SlideShare uma empresa Scribd logo
1 de 42
LA CORRIENTE ELÉCTRICA 3º E.S.O DEPARTAMENTO DE TECNOLOGIA IES JOSE ISBERT De Tarazona de la Mancha
1.-LA CORRIENTE ELÉCTRICA ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
[object Object],[object Object],[object Object],Circuito hidráulico : Cuando la llave de paso no interrumpe el circuito, la bomba mueve el líquido hasta la rueda hidraáulica y la hace girar. El agua regresa a la bomba por el circuito de retorno y la bomba la vuelve a impulsar de forma  continua . Circuito eléctrico : Cuando el interruptor no interrumpe el circuito, el generador mueve las cargas (pone las cargas a un potencial alto). Éstas llegan al receptor, se enciende la lámpara (cae el potencial de las cargas) y el generador vuelve a poner las cargas a un potencial alto, con lo que repiten el recorrido de forma  continua.
CORRIENTE ALTERNA: Circuito hidráulico : Cuando la llave de paso no interrumpe el circuito, podemos mover el líquido empujando el émbolo hacia arriba. La rueda hidráulica gira en sentido contrario a las agujas del reloj. Si movemos el émbolo hacia abajo, cambia el sentido del líquido, por lo que la rueda girará en sentido contrario (sentido de las agujas del reloj). Por tanto, moviendo el émbolo hacia arriba y hacia abajo obtenemos un movimiento de tipo  alterno . Circuito eléctrico : Cuando el interruptor no interrumpe el circuito, el generador de corriente alterna mueve las cargas en uno y otro sentido y con una intensidad variable.
2.-MAGNITUDES ELÉCTRICAS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
3.- LEY DE OHM ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
b) Usando el siguiente triángulo:
4.- ASOCIACIÓN DE RESISTENCIAS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],De tal modo que la tensión entre el principio del primer receptor y la salida del ultimo receptor es V y se cumple que:
[object Object],[object Object],[object Object],RT = R1 + R2 + ....... + Rn
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],R 1 R 2 R 3 V Problema Tipo: Procedimiento de cálculo:
12V R 1 =3 Ω 1º) Cálculo de resistencia equivalente : R 2 =2 Ω R 3 =4 Ω R 1 =3 Ω R 2 =2 Ω R 3 =4 Ω R  eq = 9 Ω Se obtiene así el circuito elemental Veamos este procedimiento de cálculo con un ejemplo numérico
[object Object],R  eq = 9 Ω + - + - 3º) Cálculo de las tensiones a que se encuentran los receptores: 12V R 1 =3 Ω R 2 =2 Ω R 3 =4 Ω V 1 V 2 V 3 Obsérvese que se cumple la ley de las mallas de Kirchoff: I
[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Problema Tipo Dado un generador  (pila) conectado a una asociación de receptores en paralelo (de los cuales conocemos o podemos conocer  su resistencia eléctrica),  se suele pedir: a) Intensidad de corriente eléctrica  (I)  que recorre el circuito. b) Intensidad de corriente eléctrica que atraviesa a cada receptor (I1,I2,I3) c) Tensión a que están los bornes de cada receptor. d) Potencia que consume cada  receptor e) Potencia que suministra el  generador (pila) Procedimiento de cálculo
[object Object],12V R 1 =3 Ω R 2 =2 Ω R 3 =4 Ω 1º) Cálculo de la resistencia equivalente : 3 Ω 2 Ω 4 Ω R eq La resistencia equivalente se obtendrá del modo siguiente:
2º) Calculo de I aplicando la ley de Ohm, al circuito elemental : R  eq = 0,92  Ω + - + - I 3º) Calculo de las corrientes que atraviesan a cada receptor   12V I 3 I 2 I 1 I T Sabemos que cada uno de los receptores se encuentran a la misma tensión  siendo ésta la que proporciona el generador o pila. Por tanto: siendo las intensidades que pasan por cada receptor: pudiéndose comprobar que se cumple la ley de los nudos de Kirchoff:
[object Object],[object Object],[object Object],[object Object]
