SlideShare uma empresa Scribd logo
1 de 4
Baixar para ler offline
LETTERS
                                                                                    PUBLISHED ONLINE: 28 OCTOBER 2012 | DOI: 10.1038/NGEO1614




Compositional evidence for an impact origin of the
Moon’s Procellarum basin
Ryosuke Nakamura1 *, Satoru Yamamoto2 , Tsuneo Matsunaga2 , Yoshiaki Ishihara2 ,
Tomokatsu Morota3 , Takahiro Hiroi4 , Hiroshi Takeda5 , Yoshiko Ogawa6 , Yasuhiro Yokota2 ,
Naru Hirata6 , Makiko Ohtake7 and Kazuto Saiki8

The asymmetry between the nearside and farside of the                           evolution and thick impact ejecta. On the other hand, we can
Moon is evident in the distribution of mare basalt1 , crustal                   expect surviving compositional evidence of the mantle exposures
thickness2 and concentrations of radioactive elements3 , but                    and/or large-scale impact melt pool because such an enormous
its origin remains controversial. According to one attractive                   impact must have completely excavated the feldspathic upper crust
scenario, a gigantic impact early in the Moon’s history                         and produced a tremendous amount of impact melt13 . Previous
produced the observed dichotomy; the putative 3,000-km-                         multispectral global surveys14,15 focused on olivine-rich lithologies
diameter Procellarum basin has been suggested to be a relic                     as possible mantle exposures because equilibrium crystallization
of this ancient impact3–5 . Low-calcium pyroxene can be formed                  and/or density overturn of the lunar magma ocean (LMO) are
during an impact by melting a mixture of crust and mantle                       supposed to produce olivine-rich mantle16 . The upper mantle,
materials6,7 or by excavating differentiated cumulates from the                 however, would predominantly consist of low-calcium pyroxene
lunar magma ocean8 . Therefore, the association of low-calcium                  (LCP) if the LMO experienced significant fractional crystallization
pyroxene with a lunar basin could indicate an impact origin.                    before the onset of plagioclace floatation8 . The differentiation of
Here we use spectral mapping data from KAGUYA/SELENE                            the huge impact melt provides another chance to generate LCP-rich
(ref. 9) to show that low-calcium pyroxene is concentrated                      layers even from olivine-rich mantle6,7,17 . Here, therefore, we have
around two established impact structures, the South Pole–                       targeted the LCP as a diagnostic mafic mineral linked with huge
Aitken and Imbrium basins. In addition, we detect a high                        impacts and searched for the spectral signature by using the multi-
concentration of low-calcium pyroxene at Procellarum, which                     and hyperspectral data obtained by KAGUYA/SELENE (refs 8,18).
supports an impact origin of the ancient basin. We propose                         Figure 1 indicates the global distribution of the mafic exposures
that, in forming the largest known basin on the Moon, the                       dominated by LCP. It should be emphasized that we have selected
impact excavated the nearside’s primary feldspathic crust,                      the spectra whose absorption depth is larger than 10% (see Methods
which derived from the lunar magma ocean. A secondary                           and Supplementary Fig. S2). This selection rule excludes ubiquitous
feldspathic crust would have later recrystallized from the sea of               noritic anorthosite19 and heavily space-weathered materials with
impact melt, leading to two distinct sides of the Moon.                         weaker absorptions. Localized concentrations do occur around the
   The dichotomy of the Earth’s Moon was discovered by the                      two established largest impact structures, the Imbrium basin and
farside images taken by Luna 3 in 1959. Basaltic mare covers only               the South Pole–Aitken (SPA) basin. Most of the rest are encircling
a few per cent of the farside, compared with roughly 30% on the                 the putative Procellarum basin. It has been widely supposed that the
near side1 . Subsequent spaceborne observations revealed the front–             lunar lower crust has a globally LCP-rich noritic composition19–21 ,
back asymmetry of the crustal thickness2 and the concentration                  but few points are present on the feldspathic highland terrane22 .
of radioactive elements on the nearside3 . Several mechanisms                   As illustrated in Figs 2 and 3 and Supplementary Fig. S1, most of
have been proposed to produce this dichotomy, such as spatially                 the LCP-rich materials are exposed on the inner wall or impact
inhomogeneous tidal heating in the Moon-forming stage10 or                      ejecta of fresh craters. If we apply the empirical algorithm for these
accretion of a companion Moon11 . Recently, it was found that the               multiband images19 , all of the exposures would comprise more
north–south crustal dichotomy of Mars can be naturally explained                than 30% mafic components. Figure 4 compares the spectrum of
by a giant impact in the ancient age12 . Similarly, the Moon’s                  Apollo sample 14310 (ref. 23) with that of the LCP-rich deposit
dichotomy could have resulted from a giant impact. The putative                 closest to the sampling point. Also plotted are two representative
Procellarum basin, whose diameter is more than 3,000 km with                    LCP-rich spectra: Plato M on the northern rim of the Imbrium
the centre around (N15, W23), would be the most plausible                       basin and Antoniadi in the SPA. The rock 14310, collected from
candidate for the ancient impact event3–5 . The characteristic                  the Fra Mauro formation as Imbrium ejecta, is supposed to be
topographical impact-basin structures must have been obliterated                noritic impact melt. Their striking spectral similarities suggest that
by the fluidal nature of the huge impact melt sheet, viscoelastic               the composition of 14310 (plagioclace = 59%, LCP = 31%) could



1 InformationTechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568,
Japan, 2 Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506,
Japan, 3 Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan, 4 Department of Geological
Sciences, Brown University, Providence, Rhode Island 02912, USA, 5 Department of Earth and Planetary Science, The University of Tokyo, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan, 6 The University of Aizu, Ikki-machi, Aizuwakamatsu, Fukushima 965-8580, Japan, 7 Institute of Space and
Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshino-dai, Sagamihara, Kanagawa 229-8515, Japan, 8 Department of Earth and Space
Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan. *e-mail: r.nakamura@aist.go.jp.

