SlideShare uma empresa Scribd logo
1 de 29
Baixar para ler offline
PERTURBATIVE Q.E.D
ON DE SITTER UNIVERSE
  WEST UNIVERSITY OF TIMISOARA
      FACULTY OF PHYSICS
      author: Crucean Cosmin




               1
THE THEORY OF FREE FIELDS ON DE
SITTER UNIVERSE

Dirac field

• De Sitter metric:
                                        1
             ds2 = dt2 − e2ωtdx 2 =         (dt2 − dx 2),   ω > 0,   ωtc = −e−ωt   (1)
                                      (ωtc)2 c


                                                      ˆ
                                        gµν = ηαβ eαeβ
                                               ˆ
                                                   ˆ
                                                 ˆ µ ν                             (2)
• In the Cartesian gauge the nonvanishing tetradic components are:
                                                 ˆ      1     ˆ    ˆ 1
                  e0 = −ωtc, eˆ = −δˆωtc, e0 = − , ei = −δj .
                    ˆ
                    0
                                 i
                                 j
                                        i
                                        j        0            j
                                                                   i
                                                                                   (3)
                                                       ωtc           ωtc



                                               2
• Action for Dirac field
                                            √i ¯ α
                       S [e, ψ] =     d x −g [ψγ ˆ Dαψ − (Dαψ)γ αψ]
                                        4
                                                    ˆ      ˆ
                                                                ˆ
                                             2
                                      ¯
                                    −mψψ ,                                               (4)

where
                                      Dα = eµ Dµ = ∂α + Γα
                                       ˆ    α
                                            ˆ       ˆ    ˆ                               (5)
• In this gauge the Dirac operator reads:
                                                          3iω 0
                              ED = iγ 0∂t + ie−ωtγ i∂i +      γ
                                                           2
                                             0       i       3iω 0
                                    = −iωtc(γ ∂tc + γ ∂i) +     γ                        (6)
                                                              2
• the Dirac equation
                                        (ED − m)ψ = 0                                    (7)
• The fundamental solutions are:
                                             1 πk/2 (1)
                              πp/ω             e Hν− (qe−ωt)ξλ(p )
           Up, λ(t, x ) = i                  2
                                                     (1)                eip·x−2ωt
                            (2π)3/2         λe−πk/2Hν+ (qe−ωt)ξλ(p )
                                                       (2)
                                πp/ω        −λe−πk/2Hν− (qe−ωt)ηλ(p )
             Vp, λ(t, x ) = i                1 πk/2 (2)
                                                                          e−ip·x−2ωt ,   (8)
                              (2π)3/2        2 e Hν+ (qe−ωt)ηλ(p )
                                                  3
• Charge conjugation
                                                           ¯
                             Up, λ(x) → Vp, λ(x) = iγ 2γ 0(Up, λ(x))T .                       (9)
• The orthonormalization relations :
                                   ¯
                         d3x(−g)1/2Up, λ(x)γ 0Up , λ (x) =

                                   ¯
                         d3x(−g)1/2Vp, λ(x)γ 0Vp , λ (x) = δλλ δ 3(p − p )

                                    ¯
                          d3x(−g)1/2Up,λ(x)γ 0Vp ,λ (x) = 0,                                 (10)




         d3p       Up, λ(t, x )Up, λ(t, x ) + Vp, λ(t, x )Vp, λ(t, x ) = e−3ωtδ 3(x − x ).
                                +                           +
                                                                                             (11)
               λ
• The field operator
               ψ(t, x ) = ψ (+)(t, x ) + ψ (−)(t, x )
                         =     d3p       Up, λ(t, x )a(p, λ) + Vp, λ(t, x )b+(p, λ) .        (12)
                                     λ
• Canonic cuantization
               {a(p, λ), a+(p , λ )} = {b(p, λ), b+(p , λ )} = δλλ δ 3(p − p ) ,             (13)
                                                 4
{ψ(t, x ), ψ(t, x )} = e−3ωtγ 0δ 3(x − x ) ,                                 (14)

                   SF (t, t , x − x ) = i 0|T [ψ(x)ψ(x )]|0
                                      = θ(t − t )S (+)(t, t , x − x )
                                        −θ(t − t)S (−)(t, t , x − x ) .                              (15)



                   [ED (x) − m]SF (t, t , x − x ) = −e−3ωtδ 4(x − x ).                               (16)

• Conserved operators

           Pi =: ψ, P iψ :=         d3p pi            [a+(p, λ)a(p, λ) + b+(p, λ)b(p, λ)]            (17)
                                                  λ



          W =: ψ, W ψ :=            d3p           pλ[a+(p, λ)a(p, λ) + b+(p, λ)b(p, λ)] .            (18)
                                              λ


              iω        3   i             +
                                                      ↔
                                                                       +
                                                                                  ↔
           H=           d pp         a (p, λ)         ∂ pi   a(p, λ) + b (p, λ)   ∂ pi   b(p, λ) .   (19)
               2
                                λ
                                                       5
•


                                          [H, P i] = iωP i.                   (20)


Scalar field

• Action of the scalar field
                      ∗            √                     √
               S[φ, φ ] =      4
                              d x −g L =          d x −g ∂ µφ∗∂µφ − m2φ∗φ ,
                                                     4
                                                                              (21)


• The Klein-Gordon equation:
                               1    √
                              √   ∂µ −g g µν ∂ν φ + m2φ = 0 .                 (22)
                               −g


                              ∂t2 − e−2ωt∆ + 3ω∂t + m2 φ(x) = 0 .             (23)
• Solutions of Klein-Gordon equation:
                               1       π e−3ωt/2 −πk/2 (1) p −ωt ip·x
                      fp (x) =                3/2
                                                  e   Hik    e   e ,          (24)
                               2       ω (2π)              ω
                                                 6
9         m
                                  k=      µ2   − ,   4      µ = , m > 3ω/2                     (25)
                                                               ω
• The orthonormalization relations:
                                                            ↔
                                   3         1/2    ∗
                          i       d x (−g)         fp (x)   ∂t fp (x) =
                                                            ↔
                                   3         1/2              ∗
                     −i           d x (−g)         fp (x) ∂t fp (x) = δ 3(p − p ) ,            (26)
                                                            ↔
                                   3         1/2
                          i       d x (−g)         fp (x) ∂t fp (x) = 0 ,                      (27)

                                                 ↔
                                     ∗
                      i       3
                              d   p fp (t, x )   ∂t fp (t, x ) = e−3ωtδ 3(x − x ) .            (28)

• Canonic cuantization
                                                                               ∗
              φ(x) = φ(+)(x) + φ(−)(x) =                    d3p fp (x)a(p ) + fp (x)b+(p ) ,   (29)



                          [a(p ), a†(p )] = [b(p ), b†(p )] = δ 3(p − p ) .                    (30)
•


                                                            7
[φ(t, x ), ∂tφ†(t, x )] = ie−3ωtδ 3(x − x ) .      (31)
• The commutator functions:
                              D(±)(x, x ) = i[φ(±)(x), φ(±)†(x )],           (32)