4.3.- ASOCIACIÓN MIXTA.- Como su propio nombre indica se trata de una mezcla de elementos en serie y en paralelo. En primer lugar hemos de simplificar aquellos elementos eléctricos que estén, por un lado, en serie, y aquellos otros que lo estén en paralelo, sustituyéndolos por sus correspondientes equivalentes. Una vez hecho esto, obtendremos otro u otros circuitos mas simples (en configuración serie) y por tanto también lo podremos simplificar sustituyendo por el correspondiente equivalente. Por ultimo debemos llegar al  CIRCUITO ELEMENTAL. Procedimiento de cálculo
V=12 V R 4 =2  Ω   R 5 =3  Ω   R 1 =8  Ω   R 2 =10  Ω   R 3 =5  Ω   MONTAJE REAL DEL CIRCUITO ESQUEMA ELECTRICO  Veamos con un ejemplo los pasos a seguir para resolver un circuito de este tipo:
PASO 1 Analizar qué elementos eléctricos están en serie y cuales en paralelo Lámparas conectadas en serie Lámparas conectadas en paralelo
PASO 2 Calcularemos la  RESISTENCIA EQUIVALENTE  de las  lámparas conectadas en SERIE y sustituiremos  las dos lámparas por otra lámpara equivalente que tenga una resistencia en ohmios igual al valor que hemos calculado R 4-5 = R 4   +  R 5 R  = R  + R  4-5 4 5 R 4   R 5
PASO 3 Calcularemos la  RESISTENCIA EQUIVALENTE  de las  lámparas conectadas en PARALELO y sustituiremos  las tres lámparas por otra lámpara equivalente que tenga una resistencia en ohmios igual al valor que hemos calculado R 1-2-3 = 1 1 1 ___ ___ ___ R R R 1 2 3 + + ___ 1
PASO 4 Sustituimos tanto las  lámparas conectadas en SERIE como en PARALELO por sus lámparas equivalentes (y sus respectivas Resistencias equivalentes) obteniendose otro circuito más simplificado V=12 V R’ 1-2-3   R 4-5 CIRCUITO REAL SIMPLIFICADO
PASO 5 El  circuito simplificado  es un circuito SERIE. Por tanto procederemos a volver a calcular una nueva resistencia  equivalente a las dos. R  = R  + R'  eqv 4-5 1-2-3 R  = 7,35 eqv Ω R  = 5 + 2,35 Ω eqv
PASO 6 Sustituimos nuevamente las  lámparas conectadas en SERIE  por su lámpara equivalente (y su respectiva Resistencia equivalentes) obteniéndose el  circuito elemental CIRCUITO ELEMENTAL ESQUEMA ELEMENTAL
PASO 7 Dado el  circuito elemental , calcularemos en él, la intensidad total que proporciona la pila y que circula por el circuito, para lo cual aplicaremos la ley de Ohm  Circuito  elemental calculamos Intensidad  eléctrica ( I ) Por la fórmula V = I ·  R I I I = ___ V R eqv = I = ___ 12 7,35 1,63  A + - V Reqv I INTENSIDAD TOTAL
- Para seguir calculando el problema debemos regresar al circuito inmediatamente anterior al circuito elemental + - V Reqv I
- Para calcular la tensión en cada resistencia, aplicaremos nuevamente  la ley de Ohm + - + - V R4-5 V R1-2-3 I I V= I· R Ley de Ohm
Para seguir calculando el problema debemos regresar al circuito inmediatamente anterior al circuito simplificado; en nuestro caso sería el circuito original y más complejo.
Empezaremos por calcular las intensidades que pasan por las lámparas en paralelo. Debemos aplicar la ley de Ohm V=I·R Y para  ello debemos conocer las tensiones V R1 ; V R2   y V R3  pero como están en paralelo… V R1 = V R2  = V R3  = V R1-2-3  =3,83 V Entonces despejando I de la ley de Ohm Observa que se cumple:
Ahora queremos calcular las tensiones que hay en las resistencias en serie R 4  y R 5 . Para ello volvemos a aplicar la ley de Ohm. V=I· R V R4 V R5 I + + - - -
V R4 + - V R5 + - V R1 + -
5.- TABLAS DE VERDAD ,[object Object],[object Object],[object Object],[object Object],INTERRUPTOR BOMBILLA 1 ON 0 OFF CONMUTADOR-A- CONMUTADOR-B- BOMBILLA 0 0 ON 0 1 OFF 1 0 OFF 1 1 ON
[object Object],[object Object],[object Object]
[object Object],G) Asociación de interruptores en mixto. H) Circuito de mando de un zumbador o timbre. I) Circuito inversor de giro de un motor mediante un conmutador de cruce.