NATURE GEOSCIENCE | VOL 5 | NOVEMBER 2012 | www.nature.com/naturegeoscience                                                                         775
                                                        © 2012 Macmillan Publishers Limited. All rights reserved.
LETTERS                                                                                           NATURE GEOSCIENCE DOI: 10.1038/NGEO1614




Figure 1 | Location map of the LCP-rich exposures on the Moon. The blue triangles and red crosses denote the sites shown in Figs 2 and 4, respectively,
and the rest are shown by yellow diamonds. The olivine-rich exposures18 are represented by green squares for reference. We could confirm the presence of
many LCP-rich sites in the SPA basin19,25,30 (Apollo, Bhaba, Finsen, Lyman, Antoniadi, Zeeman and Schrödinger). On the nearside, many LCP-rich sites are
located on the northern Imbrium noritic region31 , Bullialdus30 and Aratus20 , as previously identified by ground-based telescopes and space missions.




                                                                                              E



                                     A




                                                                                                      H2




                                                                                                           H3




                                                               H1




Figure 2 | False-colour composite images of four craters encircling the Procellarum basin. The upper panels show an unnamed crater near Aston (left:
W85.6, N33.5) and Epigenes F (right: W8.1, N67.0); the lower panels indicate Heinsius (left: W18.0, S39.7) and Hercules (right: E42.0, N50.3). The image
widths are 8 km and reflectance factors are assigned to red (750 nm), green (900 nm) and blue (1,250 nm). The labels show the locations of the Multiband
Imager’s spectra shown in Fig. 3.

776                                                                            NATURE GEOSCIENCE | VOL 5 | NOVEMBER 2012 | www.nature.com/naturegeoscience
                                                      © 2012 Macmillan Publishers Limited. All rights reserved.
NATURE GEOSCIENCE DOI: 10.1038/NGEO1614                                                                                                                         LETTERS
        0.25                                                                                                             1.0




                                                                                   Reflectance after continuum removal
        0.20                                                                                                             0.9
 REFF




        0.15                                                                                                             0.8

                                                       A (Aston)
                                                                                                                                                          Apollo 14310
                                                       E (Epigenes F)
                                                                                                                                                          Fra Mauro
        0.10                                           H1 (Heinsius)                                                     0.7                              Plato M
                                                       H2 (Hercules)
                                                                                                                                                          Antoniadi
                                                       H3 (Hercules)

        0.05                                                                                                             0.6
               500                   1,000                       1,500                                                         600   800    1,000       1,200     1,400
                                 Wavelength (nm)                                                                                           Wavelength (nm)

