SlideShare uma empresa Scribd logo
1 de 58
NETWORK ANALYSIS
CONTENTS
2.STEADY STATE ANALYSIS OF AC CIRCUITS
2.1 Response to Sinusoidal Excitation-Pure Resistance
2.2 Response to Sinusoidal Excitation-Pure Inductance
2.3 Response to Sinusoidal Excitation-Pure Capacitance
2.4 Impedance concept and phase angle
2.5 Series Circuits-RL,RC,RLC
2.6 Steady state AC Mesh Analysis
2.7 Steady state AC Nodal Analysis
2.8 Star-Delta &Delta-Star Transformation
2.STEADY STATE ANALYSIS OFAC CIRCUITS
2.1 Response to Sinusoidal Excitation-Pure Resistance :
β€’ The circuit which contains only a resistance of R ohms in
the AC circuit is known as Pure Resistive AC Circuit.
β€’ Let a sinusoidal alternating voltage is
applied across a pure resistance as shown in the Fig.2.1(a).
𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘
β€’ The current flowing through the resistance R is
𝑖(𝑑) =
)𝑣(𝑑
𝑅
=
π‘‰π‘š
𝑅
sinπœ”π‘‘
where
β€’ The current flowing through the resistance is also
sinusoidal and it is in phase with the applied voltage.
β€’ The phase angle between voltage and current is zero.
β€’ In pure resistance, current and voltage are in phase.
i. Instantaneous power
𝑖(𝑑) = 𝐼 π‘šsinπœ”π‘‘
𝐼 π‘š =
π‘‰π‘š
𝑅
)𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑
𝑝(𝑑) = π‘‰π‘š 𝐼 π‘šsin2
πœ”π‘‘
The average power is given by
π‘ƒπ‘Žπ‘£ =
1
𝑇
0
𝑇
𝑝(𝑑)𝑑𝑑
=
1
𝑇
0
𝑇
π‘‰π‘š 𝐼 π‘š
2
βˆ’
π‘‰π‘š 𝐼 π‘š
2
cos2πœ”π‘‘ 𝑑 𝑑
=
π‘‰π‘š 𝐼 π‘š
2
=
π‘‰π‘š
2
𝐼 π‘š
2
π‘ƒπ‘Žπ‘£ = π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠
Where Pav is average power
Vr.m.s is root mean square value of supply voltage
Ir.m.s is root mean square value of the current
Example 2.1 A sinusoidal voltage is applied to the resistive circuit shown in
Fig.2.1(d).Determine the following values
(a) (b) (c) (d)πΌπ‘Ÿπ‘šπ‘  𝐼 π‘Žπ‘£ 𝐼 𝑝 𝐼 𝑝𝑝
Solution The function given to the circuit shown is
The current passing through the resistor is
𝑣(𝑑) = 𝑉𝑝sinπœ”π‘‘ = 20sinπœ”π‘‘
𝑖(𝑑) =
)𝑣(𝑑
𝑅
=
20
2 Γ— 103
sinπœ”π‘‘ = 10 Γ— 10βˆ’3sinπœ”π‘‘
Peak value
Peak to peak value
Rms value = 0.707Γ—10 mA=7.07 mA
𝐼 𝑝=10 mA
𝐼 𝑝𝑝=20 mA
πΌπ‘Ÿπ‘šπ‘ =
𝐼 𝑝
2
Average Value =
1
πœ‹
0
πœ‹
𝐼 𝑝sinπœ”π‘‘ π‘‘πœ”π‘‘πΌ π‘Žπ‘£
𝐼 π‘Žπ‘£ =
1
πœ‹
βˆ’πΌ 𝑝cosπœ”π‘‘
0
πœ‹
= 0.637 𝐼 𝑃
= 0.637 Γ— 10π‘šπ΄ = 6.37π‘šπ΄
2.2 Response to Sinusoidal Excitation-Pure Inductance :
β€’ The circuit which contains only inductance (L) in the
Circuit is called a Pure inductive circuit.
β€’ Let a sinusoidal alternating voltage is
applied across a pure inductance as shown in the
Fig.2.2(a).
𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘
β€’ As a result, an alternating current i(t) flows through the inductance which induces an
emf in it.
𝑒 = βˆ’πΏ
𝑑𝑖
𝑑𝑑
β€’ The emf which is induced in the circuit is equal and opposite to the applied voltage
𝑣 = βˆ’π‘’ = βˆ’ βˆ’πΏ
𝑑𝑖
𝑑𝑑
π‘‰π‘šsinπœ”π‘‘ = 𝐿
𝑑𝑖
𝑑𝑑
𝑑𝑖 =
π‘‰π‘š
𝐿
sinπœ”π‘‘ 𝑑𝑑
𝑖 = 𝑑𝑖 =
π‘‰π‘š
𝐿
sinπœ”π‘‘ 𝑑𝑑 =
π‘‰π‘š
𝐿
βˆ’cosπœ”π‘‘
πœ”
= βˆ’
π‘‰π‘š
πœ”πΏ
sin
πœ‹
2
βˆ’ πœ”π‘‘ =
π‘‰π‘š
πœ”πΏ
sin πœ”π‘‘ βˆ’
πœ‹
2
𝑖 = 𝐼 π‘šsin πœ”π‘‘ βˆ’
πœ‹
2
Where
𝐼 π‘š =
π‘‰π‘š
ω𝐿
=
π‘‰π‘š
𝑋 𝐿
Where
𝑋 𝐿 = πœ”πΏ = 2πœ‹π‘“πΏ Ξ©
β€’ In pure inductance circuit, current flowing through the inductor lags
the voltage by 90 degrees.
i. Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑
= π‘‰π‘šsinπœ”π‘‘ Γ— 𝐼 π‘šsin ω𝑑 βˆ’
πœ‹
2
= βˆ’π‘‰π‘š 𝐼 π‘šsin πœ”π‘‘ cos πœ”π‘‘
𝑃(𝑑) = βˆ’
π‘‰π‘š 𝐼 π‘š
2
sin 2πœ”π‘‘
The average power is given by
π‘ƒπ‘Žπ‘£ =
1
T 0
𝑇
βˆ’
π‘‰π‘š 𝐼 π‘š
2
sin 2πœ”π‘‘ 𝑑 𝑑 = 0
ii. The energy stored in a pure inductor is obtained by integrating power expression
over a positive half cycle of power variation.
Energy Stored
=
π‘‰π‘š 𝐼 π‘š
2πœ”
=
1
2
𝐿𝐼 π‘š
2
Energy stored in a pure inductor =
1
2
𝐿𝐼 π‘š
2 π½π‘œπ‘’π‘™π‘’π‘ 
= βˆ’
π‘‰π‘š 𝐼 π‘š
2
βˆ’cos2πœ”π‘‘
2πœ” 𝑇
2
𝑇
π‘Š =
𝑇
2
𝑇
𝑃 𝑑 𝑑𝑑 = βˆ’
π‘‰π‘š 𝐼 π‘š
2
𝑇
2
𝑇
sin2πœ”π‘‘ 𝑑𝑑
Example 2.2 Determine the rms current in the circuit shown in Fig 2.2(d)
Solution Inductive reactance 𝑋 𝐿 = 2πœ‹π‘“πΏ
= 2πœ‹ Γ— 10 Γ— 103
Γ— 50 Γ— 10βˆ’3
𝑋 𝐿 = 3.141π‘˜π›Ί
πΌπ‘Ÿπ‘šπ‘  =
π‘‰π‘Ÿπ‘šπ‘ 
𝑋 𝐿
πΌπ‘Ÿπ‘šπ‘  =
10
3.141 Γ— 103
= 3.18 mA
2.3 Response to Sinusoidal Excitation-Pure Capacitance :
β€’ The circuit which contains only a pure capacitor of
capacitance C farads is known as a Pure Capacitor
Circuit.
β€’ Let a sinusoidal alternating voltage is
applied across a pure capacitance as shown in the
Fig.2.3(a).
𝑣 𝑑 = π‘‰π‘šsinπœ”π‘‘
β€’ Current flowing through the circuit is given by the equation
𝑖(𝑑) =
π‘‘π‘ž
𝑑𝑑
=
)𝑑(𝐢𝑉
𝑑𝑑
𝑖(𝑑) = πœ”πΆπ‘‰π‘šcosπœ”π‘‘
= 𝐼 π‘šsin πœ”π‘‘ +
πœ‹
2
𝐼 π‘š = πœ”πΆπ‘‰π‘š
π‘‰π‘š
𝐼 π‘š
=
1
πœ”πΆ
=
1
2πœ‹π‘“πΆ
= 𝑋 𝐢
β€’ In the pure Capacitor circuit, the current flowing through the
capacitor leads the voltage by an angle of 90 degrees.
i. Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑
= π‘‰π‘šsinπœ”π‘‘ Γ— 𝐼 π‘šsin ω𝑑 +
πœ‹
2
= π‘‰π‘š 𝐼 π‘šsinπœ”π‘‘cosπœ”π‘‘
𝑝(𝑑) =
π‘‰π‘š 𝐼 π‘š
2
sin2πœ”π‘‘
The average power is given by
π‘ƒπ‘Žπ‘£ =
1
𝑇 0
T
π‘‰π‘š 𝐼 π‘š
2
sin 2πœ”π‘‘ 𝑑 πœ”π‘‘ = 0
ii. The energy stored in a pure capacitor is obtained by integrating power
expression over a positive half cycle of power variation.
Energy Stored = π‘Š =
0
𝑇 2
)𝑝(𝑑 𝑑𝑑 =
π‘‰π‘š 𝐼 π‘š
2
0
𝑇 2
sin2πœ”π‘‘ 𝑑𝑑
=
π‘‰π‘š 𝐼 π‘š
2πœ”
=
1
2
πΆπ‘‰π‘š
2
Energy stored in a pure capacitor=
1
2
πΆπ‘‰π‘š
2 Joules