                                                            ∗
                            D(+)(x, x ) = i      d3p fp (x)fp (x ),

                                                        ∗
                            D(−)(x, x ) = −i       d3p fp (x)fp (x ).        (33)

• G(x, x ) is a Green function of the Klein-Gordon equation if:
                   ∂t2 − e−2ωt∆x + 3ω∂t + m2 G(x, x ) = e−3ωtδ 4(x − x ) .   (34)




                       DR(t, t , x − x ) = θ(t − t )D(t, t , x − x ) ,       (35)
                       DA(t, t , x − x ) = − θ(t − t)D(t, t , x − x ) ,      (36)


                                               8
• The Feynman propagator,
      DF (t, t , x − x ) = i 0|T [φ(x)φ†(x )] |0
                         = θ(t − t )D(+)(t, t , x − x ) − θ(t − t)D(−)(t, t , x − x ) ,
                                                                                          (37)


The electromagnetic field

• The action
                                   √         1           √
                     S[A] =     d4x −g L = −          d4x −g Fµν F µν ,                   (38)
                                             4
Fµν = ∂µAν − ∂ν Aµ

• Field equation                     √
                                 ∂ν ( −g g ναg µβ Fαβ ) = 0 ,                             (39)


• In the Coulomb gauge A0 = 0, (Ai) ; i = 0 ,and chart {tc, x}
                                             ¸
                                      (∂t2c − ∆)Ai = 0                                    (40)



                                              9
• The field operator
                       (+)            (−)
         Ai(x) = Ai (x) + Ai (x)
                 =      d3k          ei(nk , λ)fk (x)a(k, λ) + [ei(nk , λ)fk (x)]∗a∗(k, λ)
                               λ
                                                                                             (41)
                                               1    1
                                   fk (x) =        √ e−iktc+ik·x ,                           (42)
                                            (2π)3/2 2k
• the Hermitian form
                                                  ↔                  ↔
                               3      ∗
               f, g = i       d x f (tc, x ) ∂tc g(tc, x ) ,       f ∂ g = f (∂g) − g(∂f )   (43)


• The orthonormalization relations:
                                           ∗     ∗
                              fk , fk = − fk , fk = δ 3(k − k ) ,                            (44)
                                                ∗
                                          fk , fk = 0 ,                                      (45)
                                                  ↔
                               3      ∗
                        i     d    k fk (tc, x)   ∂tc fk (tc, x ) = δ 3(x − x ) ,            (46)



                                            k · e (nk , λ) = 0 ,                             (47)
                                                      10
e (nk , λ) · e (nk , λ )∗ = δλλ ,                          (48)
                                                         ∗        k ik j
                                    ei(nk , λ) ej (nk , λ) = δij − 2 .                        (49)
                                                                   k
                               λ
• In local frame
                    ·
         Aˆ (x) = e ˆj Aj =
          i         i·
                                   d3k        wˆ k,λ)(x)a(k, λ) + [wˆ k,λ)(x)]∗a∗(k, λ) .
                                               i(                   i(                        (50)
                                         λ
• Conformal transformation
                                         gµν (x) = Ω(x)ηµν ,                                  (51)
                               g µν (x) = Ω−1(x)η µν , ds2 = Ω ds2,
                                                                 c                            (52)



                                     Aµ = Aµ ;       Aµ = Ω−1A µ.                             (53)


• Quantization
                              [a(k, λ), a†(k , λ )] = δλλ δ 3(k − k ) .                       (54)



              [Ai(tc, x ), π j (tc, x )] = [Ai(tc, x ), ∂tc Aj (tc, x )] = i δij (x − x ) ,
                                                                              tr
                                                                                              (55)
                                                    11
• The momentum density
                                  j    √        δL
                                 π =       −g            = ∂tc Aj                      (56)
                                              δ(∂tc Aj )


                            tr          1                q iq j
                           δij (x ) =           d3q δij − 2           eiq·x            (57)
                                      (2π)3               q

• Conserved operators


                        1
                Pl =      δij : Ai, (P l A)j :=      d3k k l       a†(k, λ)a(k, λ) ,   (58)
                        2
                                                               λ


                                        1
                                  H=      δij : Ai, (HA)j :                            (59)
                                        2


                        1
               W =        δij : Ai, (W A)j : =       d3k k         λ a†(k, λ)a(k, λ)   (60)
                        2
                                                               λ

                                                12
[H, P i] = iωP i ,       [H, W] = iωW ,                [W, P i] = 0 ,              (61)



                                                      3  i
                             (Hfk ) (x) = −iω k ∂ki +   f (x)                                         (62)
                                                      2 k

                           iω           3     i     †
                                                              ↔
                        H=           d kk          a (k, λ)   ∂ ki   a(k, λ) ,                        (63)
                            2

• The commutator functions
                              (±)                       (±)      (±) †
                             Dij (x − x ) = i[Ai (x), Aj                   (x )]                      (64)




                   (+)                        3                       ∗          k ik j
                  Dij (x   −x) = i           d k fk (x)fk (x )              δij − 2                   (65)
                                                                                  k


               (+)            i              d3k             k ik j                   )−ik(tc −tc )
              Dij (x   −x)=                             δij − 2            eik·(x−x                   (66)
                            (2π)3            2k               k
                                                   13
• at equal times,
                           (+)                                 1 tr
                      ∂tc Dij (tc − tc, x − x )            =     δij (x − x ) .   (67)
                                                  tc =tc       2

• The transversal Green functions
                                                           tr
                       ∂t2c − ∆x Gij (x − x ) = δ(tc − tc)δij (x − x )            (68)

si ∂iGi· (x) = 0.
¸     ·j
                           R
                          Dij (x − x ) = θ(tc − tc)Dij (x − x ) ,                 (69)
                           A
                          Dij (x − x ) = −θ(tc − tc)Dij (x − x ) ,                (70)
• The Feynman propagator ,
                      F
                     Dij (x − x ) = i 0|T [Ai(x)Aj (x )] |0
                                    (+)                              (−)
                     = θ(tc − tc)Dij (x − x ) − θ(tc − tc)Dij (x − x ) ,          (71)




                                             14
Interaction   between                                 Dirac           field   and
electromagnetic field

• The action for interacting fields:
                                             √
                                          i ¯ α
                    S [e, ψ, A] =        4
                                   d x −g [ψγ ˆ Dαψ − (Dαψ)γ αψ]
                                                   ˆ       ˆ
                                                               ˆ
                                          2
                                    ¯   1            ¯ ˆ ˆ
                                  −mψψ − Fµν F µν − eψγ αAαψ ,                (72)
                                        4

• Equations for fields in interaction
                                         iγ αDαψ − mψ = eγ αAαψ,
                                            ˆ
                                               ˆ
                                                            ˆ
                                                               ˆ
                                1                             ¯ ˆ
                                       ∂µ     (−g)F µν = eeν ψγ αψ.
                                                           α
                                                           ˆ                  (73)
                               (−g)