Figure 3 | Multiband spectra of the four craters in Fig. 2. Reflectance          Figure 4 | Continuum-removed spectra of the Apollo sample 14310
factor (REFF) measured by the Multiband Imager onboard                          (ref. 23) and that of the nearest LCP-rich point in Fra Mauro. Also plotted
KAGUYA/SELENE (ref. 28). The pinkish areas (A, E, H1, H2) in Fig. 2 show        are spectra for Plato M and Antoniadi25 . Their footprint locations are
absorption minima at 900 nm, representing LCP-dominant compositions,            denoted by red crosses in Fig. 1. All of the spectra show short central
whereas the red H3 region shows an absorption minimum at 1,050 nm,              wavelengths (<925 nm) for the 1-µm absorption bands. The 1.3 µm
indicative of an exposure of olivine.                                           absorptions are very faint, whereas the 2-µm absorption bands are evident
                                                                                within the limited wavelength coverage. All of these are characteristic
be analogous to that of the LCP-rich deposits in Fig. 1. Model                  features of LCP (ref. 25). The flat bottom of the 1 mm absorption band for
calculations of radiative transfer also support their compositional             14310 possibly indicates poor data quality of the laboratory measurements.
similarity (see Supplementary Information).
   As the depths of excavation and melting are larger than the                  complete crystallization of the LMO, the resulting impact melt
maximum lunar crustal thickness, a tremendous amount of impact                  must have incorporated urKREEP, the late-stage liquid from
melt would be formed by assimilating the feldspathic lunar crust                LMO crystallization6,7 . In contrast, a later impact on the present
and mafic-rich upper mantle13 . The differentiation of this melt                SPA region would show a lower KREEP concentration, provided
would have produced the LCP-dominant lithology6,7 . Alternatively,              urKREEP had finished lateral migration to the Procellarum and/or
LCP-rich exposures could be composed of magnesian-suite                         vertical settling with mantle overturn16 . The Procellarum impact
plutons24 or ultramafic LMO cumulates8,25 excavated by huge                     itself might have triggered the lateral migration. The front–back
impacts. The magnesian-suite parent magma may have selectively                  asymmetry of the mare distribution could have resulted from
intruded into the rim of Imbrium and SPA where the crust was                    the different crustal thickness2 and/or KREEP concentration in
thinned by large impacts. The origin of the LCP-rich rocks, in every            Procellarum KREEP terrane27 (PKT).
case, remains to be related to huge impacts as long as no other                     According to the present standard impact theories, the Pro-
tectonic mechanisms produce the spatial pattern seen in Fig. 1.                 cellarum and SPA impact should have completely expelled the
Therefore, LCP-rich sites surrounding the Procellarum basin could               feldspathic crust derived from the LMO (see Supplementary Infor-
be linked with the biggest impact on the Moon.                                  mation), whereas gravity data indicate a thin low-density crust in
   The observed coexistence of LCP and olivine (Fig. 1 and Her-                 the PKT and SPA (ref. 2). In addition, a previous multiband survey
cules crater in Fig. 2) would provide crucial clues to better under-            found crater central peaks and inner walls consisting of anorthositic
stand their formation process (see Supplementary Information).                  materials within SPA and PKT (ref. 28). Why does this feldspathic
It should be noted that LCP exposures are not found around                      crust exist if ancient gigantic impacts removed the primary crust
smaller olivine-bearing basins, such as Crisium and Moscovience18 .             crystalized from the LMO? The answer would lie in the vast volume
One simple interpretation is that those basins could be large                   of melt sheet produced by the impacts. The thick melt sheets, ex-
enough to excavate olivine-rich mantle, but too small to generate               tending hundreds of kilometres laterally and a few tens of kilometres
LCP through significant differentiation of the huge impact melt                 in depth, would have differentiated to generate secondary crust
sheets6,25 . Another possibility is that LCP is effectively formed in two       predominantly consisting of anorthosite6,29 (see Supplementary
successive impacts. In fact, Fig. 1 shows a significant concentration           Information). It is likely that the crust observed on PKT and SPA
of LCP-rich points on the multi-ring basins Apollo, Antoniadi and               at present is not a remnant of the primordial crust solidified from
Schrödinger in the SPA. Imbrium could be another example of                     the LMO, but a secondary product from the impact melt.
the second impact following the preceding larger impact, that is,
the Procellarum basin.                                                          Methods
   The coincidence between the global thorium concentration                     Throughout this paper, we focus on the wavelengths between 510 and 1,600 nm
and the circular outline of a putative Procellarum basin suggests               where we can get good spectra from both the Spectral Profiler18 and the Multiband
that a single giant impact could be responsible for producing the               Imager28 onboard KAGUYA/SELENE. From the complete Spectral Profiler data set
                                                                                including about 69 million points, we have selected the spectra with the following
Procellarum basin3 . An old and gigantic impact on the Procellarum              five conditions: the absolute radiance at 512 nm is larger than 23 W mm−1 m−2 sr−1 ;
region accounts for various aspects of the lunar dichotomy in a                 the difference in the continuum-removed reflectance Rc is smaller than 0.005
consistent way. First, it can produce the observed offset between the           between 971 and 980 nm (the continuum is calculated by an automatic algorithm
centre-of-mass and centre-of-figure by stripping off the feldspathic            as a tangent line to the target spectrum and continuum removal denotes the
upper crust on the impact side5 . As the minimum moment of                      division of the original spectrum by the continuum line); both the minimum
                                                                                and next-lowest Rc occur below 925 nm; the minimum Rc is smaller than 0.9;
inertia would be directed along the Earth–Moon axis by the                      Rc at 1,403 nm is larger than that at 1,508 nm. The first two conditions reject
spin–orbital evolution, the excavated hemisphere or the antipodal               the low-quality data. The rest are the criteria to pick up clear indications of LCP
would eventually face the Earth26 . If the impact occurred before               whose central wavelength of the 1 and 2 mm absorptions are located at shorter


NATURE GEOSCIENCE | VOL 5 | NOVEMBER 2012 | www.nature.com/naturegeoscience                                                                                               777
                                                        © 2012 Macmillan Publishers Limited. All rights reserved.
LETTERS                                                                                                    NATURE GEOSCIENCE DOI: 10.1038/NGEO1614