Example 2.3 Determine the rms current in the circuit shown in Fig 2.3(d)
Solution Capacitive reactance 𝑋 𝐢 =
1
2πœ‹π‘“πΆ
=
1
2πœ‹ Γ— 5 Γ— 103 Γ— 0.01 Γ— 10βˆ’6
𝑋 𝐢 = 3.18𝐾𝛺
πΌπ‘Ÿπ‘šπ‘  =
π‘‰π‘Ÿπ‘šπ‘ 
𝑋 𝐢
πΌπ‘Ÿπ‘šπ‘  =
5
3.18𝐾
= 1.57 mA
2.4 Impedance and Phase angle :
β€’ Impedance is defined as the opposition offered by the circuit elements to the flow
of alternating current.
β€’ It can also be defined as the ratio of voltage function to current function and it is
denoted with Z.
β€’ If voltage and current are both sinusoidal functions of time, the phase difference
between voltage and current is called phase angle.
Impedance=Z=
π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›
πΆπ‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›
𝑍 =
𝑣
𝑖
=
𝑉 π‘š
𝐼 π‘š
=
𝑉 𝑅𝑀𝑆
𝐼 𝑅𝑀𝑆
ohms
Impedance Table for R,L and C Elements:
2.5.1 Series RL Circuit :
β€’ Consider a circuit consisting of pure resistance
connected in series with pure inductance.
β€’ Let a sinusoidal alternating voltage is applied across a
series RL circuit as shown in the Fig.2.5(a).
By applying Kirchhoff’s voltage law to the circuit
shown in Fig.2.5(a)
We get,
𝑉 = 𝑉𝑅 + 𝑉𝐿
𝑉 = 𝐼𝑅 + 𝐼𝑋 𝐿
β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the
phasor diagram is shown in the Fig.2.5(b).
Steps to draw Phasor diagram:
1. Take current as a reference phasor.
2. In case of resistance, voltage and current are in phase, so
VR will be along current phasor.
3. In case of inductance, current lags voltage by 90 degrees.
4. Supply voltage is obtained by the vector sum of VL and
VR .
𝑉 = 𝑉𝑅
2 + 𝑉𝐿
2 = 𝐼𝑅 2 + 𝐼 Γ— 𝑋 𝐿
2
= 𝐼 𝑅 2 + 𝑋 𝐿
2
𝑉𝑆 =
Consider the right angle triangle OAB,
𝑉 = 𝐼𝑍
𝑍 = 𝑅 2 + 𝑋 𝐿
2Impedance,
From impedance triangle,
tanπœ™ =
𝑋 𝐿
𝑅
In polar form, impedance can be represented as
𝑍 = |𝑍|βˆ πœ™
𝑍 = 𝑅 + 𝑗𝑋 𝐿
In rectangular form, impedance can be represented as
|𝑍| = 𝑅 2 + 𝑋 𝐿
2 πœ™ = tanβˆ’1
𝑋 𝐿
𝑅and
𝑅 = 𝑍cosπœ™, 𝑋 𝐿 = 𝑍sinπœ™
Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑
Where and𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ )𝑖(𝑑) = 𝐼 π‘šsin(πœ”π‘‘ βˆ’ πœ™
𝑝(𝑑) = π‘‰π‘šsinπœ”π‘‘ Γ— )𝐼 π‘šsin(πœ”π‘‘ βˆ’ πœ™
𝑝(𝑑) =
π‘‰π‘š 𝐼 π‘š
2
2sin πœ”π‘‘ βˆ’ πœ™ sinπœ”π‘‘
𝑝(𝑑) =
π‘‰π‘š
2
𝐼 π‘š
2
)cosπœ™ βˆ’ cos(2πœ”π‘‘ βˆ’ πœ™
𝑝(𝑑) =
π‘‰π‘š
2
𝐼 π‘š
2
cosπœ™ βˆ’
π‘‰π‘š
2
𝐼 π‘š
2
cos 2πœ”π‘‘ βˆ’ πœ™
The average power consumed in the circuit over one complete cycle is given by
π‘ƒπ‘Žπ‘£ =
1
𝑇
0
𝑇
𝑝(𝑑)𝑑 𝑑 =
π‘‰π‘š 𝐼 π‘š
2𝑇
0
𝑇
cosπœ™ βˆ’ cos 2πœ”π‘‘ βˆ’ πœ™ 𝑑 𝑑
= π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠cosπœ™ = 𝑉𝐼cosπœ™π‘ƒπ‘Žπ‘£ =
π‘‰π‘š
2
𝐼 π‘š
2
cosπœ™
Example 2.4 To the circuit shown in the Fig.2.5(e),consisting a 1KW resistor connected
in series with a 50mH coil, a 10Vrms,10KHZ signal is applied. Find impedance Z,current
I, phase angle ,voltage across the resistance and the voltage across the inductance .𝑉𝑅 𝑉𝐿
Solution Inductive reactance
In rectangular form,
Total impedance
𝑋 𝐿 = πœ”πΏ = 2πœ‹π‘“πΏ = 6.28 104 50 Γ— 10βˆ’3 = 3140𝛺
𝑍 = 1000 + 𝑗3140 𝛺
= 𝑅2 + 𝑋 𝐿
2 = 1000 2 + 3140 2 = 3295.4𝛺
πœƒ
Current
Phase angle
Therefore, in polar form in total impedance
Voltage across the resistance
Voltage across the inductance
𝐼 =
𝑉𝑆
𝑍
=
10
3295.4
= 3.03π‘šπ΄
πœƒ = tanβˆ’1
𝑋 𝐿
𝑅
= tanβˆ’1
3140
1000
= 72.330
𝑍 = 3295.4∠72.330
𝑉𝑅 = 𝐼𝑅 = 3.03 Γ— 10βˆ’3
Γ— 1000 = 3.03𝑉
𝑉𝐿 = 𝐼𝑋 𝐿 = 3.03 Γ— 10βˆ’3 Γ— 3140 = 9.51𝑉
Example 2.5 Determine the source voltage and the phase angle, if voltage across the
resistance is 70V and the voltage across the inductance is 20V as shown in Fig.
Solution Source voltage is given by 𝑉𝑆 = 𝑉𝑅
2
+ 𝑉𝐿
2
= 70 2 + 20 2 = 72.8𝑉
The angle between the current and source voltage is
πœƒ = tanβˆ’1
20
70
= 15.940
2.5.2 Series RC Circuit :
β€’ Consider a circuit consisting of pure resistance R ohms
connected in series with a pure capacitor of capacitance C
farads.
β€’ Let a sinusoidal alternating voltage is applied across a series
RC circuit as shown in the Fig.2.6(a).
By applying Kirchhoff’s voltage law to the circuit shown in Fig.2.6(a)
𝑉 = 𝑉𝑅 + 𝑉𝐢
𝑉 = 𝐼𝑅 + 𝐼𝑋 𝐢
β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the
phasor diagram is shown in the Fig.2.6(b).
Steps to draw Phasor diagram:
1. Take current as a reference phasor.
2. In case of resistance, voltage and current are in phase, so VR
will be along current phasor.
3. In case of pure capacitance, current leads the voltage by 90
degrees.
4. Supply voltage is attained by the vector sum of VC and VR .
Consider the right angle triangle OAB,
𝑉 = 𝑉𝑅
2 + 𝑉𝐢
2 = 𝐼𝑅 2 + 𝐼 Γ— 𝑋 𝐢
2𝑉𝑆 =
= 𝐼 𝑅 2 + 𝑋 𝐢
2
𝑉 = 𝐼𝑍
𝑍 = 𝑅 2 + 𝑋 𝐢
2Impedance,
From impedance triangle,
tanπœ™ =
𝑋 𝐢
𝑅
In rectangular form, impedance can be represented as
𝑍 = 𝑅 βˆ’ 𝑗𝑋 𝐢
𝑅 = 𝑍cosπœ™, 𝑋 𝐢 = 𝑍sinπœ™where
In polar form, impedance can be represented as
𝑍 = |𝑍|βˆ πœ™
|𝑍| = 𝑅 2 + 𝑋 𝐢
2 and πœ™ = tanβˆ’1
𝑋 𝐢
𝑅
Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑
Where and𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ )𝑖(𝑑) = 𝐼 π‘šsin(πœ”π‘‘ + πœ™
𝑝(𝑑) = π‘‰π‘šsinπœ”π‘‘ Γ— )𝐼 π‘šsin(πœ”π‘‘ + πœ™
𝑝(𝑑) =
π‘‰π‘š 𝐼 π‘š
2
2sin πœ”π‘‘ + πœ™ sinπœ”π‘‘
𝑝(𝑑) =
π‘‰π‘š
2
𝐼 π‘š
2
)cosπœ™ βˆ’ cos(2πœ”π‘‘ + πœ™
The average power consumed in the circuit over one complete cycle is given by
π‘ƒπ‘Žπ‘£ =
1
𝑇
0
𝑇
𝑝(𝑑)𝑑 πœ”π‘‘ =
π‘‰π‘š 𝐼 π‘š
2𝑇
0
𝑇
cosπœ™ βˆ’ cos 2πœ”π‘‘ + πœ™ 𝑑 πœ”π‘‘