Mais conteúdo relacionado

Mais procurados

Circuitos calculo
Circuitos calculoCircuitos calculo
Circuitos calculo
Raul Abad
 
Potencia electrica (sa4)
Potencia electrica (sa4)Potencia electrica (sa4)
Potencia electrica (sa4)
SoloApuntes
 
Examen del tema 6 de electricidad
Examen del tema 6 de electricidadExamen del tema 6 de electricidad
Examen del tema 6 de electricidad
amalatecnologia
 
Ejercicios de corriente alterna monofásica
Ejercicios de corriente alterna monofásicaEjercicios de corriente alterna monofásica
Ejercicios de corriente alterna monofásica
robertic1000
 
Corriente Resistencia
Corriente ResistenciaCorriente Resistencia
Corriente Resistencia
Diana Coello
 
Conexiones de varios receptores en un mismo circuito
Conexiones de varios receptores en un mismo circuitoConexiones de varios receptores en un mismo circuito
Conexiones de varios receptores en un mismo circuito
Johann Nieto
 
Resolución de circuitos resistivos en corriente continua
Resolución de circuitos resistivos en corriente continuaResolución de circuitos resistivos en corriente continua
Resolución de circuitos resistivos en corriente continua
Francesc Perez
 
Ejercicioscircuitosresueltos
EjercicioscircuitosresueltosEjercicioscircuitosresueltos
Ejercicioscircuitosresueltos
Cceilia Palominos
 

Mais procurados (18)

Circuitos calculo
Circuitos calculoCircuitos calculo
Circuitos calculo
 
Potencia electrica (sa4)
Potencia electrica (sa4)Potencia electrica (sa4)
Potencia electrica (sa4)
 
Trabajo De Analisis Vdd
Trabajo De Analisis VddTrabajo De Analisis Vdd
Trabajo De Analisis Vdd
 
4medio: Unidad1: Electricidad
4medio: Unidad1: Electricidad4medio: Unidad1: Electricidad
4medio: Unidad1: Electricidad
 
CIRCUITOS DE CORRIENTE ELECTRICA
CIRCUITOS DE CORRIENTE ELECTRICACIRCUITOS DE CORRIENTE ELECTRICA
CIRCUITOS DE CORRIENTE ELECTRICA
 
Electrodinámica 2010
Electrodinámica 2010Electrodinámica 2010
Electrodinámica 2010
 
Examen del tema 6 de electricidad
Examen del tema 6 de electricidadExamen del tema 6 de electricidad
Examen del tema 6 de electricidad
 
Ejercicios de corriente alterna monofásica
Ejercicios de corriente alterna monofásicaEjercicios de corriente alterna monofásica
Ejercicios de corriente alterna monofásica
 
fundamentos electronica - unidad 1
fundamentos electronica - unidad 1fundamentos electronica - unidad 1
fundamentos electronica - unidad 1
 
Circuitos electros 1
Circuitos electros 1Circuitos electros 1
Circuitos electros 1
 
práctica de electrodinámica
práctica de electrodinámicapráctica de electrodinámica
práctica de electrodinámica
 
Corriente Resistencia
Corriente ResistenciaCorriente Resistencia
Corriente Resistencia
 
Circuitos leyes
Circuitos leyesCircuitos leyes
Circuitos leyes
 
Ejercicios ley-de-ohm
Ejercicios ley-de-ohmEjercicios ley-de-ohm
Ejercicios ley-de-ohm
 
Conexiones de varios receptores en un mismo circuito
Conexiones de varios receptores en un mismo circuitoConexiones de varios receptores en un mismo circuito
Conexiones de varios receptores en un mismo circuito
 
Resolución de circuitos resistivos en corriente continua
Resolución de circuitos resistivos en corriente continuaResolución de circuitos resistivos en corriente continua
Resolución de circuitos resistivos en corriente continua
 
Circuitos
CircuitosCircuitos
Circuitos
 
Ejercicioscircuitosresueltos
EjercicioscircuitosresueltosEjercicioscircuitosresueltos
Ejercicioscircuitosresueltos
 

Semelhante a Teoría

Fy Q1 Tema 9 Corriente Electrica
Fy Q1 Tema 9 Corriente ElectricaFy Q1 Tema 9 Corriente Electrica
Fy Q1 Tema 9 Corriente Electrica
guest96950
 
Conocimientos basicos de electricidad
Conocimientos basicos de electricidadConocimientos basicos de electricidad
Conocimientos basicos de electricidad
Fedor Bancoff R.
 