wavelengths compared with LCP (ref. 25). This screening procedure results in              19. Tompkins, S. & Pieters, C. M. Mineralogy of the lunar crust: Results from
528 data points in Fig. 1. The Spectral Profiler covered more than 20% of the                 Clementine. Meteor. Planet. Sci. 34, 25–41 (1999).
lunar surface even at the equator18 during the total 1.5-year mission period.             20. Spudis, P. D., Hawke, B. R. & Lucey, P. G. Proc. of 18th Lunar and Planetary
Subsequently, we have conducted an areal survey around the Spectral Profiler                  Science Conference 155–168 (Cambridge Univ. Press, 1988).
detection points by using Multiband Imager multispectral images with the same             21. Pieters, C. Noritic anorthosite is the most common highland rock type seen on
algorithm for Clementine UVVIS (ref. 31).                                                     the surface of the lunar nearside. Rev. Geophys. 24, 57–588 (1986).
     The original data can be found online at the SELENE data archive                     22. Jolliff, B. L. et al. Major lunar crustal terranes: Surface expressions and
(http://l2db.selene.darts.isas.jaxa.jp).                                                      crust-mantle origins. J. Geophys. Res. 105, 4197–4216 (2000).
                                                                                          23. Gancarz, A. J., Albee, A. L. & Chodos, A. A. Comparative petrology of Apollo
Received 15 May 2012; accepted 21 September 2012;                                             16 sample 68415 and Apollo 14 samples 14276 and 14310. Earth Planet. Sci. Lett.
published online 28 October 2012                                                              16, 307–330 (1972).
                                                                                          24. Shearer, C. K. & Papike, J. J. Early crustal building processes on the moon:
References                                                                                    Models for the petrogenesis of the magnesian suite. Geochim. Cosmochim. Acta
1. Head, J. W. III & Wilson, L. Lunar mare volcanism: Stratigraphy, eruption,                 69, 3445–3461 (2005).
    conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta           25. Nakamura, R. et al. Ultramafic impact melt sheet beneath the South Pole-Aitken
    56, 2155–2174 (1992).                                                                     basin on the Moon. Geophys. Res. Lett. 362, L22202 (2009).
2. Ishihara, Y. et al. Crustal thickness of the Moon: Implications for farside basin      26. Wieczorek, M. A. & Le Feuvre, M. Did a large impact reorient the Moon? Icarus
    structures. Geophys. Res. Lett. 36, L19202 (2009).                                        200, 358–366 (2009).
3. Feldman, W. C. et al. Global distribution of lunar composition: New results            27. Wieczorek, M. A. & Phillips, R. J. The Procellarum KREEP terrane:
    from Lunar Prospector. J. Geophys. Res. 107, 5016 (2002).                                 Implications for mare volcanism and lunar evolution. J. Geophys. Res. 105,
4. Whitaker, E. A. The lunar Procellarum basin, in multi-ring basins. LPSC12,                 20417–20430 (2000).
    Part A (1981).                                                                        28. Ohtake, M. et al. The global distribution of pure anorthosite on the Moon.
5. Byrne, C. J. A large basin on the near side of the Moon. Earth Moon Planets                Nature 461, 236–240 (2009).
    101, 153–158 (2007).                                                                  29. Mohit, P. S. & Phillips, R. J. Viscoelastic evolution of lunar multiring basins.
6. Hess, P. C. Petrogenesis of lunar troctolites. J. Geophys. Res. 99,                        J. Geophys. Res. 111, E12001 (2006).
    19083–19093 (1994).                                                                   30. Klima, R. L. et al. New insights into lunar petrology: Distribution and
7. Warren, P. H., Claeys, P. & Cedillo-Pardo, E. in The Cretaceous-Tertiary Event             composition of prominent low-Ca pyroxene exposures as observed by the
    and Other Catastrophes in Earth History. Boulder, Colorado (eds Ryder, G.,                Moon Mineralogy Mapper. J Geophys. Res. 116, E00G06 (2011).
    Fastovsky, D. & Gartner, S.) (Geological Society of America, Special Paper 307,       31. Isaacson, P. J. & Pieters, C. M. Northern imbrium noritic anomaly. J Geophys.
    1996).                                                                                    Res. 114, E09007 (2009).
8. Elkins-Tanton, L. T., Burgess, S. & Yin, Q-Z. The lunar magma ocean:
    Reconciling the solidification process with lunar petrology and geochronology.
    Earth Planet. Sci. Lett. 304, 326–336 (2011).                                         Acknowledgements
9. Matsunaga, T. et al. Discoveries on the lithology of lunar crater central peaks        The images and spectra used here were acquired by the JAXA lunar orbiter
    by SELENE Spectral Profiler. Geophys. Res. Lett. 35, L23201 (2008).                   KAGUYA/SELENE. We thank Fujitsu and the JASCO Corporation for their dedicated
10. Garrick-Bethell, I., Nimmo, F. & Wieczorek, M. A. Structure and formation of          efforts in developing the Spectral Profiler.
    the lunar farside highlands. Science 330, 949–951 (2010).
11. Jutzi, M. & Asphaug, E. Forming the lunar farside highlands by accretion of a         Author contributions
    companion moon. Nature 476, 69–72 (2011).
                                                                                          R.N. and S.Y. performed the spectral analysis and model calculations. S.Y., T.M., Y.Y.
12. Nimmo, F. et al. Implications of an impact origin for the martian hemispheric
                                                                                          and Y.O. carried out the data reduction and instrument calibration. S.Y. and N.H.
    dichotomy. Nature 453, 1220–1223 (2008).
                                                                                          contributed to the qualitative estimate of the impact melt production. T.H. contributed to
13. Cintala, M. J. & Grieve, R. A. F. Scaling impact-melt and crater dimensions:
                                                                                          the comparison of the spaceborne lunar spectra and laboratory spectra of returned Apollo
    Implications for the lunar cratering record. Meteor. Planet. Sci. 33,
                                                                                          samples. Y.I., T.M., H.T. and K.S. solidified the results of this paper from geophysical and
    889–912 (1998).
                                                                                          mineralogical points of view. T.M. and M.O. served as principal investigators to acquire
14. Lucey, P. G., Taylor, G. J., Hawke, B. R. & Spudis, P. D. FeO and TiO2
                                                                                          the images and spectra from the Spectral Profiler and the Multiband Imager onboard
    concentrations in the South Pole-Aitken basin—implications for mantle
                                                                                          KAGUYA. R.N., S.Y. and T.M. worked jointly to write the paper. All authors discussed
    composition and basin formation. J. Geophys. Res. 103, 3701–3708 (1998).
                                                                                          the interpretation of the results and commented on the manuscript.
15. Pieters, C. M. et al. Rock types of South Pole-Aitken basin and extent of basaltic
    volcanism. J. Geophys. Res. 106, 28001–28022 (2000).
16. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical                  Additional information
    evolution of the Moon’s interior: Implications for the onset of mare volcanism.       Supplementary information is available in the online version of the paper. Reprints and
    Earth Planet. Sci. Lett. 134, 501–514 (1995).                                         permissions information is available online at www.nature.com/reprints. Correspondence
17. Spray, J. G., Thompson, L. M., Biren, M. B. & O’Connell-Cooper, C. The                and requests for materials should be addressed to R.N.
    Manicouagan impact structure as a terrestrial analogue site for lunar and
    martian planetary science. Planet. Space Sci. 58, 538–551 (2010).
18. Yamamoto, S. et al. Possible mantle origin of olivine around lunar impact             Competing financial interests
    basins detected by SELENE. Nature Geosci. 3, 533–536 (2010).                          The authors declare no competing financial interests.




