SlideShare uma empresa Scribd logo
1 de 14
BIRLA INSTITUTE OF TECHNOLOGY,
MESRA, RANCHI.
Submitted By:
RAVIKANT KUMAR (MCA/10040/2012)
DATA COMMUNICATION AND COMPUTER NETWORKS
Introduction
Undesired sound that is intrinsically objectionable or that interferes with other sounds being
listened to. In electronics and information theory, noise refers to those random, unpredictable,
and undesirable signals, or changes in signals, that mask the desired information content. In
radio, this noise is called static; in television, it is called snow. White noise is a complex signal or
sound covering the entire range of component frequencies, or tones, all of which possess equal
intensity.
In other words we can say that, noise is a random fluctuation in an electrical signal, a
characteristic of all electronic circuits. Noise generated by electronic devices varies greatly, as it
can be produced by several different effects. Thermal noise is unavoidable at non-zero
temperature, while other types depend mostly on device type (such as shot noise, which needs
steep potential barrier) or manufacturing quality and semiconductor defects, such as
conductance fluctuations, including noise.
In communication systems, noise is an error or undesired random disturbance of a useful
information signal in a communication channel. The noise is a summation of unwanted or
disturbing energy from natural and sometimes man-made sources. Noise is, however, typically
distinguished from interference, (e.g. cross-talk, deliberate jamming or other unwanted
electromagnetic interference from specific transmitters), for example in the signal-to-noise
ratio (SNR), signal-to-interference ratio (SIR) and signal-to-noise plus interference ratio (SNIR)
measures. Noise is also typically distinguished from distortion, which is an unwanted systematic
alteration of the signal waveform by the communication equipment, for example in the signal-
to-noise and distortion ratio (SINAD). In a carrier-modulated passband analog communication
system, a certain carrier-to-noise ratio (CNR) at the radio receiver input would result in a
certain signal-to-noise ratio in the detected message signal. In a digital communications system,
a certain Eb/N0 (normalized signal-to-noise ratio) would result in a certain bit error rate (BER).
SOURCES OF NOISE
It is important for the analyst who uses a particular instrumental method to be aware of the
sources of noise and the instrument components used to minimize this noise because noise
determines both the accuracy and detection limits of any measurement. Noise enters a
measurement system from environmental sources external to the measurement system, or it
appears as a result of fundamental, intrinsic properties of the system. It is usually possible to
identify the sources of environmental noise and to either reduce or avoid their effects on the
measurement. Such is not the case with fundamental noise because it arises from the
discontinuous nature of matter and energy. Thus, fundamental noise ultimately limits
accuracy, precision. and detection limits in every measurement.
The major kinds of noise associated with solid-state electronic devices are thermal, shot,
and flicker.
Fundamental Noise
Thermal Noise. Noise that originates from the thermally induced motions in charge carriers is
known as thermal noise. It exists even in the absence of current flow and is represented by the
formula
where V., is the average voltage due to thermal noise, k is the Boltzmann constant, T is the
absolute temperature. R is the resistance of the electronic device, and Af is the bandwidth of
measurement frequencies, Since thermal noise is independent of the absolute values of
frequencies, it is also known as "white noise." Methods for reducing thermal noise are
suggested by Equation. Sensitive radiation detectors are often cooled to minimize this noise.
Narrowing the frequency bandwidth of the detector is another way to reduce thermal noise,
provided the frequencies important to the measurement of interest are not excluded.
Sources of noise in instrumental analysis:
Types of noise:
Chemical: This noise arises from uncontrollable variables in the chemistry of the
system such as variation in temperature, pressure, humidity, light and
chemical fumes present in the room.
Instrumental : Noise that arises due to the instrumentation itself. It could come from
any of the following components- source, input transducer all signal
processing elements, and the output transducer. This noise has many
types and can arise from several sources. There are four main categories
of instrumental noise: Thermal or Johnson, Shot, Flicker, and
Environmental.
Thermal noise or Johnson noise:
arises from thermal agitation of electrons or other charged carriers in resistors,
capacitors, radiation detectors, electrochemical cells and other resistive elements in the
instrument.
this agitation is random and can create charge variations that create voltage fluctuations
that we view as noise
the magnitude of thermal noise is given by: vrms = (4kTR f)1/2
where vrms = root mean square noise voltage, f = frequency bandwidth,
k = l.38 x 10-27
J/K (Boltzman Constant), T = temperature in Kelvin,
R = resistance in ohms of the resistive element
the bandwidth is inversely proportional to the rise time (t),
(response time in seconds to an abrupt change in input)
f = 1/3tr
rise time is taken as the time required for the output to increase from 10% to 90 of the
final value
narrowing bandwidth can decrease thermal noise but it will also slow the rate of the
machine therefor increasing time required to make a reliable measurement
can also be lowered by lowering temperature or electrical resistance
dependent upon frequency bandwidth but independent of frequency
Shot Noise:
Shot noise is encountered whenever electrons and other charged particles cross a junction. In
typical electronic circuits, these junctions are found at pn interfaces. The shot noise in
arises when current involves the movement of electrons or charged particles across a
junction
these junctions are typically found at pn interfaces; in photocells and vacuum tubes.