                                                 15
Interaction  between                             scalar           field             and
electromagnetic field

• The action
                                   √       µ †          1
                                                       2 †
                S[φ, A] =     d x −g (∂ φ ∂µφ − m φ φ) − Fµν F µν
                               4
                                                        4
                            −ie[(∂µφ†)φ − (∂µφ)φ†]Aµ + e2φ†φAµAµ .                  (74)



• Equations for fields in interaction
           1        √                 √
         √     ∂µ −g g ∂ν φ − ie −gφAµ + m2φ = ie(∂µφ)Aµ + e2φAµAµ,
                            µν
           −g
                                    1
                                        ∂µ (−g)F µν = −ie[(∂ ν φ†)φ − (∂ ν φ)φ†]
                                   (−g)
                                                      +2e2φ†φAν .                   (75)




                                           16
The in out fields
• The equation of the interaction fields in the Coulomb gauge
                                                    ¯
                                 (∂t2c − ∆x)A(x) = eψ(x)γψ(x)                (76)
• Solution:
                             ˆ
                      A(x) = A(x) − e                    ¯
                                         d3ydtc DG(x − y)ψ(y)γψ(y),          (77)




                        ˆ
                 A(x) = A(R/A)(x) − e                        ¯
                                           d3ydtc DR/A(x − y)ψ(y)γψ(y),      (78)

                   ˆ
• the free fields , A(R/A)(x) satisfy:
                                             ˆ
                                 lim (A(x) − A(R/A)(x)) = 0.                 (79)
                                t→ ∞

• The fields in/out:
                √                                               ¯
                    z3Ain/out(x) = A(x) + e   d3ydtc DR/A(x − y)ψ(y)γψ(y).   (80)

                                              17
• The in/out fields, final expressions:
             √
                 z3Ain/out(x) = A(x) +           d3ydtc DR/A(x − y)(∂t2c − ∆y )A(y),   (81)



                                                                ↔
                                             3
                     a(k, λ)in/out = i   d xfk (x)e (nk , λ) ∂tc Ain/out(x)            (82)


• The case of interaction with scalar field
                        ˆ + e d4y √−g G(x, y) √ i ∂µ[√−gφ(y)Aµ(y)]
              φ(x) = φ(x)
                                               −g
                       +i[∂µφ(y)]Aµ(y) + eφ(y)Aµ(y)Aµ(y) ,                             (83)




                 ˆ                       √            i   √
          φ(x) = φR/A(x) + e        d y −gDR/A(x, y) √ ∂µ[ −gφ(y)Aµ(y)]
                                     4
                                                      −g
                   +i[∂µφ(y)]Aµ(y) + eφ(y)Aµ(y)Aµ(y) .                                 (84)


                                                   18
• The in/out fields:
           √                               √
             zφin/out(x) = φ(x) −     d y −gDR/A(x, y)[EKG(y) + m2]φ(y).
                                       4
                                                                                (85)

•


                                                              ↔
                                       3            ∗
                    a(p )in/out = i   d    x(−g)1/2fp (x)     ∂t φin/out(x)
                                                               ↔
                    †                  3          1/2
                   b (p )in/out = i   d x(−g)           fp (x) ∂t φin/out(x).   (86)




                                             19
Perturbation theory

• The expression of Green functions
                                                  1        ˆ    ˆ       ˆ
                 G(y1, y2, ..., yn) =                 0|T [φ(y1)φ(y2)...φ(yn), S]|0 ,          (87)
                                             0|S|0


                                            ∞
                            (x)d4 x               (−i)n
          S = T e−i    LI
                                      =1+                  T [LI (x1)...LI (xn)]d4x1...d4xn,   (88)
                                            n=1
                                                   n!
• The interaction Lagrangian
                                            √
                            LI (x) = −ie −g : [(∂µφ†)φ − (∂µφ)φ†]Aµ :                          (89)



             (−i)n                 ˆ    ˆ       ˆ
                              0|T [φ(y1)φ(y2)...φ(yn), LI (x1)...LI (xn)]|0 d4x1...d4xn.       (90)
            n! 0|S|0



                                                      20
• the amplitude:
                               3        1                        ∗
    out, 1(p )|in, 1(p ) = δ (p − p ) −           −g(y) −g(z)fp (y)[EKG(y) + m2]
                                        z
                           × 0|T [φ(y)φ†(z)]|0 [EKG(z) + m2]fp (z)d4yd4z.      (91)


• The scattering amplitude in the first order of perturbation theory
                                                         ↔
                                                ∗
                    Ai→f = −e         −g(x)    fp   (x) ∂µ fp (x) Aµ(x)d4x,            (92)




                    Ai→f = −ie              ¯
                                       −g(x)Up      ,λ (x)γµ A
                                                                 µ
                                                                 ˆ
                                                                     (x)Up,λ (x)d4x,   (93)




                                               21
Coulomb scattering for the charged scalar field

• External field
                                             ˆ
                                             0 Ze −ωt
                                           A =     e                                (94)
                                               |x|
• initial and final states are:
                                 φf (x) = fpf (x),    φi(x) = fpi (x).              (95)


• Scattering amplitude
                −αZ         pi ∞         (2)     (1)           (2)     (1)
    Ai→f   =              −        z Hik (pf z)Hik−1(piz) − Hik (pf z)Hik+1(piz) dz
             8π|pf − pi|2     2 0
               pf ∞       (2)        (1)        (2)        (1)
             +        z Hik−1(pf z)Hik (piz) − Hik+1(pf z)Hik (piz) dz ,            (96)
               2 0


                                                e−ωt
                                             z=      .                              (97)
                                                 ω


                                                 22
• Scattering amplitude in final form
                                                  −αZ
                                    Ai→f =                 B ,
                                                          2 k
                                                                                                       (98)
                                               8π|pf − pi|

                 (pf + pi)                1                           pf             pf
            Bk = √         2iδ(pf − pi) + θ(pi − pf ) h∗k                   − gk
                     pf pi                pi                          pi             pi
                   1               ∗   pi        pi
                + θ(pf − pi) gk            − hk        .                                               (99)
                   pf                  pf       pf