778                                                                                      NATURE GEOSCIENCE | VOL 5 | NOVEMBER 2012 | www.nature.com/naturegeoscience
                                                               © 2012 Macmillan Publishers Limited. All rights reserved.

Mais conteúdo relacionado

Mais de Sérgio Sacani

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...Sérgio Sacani
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Sérgio Sacani
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRSérgio Sacani
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...Sérgio Sacani
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNSérgio Sacani
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldSérgio Sacani
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillatingSérgio Sacani
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsSérgio Sacani
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Sérgio Sacani
 

Mais de Sérgio Sacani (20)

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious World
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillating
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jets
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
 

Compositional evidence for_an_impact_origin_of_moons_procellarum_basin

  • 1. LETTERS PUBLISHED ONLINE: 28 OCTOBER 2012 | DOI: 10.1038/NGEO1614 Compositional evidence for an impact origin of the Moon’s Procellarum basin Ryosuke Nakamura1 *, Satoru Yamamoto2 , Tsuneo Matsunaga2 , Yoshiaki Ishihara2 , Tomokatsu Morota3 , Takahiro Hiroi4 , Hiroshi Takeda5 , Yoshiko Ogawa6 , Yasuhiro Yokota2 , Naru Hirata6 , Makiko Ohtake7 and Kazuto Saiki8 The asymmetry between the nearside and farside of the evolution and thick impact ejecta. On the other hand, we can Moon is evident in the distribution of mare basalt1 , crustal expect surviving compositional evidence of the mantle exposures thickness2 and concentrations of radioactive elements3 , but and/or large-scale impact melt pool because such an enormous its origin remains controversial. According to one attractive impact must have completely excavated the feldspathic upper crust scenario, a gigantic impact early in the Moon’s history and produced a tremendous amount of impact melt13 . Previous produced the observed dichotomy; the putative 3,000-km- multispectral global surveys14,15 focused on olivine-rich lithologies diameter Procellarum basin has been suggested to be a relic as possible mantle exposures because equilibrium crystallization of this ancient impact3–5 . Low-calcium pyroxene can be formed and/or density overturn of the lunar magma ocean (LMO) are during an impact by melting a mixture of crust and mantle supposed to produce olivine-rich mantle16 . The upper mantle, materials6,7 or by excavating differentiated cumulates from the however, would predominantly consist of low-calcium pyroxene lunar magma ocean8 . Therefore, the association of low-calcium (LCP) if the LMO experienced significant fractional crystallization pyroxene with a lunar basin could indicate an impact origin. before the onset of plagioclace floatation8 . The differentiation of Here we use spectral mapping data from KAGUYA/SELENE the huge impact melt provides another chance to generate LCP-rich (ref. 9) to show that low-calcium pyroxene is concentrated layers even from olivine-rich mantle6,7,17 . Here, therefore, we have around two established impact structures, the South Pole– targeted the LCP as a diagnostic mafic mineral linked with huge Aitken and Imbrium basins. In addition, we detect a high impacts and searched for the spectral signature by using the multi- concentration of low-calcium pyroxene at Procellarum, which and hyperspectral data obtained by KAGUYA/SELENE (refs 8,18). supports an impact origin of the ancient basin. We propose Figure 1 indicates the global distribution of the mafic exposures that, in forming the largest known basin on the Moon, the dominated by LCP. It should be emphasized that we have selected impact excavated the nearside’s primary feldspathic crust, the spectra whose absorption depth is larger than 10% (see Methods which derived from the lunar magma ocean. A secondary and Supplementary Fig. S2). This selection rule excludes ubiquitous feldspathic crust would have later recrystallized from the sea of noritic anorthosite19 and heavily space-weathered materials with impact melt, leading to two distinct sides of the Moon. weaker absorptions. Localized concentrations do occur around the The dichotomy of the Earth’s Moon was discovered by the two established largest impact structures, the Imbrium basin and farside images taken by Luna 3 in 1959. Basaltic mare covers only the South Pole–Aitken (SPA) basin. Most of the rest are encircling a few per cent of the farside, compared with roughly 30% on the the putative Procellarum basin. It has been widely supposed that the near side1 . Subsequent spaceborne observations revealed the front– lunar lower crust has a globally LCP-rich noritic composition19–21 , back asymmetry of the crustal thickness2 and the concentration but few points are present on the feldspathic highland terrane22 . of radioactive elements on the nearside3 . Several mechanisms As illustrated in Figs 2 and 3 and Supplementary Fig. S1, most of have been proposed to produce this dichotomy, such as spatially the LCP-rich materials are exposed on the inner wall or impact inhomogeneous tidal heating in the Moon-forming stage10 or ejecta of fresh craters. If we apply the empirical algorithm for these