shot noises are random and their rate of occurrence is subject to statistical fluctuations
which are defined as follows:
irms. = (2I f)1/2
where irms = root mean sq. current fluctuation associated with average direct
current (I), e = l.60 x 10-19
C, f = bandwidth of frequencies
shot noise can be minimized only by reducing bandwidth
Shot noise refers to the random fluctuations of the electric current in an electrical conductor,
which are caused by the fact that the current is carried by discrete charges (electrons). The
strength of this noise increases for growing magnitude of the average current flowing through
the conductor. Shot noise is to be distinguished from current fluctuations in equilibrium, which
happen without any applied voltage and without any average current flowing. These
equilibrium current fluctuations are known as Johnson-Nyquist noise.
Flicker noise:
its magnitude is inversely proportional to frequency of signal
causes of flicker noise not understood but recognized by frequency dependence
can be significant at frequencies lower than 100 Hz
causes long term drift in de amplifiers, meters, and galvanometers
can be reduced significantly by using wire-wound or metallic film resistors rather than
composition type
Flicker Noise is associated with crystal surface defects in semiconductors and is also found in
vacuum tubes. The noise power is proportional to the bias current, and, unlike thermal and
shot noise, flicker noise decreases with frequency.
An exact mathematical model does not exist for flicker noise because it is so device-specific.
However, the inverse proportionality with frequency is almost exactly 1/f for low frequencies,
whereas for frequencies above a few kilohertz, the noise power is weak but essentially flat.
Flicker noise is essentially random, but because its frequency spectrum is not flat, it is not a
white noise. It is often referred to as pink noise because most of the power is concentrated at
the lower end of the frequency spectrum.
Environmental noise:
Environmental noise is due to a composite of noises from different sources in the
environment surrounding the instrument. Figure 5-3 shows some common sources of
environmental noise.
Much environmental noise occurs because each conductor in an instrument is potentially an
antenna capable of picking up electromagnetic radiation and converting it to an electrical
signal. There are numerous sources of electromagnetic radiation in the environment including
ac power lines, radio and TV stations, gasoline engine ignition systems, arcing switches, brushes
in electrical motors, lightening, and ionospheric disturbances.
HARDWARE TECHNIQUES FOR SIGNAL-
TO-NOISE ENHANCEMENT
To avoid losing data, the signal from the input transducer (see Section 1.4) should be sampled
at a rate twice that of the highest frequency component of the signal according to the Nyquist
sampling theorem (see Section 2.6). Adherence to this theorem is important to obtain reliable
results from either hardware or software S enhancement methods.
The rise of time of an instrument is its response time in seconds to an abrupt change in input
and normally is taken as the time required for the output to increase from 10% to 90% of its
final value. If the rise time is 0.01s, the bandwidth is 33Hz. It is important to note that thermal
noise can also be reduced by lowering the electrical resistance of instrument circuits and by
lowering the temperature of instrument components. Cooling often reduces the thermal noise
in transducers. It is important to note that thermal noise, while dependent on the frequency
bandwidth is independent of frequency itself, thus it is sometimes termed white noise by
analogy to white light, which contains all visible frequencies. Thermal noise in resistive circuit
elements is independent of the physical size of the resistor.
Filtering
Although amplitude and the phase relationship of input and output signals
can be used to discriminate between meaningful signals and noise, frequency is the property
most commonly used. As discussed in the previous section, white noise can be reduced by
narrowing the range of measured frequencies, environmental noise can be eliminated by
selecting the proper frequency. Three kinds of electronic filters are used to select the band of
measured frequencies: low-pass filters that allow the passage of all si2nals below a
predetermined cutoff frequency, high-pass filters that transmit all frequencies above a given
cutoff point, and band pass filters that combine the properties of the other two filters to pass
only a narrow band of frequencies. The simplest filters are composed of passive circuit
elements (resistors, R, capacitors, C. and inductance coils, L) with the transmitted frequencies
determined by values of the individual circuit components.