= π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠cosπœ™ = 𝑉𝐼cosπœ™π‘ƒπ‘Žπ‘£ =
π‘‰π‘š
2
𝐼 π‘š
2
cosπœ™
Example 2.6 Determine the source voltage and phase angle when the voltage across the
Resistor is 20V and the capacitor is 30V as shown in Fig.
Solution Source voltage is given by
𝑉𝑆 = 𝑉𝑅
2
+ 𝑉𝐢
2
= 20 2 + 30 2 = 36𝑉
The angle between the current and source voltage is
πœƒ = tanβˆ’1
30
20
= 56.30
Example 2.7 A sine wave generator supplies a 500Hz,10V rms signal to a 2kΞ© resistor in
Series with a 0.1ΞΌF capacitor as shown in Fig.Determine the
total impedance Z,current I, phase angle Ο΄,capacitive voltage
and resistive voltage .𝑉𝐢 𝑉𝑅
Solution Capacitive reactance
𝑋 𝐢 =
1
2πœ‹π‘“πΆ
=
1
6.28 Γ— 500 Γ— 0.1 Γ— 10βˆ’6
= 3184.7𝛺
Total impedance 𝑍 = 2000 βˆ’ 𝑗3184.7 𝛺
𝑍 = 2000 2 + 3184.7 2 = 3760.6𝛺
Phase angle πœƒ = tanβˆ’1
βˆ’π‘‹ 𝐢
𝑅
= tanβˆ’1
βˆ’3184.7
2000
= βˆ’57.870
Current 𝐼 =
𝑉𝑆
𝑍
=
10
3760.6
= 2.66π‘šπ΄
Capacitive Voltage 𝑉𝐢 = 𝐼𝑋 𝐢 = 2.66 Γ— 10βˆ’3 Γ— 3184.7 = 8.47𝑉
Resistive Voltage 𝑉𝑅 = 𝐼𝑅 = 2.66 Γ— 10βˆ’3 Γ— 2000 = 5.32𝑉
Total applied voltage in rectangular form, 𝑉𝑆 = 5.32 βˆ’ 𝑗8.47𝑉
Total applied voltage in polar form, 𝑉𝑆 = 10∠ βˆ’ 57.870 𝑉
2.5.3 Series RLC Circuit :
β€’ Consider a circuit consisting of a pure resistance R
ohms, a pure inductance L Henry and a pure
capacitor of capacitance C farads are connected in
series.
β€’ Let a sinusoidal alternating voltage is applied across a series RLC circuit as shown in the
Fig.2.7(a)
By applying Kirchhoff’s voltage law to the circuit shown in Fig.2.7(a)
𝑉 = 𝑉𝑅 + 𝑉𝐿 + 𝑉𝐢
β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the phasor
diagram is shown in the Fig.2.7(b).
Steps to draw Phasor diagram:
1.Take current as reference.
2. is in phase with I.
3. leads current I by
𝑉𝑅
𝑉𝐿 900
4. Lags current I by
5. Obtain the resultant of and .Both and are in phase opposition ( out of phase).
6.Add that with by law of parallelogram to get the supply voltage.
𝑉𝐢 900
𝑉𝐿 𝑉𝐢 𝑉𝐿 𝑉𝐢 1800
𝑉𝑅
i) :𝑿 𝑳 > 𝑿 π‘ͺ
𝑉 = 𝑉𝑅
2 + 𝑉𝐿 βˆ’ 𝑉𝐢
2 = 𝐼𝑅 2 + 𝐼𝑋 𝐿 βˆ’ 𝐼𝑋 𝐢
2
= 𝐼 𝑅 2 + 𝑋 𝐿 βˆ’ 𝑋 𝐢
2
From the Voltage triangle,
𝑉 = 𝐼𝑍
𝑍 = 𝑅 2 + 𝑋 𝐿 βˆ’ 𝑋 𝐢
2
𝑿 𝑳 < 𝑿 π‘ͺii) :
From the Voltage triangle, 𝑉 = 𝑉𝑅
2 + 𝑉𝐢 βˆ’ 𝑉𝐿
2 = 𝐼𝑅 2 + 𝐼𝑋 𝐢 βˆ’ 𝐼𝑋 𝐿
2
= 𝐼 𝑅 2 + 𝑋 𝐢 βˆ’ 𝑋 𝐿
2
𝑉 = 𝐼𝑍
𝑍 = 𝑅 2 + 𝑋 𝐢 βˆ’ 𝑋 𝐿
2
iii) :𝑿 𝑳 = 𝑿 π‘ͺ
𝑉 = 𝑉𝑅
From the phasor diagram,
𝑉 = 𝐼𝑅
𝑉 = 𝐼𝑍
𝑍 = 𝑅
2.6 Steady State AC Mesh Analysis:
A mesh is defined as a loop which does not contain any other loops within it.
Number of equations=branches-(nodes-1)
M=B-(N-1)
By applying Kirchhoff’s voltage law around the first mesh
𝑉1 = 𝐼1 𝑍1 + 𝐼1 βˆ’ 𝐼2 𝑍2
By applying Kirchhoff’s voltage law around the second mesh
𝑍2 𝐼2 βˆ’ 𝐼1 + 𝑍3 𝐼2 = 0
3
b aV V
Z
ο€­
𝑉𝑆 = 3.29∠185.450Ans:
2.7 Steady State AC Nodal Analysis:
β€’ In general, in a N node circuit, one of the nodes is choosen as reference or datum node,
then it is possible to write N-1 nodal equations by assuming N-1 node voltages.
β€’ The node voltage is the voltage of a given node with respect to one particular node,
called the reference node (which is assumed at zero potential).
π‘‰π‘Ž βˆ’ 𝑉1
𝑍1
+
π‘‰π‘Ž
𝑍2
+
π‘‰π‘Ž βˆ’ 𝑉𝑏
𝑍3
= 0
βˆ’π‘‰1
𝑍1
+ π‘‰π‘Ž
1
𝑍1
+
1
𝑍2
+
1
𝑍3
βˆ’
𝑉𝑏
𝑍3
= 0 … … … (1)
𝑉𝑏 βˆ’ π‘‰π‘Ž
𝑍3
+
𝑉𝑏
𝑍4
+
𝑉𝑏
𝑍5 + 𝑍6
= 0
βˆ’
π‘‰π‘Ž
𝑍3
+ 𝑉𝑏
1
𝑍3
+
1
𝑍4
+
1
𝑍5 + 𝑍6
= 0 … … … (2)
2.8 Delta-Star transformation:
Three resistances may be connected in star (or Y) and delta(or Ξ”) connection as shown
in figure
In the star connection,
𝑅 π‘Žπ‘ = 𝑅 π‘Ž + 𝑅 𝑏 … … … (1)
𝑅 𝑏𝑐 = 𝑅 𝑏 + 𝑅 𝑐 … … … (2)
𝑅 π‘π‘Ž = 𝑅 𝑐 + 𝑅 π‘Ž … … … (3)
Similarly in delta connection, the resistance seen from
ab,bc and ca are given by
𝑅 π‘Žπ‘ = 𝑅1|| 𝑅2 + 𝑅3 … … … (4)
𝑅 𝑏𝑐 = 𝑅2|| 𝑅1 + 𝑅3 … … … (5)
𝑅 π‘π‘Ž = 𝑅3|| 𝑅1 + 𝑅2 … … … (6)
𝑅 π‘Žπ‘ + 𝑅 𝑏𝑐 + 𝑅 π‘π‘Ž = 2 𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝑐 … … … (7)
Adding the equations 1,2 and 3 we get
Similarly, adding the equations 4,5 and 6,we get
𝑅 π‘Žπ‘ + 𝑅 𝑏𝑐 + 𝑅 π‘π‘Ž =
2 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1
𝑅1 + 𝑅2 + 𝑅3
… … … (8)
From equations 7 and 8
2 𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝑐 =
2 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1
𝑅1 + 𝑅2 + 𝑅3
𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝐢 =
𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1
𝑅1 + 𝑅2 + 𝑅3
… … … (9)
Subtracting equation 5 from 9
𝑅 π‘Ž =
𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1
𝑅1 + 𝑅2 + 𝑅3
βˆ’
𝑅2 𝑅1 + 𝑅3
𝑅1 + 𝑅2 + 𝑅3
𝑅 π‘Ž =
𝑅1 𝑅3
𝑅1 + 𝑅2 + 𝑅3
… … … (10)
𝑅 𝑏 =
𝑅1 𝑅2
𝑅1 + 𝑅2 + 𝑅3
… … … (11)
𝑅 𝑐 =
𝑅2 𝑅3
𝑅1 + 𝑅2 + 𝑅3
… … … (12)
Star-Delta transformation:
Multiplying the equations 10 and 11,11 and 12 and 12 and 10
𝑅 π‘Ž 𝑅 𝑏 =
𝑅1
2
𝑅2 𝑅3
𝑅1 + 𝑅2 + 𝑅3
2
… … … (13)
𝑅 𝑏 𝑅 𝑐 =
𝑅1 𝑅2
2
𝑅3
𝑅1 + 𝑅2 + 𝑅3
2
… … … (14)
𝑅 𝑐 𝑅 π‘Ž =
𝑅1 𝑅2 𝑅3
2
𝑅1 + 𝑅2 + 𝑅3
2
… … … (15)
Adding equations 13,14 and 15,we get
𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž =
𝑅1 𝑅2 𝑅3 𝑅1 + 𝑅2 + 𝑅3
𝑅1 + 𝑅2 + 𝑅3
2
𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž =
𝑅1 𝑅2 𝑅3
𝑅1 + 𝑅2 + 𝑅3
… … … (16)
Dividing equation 16 by 12,we get
𝑅1 =
𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž
𝑅 𝑐
𝑅2 =
𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž
𝑅 π‘Ž
𝑅3 =
𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž
𝑅 𝑏
Ans:4Ξ©
Ans:28.94Ξ©