                                   3 1                   2            1 3                 2
               e−πk χik      2 F1  2 , 2 + ik; 1 + ik; χ       2 F1 2 , 2 + ik; 1 + ik; χ
     gk (χ) =                                                −
              sinh2(πk)               1
                                  B( 2 − ik; 1 + ik)                B(− 1 − ik; 1 + ik)
                                                                         2
                                      3 1                  2            1 3                   2
                  eπk χ−ik     2 F1 2 , 2 − ik; 1 − ik; χ         2 F1 2 , 2 − ik; 1 − ik; χ
               +                                               −
                 sinh2(πk)               1
                                    B( 2 + ik; 1 − ik)                B(− 1 + ik; 1 − ik)
                                                                            2
                                      3 1                  2            1 3                  2
                    χik        2 F1 2 , 2 + ik; 1 + ik; χ         2 F1 2 , 2 + ik; 1 + ik; χ
               +                                              −
                 sinh2(πk)                  1
                                       B(− 2 ; 1 + ik)                        1
                                                                          B( 2 ; 1 + ik)
                                      3 1                  2            1 3                   2
                    χ−ik       2 F1 2 , 2 − ik; 1 − ik; χ         2 F1 2 , 2 − ik; 1 − ik; χ
               +                                               −                                  ,
                 sinh2(πk)                  1
                                       B(− 2 ; 1 − ik)                        1
                                                                          B( 2 ; 1 − ik)
                                                                                                      (100)
                                                  23
3 3                                      1 1
             e−πk χ−ik         2 F1    , 2 − ik; 2 − ik; χ2            2 F1 2 , 2 − ik; −ik; χ
                                                                                                 2
    hk (χ) =                         2
                                                              · χ2 −
             sinh2(πk)             B(− 1 + ik; 2 − ik)
                                          2                                 B(−ik; 1 + ik)
                                                                                     2
                                        3 3                 2                   1 1             2
                  eπk χik        2 F1 2 , 2 + ik; 2 + ik; χ              2 F1 2 , 2 + ik; ik; χ
              +                                                 · χ2 −
                sinh2(πk)                   1
                                     B(− 2 − ik; 2 + ik)                      B( 1 − ik; ik)
                                                                                  2
                                        1 1             2            3 3                   2
                   χik           2 F1 2 , 2 + ik; ik; χ       2 F1 2 , 2 + ik; 2 + ik; χ
              +                                            −                                  · χ2
                sinh2(πk)                 B( 1 ; ik)
                                              2                       B(− 1 ; 2 + ik)
                                                                            2
                                        1 1               2            3 3                   2
                   χ−ik          2 F1 2 , 2 − ik; −ik; χ         2 F1 2 , 2 − ik; 2 − ik; χ
              +                                              −                                    · χ2   ,
                sinh2(πk)                     1
                                          B( 2 ; −ik)                          1
                                                                         B(− 2 ; 2 − ik)
                                                                                                         (101)

                          pf        pi
• the notations are χ =   pi   or   pf   .

• The Minkowski limit
                                             (pf + pi)
                                         B∞ = √        2iδ(pf − pi).                                     (102)
                                                 pf pi

• Minkowski case
                                              (Ef + Ei)
                                      BM =              4iδ(Ef − Ei),                                    (103)
                                                 Ef Ei
                                                     24
• Ration of the two amplitudes
                                        δ(pf − pi)  1
                                                   = .                          (104)
                                       2δ(Ef − Ei) 2

• The incident flux
                                                      ↔
                                              ∗
                                   Jµ = −i   fp (x)   ∂µ fp (x) ,               (105)




                      ∗
                               ↔            πpie−3ωt (2) pi −ωt  (1) pi −ωt
         j(t) = −i   fpi (x)   ∂i fpi (x) =        3
                                                     Hik   e    Hik    e    .   (106)
                                            2ω(2π)       ω           ω




                                               25
Coulomb scattering with fermions

• The scattering amplitude
                                     √      ¯              ˆ
                    Ai→f = −ie           −g Upf ,λf (x)γ0A0(x)Upi,λi (x)d4x.                    (107)



                             √                                     ∞
                           pi pf
        Ai→f   = −iαZ              ξλf (pf )ξλi (pi) eπk
                                    +                                      (2)       (1)
                                                                       dzzHν+ (pf z)Hν− (piz)
                      8π|pf − pi|2                             0
                                         ∞
                  +sgn(λf λi)e−πk                (2)       (1)
                                             dzzHν− (pf z)Hν+ (piz)                             (108)
                                     0




                                                 26
• Final form of the amplitude
                                                                                                                                           p2
                                                                                              
                                                                                                                      1           1
          −i αZ                                                  1  pf                  eπk 2F1
                                                                                                       −ik
                                                                                                                      2
                                                                                                                        ,1   − ik; − ik;
                                                                                                                                  2
                                                                                                                                            f
                                                                                                                                           p2
                        +                                                                                                                   i
  Ai→f =               ξ (pf )ξλi (pi) δ(pf − pi) + θ(pi − pf )       i
          4π |pf − pi|2 λf                                       pi      pi           cosh(πk)                         B( 1 , 1 − ik)
                                                                                                                          2 2

                                                 p2
                                                       
                               3          3       f
                  e−πk 2F1 2 , 1 + ik; 2 + ik; p2 
           1+ik                                                                        1−ik
       pf                                         i                    1         pi
  −i                                                     + θ(pf − pi)      i
       pi       cosh(πk)       B(− 1 , 3 + ik)
                                      2 2
                                                                      pf        pf
                                       p2                                                   p2
                                                                                               
                   3         3                                        1             1
      e−πk 2F1 2 , 1 − ik; 2 − ik; p2                    ieπk 2F1 2 , 1 + ik; 2 + ik; p2 
                                        i           ik                                       i
                                        f     pi                                             f
  ×                     1 3               −                                1 1
    cosh(πk)       B(− 2 , 2 − ik)            pf       cosh(πk)         B( 2 , 2 + ik)
                                                                                       ik
                                                1    pf                                       e−πk
  +sgn(λf λi)δ(pf − pi) + sgn(λf λi)θ(pi − pf )    i
                                                pi   pi                                     cosh(πk)
                                  p2                                                                         p2
                                                                                                                  
             1            1                                                            3           3
      2 F1   2
               ,1   + ik; + ik;
                          2
                                   f
                                  p2       pf
                                                        1−ik
                                                                  eπk 2F1   − ik; − ik;2
                                                                                         ,1        2
                                                                                                              f
                                                                                                             p2
                                   i                                                                          i
  ×                                     −i                                                                        
              B( 2 , 1
                 1
                     2
                         + ik)             pi                  cosh(πk)   B(− 1 , 3 − ik)
                                                                              2 2
                                                                                                       2
                                                                                                    pi
                                                                                3            3
                                 1  pi
                                                1+ik
                                                           e   πk        2 F1   2
                                                                                  ,1   + ik; 2 + ik; p2
                                                                                                       f
  +sgn(λf λi)θ(pf − pi)             i
                                 pf   pf                cosh(πk)                B(− 1 , 3 + ik)
                                                                                    2 2

                                                                    p2
                                                                         
                                       1            1
     pi
               −ik
                       e−πk 2F1        2
                                         ,1   − ik; − ik;
                                                    2
                                                                     i
                                                                    p2
                                                                     f
  −i                                                                      .                                                               (109)
     pf              cosh(πk)           B( 1 , 1
                                           2 2
                                                   − ik)


                                                                             27
• The incident flux
              eωt ¯                               πpie−3ωt (2) pi −ωt       (1) pi −ωt
        j=          Upi, λi (x)(piγ)Upi, λi (x) =      3 4ω
                                                              Hν−   e     Hν−     e
             | pi |                               (2π)            ω             ω
                                                     (2) pi −ωt     (1) pi −ωt
                                                  +Hν+        e   Hν+     e              (110)
                                                            ω           ω


                                      √      ¯             ˆ
                      Ai→f = −ie          −g Upf ,λf (x)γ0A0(x)Vpi,λi (x)d4x             (111)