Electricidad completo
Electricidad completoElectricidad completo
Electricidad completo
Julio Sanchez
 
Resumen campo eléctrico y electricidad
Resumen campo eléctrico y electricidadResumen campo eléctrico y electricidad
Resumen campo eléctrico y electricidad
Arturo Blanco
 
ELECTRODINAMICA.pptx
ELECTRODINAMICA.pptxELECTRODINAMICA.pptx
ELECTRODINAMICA.pptx
cochachi
 
Principios de electricidad 1 resaltado
Principios de electricidad 1 resaltadoPrincipios de electricidad 1 resaltado
Principios de electricidad 1 resaltado
LERUAR
 

Semelhante a Teoría (20)

La corriente eléctrica
La corriente eléctricaLa corriente eléctrica
La corriente eléctrica
 
Fy Q1 Tema 9 Corriente Electrica
Fy Q1 Tema 9 Corriente ElectricaFy Q1 Tema 9 Corriente Electrica
Fy Q1 Tema 9 Corriente Electrica
 
Circuitos.en.corriente.continua
Circuitos.en.corriente.continuaCircuitos.en.corriente.continua
Circuitos.en.corriente.continua
 
Conocimientos basicos de electricidad
Conocimientos basicos de electricidadConocimientos basicos de electricidad
Conocimientos basicos de electricidad
 
Electricidad completo
Electricidad completoElectricidad completo
Electricidad completo
 
PRINCIPIOS Y FUNDAMENTOS DE ELECTRICIDAD semana 03.pdf
PRINCIPIOS Y FUNDAMENTOS DE ELECTRICIDAD semana 03.pdfPRINCIPIOS Y FUNDAMENTOS DE ELECTRICIDAD semana 03.pdf
PRINCIPIOS Y FUNDAMENTOS DE ELECTRICIDAD semana 03.pdf
 
PRINCIPIOS Y FUNDAMENTOS DE ELECTRICIDAD semana 03.pdf
PRINCIPIOS Y FUNDAMENTOS DE ELECTRICIDAD semana 03.pdfPRINCIPIOS Y FUNDAMENTOS DE ELECTRICIDAD semana 03.pdf
PRINCIPIOS Y FUNDAMENTOS DE ELECTRICIDAD semana 03.pdf
 
Resumen campo eléctrico y electricidad
Resumen campo eléctrico y electricidadResumen campo eléctrico y electricidad
Resumen campo eléctrico y electricidad
 
Electrotecnia i
Electrotecnia iElectrotecnia i
Electrotecnia i
 
Medidas electricas
Medidas electricasMedidas electricas
Medidas electricas
 
La corriente eléctrica
La corriente eléctricaLa corriente eléctrica
La corriente eléctrica
 
Medidas electricas
Medidas electricasMedidas electricas
Medidas electricas
 
Paper de difusión científica - Corriente Eléctrica
Paper de difusión científica - Corriente EléctricaPaper de difusión científica - Corriente Eléctrica
Paper de difusión científica - Corriente Eléctrica
 
Presentación2
Presentación2Presentación2
Presentación2
 
Kevin
KevinKevin
Kevin
 
Ley de ohm y potencia
Ley de ohm y potenciaLey de ohm y potencia
Ley de ohm y potencia
 
Electricidad y magnetismo
Electricidad y magnetismoElectricidad y magnetismo
Electricidad y magnetismo
 
ELECTRODINAMICA.pptx
ELECTRODINAMICA.pptxELECTRODINAMICA.pptx
ELECTRODINAMICA.pptx
 
Principios de electricidad 1 resaltado
Principios de electricidad 1 resaltadoPrincipios de electricidad 1 resaltado
Principios de electricidad 1 resaltado
 
Electricidad Basica - Actividad 4
Electricidad Basica - Actividad 4Electricidad Basica - Actividad 4
Electricidad Basica - Actividad 4
 

Mais de Royer García (20)

Presentación robótica
Presentación robóticaPresentación robótica
Presentación robótica
 
Blog
BlogBlog
Blog
 
Teoria mecanismos
Teoria mecanismosTeoria mecanismos
Teoria mecanismos
 
Trabajo de informática blogger
Trabajo de informática blogger Trabajo de informática blogger
Trabajo de informática blogger
 