Mais conteΓΊdo relacionado

Mais procurados

Mesh analysis dc circuit
Mesh analysis   dc circuitMesh analysis   dc circuit
Mesh analysis dc circuitsaravana kumar R
Β 
Maximum power transfer_theowem
Maximum power transfer_theowemMaximum power transfer_theowem
Maximum power transfer_theowemAshwini Kumari
Β 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theoremRajni Maurya
Β 
BASIC ELECTRICAL ENGINEERING DC CIRCUITS UNIT 1 PART 1 NOTES
BASIC ELECTRICAL ENGINEERING DC CIRCUITS UNIT 1 PART 1 NOTESBASIC ELECTRICAL ENGINEERING DC CIRCUITS UNIT 1 PART 1 NOTES
BASIC ELECTRICAL ENGINEERING DC CIRCUITS UNIT 1 PART 1 NOTESPrasant Kumar
Β 
ELECTRICAL POWER SYSTEM - II. symmetrical three phase faults. PREPARED BY : J...
ELECTRICAL POWER SYSTEM - II. symmetrical three phase faults. PREPARED BY : J...ELECTRICAL POWER SYSTEM - II. symmetrical three phase faults. PREPARED BY : J...
ELECTRICAL POWER SYSTEM - II. symmetrical three phase faults. PREPARED BY : J...Jobin Abraham
Β 
DC Network - Comprehending Theorems
DC Network - Comprehending TheoremsDC Network - Comprehending Theorems
DC Network - Comprehending TheoremsAakash Yellapantulla
Β 
Circuit theory thevenin theorem
Circuit theory thevenin theoremCircuit theory thevenin theorem
Circuit theory thevenin theoremSyed Saeed
Β 
Maximum Power Transfer Theorem
Maximum Power Transfer TheoremMaximum Power Transfer Theorem
Maximum Power Transfer TheoremSanjuktaBanik
Β 
Simulation 2
Simulation 2Simulation 2
Simulation 2Anil Maurya
Β 
AC-Alternative Current & Circuit Analysis ( Full of Information )
AC-Alternative Current & Circuit Analysis ( Full of Information )AC-Alternative Current & Circuit Analysis ( Full of Information )
AC-Alternative Current & Circuit Analysis ( Full of Information )Daffodil International University
Β 
Difference of CT & PT
Difference of CT & PT Difference of CT & PT
Difference of CT & PT Jay Ranvir
Β 
Electrical circuits dc network theorem
Electrical circuits dc  network theoremElectrical circuits dc  network theorem
Electrical circuits dc network theoremUniversity of Potsdam
Β 
Thevenin's theorem
Thevenin's theoremThevenin's theorem
Thevenin's theoremKalpanaTiwari14
Β 
Elements of electrical engineering dc circuits
Elements of electrical engineering dc circuitsElements of electrical engineering dc circuits
Elements of electrical engineering dc circuitsHardik Lathiya
Β 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theoremSyed Saeed
Β 

Mais procurados (20)

Mesh analysis dc circuit
Mesh analysis   dc circuitMesh analysis   dc circuit
Mesh analysis dc circuit
Β 
Maximum power transfer_theowem
Maximum power transfer_theowemMaximum power transfer_theowem
Maximum power transfer_theowem
Β 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theorem
Β 
Chapter 2
Chapter 2Chapter 2
Chapter 2
Β 
BASIC ELECTRICAL ENGINEERING DC CIRCUITS UNIT 1 PART 1 NOTES
BASIC ELECTRICAL ENGINEERING DC CIRCUITS UNIT 1 PART 1 NOTESBASIC ELECTRICAL ENGINEERING DC CIRCUITS UNIT 1 PART 1 NOTES
BASIC ELECTRICAL ENGINEERING DC CIRCUITS UNIT 1 PART 1 NOTES
Β 
ELECTRICAL POWER SYSTEM - II. symmetrical three phase faults. PREPARED BY : J...
ELECTRICAL POWER SYSTEM - II. symmetrical three phase faults. PREPARED BY : J...ELECTRICAL POWER SYSTEM - II. symmetrical three phase faults. PREPARED BY : J...
ELECTRICAL POWER SYSTEM - II. symmetrical three phase faults. PREPARED BY : J...
Β 
DC Network - Comprehending Theorems
DC Network - Comprehending TheoremsDC Network - Comprehending Theorems
DC Network - Comprehending Theorems
Β 
Network theorems by adi
Network theorems by adiNetwork theorems by adi
Network theorems by adi
Β 
Circuit theory thevenin theorem
Circuit theory thevenin theoremCircuit theory thevenin theorem
Circuit theory thevenin theorem
Β 
Maximum Power Transfer Theorem
Maximum Power Transfer TheoremMaximum Power Transfer Theorem
Maximum Power Transfer Theorem
Β 
Simulation 2
Simulation 2Simulation 2
Simulation 2
Β 
AC-Alternative Current & Circuit Analysis ( Full of Information )
AC-Alternative Current & Circuit Analysis ( Full of Information )AC-Alternative Current & Circuit Analysis ( Full of Information )
AC-Alternative Current & Circuit Analysis ( Full of Information )
Β 
EE6501 - Power System Analysis
EE6501 - Power System AnalysisEE6501 - Power System Analysis
EE6501 - Power System Analysis
Β 
Difference of CT & PT
Difference of CT & PT Difference of CT & PT
Difference of CT & PT
Β 
thevenin's theorem
thevenin's theoremthevenin's theorem
thevenin's theorem
Β 
Electrical circuits dc network theorem
Electrical circuits dc  network theoremElectrical circuits dc  network theorem
Electrical circuits dc network theorem
Β 
Thevenin's theorem
Thevenin's theoremThevenin's theorem
Thevenin's theorem
Β 
Elements of electrical engineering dc circuits
Elements of electrical engineering dc circuitsElements of electrical engineering dc circuits
Elements of electrical engineering dc circuits
Β 
dc circuits
dc circuitsdc circuits
dc circuits
Β 
Norton's theorem
Norton's theoremNorton's theorem
Norton's theorem
Β 