accretion of a companion Moon11 . Recently, it was found that the multiband images19 , all of the exposures would comprise more north–south crustal dichotomy of Mars can be naturally explained than 30% mafic components. Figure 4 compares the spectrum of by a giant impact in the ancient age12 . Similarly, the Moon’s Apollo sample 14310 (ref. 23) with that of the LCP-rich deposit dichotomy could have resulted from a giant impact. The putative closest to the sampling point. Also plotted are two representative Procellarum basin, whose diameter is more than 3,000 km with LCP-rich spectra: Plato M on the northern rim of the Imbrium the centre around (N15, W23), would be the most plausible basin and Antoniadi in the SPA. The rock 14310, collected from candidate for the ancient impact event3–5 . The characteristic the Fra Mauro formation as Imbrium ejecta, is supposed to be topographical impact-basin structures must have been obliterated noritic impact melt. Their striking spectral similarities suggest that by the fluidal nature of the huge impact melt sheet, viscoelastic the composition of 14310 (plagioclace = 59%, LCP = 31%) could 1 InformationTechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan, 2 Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan, 3 Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan, 4 Department of Geological Sciences, Brown University, Providence, Rhode Island 02912, USA, 5 Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, 6 The University of Aizu, Ikki-machi, Aizuwakamatsu, Fukushima 965-8580, Japan, 7 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshino-dai, Sagamihara, Kanagawa 229-8515, Japan, 8 Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan. *e-mail: r.nakamura@aist.go.jp. NATURE GEOSCIENCE | VOL 5 | NOVEMBER 2012 | www.nature.com/naturegeoscience 775 © 2012 Macmillan Publishers Limited. All rights reserved.
  • 2. LETTERS NATURE GEOSCIENCE DOI: 10.1038/NGEO1614 Figure 1 | Location map of the LCP-rich exposures on the Moon. The blue triangles and red crosses denote the sites shown in Figs 2 and 4, respectively, and the rest are shown by yellow diamonds. The olivine-rich exposures18 are represented by green squares for reference. We could confirm the presence of many LCP-rich sites in the SPA basin19,25,30 (Apollo, Bhaba, Finsen, Lyman, Antoniadi, Zeeman and Schrödinger). On the nearside, many LCP-rich sites are located on the northern Imbrium noritic region31 , Bullialdus30 and Aratus20 , as previously identified by ground-based telescopes and space missions. E A H2 H3 H1 Figure 2 | False-colour composite images of four craters encircling the Procellarum basin. The upper panels show an unnamed crater near Aston (left: W85.6, N33.5) and Epigenes F (right: W8.1, N67.0); the lower panels indicate Heinsius (left: W18.0, S39.7) and Hercules (right: E42.0, N50.3). The image widths are 8 km and reflectance factors are assigned to red (750 nm), green (900 nm) and blue (1,250 nm). The labels show the locations of the Multiband Imager’s spectra shown in Fig. 3. 776 NATURE GEOSCIENCE | VOL 5 | NOVEMBER 2012 | www.nature.com/naturegeoscience © 2012 Macmillan Publishers Limited. All rights reserved.
  • 3. NATURE GEOSCIENCE DOI: 10.1038/NGEO1614 LETTERS 0.25 1.0 Reflectance after continuum removal 0.20 0.9 REFF 0.15 0.8 A (Aston) Apollo 14310 E (Epigenes F) Fra Mauro 0.10 H1 (Heinsius) 0.7 Plato M H2 (Hercules) Antoniadi H3 (Hercules) 0.05 0.6 500 1,000 1,500 600 800 1,000 1,200 1,400 Wavelength (nm) Wavelength (nm) Figure 3 | Multiband spectra of the four craters in Fig. 2. Reflectance Figure 4 | Continuum-removed spectra of the Apollo sample 14310 factor (REFF) measured by the Multiband Imager onboard (ref. 23) and that of the nearest LCP-rich point in Fra Mauro. Also plotted KAGUYA/SELENE (ref. 28). The pinkish areas (A, E, H1, H2) in Fig. 2 show are spectra for Plato M and Antoniadi25 . Their footprint locations are absorption minima at 900 nm, representing LCP-dominant compositions, denoted by red crosses in Fig. 1. All of the spectra show short central whereas the red H3 region shows an absorption minimum at 1,050 nm, wavelengths (<925 nm) for the 1-µm absorption bands. The 1.3 µm indicative of an exposure of olivine. absorptions are very faint, whereas the 2-µm absorption bands are evident within the limited wavelength coverage. All of these are characteristic be analogous to that of the LCP-rich deposits in Fig. 1. Model features of LCP (ref. 25). The flat bottom of the 1 mm absorption band for calculations of radiative transfer also support their compositional 14310 possibly indicates poor data quality of the laboratory measurements. similarity (see Supplementary Information). As the depths of excavation and melting are larger than the complete crystallization of the LMO, the resulting impact melt maximum lunar crustal thickness, a tremendous amount of impact must have incorporated urKREEP, the late-stage liquid from melt would be formed by assimilating the feldspathic lunar crust LMO crystallization6,7 . In contrast, a later impact on the present and mafic-rich upper mantle13 . The differentiation of this melt SPA region would show a lower KREEP concentration, provided would have produced the LCP-dominant lithology6,7 . Alternatively, urKREEP had finished lateral migration to the Procellarum and/or LCP-rich exposures could be composed of magnesian-suite vertical settling with mantle overturn16 . The Procellarum impact plutons24 or ultramafic LMO cumulates8,25 excavated by huge itself might have triggered