                                                28
References
            ˘
 [1] I.I.Cotaescu, Phys. Rev. D 65, 084008 (2002)
            ˘
 [2] I.I.Cotaescu, R.Racoceanu and C.Crucean, Mod.Phys.Lett A 21, 1313 (2006)
 [3] C.Crucean, Mod.Phys.Lett A 22, 2573 (2007)
 [4] C.Crucean and R.Racoceanu, Int.J.Mod.Phys. A 23, 1075 (2008)
            ˘
 [5] I.I.Cotaescu and C.Crucean, Int.J.Mod.Phys. A 23, 1351 (2008)
            ˘
 [6] I.I.Cotaescu, C.Crucean, A.Pop, Int.J.Mod.Phys. A 23 (2008)
              ˘
 [7] I. I. Cotaescu and C. Crucean, Int.J.Mod.Phys. A 23 (2008)
 [8] C.Crucean, Mod.Phys.Lett A 25, (2010)
            ˘
 [9] I.I.Cotaescu and C.Crucean, qr-qc/0806.2515
[10] C.Crucean, R.Racoceanu and A.Pop, Phys.Lett.B 665, 409 (2008)
[11] C.Crucean, math-ph/0912.3659, (2009)




                                              29

Mais conteúdo relacionado

Mais procurados

Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
kazuhase2011
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
Henry Romero
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
Delta Pi Systems
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
Moe Han
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
UrbanX4
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
A Jorge Garcia
 

Mais procurados (19)

One way to see higher dimensional surface
One way to see higher dimensional surfaceOne way to see higher dimensional surface
One way to see higher dimensional surface
 
2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Models
 
Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
Proximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportProximal Splitting and Optimal Transport
Proximal Splitting and Optimal Transport
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsCosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical Simulations
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
 
Cheat Sheet
Cheat SheetCheat Sheet
Cheat Sheet
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
 
Special second order non symmetric fitted method for singular
Special second order non symmetric fitted method for singularSpecial second order non symmetric fitted method for singular
Special second order non symmetric fitted method for singular
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
 

Destaque

A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
SEENET-MTP
 

Destaque (9)

A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
A. Lombardo, 25 Years of Central European Initiative: Contributing to Europea...
 
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
R. Jimenez: Fundamental Physics Beyond the Standard Model from Astronomical O...
 
B. Sazdović: Canonical Approach to Closed String Non-commutativity
B. Sazdović: Canonical Approach to Closed String Non-commutativityB. Sazdović: Canonical Approach to Closed String Non-commutativity
B. Sazdović: Canonical Approach to Closed String Non-commutativity
 
N. Kroo, On the changing world of science
N. Kroo, On the changing world of scienceN. Kroo, On the changing world of science
N. Kroo, On the changing world of science
 
R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...
R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...
R. Doran, Galileo Teacher Training Program - Helping Teachers Build the Schoo...
 
I. Doršner, Leptoquark Mass Limit in SU(5)
I. Doršner, Leptoquark Mass Limit in SU(5)I. Doršner, Leptoquark Mass Limit in SU(5)
I. Doršner, Leptoquark Mass Limit in SU(5)
 
S. Ignjatović, On Some Models of the Exotic Hadron States
S. Ignjatović, On Some Models of the Exotic Hadron StatesS. Ignjatović, On Some Models of the Exotic Hadron States
S. Ignjatović, On Some Models of the Exotic Hadron States
 
M. Serone, The Composite Higgs Paradigm
M. Serone, The Composite Higgs ParadigmM. Serone, The Composite Higgs Paradigm
M. Serone, The Composite Higgs Paradigm
 
G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...
G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...
G. Zaharijas, Indirect Searches for Dark Matter with the Fermi Large Area Tel...
 

Semelhante a Cosmin Crucean: Perturbative QED on de Sitter Universe.

Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
ketanaka
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
Grigor Alaverdyan
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
Unconditionally stable fdtd methods
Unconditionally stable fdtd methodsUnconditionally stable fdtd methods
Unconditionally stable fdtd methods
physics Imposible
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...
yigalbt
 

Semelhante a Cosmin Crucean: Perturbative QED on de Sitter Universe. (20)

近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Example triple integral
Example triple integralExample triple integral
Example triple integral
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Chapter3 laplace
Chapter3 laplaceChapter3 laplace
Chapter3 laplace
 
Rousseau
RousseauRousseau
Rousseau
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Fdtd
FdtdFdtd
Fdtd
 
Unconditionally stable fdtd methods
Unconditionally stable fdtd methodsUnconditionally stable fdtd methods
Unconditionally stable fdtd methods
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...
 
test
testtest
test
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3
 

Mais de SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
SEENET-MTP
 

Mais de SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 

Último

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Último (20)

2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 

Cosmin Crucean: Perturbative QED on de Sitter Universe.