Nuevo
NuevoNuevo
Nuevo
 
Robótica
RobóticaRobótica
Robótica
 
Te wele la pozza
Te wele la pozzaTe wele la pozza
Te wele la pozza
 
Proyecto excavadora
Proyecto excavadoraProyecto excavadora
Proyecto excavadora
 
Robolab
RobolabRobolab
Robolab
 
Proyecto robolab
Proyecto robolabProyecto robolab
Proyecto robolab
 
Robótica 2003
Robótica 2003Robótica 2003
Robótica 2003
 
áLbum de fotografías carnaval de tarazona de la mancha 2011.1
áLbum de fotografías carnaval de tarazona de la mancha 2011.1áLbum de fotografías carnaval de tarazona de la mancha 2011.1
áLbum de fotografías carnaval de tarazona de la mancha 2011.1
 
Cuestionario de arquitectura del pc
Cuestionario de arquitectura del pcCuestionario de arquitectura del pc
Cuestionario de arquitectura del pc
 
Hardware
HardwareHardware
Hardware
 
Tema 2. hardware1
Tema 2. hardware1Tema 2. hardware1
Tema 2. hardware1
 
Twido soft
Twido softTwido soft
Twido soft
 
TeoríA
TeoríATeoríA
TeoríA
 
Presentacion Ud3 Tercero
Presentacion Ud3 TerceroPresentacion Ud3 Tercero
Presentacion Ud3 Tercero
 
Presentacion Ud3 Tercero
Presentacion Ud3 TerceroPresentacion Ud3 Tercero
Presentacion Ud3 Tercero
 
Mecanismos 2º
Mecanismos 2ºMecanismos 2º
Mecanismos 2º
 

Último

6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
jlorentemartos
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
amelia poma
 

Último (20)

TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
Usos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicasUsos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicas
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
Factores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdfFactores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdf
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
Desarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por ValoresDesarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por Valores
 
Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Linea del tiempo - Filosofos Cristianos.docx
Linea del tiempo - Filosofos Cristianos.docxLinea del tiempo - Filosofos Cristianos.docx
Linea del tiempo - Filosofos Cristianos.docx
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 