the lateral migration. The front–back impacts. The magnesian-suite parent magma may have selectively asymmetry of the mare distribution could have resulted from intruded into the rim of Imbrium and SPA where the crust was the different crustal thickness2 and/or KREEP concentration in thinned by large impacts. The origin of the LCP-rich rocks, in every Procellarum KREEP terrane27 (PKT). case, remains to be related to huge impacts as long as no other According to the present standard impact theories, the Pro- tectonic mechanisms produce the spatial pattern seen in Fig. 1. cellarum and SPA impact should have completely expelled the Therefore, LCP-rich sites surrounding the Procellarum basin could feldspathic crust derived from the LMO (see Supplementary Infor- be linked with the biggest impact on the Moon. mation), whereas gravity data indicate a thin low-density crust in The observed coexistence of LCP and olivine (Fig. 1 and Her- the PKT and SPA (ref. 2). In addition, a previous multiband survey cules crater in Fig. 2) would provide crucial clues to better under- found crater central peaks and inner walls consisting of anorthositic stand their formation process (see Supplementary Information). materials within SPA and PKT (ref. 28). Why does this feldspathic It should be noted that LCP exposures are not found around crust exist if ancient gigantic impacts removed the primary crust smaller olivine-bearing basins, such as Crisium and Moscovience18 . crystalized from the LMO? The answer would lie in the vast volume One simple interpretation is that those basins could be large of melt sheet produced by the impacts. The thick melt sheets, ex- enough to excavate olivine-rich mantle, but too small to generate tending hundreds of kilometres laterally and a few tens of kilometres LCP through significant differentiation of the huge impact melt in depth, would have differentiated to generate secondary crust sheets6,25 . Another possibility is that LCP is effectively formed in two predominantly consisting of anorthosite6,29 (see Supplementary successive impacts. In fact, Fig. 1 shows a significant concentration Information). It is likely that the crust observed on PKT and SPA of LCP-rich points on the multi-ring basins Apollo, Antoniadi and at present is not a remnant of the primordial crust solidified from Schrödinger in the SPA. Imbrium could be another example of the LMO, but a secondary product from the impact melt. the second impact following the preceding larger impact, that is, the Procellarum basin. Methods The coincidence between the global thorium concentration Throughout this paper, we focus on the wavelengths between 510 and 1,600 nm and the circular outline of a putative Procellarum basin suggests where we can get good spectra from both the Spectral Profiler18 and the Multiband that a single giant impact could be responsible for producing the Imager28 onboard KAGUYA/SELENE. From the complete Spectral Profiler data set including about 69 million points, we have selected the spectra with the following Procellarum basin3 . An old and gigantic impact on the Procellarum five conditions: the absolute radiance at 512 nm is larger than 23 W mm−1 m−2 sr−1 ; region accounts for various aspects of the lunar dichotomy in a the difference in the continuum-removed reflectance Rc is smaller than 0.005 consistent way. First, it can produce the observed offset between the between 971 and 980 nm (the continuum is calculated by an automatic algorithm centre-of-mass and centre-of-figure by stripping off the feldspathic as a tangent line to the target spectrum and continuum removal denotes the upper crust on the impact side5 . As the minimum moment of division of the original spectrum by the continuum line); both the minimum and next-lowest Rc occur below 925 nm; the minimum Rc is smaller than 0.9; inertia would be directed along the Earth–Moon axis by the Rc at 1,403 nm is larger than that at 1,508 nm. The first two conditions reject spin–orbital evolution, the excavated hemisphere or the antipodal the low-quality data. The rest are the criteria to pick up clear indications of LCP would eventually face the Earth26 . If the impact occurred before whose central wavelength of the 1 and 2 mm absorptions are located at shorter NATURE GEOSCIENCE | VOL 5 | NOVEMBER 2012 | www.nature.com/naturegeoscience 777 © 2012 Macmillan Publishers Limited. All rights reserved.
  • 4. LETTERS NATURE GEOSCIENCE DOI: 10.1038/NGEO1614 wavelengths compared with LCP (ref. 25). This screening procedure results in 19. Tompkins, S. & Pieters, C. M. Mineralogy of the lunar crust: Results from 528 data points in Fig. 1. The Spectral Profiler covered more than 20% of the Clementine. Meteor. Planet. Sci. 34, 25–41 (1999). lunar surface even at the equator18 during the total 1.5-year mission period. 20. Spudis, P. D., Hawke, B. R. & Lucey, P. G. Proc. of 18th Lunar and Planetary Subsequently, we have conducted an areal survey around the Spectral Profiler Science Conference 155–168 (Cambridge Univ. Press, 1988). detection points by using Multiband Imager multispectral images with the same 21. Pieters, C. Noritic anorthosite is the most common highland rock type seen on algorithm for Clementine UVVIS (ref. 31). the surface of the lunar nearside. Rev. Geophys. 24, 57–588 (1986). The original data can be found online at the SELENE data archive 22. Jolliff, B. L. et al. Major lunar crustal terranes: Surface expressions and (http://l2db.selene.darts.isas.jaxa.jp). crust-mantle origins. J. Geophys. Res. 105, 4197–4216 (2000). 