Semelhante a Network analysis unit 2

AC.pptx
AC.pptxAC.pptx
AC.pptxxdarlord
Β 
Electrical Circuits
Electrical CircuitsElectrical Circuits
Electrical CircuitsKC College
Β 
Power in AC circuits.pdf
Power in AC circuits.pdfPower in AC circuits.pdf
Power in AC circuits.pdfMTharunKumar3
Β 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatVIVEK AHLAWAT
Β 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxDrOmarShAlyozbaky
Β 
Experiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingExperiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingvimala elumalai
Β 
Compensation using power electronic devices
Compensation using power electronic devicesCompensation using power electronic devices
Compensation using power electronic devicesTribhuvan University
Β 
Bridge rectifier
Bridge rectifierBridge rectifier
Bridge rectifierDenis Simiyu
Β 
AC- circuits (combination).pdf
AC- circuits (combination).pdfAC- circuits (combination).pdf
AC- circuits (combination).pdfMTharunKumar3
Β 
lec7 (1).pptx
lec7 (1).pptxlec7 (1).pptx
lec7 (1).pptxDevesh39220
Β 
PHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating currentPHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating currentstudy material
Β 
CLASS X SCIENCE STUDY MATERIAL
CLASS X SCIENCE STUDY MATERIALCLASS X SCIENCE STUDY MATERIAL
CLASS X SCIENCE STUDY MATERIALRc Os
Β 

Semelhante a Network analysis unit 2 (20)

AC.pptx
AC.pptxAC.pptx
AC.pptx
Β 
Electrical Circuits
Electrical CircuitsElectrical Circuits
Electrical Circuits
Β 
Resonance.pdf
Resonance.pdfResonance.pdf
Resonance.pdf
Β 
Power in AC circuits.pdf
Power in AC circuits.pdfPower in AC circuits.pdf
Power in AC circuits.pdf
Β 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek Ahlawat
Β 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
Β 
Experiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingExperiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processing
Β 
G1013238
G1013238G1013238
G1013238
Β 
Compensation using power electronic devices
Compensation using power electronic devicesCompensation using power electronic devices
Compensation using power electronic devices
Β 
Reactive Power Concepts
Reactive Power ConceptsReactive Power Concepts
Reactive Power Concepts
Β 
Bridge rectifier
Bridge rectifierBridge rectifier
Bridge rectifier
Β 
AC- circuits (combination).pdf
AC- circuits (combination).pdfAC- circuits (combination).pdf
AC- circuits (combination).pdf
Β 
PP+for+Ch+31.pdf
PP+for+Ch+31.pdfPP+for+Ch+31.pdf
PP+for+Ch+31.pdf
Β 
lec7 (1).pptx
lec7 (1).pptxlec7 (1).pptx
lec7 (1).pptx
Β 
PHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating currentPHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating current
Β 
L7%20AC.pdf
L7%20AC.pdfL7%20AC.pdf
L7%20AC.pdf
Β 
CLASS X SCIENCE STUDY MATERIAL
CLASS X SCIENCE STUDY MATERIALCLASS X SCIENCE STUDY MATERIAL
CLASS X SCIENCE STUDY MATERIAL
Β 
12 seri rlc
12 seri rlc12 seri rlc
12 seri rlc
Β 
Impedanc matching
Impedanc matchingImpedanc matching
Impedanc matching
Β 
report of power electronics
report of power electronicsreport of power electronics
report of power electronics
Β 

Último

(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoΓ£o Esperancinha
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 

Último (20)

(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Β 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Β 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 