Teoría

  • 1. LA CORRIENTE ELÉCTRICA 3º E.S.O DEPARTAMENTO DE TECNOLOGIA IES JOSE ISBERT De Tarazona de la Mancha
  • 2.
  • 3.  
  • 4.
  • 5. CORRIENTE ALTERNA: Circuito hidráulico : Cuando la llave de paso no interrumpe el circuito, podemos mover el líquido empujando el émbolo hacia arriba. La rueda hidráulica gira en sentido contrario a las agujas del reloj. Si movemos el émbolo hacia abajo, cambia el sentido del líquido, por lo que la rueda girará en sentido contrario (sentido de las agujas del reloj). Por tanto, moviendo el émbolo hacia arriba y hacia abajo obtenemos un movimiento de tipo alterno . Circuito eléctrico : Cuando el interruptor no interrumpe el circuito, el generador de corriente alterna mueve las cargas en uno y otro sentido y con una intensidad variable.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11. b) Usando el siguiente triángulo:
  • 12.
  • 13.
  • 14.
  • 15. 12V R 1 =3 Ω 1º) Cálculo de resistencia equivalente : R 2 =2 Ω R 3 =4 Ω R 1 =3 Ω R 2 =2 Ω R 3 =4 Ω R eq = 9 Ω Se obtiene así el circuito elemental Veamos este procedimiento de cálculo con un ejemplo numérico
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21. Problema Tipo Dado un generador (pila) conectado a una asociación de receptores en paralelo (de los cuales conocemos o podemos conocer su resistencia eléctrica), se suele pedir: a) Intensidad de corriente eléctrica (I) que recorre el circuito. b) Intensidad de corriente eléctrica que atraviesa a cada receptor (I1,I2,I3) c) Tensión a que están los bornes de cada receptor. d) Potencia que consume cada receptor e) Potencia que suministra el generador (pila) Procedimiento de cálculo
  • 22.
  • 23. 2º) Calculo de I aplicando la ley de Ohm, al circuito elemental : R eq = 0,92 Ω + - + - I 3º) Calculo de las corrientes que atraviesan a cada receptor 12V I 3 I 2 I 1 I T Sabemos que cada uno de los receptores se encuentran a la misma tensión siendo ésta la que proporciona el generador o pila. Por tanto: siendo las intensidades que pasan por cada receptor: pudiéndose comprobar que se cumple la ley de los nudos de Kirchoff:
  • 24.
  • 25. 4.3.- ASOCIACIÓN MIXTA.- Como su propio nombre indica se trata de una mezcla de elementos en serie y en paralelo. En primer lugar hemos de simplificar aquellos elementos eléctricos que estén, por un lado, en serie, y aquellos otros que lo estén en paralelo, sustituyéndolos por sus correspondientes equivalentes. Una vez hecho esto, obtendremos otro u otros circuitos mas simples (en configuración serie) y por tanto también lo podremos simplificar sustituyendo por el correspondiente equivalente. Por ultimo debemos llegar al CIRCUITO ELEMENTAL. Procedimiento de cálculo
  • 26. V=12 V R 4 =2 Ω R 5 =3 Ω R 1 =8 Ω R 2 =10 Ω R 3 =5 Ω MONTAJE REAL DEL CIRCUITO ESQUEMA ELECTRICO Veamos con un ejemplo los pasos a seguir para resolver un circuito de este tipo:
  • 27. PASO 1 Analizar qué elementos eléctricos están en serie y cuales en paralelo Lámparas conectadas en serie Lámparas conectadas en paralelo
  • 28. PASO 2 Calcularemos la RESISTENCIA EQUIVALENTE de las lámparas conectadas en SERIE y sustituiremos las dos lámparas por otra lámpara equivalente que tenga una resistencia en ohmios igual al valor que hemos calculado R 4-5 = R 4 + R 5 R = R + R 4-5 4 5 R 4 R 5
  • 29. PASO 3 Calcularemos la RESISTENCIA EQUIVALENTE de las lámparas conectadas en PARALELO y sustituiremos las tres lámparas por otra lámpara equivalente que tenga una resistencia en ohmios igual al valor que hemos calculado R 1-2-3 = 1 1 1 ___ ___ ___ R R R 1 2 3 + + ___ 1
  • 30. PASO 4 Sustituimos tanto las lámparas conectadas en SERIE como en PARALELO por sus lámparas equivalentes (y sus respectivas Resistencias equivalentes) obteniendose otro circuito más simplificado V=12 V R’ 1-2-3 R 4-5 CIRCUITO REAL SIMPLIFICADO
  • 31. PASO 5 El circuito simplificado es un circuito SERIE. Por tanto procederemos a volver a calcular una nueva resistencia equivalente a las dos. R = R + R' eqv 4-5 1-2-3 R = 7,35 eqv Ω R = 5 + 2,35 Ω eqv
  • 32. PASO 6 Sustituimos nuevamente las lámparas conectadas en SERIE por su lámpara equivalente (y su respectiva Resistencia equivalentes) obteniéndose el circuito elemental CIRCUITO ELEMENTAL ESQUEMA ELEMENTAL
  • 33. PASO 7 Dado el circuito elemental , calcularemos en él, la intensidad total que proporciona la pila y que circula por el circuito, para lo cual aplicaremos la ley de Ohm Circuito elemental calculamos Intensidad eléctrica ( I ) Por la fórmula V = I · R I I I = ___ V R eqv = I = ___ 12 7,35 1,63 A + - V Reqv I INTENSIDAD TOTAL
  • 34. - Para seguir calculando el problema debemos regresar al circuito inmediatamente anterior al circuito elemental + - V Reqv I
  • 35. - Para calcular la tensión en cada resistencia, aplicaremos nuevamente la ley de Ohm + - + - V R4-5 V R1-2-3 I I V= I· R Ley de Ohm
  • 36. Para seguir calculando el problema debemos regresar al circuito inmediatamente anterior al circuito simplificado; en nuestro caso sería el circuito original y más complejo.
  • 37. Empezaremos por calcular las intensidades que pasan por las lámparas en paralelo. Debemos aplicar la ley de Ohm V=I·R Y para ello debemos conocer las tensiones V R1 ; V R2 y V R3 pero como están en paralelo… V R1 = V R2 = V R3 = V R1-2-3 =3,83 V Entonces despejando I de la ley de Ohm Observa que se cumple:
  • 38. Ahora queremos calcular las tensiones que hay en las resistencias en serie R 4 y R 5 . Para ello volvemos a aplicar la ley de Ohm. V=I· R V R4 V R5 I + + - - -
  • 39. V R4 + - V R5 + - V R1 + -
  • 40.
  • 41.
  • 42.