  • 1. PERTURBATIVE Q.E.D ON DE SITTER UNIVERSE WEST UNIVERSITY OF TIMISOARA FACULTY OF PHYSICS author: Crucean Cosmin 1
  • 2. THE THEORY OF FREE FIELDS ON DE SITTER UNIVERSE Dirac field • De Sitter metric: 1 ds2 = dt2 − e2ωtdx 2 = (dt2 − dx 2), ω > 0, ωtc = −e−ωt (1) (ωtc)2 c ˆ gµν = ηαβ eαeβ ˆ ˆ ˆ µ ν (2) • In the Cartesian gauge the nonvanishing tetradic components are: ˆ 1 ˆ ˆ 1 e0 = −ωtc, eˆ = −δˆωtc, e0 = − , ei = −δj . ˆ 0 i j i j 0 j i (3) ωtc ωtc 2
  • 3. • Action for Dirac field √i ¯ α S [e, ψ] = d x −g [ψγ ˆ Dαψ − (Dαψ)γ αψ] 4 ˆ ˆ ˆ 2 ¯ −mψψ , (4) where Dα = eµ Dµ = ∂α + Γα ˆ α ˆ ˆ ˆ (5) • In this gauge the Dirac operator reads: 3iω 0 ED = iγ 0∂t + ie−ωtγ i∂i + γ 2 0 i 3iω 0 = −iωtc(γ ∂tc + γ ∂i) + γ (6) 2 • the Dirac equation (ED − m)ψ = 0 (7) • The fundamental solutions are: 1 πk/2 (1) πp/ω e Hν− (qe−ωt)ξλ(p ) Up, λ(t, x ) = i 2 (1) eip·x−2ωt (2π)3/2 λe−πk/2Hν+ (qe−ωt)ξλ(p ) (2) πp/ω −λe−πk/2Hν− (qe−ωt)ηλ(p ) Vp, λ(t, x ) = i 1 πk/2 (2) e−ip·x−2ωt , (8) (2π)3/2 2 e Hν+ (qe−ωt)ηλ(p ) 3
  • 4. • Charge conjugation ¯ Up, λ(x) → Vp, λ(x) = iγ 2γ 0(Up, λ(x))T . (9) • The orthonormalization relations : ¯ d3x(−g)1/2Up, λ(x)γ 0Up , λ (x) = ¯ d3x(−g)1/2Vp, λ(x)γ 0Vp , λ (x) = δλλ δ 3(p − p ) ¯ d3x(−g)1/2Up,λ(x)γ 0Vp ,λ (x) = 0, (10) d3p Up, λ(t, x )Up, λ(t, x ) + Vp, λ(t, x )Vp, λ(t, x ) = e−3ωtδ 3(x − x ). + + (11) λ • The field operator ψ(t, x ) = ψ (+)(t, x ) + ψ (−)(t, x ) = d3p Up, λ(t, x )a(p, λ) + Vp, λ(t, x )b+(p, λ) . (12) λ • Canonic cuantization {a(p, λ), a+(p , λ )} = {b(p, λ), b+(p , λ )} = δλλ δ 3(p − p ) , (13) 4
  • 5. {ψ(t, x ), ψ(t, x )} = e−3ωtγ 0δ 3(x − x ) , (14) SF (t, t , x − x ) = i 0|T [ψ(x)ψ(x )]|0 = θ(t − t )S (+)(t, t , x − x ) −θ(t − t)S (−)(t, t , x − x ) . (15) [ED (x) − m]SF (t, t , x − x ) = −e−3ωtδ 4(x − x ). (16) • Conserved operators Pi =: ψ, P iψ := d3p pi [a+(p, λ)a(p, λ) + b+(p, λ)b(p, λ)] (17) λ W =: ψ, W ψ := d3p pλ[a+(p, λ)a(p, λ) + b+(p, λ)b(p, λ)] . (18) λ iω 3 i + ↔ + ↔ H= d pp a (p, λ) ∂ pi a(p, λ) + b (p, λ) ∂ pi b(p, λ) . (19) 2 λ 5
  • 6. [H, P i] = iωP i. (20) Scalar field • Action of the scalar field ∗ √ √ S[φ, φ ] = 4 d x −g L = d x −g ∂ µφ∗∂µφ − m2φ∗φ , 4 (21) • The Klein-Gordon equation: 1 √ √ ∂µ −g g µν ∂ν φ + m2φ = 0 . (22) −g ∂t2 − e−2ωt∆ + 3ω∂t + m2 φ(x) = 0 . (23) • Solutions of Klein-Gordon equation: 1 π e−3ωt/2 −πk/2 (1) p −ωt ip·x fp (x) = 3/2 e Hik e e , (24) 2 ω (2π) ω 6
  • 7. 9 m k= µ2 − , 4 µ = , m > 3ω/2 (25) ω • The orthonormalization relations: ↔ 3 1/2 ∗ i d x (−g) fp (x) ∂t fp (x) = ↔ 3 1/2 ∗ −i d x (−g) fp (x) ∂t fp (x) = δ 3(p − p ) , (26) ↔ 3 1/2 i d x (−g) fp (x) ∂t fp (x) = 0 , (27) ↔ ∗ i 3 d p fp (t, x ) ∂t fp (t, x ) = e−3ωtδ 3(x − x ) . (28) • Canonic cuantization ∗ φ(x) = φ(+)(x) + φ(−)(x) = d3p fp (x)a(p ) + fp (x)b+(p ) , (29) [a(p ), a†(p )] = [b(p ), b†(p )] = δ 3(p − p ) . (30) • 7
  • 8. [φ(t, x ), ∂tφ†(t, x )] = ie−3ωtδ 3(x − x ) . (31) • The commutator functions: D(±)(x, x ) = i[φ(±)(x), φ(±)†(x )], (32) ∗ D(+)(x, x ) = i d3p fp (x)fp (x ), ∗ D(−)(x, x ) = −i d3p fp (x)fp (x ). (33) • G(x, x ) is a Green function of the Klein-Gordon equation if: ∂t2 − e−2ωt∆x + 3ω∂t + m2 G(x, x ) = e−3ωtδ 4(x − x ) . (34) DR(t, t , x − x ) = θ(t − t )D(t, t , x − x ) , (35) DA(t, t , x − x ) = − θ(t − t)D(t, t , x − x ) , (36) 8
  • 9. • The Feynman propagator, DF (t, t , x − x ) = i 0|T [φ(x)φ†(x )] |0 = θ(t − t )D(+)(t, t , x − x ) − θ(t − t)D(−)(t, t , x − x ) , (37) The electromagnetic field • The action √ 1 √ S[A] = d4x −g L = − d4x −g Fµν F µν , (38) 4 Fµν = ∂µAν − ∂ν Aµ • Field equation √ ∂ν ( −g g ναg µβ Fαβ ) = 0 , (39) • In the Coulomb gauge A0 = 0, (Ai) ; i = 0 ,and chart {tc, x} ¸ (∂t2c − ∆)Ai = 0 (40) 9
  • 10. • The field operator (+) (−) Ai(x) = Ai (x) + Ai (x) = d3k ei(nk , λ)fk (x)a(k, λ) + [ei(nk , λ)fk (x)]∗a∗(k, λ) λ (41) 1 1 fk (x) = √ e−iktc+ik·x , (42) (2π)3/2 2k • the Hermitian form ↔ ↔ 3 ∗ f, g = i d x f (tc, x ) ∂tc g(tc, x ) , f ∂ g = f (∂g) − g(∂f ) (43) • The orthonormalization relations: ∗ ∗ fk , fk = − fk , fk = δ 3(k − k ) , (44) ∗ fk , fk = 0 , (45) ↔ 3 ∗ i d k fk (tc, x) ∂tc fk (tc, x ) = δ 3(x − x ) , (46) k · e (nk , λ) = 0 , (47) 10