Network analysis unit 2

  • 2. CONTENTS 2.STEADY STATE ANALYSIS OF AC CIRCUITS 2.1 Response to Sinusoidal Excitation-Pure Resistance 2.2 Response to Sinusoidal Excitation-Pure Inductance 2.3 Response to Sinusoidal Excitation-Pure Capacitance 2.4 Impedance concept and phase angle 2.5 Series Circuits-RL,RC,RLC 2.6 Steady state AC Mesh Analysis 2.7 Steady state AC Nodal Analysis 2.8 Star-Delta &Delta-Star Transformation
  • 3. 2.STEADY STATE ANALYSIS OFAC CIRCUITS 2.1 Response to Sinusoidal Excitation-Pure Resistance : β€’ The circuit which contains only a resistance of R ohms in the AC circuit is known as Pure Resistive AC Circuit. β€’ Let a sinusoidal alternating voltage is applied across a pure resistance as shown in the Fig.2.1(a). 𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ β€’ The current flowing through the resistance R is 𝑖(𝑑) = )𝑣(𝑑 𝑅 = π‘‰π‘š 𝑅 sinπœ”π‘‘
  • 4. where β€’ The current flowing through the resistance is also sinusoidal and it is in phase with the applied voltage. β€’ The phase angle between voltage and current is zero. β€’ In pure resistance, current and voltage are in phase. i. Instantaneous power 𝑖(𝑑) = 𝐼 π‘šsinπœ”π‘‘ 𝐼 π‘š = π‘‰π‘š 𝑅 )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑 𝑝(𝑑) = π‘‰π‘š 𝐼 π‘šsin2 πœ”π‘‘ The average power is given by
  • 5. π‘ƒπ‘Žπ‘£ = 1 𝑇 0 𝑇 𝑝(𝑑)𝑑𝑑 = 1 𝑇 0 𝑇 π‘‰π‘š 𝐼 π‘š 2 βˆ’ π‘‰π‘š 𝐼 π‘š 2 cos2πœ”π‘‘ 𝑑 𝑑 = π‘‰π‘š 𝐼 π‘š 2 = π‘‰π‘š 2 𝐼 π‘š 2 π‘ƒπ‘Žπ‘£ = π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠 Where Pav is average power Vr.m.s is root mean square value of supply voltage Ir.m.s is root mean square value of the current
  • 6. Example 2.1 A sinusoidal voltage is applied to the resistive circuit shown in Fig.2.1(d).Determine the following values (a) (b) (c) (d)πΌπ‘Ÿπ‘šπ‘  𝐼 π‘Žπ‘£ 𝐼 𝑝 𝐼 𝑝𝑝 Solution The function given to the circuit shown is The current passing through the resistor is 𝑣(𝑑) = 𝑉𝑝sinπœ”π‘‘ = 20sinπœ”π‘‘ 𝑖(𝑑) = )𝑣(𝑑 𝑅 = 20 2 Γ— 103 sinπœ”π‘‘ = 10 Γ— 10βˆ’3sinπœ”π‘‘
  • 7. Peak value Peak to peak value Rms value = 0.707Γ—10 mA=7.07 mA 𝐼 𝑝=10 mA 𝐼 𝑝𝑝=20 mA πΌπ‘Ÿπ‘šπ‘ = 𝐼 𝑝 2 Average Value = 1 πœ‹ 0 πœ‹ 𝐼 𝑝sinπœ”π‘‘ π‘‘πœ”π‘‘πΌ π‘Žπ‘£ 𝐼 π‘Žπ‘£ = 1 πœ‹ βˆ’πΌ 𝑝cosπœ”π‘‘ 0 πœ‹ = 0.637 𝐼 𝑃 = 0.637 Γ— 10π‘šπ΄ = 6.37π‘šπ΄
  • 8. 2.2 Response to Sinusoidal Excitation-Pure Inductance : β€’ The circuit which contains only inductance (L) in the Circuit is called a Pure inductive circuit. β€’ Let a sinusoidal alternating voltage is applied across a pure inductance as shown in the Fig.2.2(a). 𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ β€’ As a result, an alternating current i(t) flows through the inductance which induces an emf in it. 𝑒 = βˆ’πΏ 𝑑𝑖 𝑑𝑑 β€’ The emf which is induced in the circuit is equal and opposite to the applied voltage
  • 9. 𝑣 = βˆ’π‘’ = βˆ’ βˆ’πΏ 𝑑𝑖 𝑑𝑑 π‘‰π‘šsinπœ”π‘‘ = 𝐿 𝑑𝑖 𝑑𝑑 𝑑𝑖 = π‘‰π‘š 𝐿 sinπœ”π‘‘ 𝑑𝑑 𝑖 = 𝑑𝑖 = π‘‰π‘š 𝐿 sinπœ”π‘‘ 𝑑𝑑 = π‘‰π‘š 𝐿 βˆ’cosπœ”π‘‘ πœ” = βˆ’ π‘‰π‘š πœ”πΏ sin πœ‹ 2 βˆ’ πœ”π‘‘ = π‘‰π‘š πœ”πΏ sin πœ”π‘‘ βˆ’ πœ‹ 2 𝑖 = 𝐼 π‘šsin πœ”π‘‘ βˆ’ πœ‹ 2
  • 10. Where 𝐼 π‘š = π‘‰π‘š ω𝐿 = π‘‰π‘š 𝑋 𝐿 Where 𝑋 𝐿 = πœ”πΏ = 2πœ‹π‘“πΏ Ξ© β€’ In pure inductance circuit, current flowing through the inductor lags the voltage by 90 degrees. i. Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑 = π‘‰π‘šsinπœ”π‘‘ Γ— 𝐼 π‘šsin ω𝑑 βˆ’ πœ‹ 2 = βˆ’π‘‰π‘š 𝐼 π‘šsin πœ”π‘‘ cos πœ”π‘‘ 𝑃(𝑑) = βˆ’ π‘‰π‘š 𝐼 π‘š 2 sin 2πœ”π‘‘ The average power is given by π‘ƒπ‘Žπ‘£ = 1 T 0 𝑇 βˆ’ π‘‰π‘š 𝐼 π‘š 2 sin 2πœ”π‘‘ 𝑑 𝑑 = 0
  • 11. ii. The energy stored in a pure inductor is obtained by integrating power expression over a positive half cycle of power variation. Energy Stored = π‘‰π‘š 𝐼 π‘š 2πœ” = 1 2 𝐿𝐼 π‘š 2 Energy stored in a pure inductor = 1 2 𝐿𝐼 π‘š 2 π½π‘œπ‘’π‘™π‘’π‘  = βˆ’ π‘‰π‘š 𝐼 π‘š 2 βˆ’cos2πœ”π‘‘ 2πœ” 𝑇 2 𝑇 π‘Š = 𝑇 2 𝑇 𝑃 𝑑 𝑑𝑑 = βˆ’ π‘‰π‘š 𝐼 π‘š 2 𝑇 2 𝑇 sin2πœ”π‘‘ 𝑑𝑑
  • 12. Example 2.2 Determine the rms current in the circuit shown in Fig 2.2(d) Solution Inductive reactance 𝑋 𝐿 = 2πœ‹π‘“πΏ = 2πœ‹ Γ— 10 Γ— 103 Γ— 50 Γ— 10βˆ’3 𝑋 𝐿 = 3.141π‘˜π›Ί πΌπ‘Ÿπ‘šπ‘  = π‘‰π‘Ÿπ‘šπ‘  𝑋 𝐿 πΌπ‘Ÿπ‘šπ‘  = 10 3.141 Γ— 103 = 3.18 mA
  • 13. 2.3 Response to Sinusoidal Excitation-Pure Capacitance : β€’ The circuit which contains only a pure capacitor of capacitance C farads is known as a Pure Capacitor Circuit. β€’ Let a sinusoidal alternating voltage is applied across a pure capacitance as shown in the Fig.2.3(a). 𝑣 𝑑 = π‘‰π‘šsinπœ”π‘‘ β€’ Current flowing through the circuit is given by the equation 𝑖(𝑑) = π‘‘π‘ž 𝑑𝑑 = )𝑑(𝐢𝑉 𝑑𝑑
  • 14. 𝑖(𝑑) = πœ”πΆπ‘‰π‘šcosπœ”π‘‘ = 𝐼 π‘šsin πœ”π‘‘ + πœ‹ 2 𝐼 π‘š = πœ”πΆπ‘‰π‘š π‘‰π‘š 𝐼 π‘š = 1 πœ”πΆ = 1 2πœ‹π‘“πΆ = 𝑋 𝐢 β€’ In the pure Capacitor circuit, the current flowing through the capacitor leads the voltage by an angle of 90 degrees. i. Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑 = π‘‰π‘šsinπœ”π‘‘ Γ— 𝐼 π‘šsin ω𝑑 + πœ‹ 2 = π‘‰π‘š 𝐼 π‘šsinπœ”π‘‘cosπœ”π‘‘
  • 15. 𝑝(𝑑) = π‘‰π‘š 𝐼 π‘š 2 sin2πœ”π‘‘ The average power is given by π‘ƒπ‘Žπ‘£ = 1 𝑇 0 T π‘‰π‘š 𝐼 π‘š 2 sin 2πœ”π‘‘ 𝑑 πœ”π‘‘ = 0 ii. The energy stored in a pure capacitor is obtained by integrating power expression over a positive half cycle of power variation. Energy Stored = π‘Š = 0 𝑇 2 )𝑝(𝑑 𝑑𝑑 = π‘‰π‘š 𝐼 π‘š 2 0 𝑇 2 sin2πœ”π‘‘ 𝑑𝑑 = π‘‰π‘š 𝐼 π‘š 2πœ” = 1 2 πΆπ‘‰π‘š 2 Energy stored in a pure capacitor= 1 2 πΆπ‘‰π‘š 2 Joules