23. Gancarz, A. J., Albee, A. L. & Chodos, A. A. Comparative petrology of Apollo Received 15 May 2012; accepted 21 September 2012; 16 sample 68415 and Apollo 14 samples 14276 and 14310. Earth Planet. Sci. Lett. published online 28 October 2012 16, 307–330 (1972). 24. Shearer, C. K. & Papike, J. J. Early crustal building processes on the moon: References Models for the petrogenesis of the magnesian suite. Geochim. Cosmochim. Acta 1. Head, J. W. III & Wilson, L. Lunar mare volcanism: Stratigraphy, eruption, 69, 3445–3461 (2005). conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 25. Nakamura, R. et al. Ultramafic impact melt sheet beneath the South Pole-Aitken 56, 2155–2174 (1992). basin on the Moon. Geophys. Res. Lett. 362, L22202 (2009). 2. Ishihara, Y. et al. Crustal thickness of the Moon: Implications for farside basin 26. Wieczorek, M. A. & Le Feuvre, M. Did a large impact reorient the Moon? Icarus structures. Geophys. Res. Lett. 36, L19202 (2009). 200, 358–366 (2009). 3. Feldman, W. C. et al. Global distribution of lunar composition: New results 27. Wieczorek, M. A. & Phillips, R. J. The Procellarum KREEP terrane: from Lunar Prospector. J. Geophys. Res. 107, 5016 (2002). Implications for mare volcanism and lunar evolution. J. Geophys. Res. 105, 4. Whitaker, E. A. The lunar Procellarum basin, in multi-ring basins. LPSC12, 20417–20430 (2000). Part A (1981). 28. Ohtake, M. et al. The global distribution of pure anorthosite on the Moon. 5. Byrne, C. J. A large basin on the near side of the Moon. Earth Moon Planets Nature 461, 236–240 (2009). 101, 153–158 (2007). 29. Mohit, P. S. & Phillips, R. J. Viscoelastic evolution of lunar multiring basins. 6. Hess, P. C. Petrogenesis of lunar troctolites. J. Geophys. Res. 99, J. Geophys. Res. 111, E12001 (2006). 19083–19093 (1994). 30. Klima, R. L. et al. New insights into lunar petrology: Distribution and 7. Warren, P. H., Claeys, P. & Cedillo-Pardo, E. in The Cretaceous-Tertiary Event composition of prominent low-Ca pyroxene exposures as observed by the and Other Catastrophes in Earth History. Boulder, Colorado (eds Ryder, G., Moon Mineralogy Mapper. J Geophys. Res. 116, E00G06 (2011). Fastovsky, D. & Gartner, S.) (Geological Society of America, Special Paper 307, 31. Isaacson, P. J. & Pieters, C. M. Northern imbrium noritic anomaly. J Geophys. 1996). Res. 114, E09007 (2009). 8. Elkins-Tanton, L. T., Burgess, S. & Yin, Q-Z. The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011). Acknowledgements 9. Matsunaga, T. et al. Discoveries on the lithology of lunar crater central peaks The images and spectra used here were acquired by the JAXA lunar orbiter by SELENE Spectral Profiler. Geophys. Res. Lett. 35, L23201 (2008). KAGUYA/SELENE. We thank Fujitsu and the JASCO Corporation for their dedicated 10. Garrick-Bethell, I., Nimmo, F. & Wieczorek, M. A. Structure and formation of efforts in developing the Spectral Profiler. the lunar farside highlands. Science 330, 949–951 (2010). 11. Jutzi, M. & Asphaug, E. Forming the lunar farside highlands by accretion of a Author contributions companion moon. Nature 476, 69–72 (2011). R.N. and S.Y. performed the spectral analysis and model calculations. S.Y., T.M., Y.Y. 12. Nimmo, F. et al. Implications of an impact origin for the martian hemispheric and Y.O. carried out the data reduction and instrument calibration. S.Y. and N.H. dichotomy. Nature 453, 1220–1223 (2008). contributed to the qualitative estimate of the impact melt production. T.H. contributed to 13. Cintala, M. J. & Grieve, R. A. F. Scaling impact-melt and crater dimensions: the comparison of the spaceborne lunar spectra and laboratory spectra of returned Apollo Implications for the lunar cratering record. Meteor. Planet. Sci. 33, samples. Y.I., T.M., H.T. and K.S. solidified the results of this paper from geophysical and 889–912 (1998). mineralogical points of view. T.M. and M.O. served as principal investigators to acquire 14. Lucey, P. G., Taylor, G. J., Hawke, B. R. & Spudis, P. D. FeO and TiO2 the images and spectra from the Spectral Profiler and the Multiband Imager onboard concentrations in the South Pole-Aitken basin—implications for mantle KAGUYA. R.N., S.Y. and T.M. worked jointly to write the paper. All authors discussed composition and basin formation. J. Geophys. Res. 103, 3701–3708 (1998). the interpretation of the results and commented on the manuscript. 15. Pieters, C. M. et al. Rock types of South Pole-Aitken basin and extent of basaltic volcanism. J. Geophys. Res. 106, 28001–28022 (2000). 16. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical Additional information evolution of the Moon’s interior: Implications for the onset of mare volcanism. Supplementary information is available in the online version of the paper. Reprints and Earth Planet. Sci. Lett. 134, 501–514 (1995). permissions information is available online at www.nature.com/reprints. Correspondence 17. Spray, J. G., Thompson, L. M., Biren, M. B. & O’Connell-Cooper, C. The and requests for materials should be addressed to R.N. Manicouagan impact structure as a terrestrial analogue site for lunar and martian planetary science. Planet. Space Sci. 58, 538–551 (2010). 18. Yamamoto, S. et al. Possible mantle origin of olivine around lunar impact Competing financial interests basins detected by SELENE. Nature Geosci. 3, 533–536 (2010). The authors declare no competing financial interests. 778 NATURE GEOSCIENCE | VOL 5 | NOVEMBER 2012 | www.nature.com/naturegeoscience © 2012 Macmillan Publishers Limited. All rights reserved.