  • 11. e (nk , λ) · e (nk , λ )∗ = δλλ , (48) ∗ k ik j ei(nk , λ) ej (nk , λ) = δij − 2 . (49) k λ • In local frame · Aˆ (x) = e ˆj Aj = i i· d3k wˆ k,λ)(x)a(k, λ) + [wˆ k,λ)(x)]∗a∗(k, λ) . i( i( (50) λ • Conformal transformation gµν (x) = Ω(x)ηµν , (51) g µν (x) = Ω−1(x)η µν , ds2 = Ω ds2, c (52) Aµ = Aµ ; Aµ = Ω−1A µ. (53) • Quantization [a(k, λ), a†(k , λ )] = δλλ δ 3(k − k ) . (54) [Ai(tc, x ), π j (tc, x )] = [Ai(tc, x ), ∂tc Aj (tc, x )] = i δij (x − x ) , tr (55) 11
  • 12. • The momentum density j √ δL π = −g = ∂tc Aj (56) δ(∂tc Aj ) tr 1 q iq j δij (x ) = d3q δij − 2 eiq·x (57) (2π)3 q • Conserved operators 1 Pl = δij : Ai, (P l A)j := d3k k l a†(k, λ)a(k, λ) , (58) 2 λ 1 H= δij : Ai, (HA)j : (59) 2 1 W = δij : Ai, (W A)j : = d3k k λ a†(k, λ)a(k, λ) (60) 2 λ 12
  • 13. [H, P i] = iωP i , [H, W] = iωW , [W, P i] = 0 , (61) 3 i (Hfk ) (x) = −iω k ∂ki + f (x) (62) 2 k iω 3 i † ↔ H= d kk a (k, λ) ∂ ki a(k, λ) , (63) 2 • The commutator functions (±) (±) (±) † Dij (x − x ) = i[Ai (x), Aj (x )] (64) (+) 3 ∗ k ik j Dij (x −x) = i d k fk (x)fk (x ) δij − 2 (65) k (+) i d3k k ik j )−ik(tc −tc ) Dij (x −x)= δij − 2 eik·(x−x (66) (2π)3 2k k 13
  • 14. • at equal times, (+) 1 tr ∂tc Dij (tc − tc, x − x ) = δij (x − x ) . (67) tc =tc 2 • The transversal Green functions tr ∂t2c − ∆x Gij (x − x ) = δ(tc − tc)δij (x − x ) (68) si ∂iGi· (x) = 0. ¸ ·j R Dij (x − x ) = θ(tc − tc)Dij (x − x ) , (69) A Dij (x − x ) = −θ(tc − tc)Dij (x − x ) , (70) • The Feynman propagator , F Dij (x − x ) = i 0|T [Ai(x)Aj (x )] |0 (+) (−) = θ(tc − tc)Dij (x − x ) − θ(tc − tc)Dij (x − x ) , (71) 14
  • 15. Interaction between Dirac field and electromagnetic field • The action for interacting fields: √ i ¯ α S [e, ψ, A] = 4 d x −g [ψγ ˆ Dαψ − (Dαψ)γ αψ] ˆ ˆ ˆ 2 ¯ 1 ¯ ˆ ˆ −mψψ − Fµν F µν − eψγ αAαψ , (72) 4 • Equations for fields in interaction iγ αDαψ − mψ = eγ αAαψ, ˆ ˆ ˆ ˆ 1 ¯ ˆ ∂µ (−g)F µν = eeν ψγ αψ. α ˆ (73) (−g) 15
  • 16. Interaction between scalar field and electromagnetic field • The action √ µ † 1 2 † S[φ, A] = d x −g (∂ φ ∂µφ − m φ φ) − Fµν F µν 4 4 −ie[(∂µφ†)φ − (∂µφ)φ†]Aµ + e2φ†φAµAµ . (74) • Equations for fields in interaction 1 √ √ √ ∂µ −g g ∂ν φ − ie −gφAµ + m2φ = ie(∂µφ)Aµ + e2φAµAµ, µν −g 1 ∂µ (−g)F µν = −ie[(∂ ν φ†)φ − (∂ ν φ)φ†] (−g) +2e2φ†φAν . (75) 16
  • 17. The in out fields • The equation of the interaction fields in the Coulomb gauge ¯ (∂t2c − ∆x)A(x) = eψ(x)γψ(x) (76) • Solution: ˆ A(x) = A(x) − e ¯ d3ydtc DG(x − y)ψ(y)γψ(y), (77) ˆ A(x) = A(R/A)(x) − e ¯ d3ydtc DR/A(x − y)ψ(y)γψ(y), (78) ˆ • the free fields , A(R/A)(x) satisfy: ˆ lim (A(x) − A(R/A)(x)) = 0. (79) t→ ∞ • The fields in/out: √ ¯ z3Ain/out(x) = A(x) + e d3ydtc DR/A(x − y)ψ(y)γψ(y). (80) 17
  • 18. • The in/out fields, final expressions: √ z3Ain/out(x) = A(x) + d3ydtc DR/A(x − y)(∂t2c − ∆y )A(y), (81) ↔ 3 a(k, λ)in/out = i d xfk (x)e (nk , λ) ∂tc Ain/out(x) (82) • The case of interaction with scalar field ˆ + e d4y √−g G(x, y) √ i ∂µ[√−gφ(y)Aµ(y)] φ(x) = φ(x) −g +i[∂µφ(y)]Aµ(y) + eφ(y)Aµ(y)Aµ(y) , (83) ˆ √ i √ φ(x) = φR/A(x) + e d y −gDR/A(x, y) √ ∂µ[ −gφ(y)Aµ(y)] 4 −g +i[∂µφ(y)]Aµ(y) + eφ(y)Aµ(y)Aµ(y) . (84) 18
  • 19. • The in/out fields: √ √ zφin/out(x) = φ(x) − d y −gDR/A(x, y)[EKG(y) + m2]φ(y). 4 (85) • ↔ 3 ∗ a(p )in/out = i d x(−g)1/2fp (x) ∂t φin/out(x) ↔ † 3 1/2 b (p )in/out = i d x(−g) fp (x) ∂t φin/out(x). (86) 19
  • 20. Perturbation theory • The expression of Green functions 1 ˆ ˆ ˆ G(y1, y2, ..., yn) = 0|T [φ(y1)φ(y2)...φ(yn), S]|0 , (87) 0|S|0 ∞ (x)d4 x (−i)n S = T e−i LI =1+ T [LI (x1)...LI (xn)]d4x1...d4xn, (88) n=1 n! • The interaction Lagrangian √ LI (x) = −ie −g : [(∂µφ†)φ − (∂µφ)φ†]Aµ : (89) (−i)n ˆ ˆ ˆ 0|T [φ(y1)φ(y2)...φ(yn), LI (x1)...LI (xn)]|0 d4x1...d4xn. (90) n! 0|S|0 20
  • 21. • the amplitude: 3 1 ∗ out, 1(p )|in, 1(p ) = δ (p − p ) − −g(y) −g(z)fp (y)[EKG(y) + m2] z × 0|T [φ(y)φ†(z)]|0 [EKG(z) + m2]fp (z)d4yd4z. (91) • The scattering amplitude in the first order of perturbation theory ↔ ∗ Ai→f = −e −g(x) fp (x) ∂µ fp (x) Aµ(x)d4x, (92) Ai→f = −ie ¯ −g(x)Up ,λ (x)γµ A µ ˆ (x)Up,λ (x)d4x, (93) 21