  • 16. Example 2.3 Determine the rms current in the circuit shown in Fig 2.3(d) Solution Capacitive reactance 𝑋 𝐢 = 1 2πœ‹π‘“πΆ = 1 2πœ‹ Γ— 5 Γ— 103 Γ— 0.01 Γ— 10βˆ’6 𝑋 𝐢 = 3.18𝐾𝛺 πΌπ‘Ÿπ‘šπ‘  = π‘‰π‘Ÿπ‘šπ‘  𝑋 𝐢 πΌπ‘Ÿπ‘šπ‘  = 5 3.18𝐾 = 1.57 mA
  • 17. 2.4 Impedance and Phase angle : β€’ Impedance is defined as the opposition offered by the circuit elements to the flow of alternating current. β€’ It can also be defined as the ratio of voltage function to current function and it is denoted with Z. β€’ If voltage and current are both sinusoidal functions of time, the phase difference between voltage and current is called phase angle. Impedance=Z= π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› πΆπ‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝑍 = 𝑣 𝑖 = 𝑉 π‘š 𝐼 π‘š = 𝑉 𝑅𝑀𝑆 𝐼 𝑅𝑀𝑆 ohms
  • 18. Impedance Table for R,L and C Elements:
  • 19. 2.5.1 Series RL Circuit : β€’ Consider a circuit consisting of pure resistance connected in series with pure inductance. β€’ Let a sinusoidal alternating voltage is applied across a series RL circuit as shown in the Fig.2.5(a). By applying Kirchhoff’s voltage law to the circuit shown in Fig.2.5(a) We get, 𝑉 = 𝑉𝑅 + 𝑉𝐿 𝑉 = 𝐼𝑅 + 𝐼𝑋 𝐿 β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the phasor diagram is shown in the Fig.2.5(b).
  • 20. Steps to draw Phasor diagram: 1. Take current as a reference phasor. 2. In case of resistance, voltage and current are in phase, so VR will be along current phasor. 3. In case of inductance, current lags voltage by 90 degrees. 4. Supply voltage is obtained by the vector sum of VL and VR . 𝑉 = 𝑉𝑅 2 + 𝑉𝐿 2 = 𝐼𝑅 2 + 𝐼 Γ— 𝑋 𝐿 2 = 𝐼 𝑅 2 + 𝑋 𝐿 2 𝑉𝑆 = Consider the right angle triangle OAB,
  • 21. 𝑉 = 𝐼𝑍 𝑍 = 𝑅 2 + 𝑋 𝐿 2Impedance, From impedance triangle, tanπœ™ = 𝑋 𝐿 𝑅 In polar form, impedance can be represented as 𝑍 = |𝑍|βˆ πœ™ 𝑍 = 𝑅 + 𝑗𝑋 𝐿 In rectangular form, impedance can be represented as |𝑍| = 𝑅 2 + 𝑋 𝐿 2 πœ™ = tanβˆ’1 𝑋 𝐿 𝑅and 𝑅 = 𝑍cosπœ™, 𝑋 𝐿 = 𝑍sinπœ™
  • 22. Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑 Where and𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ )𝑖(𝑑) = 𝐼 π‘šsin(πœ”π‘‘ βˆ’ πœ™ 𝑝(𝑑) = π‘‰π‘šsinπœ”π‘‘ Γ— )𝐼 π‘šsin(πœ”π‘‘ βˆ’ πœ™ 𝑝(𝑑) = π‘‰π‘š 𝐼 π‘š 2 2sin πœ”π‘‘ βˆ’ πœ™ sinπœ”π‘‘ 𝑝(𝑑) = π‘‰π‘š 2 𝐼 π‘š 2 )cosπœ™ βˆ’ cos(2πœ”π‘‘ βˆ’ πœ™ 𝑝(𝑑) = π‘‰π‘š 2 𝐼 π‘š 2 cosπœ™ βˆ’ π‘‰π‘š 2 𝐼 π‘š 2 cos 2πœ”π‘‘ βˆ’ πœ™ The average power consumed in the circuit over one complete cycle is given by
  • 23. π‘ƒπ‘Žπ‘£ = 1 𝑇 0 𝑇 𝑝(𝑑)𝑑 𝑑 = π‘‰π‘š 𝐼 π‘š 2𝑇 0 𝑇 cosπœ™ βˆ’ cos 2πœ”π‘‘ βˆ’ πœ™ 𝑑 𝑑 = π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠cosπœ™ = 𝑉𝐼cosπœ™π‘ƒπ‘Žπ‘£ = π‘‰π‘š 2 𝐼 π‘š 2 cosπœ™ Example 2.4 To the circuit shown in the Fig.2.5(e),consisting a 1KW resistor connected in series with a 50mH coil, a 10Vrms,10KHZ signal is applied. Find impedance Z,current I, phase angle ,voltage across the resistance and the voltage across the inductance .𝑉𝑅 𝑉𝐿 Solution Inductive reactance In rectangular form, Total impedance 𝑋 𝐿 = πœ”πΏ = 2πœ‹π‘“πΏ = 6.28 104 50 Γ— 10βˆ’3 = 3140𝛺 𝑍 = 1000 + 𝑗3140 𝛺 = 𝑅2 + 𝑋 𝐿 2 = 1000 2 + 3140 2 = 3295.4𝛺 πœƒ
  • 24. Current Phase angle Therefore, in polar form in total impedance Voltage across the resistance Voltage across the inductance 𝐼 = 𝑉𝑆 𝑍 = 10 3295.4 = 3.03π‘šπ΄ πœƒ = tanβˆ’1 𝑋 𝐿 𝑅 = tanβˆ’1 3140 1000 = 72.330 𝑍 = 3295.4∠72.330 𝑉𝑅 = 𝐼𝑅 = 3.03 Γ— 10βˆ’3 Γ— 1000 = 3.03𝑉 𝑉𝐿 = 𝐼𝑋 𝐿 = 3.03 Γ— 10βˆ’3 Γ— 3140 = 9.51𝑉 Example 2.5 Determine the source voltage and the phase angle, if voltage across the resistance is 70V and the voltage across the inductance is 20V as shown in Fig. Solution Source voltage is given by 𝑉𝑆 = 𝑉𝑅 2 + 𝑉𝐿 2 = 70 2 + 20 2 = 72.8𝑉
  • 25. The angle between the current and source voltage is πœƒ = tanβˆ’1 20 70 = 15.940 2.5.2 Series RC Circuit : β€’ Consider a circuit consisting of pure resistance R ohms connected in series with a pure capacitor of capacitance C farads. β€’ Let a sinusoidal alternating voltage is applied across a series RC circuit as shown in the Fig.2.6(a). By applying Kirchhoff’s voltage law to the circuit shown in Fig.2.6(a) 𝑉 = 𝑉𝑅 + 𝑉𝐢
  • 26. 𝑉 = 𝐼𝑅 + 𝐼𝑋 𝐢 β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the phasor diagram is shown in the Fig.2.6(b). Steps to draw Phasor diagram: 1. Take current as a reference phasor. 2. In case of resistance, voltage and current are in phase, so VR will be along current phasor. 3. In case of pure capacitance, current leads the voltage by 90 degrees. 4. Supply voltage is attained by the vector sum of VC and VR .
  • 27. Consider the right angle triangle OAB, 𝑉 = 𝑉𝑅 2 + 𝑉𝐢 2 = 𝐼𝑅 2 + 𝐼 Γ— 𝑋 𝐢 2𝑉𝑆 = = 𝐼 𝑅 2 + 𝑋 𝐢 2 𝑉 = 𝐼𝑍 𝑍 = 𝑅 2 + 𝑋 𝐢 2Impedance, From impedance triangle, tanπœ™ = 𝑋 𝐢 𝑅 In rectangular form, impedance can be represented as 𝑍 = 𝑅 βˆ’ 𝑗𝑋 𝐢 𝑅 = 𝑍cosπœ™, 𝑋 𝐢 = 𝑍sinπœ™where
  • 28. In polar form, impedance can be represented as 𝑍 = |𝑍|βˆ πœ™ |𝑍| = 𝑅 2 + 𝑋 𝐢 2 and πœ™ = tanβˆ’1 𝑋 𝐢 𝑅 Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑 Where and𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ )𝑖(𝑑) = 𝐼 π‘šsin(πœ”π‘‘ + πœ™ 𝑝(𝑑) = π‘‰π‘šsinπœ”π‘‘ Γ— )𝐼 π‘šsin(πœ”π‘‘ + πœ™ 𝑝(𝑑) = π‘‰π‘š 𝐼 π‘š 2 2sin πœ”π‘‘ + πœ™ sinπœ”π‘‘ 𝑝(𝑑) = π‘‰π‘š 2 𝐼 π‘š 2 )cosπœ™ βˆ’ cos(2πœ”π‘‘ + πœ™ The average power consumed in the circuit over one complete cycle is given by
