµ1 ν1 · · · ∂θµn νn µ θ=0 1 = − θµν θµ1 ν1 · · · θµn νn × 4(n + 1)! ∂n × Ap ∗r (∂ν Ψ(q) + (Dν Ψ)q ) µ ∂θµ1 ν1 · · · ∂θµn νn p+q+r =n where (Dµ Ψ)n = ∂Ψn − i Ap ∗r Ψq . µ p+q+r =n ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 24 / 1
  • 26. NC Field Theory SW Map for matter fields After taking derivatives w.r.t. θ’s we obtain the all order recursive solution of the gauge equivalence relation : 1 ψ n+1 = − θκλ Ap ∗r (∂λ Ψ(q) + (Dλ Ψ)q ). κ 4(n + 1) p+q+r =n The first order solution of Wess et.al. is obtained by setting n = 0. By setting n = 1 we find the second order solution of M¨ller . o ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 25 / 1
  • 27. NC Field Theory SW Map for matter fields Adjoint representation : The gauge transformation reads as δα ψ = i[α, ψ] Non–commutative generalization can be written as ˆˆ ˆ ˆ ˆ δΛ Ψ = i[Λα , Ψ]∗ . Following the general strategy, the gauge equivalence relation can be written as ∆α Ψn := δα Ψn − i[α, Ψ] = i [Λp , Ψq ]∗r α p+q+r =n, q=n for all orders. The solutions can be found either by directly solving this equation order by order by solving the respective differential equation However, possibly the easiest way to obtain the solution is to use dimensional reduction. (K.U, Saka PRD’07) ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 26 / 1
  • 28. NC Field Theory SW Map for matter fields By setting the components of the deformation parameter θ on the compactified dimensions zero, i.e. θµν 0 ΘMN = , 0 0 the trivial dimensional reduction (i.e. from six to four dimensions) leads to the general n–th order solution for a complex scalar field : 1 ψ n+1 = − θκλ {Ap , (∂λ Ψ(q) + (Dλ Ψ)q )}∗r . κ 4(n + 1) p+q+r =n Since the structure of the solutions are the same for both the scalar and fermionic fields, this solution can also be used for the fermionic fields. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 27 / 1
  • 29. NC Field Theory SW Map for matter fields Note that, after introducing the anticommutators / commutators properly, the form of the solution is similar with the one given for the fundamental case except that now Dµ ψ = ∂µ ψ − i[Aµ , ψ] and hence (Dµ Ψ)n = ∂µ Ψn − i [Ap , Ψq ]∗r . µ p+q+r =n The same result can also be obtained by solving the differential equation : ∂Ψˆ 1 ˆ 1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ = − {Aκ , (∂λ Ψ + Dλ Ψ)}∗ + {Aλ , (∂κ Ψ + Dκ Ψ)}∗ . ∂θ κλ 8 8 Therefore, the result obtained above via dimensional reduction can also be thought as an independent check of the aforementioned results. ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 28 / 1
  • 30. NC Field Theory Conclusion CONCLUSION Equations, ˆ ˆˆ ˆ ˆ Aµ (A; θ) + δΛ Aµ (A; θ) = Aµ (A + δα A; θ). ˆ ˆˆ ˆ ˆ Ψ(A, ψ; θ) + δΛ Ψ(A, ψ; θ) = Ψ(A + δα A, ψ + δα ψ; θ). can be solved as 1 Λn+1 = − α θκλ {Ap , ∂λ Λq }∗r κ α 4(n + 1) p+q+r =n 1 q An+1 = − γ θκλ {Ap , ∂λ Aq + Fλγ }∗r . κ γ 4(n + 1) p+q+r =n 1 ψ n+1 = − θκλ Ap ∗r (∂λ Ψ(q) + (Dλ Ψ)q ). κ 4(n + 1) p+q+r =n ¨ Kayhan ULKER (Feza G¨rsey Institute*) u All order solution of SW–map BW’11 29 / 1