  • 22. Coulomb scattering for the charged scalar field • External field ˆ 0 Ze −ωt A = e (94) |x| • initial and final states are: φf (x) = fpf (x), φi(x) = fpi (x). (95) • Scattering amplitude −αZ pi ∞ (2) (1) (2) (1) Ai→f = − z Hik (pf z)Hik−1(piz) − Hik (pf z)Hik+1(piz) dz 8π|pf − pi|2 2 0 pf ∞ (2) (1) (2) (1) + z Hik−1(pf z)Hik (piz) − Hik+1(pf z)Hik (piz) dz , (96) 2 0 e−ωt z= . (97) ω 22
  • 23. • Scattering amplitude in final form −αZ Ai→f = B , 2 k (98) 8π|pf − pi| (pf + pi) 1 pf pf Bk = √ 2iδ(pf − pi) + θ(pi − pf ) h∗k − gk pf pi pi pi pi 1 ∗ pi pi + θ(pf − pi) gk − hk . (99) pf pf pf 3 1 2 1 3 2 e−πk χik 2 F1 2 , 2 + ik; 1 + ik; χ 2 F1 2 , 2 + ik; 1 + ik; χ gk (χ) = − sinh2(πk) 1 B( 2 − ik; 1 + ik) B(− 1 − ik; 1 + ik) 2 3 1 2 1 3 2 eπk χ−ik 2 F1 2 , 2 − ik; 1 − ik; χ 2 F1 2 , 2 − ik; 1 − ik; χ + − sinh2(πk) 1 B( 2 + ik; 1 − ik) B(− 1 + ik; 1 − ik) 2 3 1 2 1 3 2 χik 2 F1 2 , 2 + ik; 1 + ik; χ 2 F1 2 , 2 + ik; 1 + ik; χ + − sinh2(πk) 1 B(− 2 ; 1 + ik) 1 B( 2 ; 1 + ik) 3 1 2 1 3 2 χ−ik 2 F1 2 , 2 − ik; 1 − ik; χ 2 F1 2 , 2 − ik; 1 − ik; χ + − , sinh2(πk) 1 B(− 2 ; 1 − ik) 1 B( 2 ; 1 − ik) (100) 23
  • 24. 3 3 1 1 e−πk χ−ik 2 F1 , 2 − ik; 2 − ik; χ2 2 F1 2 , 2 − ik; −ik; χ 2 hk (χ) = 2 · χ2 − sinh2(πk) B(− 1 + ik; 2 − ik) 2 B(−ik; 1 + ik) 2 3 3 2 1 1 2 eπk χik 2 F1 2 , 2 + ik; 2 + ik; χ 2 F1 2 , 2 + ik; ik; χ + · χ2 − sinh2(πk) 1 B(− 2 − ik; 2 + ik) B( 1 − ik; ik) 2 1 1 2 3 3 2 χik 2 F1 2 , 2 + ik; ik; χ 2 F1 2 , 2 + ik; 2 + ik; χ + − · χ2 sinh2(πk) B( 1 ; ik) 2 B(− 1 ; 2 + ik) 2 1 1 2 3 3 2 χ−ik 2 F1 2 , 2 − ik; −ik; χ 2 F1 2 , 2 − ik; 2 − ik; χ + − · χ2 , sinh2(πk) 1 B( 2 ; −ik) 1 B(− 2 ; 2 − ik) (101) pf pi • the notations are χ = pi or pf . • The Minkowski limit (pf + pi) B∞ = √ 2iδ(pf − pi). (102) pf pi • Minkowski case (Ef + Ei) BM = 4iδ(Ef − Ei), (103) Ef Ei 24
  • 25. • Ration of the two amplitudes δ(pf − pi) 1 = . (104) 2δ(Ef − Ei) 2 • The incident flux ↔ ∗ Jµ = −i fp (x) ∂µ fp (x) , (105) ∗ ↔ πpie−3ωt (2) pi −ωt (1) pi −ωt j(t) = −i fpi (x) ∂i fpi (x) = 3 Hik e Hik e . (106) 2ω(2π) ω ω 25
  • 26. Coulomb scattering with fermions • The scattering amplitude √ ¯ ˆ Ai→f = −ie −g Upf ,λf (x)γ0A0(x)Upi,λi (x)d4x. (107) √ ∞ pi pf Ai→f = −iαZ ξλf (pf )ξλi (pi) eπk + (2) (1) dzzHν+ (pf z)Hν− (piz) 8π|pf − pi|2 0 ∞ +sgn(λf λi)e−πk (2) (1) dzzHν− (pf z)Hν+ (piz) (108) 0 26
  • 27. • Final form of the amplitude p2  1 1 −i αZ 1  pf eπk 2F1 −ik 2 ,1 − ik; − ik; 2 f p2 + i Ai→f = ξ (pf )ξλi (pi) δ(pf − pi) + θ(pi − pf ) i 4π |pf − pi|2 λf pi pi cosh(πk) B( 1 , 1 − ik) 2 2 p2  3 3 f e−πk 2F1 2 , 1 + ik; 2 + ik; p2  1+ik 1−ik pf i 1 pi −i + θ(pf − pi) i pi cosh(πk) B(− 1 , 3 + ik) 2 2 pf pf p2 p2  3 3 1 1 e−πk 2F1 2 , 1 − ik; 2 − ik; p2 ieπk 2F1 2 , 1 + ik; 2 + ik; p2  i ik i f pi f × 1 3 − 1 1 cosh(πk) B(− 2 , 2 − ik) pf cosh(πk) B( 2 , 2 + ik) ik 1 pf e−πk +sgn(λf λi)δ(pf − pi) + sgn(λf λi)θ(pi − pf ) i pi pi cosh(πk) p2 p2  1 1 3 3 2 F1 2 ,1 + ik; + ik; 2 f p2 pf 1−ik eπk 2F1 − ik; − ik;2 ,1 2 f p2 i i × −i  B( 2 , 1 1 2 + ik) pi cosh(πk) B(− 1 , 3 − ik) 2 2 2  pi 3 3 1  pi 1+ik e πk 2 F1 2 ,1 + ik; 2 + ik; p2 f +sgn(λf λi)θ(pf − pi) i pf pf cosh(πk) B(− 1 , 3 + ik) 2 2 p2  1 1 pi −ik e−πk 2F1 2 ,1 − ik; − ik; 2 i p2 f −i  . (109) pf cosh(πk) B( 1 , 1 2 2 − ik) 27
  • 28. • The incident flux eωt ¯ πpie−3ωt (2) pi −ωt (1) pi −ωt j= Upi, λi (x)(piγ)Upi, λi (x) = 3 4ω Hν− e Hν− e | pi | (2π) ω ω (2) pi −ωt (1) pi −ωt +Hν+ e Hν+ e (110) ω ω √ ¯ ˆ Ai→f = −ie −g Upf ,λf (x)γ0A0(x)Vpi,λi (x)d4x (111) 28
  • 29. References ˘ [1] I.I.Cotaescu, Phys. Rev. D 65, 084008 (2002) ˘ [2] I.I.Cotaescu, R.Racoceanu and C.Crucean, Mod.Phys.Lett A 21, 1313 (2006) [3] C.Crucean, Mod.Phys.Lett A 22, 2573 (2007) [4] C.Crucean and R.Racoceanu, Int.J.Mod.Phys. A 23, 1075 (2008) ˘ [5] I.I.Cotaescu and C.Crucean, Int.J.Mod.Phys. A 23, 1351 (2008) ˘ [6] I.I.Cotaescu, C.Crucean, A.Pop, Int.J.Mod.Phys. A 23 (2008) ˘ [7] I. I. Cotaescu and C. Crucean, Int.J.Mod.Phys. A 23 (2008) [8] C.Crucean, Mod.Phys.Lett A 25, (2010) ˘ [9] I.I.Cotaescu and C.Crucean, qr-qc/0806.2515 [10] C.Crucean, R.Racoceanu and A.Pop, Phys.Lett.B 665, 409 (2008) [11] C.Crucean, math-ph/0912.3659, (2009) 29