  • 29. π‘ƒπ‘Žπ‘£ = 1 𝑇 0 𝑇 𝑝(𝑑)𝑑 πœ”π‘‘ = π‘‰π‘š 𝐼 π‘š 2𝑇 0 𝑇 cosπœ™ βˆ’ cos 2πœ”π‘‘ + πœ™ 𝑑 πœ”π‘‘ = π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠cosπœ™ = 𝑉𝐼cosπœ™π‘ƒπ‘Žπ‘£ = π‘‰π‘š 2 𝐼 π‘š 2 cosπœ™ Example 2.6 Determine the source voltage and phase angle when the voltage across the Resistor is 20V and the capacitor is 30V as shown in Fig. Solution Source voltage is given by 𝑉𝑆 = 𝑉𝑅 2 + 𝑉𝐢 2 = 20 2 + 30 2 = 36𝑉 The angle between the current and source voltage is πœƒ = tanβˆ’1 30 20 = 56.30
  • 30. Example 2.7 A sine wave generator supplies a 500Hz,10V rms signal to a 2kΞ© resistor in Series with a 0.1ΞΌF capacitor as shown in Fig.Determine the total impedance Z,current I, phase angle Ο΄,capacitive voltage and resistive voltage .𝑉𝐢 𝑉𝑅 Solution Capacitive reactance 𝑋 𝐢 = 1 2πœ‹π‘“πΆ = 1 6.28 Γ— 500 Γ— 0.1 Γ— 10βˆ’6 = 3184.7𝛺 Total impedance 𝑍 = 2000 βˆ’ 𝑗3184.7 𝛺 𝑍 = 2000 2 + 3184.7 2 = 3760.6𝛺 Phase angle πœƒ = tanβˆ’1 βˆ’π‘‹ 𝐢 𝑅 = tanβˆ’1 βˆ’3184.7 2000 = βˆ’57.870
  • 31. Current 𝐼 = 𝑉𝑆 𝑍 = 10 3760.6 = 2.66π‘šπ΄ Capacitive Voltage 𝑉𝐢 = 𝐼𝑋 𝐢 = 2.66 Γ— 10βˆ’3 Γ— 3184.7 = 8.47𝑉 Resistive Voltage 𝑉𝑅 = 𝐼𝑅 = 2.66 Γ— 10βˆ’3 Γ— 2000 = 5.32𝑉 Total applied voltage in rectangular form, 𝑉𝑆 = 5.32 βˆ’ 𝑗8.47𝑉 Total applied voltage in polar form, 𝑉𝑆 = 10∠ βˆ’ 57.870 𝑉 2.5.3 Series RLC Circuit : β€’ Consider a circuit consisting of a pure resistance R ohms, a pure inductance L Henry and a pure capacitor of capacitance C farads are connected in series.
  • 32. β€’ Let a sinusoidal alternating voltage is applied across a series RLC circuit as shown in the Fig.2.7(a) By applying Kirchhoff’s voltage law to the circuit shown in Fig.2.7(a) 𝑉 = 𝑉𝑅 + 𝑉𝐿 + 𝑉𝐢 β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the phasor diagram is shown in the Fig.2.7(b). Steps to draw Phasor diagram: 1.Take current as reference. 2. is in phase with I. 3. leads current I by 𝑉𝑅 𝑉𝐿 900
  • 33. 4. Lags current I by 5. Obtain the resultant of and .Both and are in phase opposition ( out of phase). 6.Add that with by law of parallelogram to get the supply voltage. 𝑉𝐢 900 𝑉𝐿 𝑉𝐢 𝑉𝐿 𝑉𝐢 1800 𝑉𝑅 i) :𝑿 𝑳 > 𝑿 π‘ͺ 𝑉 = 𝑉𝑅 2 + 𝑉𝐿 βˆ’ 𝑉𝐢 2 = 𝐼𝑅 2 + 𝐼𝑋 𝐿 βˆ’ 𝐼𝑋 𝐢 2 = 𝐼 𝑅 2 + 𝑋 𝐿 βˆ’ 𝑋 𝐢 2 From the Voltage triangle,
  • 34. 𝑉 = 𝐼𝑍 𝑍 = 𝑅 2 + 𝑋 𝐿 βˆ’ 𝑋 𝐢 2 𝑿 𝑳 < 𝑿 π‘ͺii) : From the Voltage triangle, 𝑉 = 𝑉𝑅 2 + 𝑉𝐢 βˆ’ 𝑉𝐿 2 = 𝐼𝑅 2 + 𝐼𝑋 𝐢 βˆ’ 𝐼𝑋 𝐿 2 = 𝐼 𝑅 2 + 𝑋 𝐢 βˆ’ 𝑋 𝐿 2 𝑉 = 𝐼𝑍 𝑍 = 𝑅 2 + 𝑋 𝐢 βˆ’ 𝑋 𝐿 2
  • 35. iii) :𝑿 𝑳 = 𝑿 π‘ͺ 𝑉 = 𝑉𝑅 From the phasor diagram, 𝑉 = 𝐼𝑅 𝑉 = 𝐼𝑍 𝑍 = 𝑅
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43. 2.6 Steady State AC Mesh Analysis: A mesh is defined as a loop which does not contain any other loops within it. Number of equations=branches-(nodes-1) M=B-(N-1) By applying Kirchhoff’s voltage law around the first mesh 𝑉1 = 𝐼1 𝑍1 + 𝐼1 βˆ’ 𝐼2 𝑍2 By applying Kirchhoff’s voltage law around the second mesh 𝑍2 𝐼2 βˆ’ 𝐼1 + 𝑍3 𝐼2 = 0
  • 44.
  • 45.
  • 46. 3 b aV V Z ο€­ 𝑉𝑆 = 3.29∠185.450Ans:
  • 47. 2.7 Steady State AC Nodal Analysis: β€’ In general, in a N node circuit, one of the nodes is choosen as reference or datum node, then it is possible to write N-1 nodal equations by assuming N-1 node voltages. β€’ The node voltage is the voltage of a given node with respect to one particular node, called the reference node (which is assumed at zero potential). π‘‰π‘Ž βˆ’ 𝑉1 𝑍1 + π‘‰π‘Ž 𝑍2 + π‘‰π‘Ž βˆ’ 𝑉𝑏 𝑍3 = 0 βˆ’π‘‰1 𝑍1 + π‘‰π‘Ž 1 𝑍1 + 1 𝑍2 + 1 𝑍3 βˆ’ 𝑉𝑏 𝑍3 = 0 … … … (1) 𝑉𝑏 βˆ’ π‘‰π‘Ž 𝑍3 + 𝑉𝑏 𝑍4 + 𝑉𝑏 𝑍5 + 𝑍6 = 0 βˆ’ π‘‰π‘Ž 𝑍3 + 𝑉𝑏 1 𝑍3 + 1 𝑍4 + 1 𝑍5 + 𝑍6 = 0 … … … (2)
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53. 2.8 Delta-Star transformation: Three resistances may be connected in star (or Y) and delta(or Ξ”) connection as shown in figure In the star connection, 𝑅 π‘Žπ‘ = 𝑅 π‘Ž + 𝑅 𝑏 … … … (1) 𝑅 𝑏𝑐 = 𝑅 𝑏 + 𝑅 𝑐 … … … (2) 𝑅 π‘π‘Ž = 𝑅 𝑐 + 𝑅 π‘Ž … … … (3) Similarly in delta connection, the resistance seen from ab,bc and ca are given by 𝑅 π‘Žπ‘ = 𝑅1|| 𝑅2 + 𝑅3 … … … (4) 𝑅 𝑏𝑐 = 𝑅2|| 𝑅1 + 𝑅3 … … … (5) 𝑅 π‘π‘Ž = 𝑅3|| 𝑅1 + 𝑅2 … … … (6)
  • 54. 𝑅 π‘Žπ‘ + 𝑅 𝑏𝑐 + 𝑅 π‘π‘Ž = 2 𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝑐 … … … (7) Adding the equations 1,2 and 3 we get Similarly, adding the equations 4,5 and 6,we get 𝑅 π‘Žπ‘ + 𝑅 𝑏𝑐 + 𝑅 π‘π‘Ž = 2 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1 𝑅1 + 𝑅2 + 𝑅3 … … … (8) From equations 7 and 8 2 𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝑐 = 2 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1 𝑅1 + 𝑅2 + 𝑅3 𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝐢 = 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1 𝑅1 + 𝑅2 + 𝑅3 … … … (9) Subtracting equation 5 from 9 𝑅 π‘Ž = 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1 𝑅1 + 𝑅2 + 𝑅3 βˆ’ 𝑅2 𝑅1 + 𝑅3 𝑅1 + 𝑅2 + 𝑅3
  • 55. 𝑅 π‘Ž = 𝑅1 𝑅3 𝑅1 + 𝑅2 + 𝑅3 … … … (10) 𝑅 𝑏 = 𝑅1 𝑅2 𝑅1 + 𝑅2 + 𝑅3 … … … (11) 𝑅 𝑐 = 𝑅2 𝑅3 𝑅1 + 𝑅2 + 𝑅3 … … … (12) Star-Delta transformation: Multiplying the equations 10 and 11,11 and 12 and 12 and 10 𝑅 π‘Ž 𝑅 𝑏 = 𝑅1 2 𝑅2 𝑅3 𝑅1 + 𝑅2 + 𝑅3 2 … … … (13) 𝑅 𝑏 𝑅 𝑐 = 𝑅1 𝑅2 2 𝑅3 𝑅1 + 𝑅2 + 𝑅3 2 … … … (14)
  • 56. 𝑅 𝑐 𝑅 π‘Ž = 𝑅1 𝑅2 𝑅3 2 𝑅1 + 𝑅2 + 𝑅3 2 … … … (15) Adding equations 13,14 and 15,we get 𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž = 𝑅1 𝑅2 𝑅3 𝑅1 + 𝑅2 + 𝑅3 𝑅1 + 𝑅2 + 𝑅3 2 𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž = 𝑅1 𝑅2 𝑅3 𝑅1 + 𝑅2 + 𝑅3 … … … (16) Dividing equation 16 by 12,we get 𝑅1 = 𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž 𝑅 𝑐 𝑅2 = 𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž 𝑅 π‘Ž 𝑅3 = 𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž 𝑅 𝑏
  • 57.