Signal to noise enhancement:
for some measurements only minimal efforts are required for maintaining a good signal
to noise ratio because the signals are relatively strong and the requirements for
precision and accuracy are low
Examples:
o weight determinations made in synthesis and color comparisons made in
chemical content determinations
o when precision is important the signal to noise ratio can become the limiting
factor and must be improved, there are two ways to approach this:
Hardware:
noise is reduced by incorporating into the instrument components such as filters,
choppers, shields, modulators, and synchronous detectors
these will remove or attenuate noise without affecting the analytical signal significantly
Types of Hardware:
Grounding and shielding:
Shielding, grounding, and minimizing the lengths of conductors with the instrumental system
can often substantially reduce noise that arises from environmentally generated
electromagnetic radiation.
shielding consists of surrounding a circuit, or some of the wires in a circuit with a
conducting material that is attached to earth ground
this allows electromagnetic radiation to be absorbed by the shield thus avoiding noise
generation in the instrument circuit -important when using high-impedance transducers
(i.e. glass electrodes)
This is the first line of defense against outside noise caused by high-frequency electrical
field and magnetic field coupling as well as electromagnetic radiation. The theory is that
the shielding wire, foil or conduit will prevent the bulk of the noise coming in from the
outside.
It works by relying on two properties
1. Reflection back to the outside world where it can't do any harm... (and, to a small
extent, re-reflection within the shield, but this is a VERY small extent)
2. Absorption - where the energy is absorbed by the shield and sent to ground.
The effectiveness of the shield is dependent on its:
1. Thickness - the thinner the shield the less effective. This is particularly true of low-
frequency noise... Aluminum foil shield works well at rejecting up to 90 dB at frequencies
above 30 MHz, but it's inadequate at fending off low-frequency magnetic fields (in fact it's
practically transparent below 1 kHz), We rely on balancing and differential amplifiers to get
rid of these.
2. Conductivity - the shield must be able to sink all stray currents to the ground plane more
easily than anything else.
3. Continuity - we cannot break the shield. It must be continuous around the signal paths,
otherwise the noise will leak in like water into a hole in a boat. Don't forget that the holes
in your equipment for cooling, potentiometers and so on are breaks in the continuity.
General guideline: keep the diameter of your holes at less than 1/20 of the wavelength of
the highest frequency you're worried about to ensure at least 20 dB of attenuation. Most
high-frequency noise problems are caused by openings in the shield material.
Grounding
The grounding of audio equipment is there for one primary purpose: to keep you alive. If
something goes horribly wrong inside one of those devices and winds up connecting the
120 V AC from the wall to the box (chassis) itself, and you come along and touch the front
panel while standing in a pool of water, YOU are the path to ground. This is bad. So, the
manufacturers put a third pin on their AC cables which is connected to the chassis on the
equipment end, and the third pin in the wall socket. This third pin in the wall socket is
called the ground bus and is connected to the electrical breaker box somewhere in the
facility. All of the ground busses connect to a primary ground point somewhere in the
building. This is the point at which the building makes contact with the earth through a
spike or piling called the grounding electrode. The wires which connect these grounds
together MUST be heavy-gauge (and therefore very low impedance) in order to ensure
that they have a MUCH lower impedance than you when you and it are a parallel
connection to ground. The lower this impedance, the less current will flow through you if
something goes wrong.
An added benefit to this ground is that we use it as a huge sink where all of the noise on
our shielding is routed.
Conductor Out From
Low Dynamic
Range
(< 60 dB)
Med Dynamic
Range
(60 to 80 dB)
High Dynamic
Range
(> 80 dB)
Low
EMI
High
EMI
Low EMI High EMI
Ground Electrode 6 2 00 00 0000
Master Bus 10 8 6 4 0
Local Bus 14 12 12* 12* 10*
Maximum resistance for
any cable (W)
0.5 0.1 0.01 0.001 0.0001
* Do not share ground conductors - run individual branch grounds. In all cases the
ground conductor must not be smaller than the neutral conductor of the panel it
services.
Difference amplifiers:
used to attenuate noise generated in the transducer
ac signal induced in the transducer circuit generally appears in phase at both the
inverting and non-inverting terminals; cancellation then occurs at output
Any noise generated in the transducer circuit is particularly critical because it usually appears in
an amplified form in the instrument read out. To attenuate this type of noise, most
instruments employ a difference amplifier for the first stage of amplification. Common mode
noise in the transducer circuit generally appears in the phase at both the inverting and
noninverting inputs of the amplifier and is largely subtracted out by the circuit so that the noise
at its output is diminished substantially.
Instrumentation amplifiers are composed of three op amps. Op amp A and op amp B make up
the input stage of the instrumentation amplifier in which the two op amps are cross coupled
through three resistors. The second stage of the module is the difference amplifier of op amp
C. The overall gain of the circuit is given by:
o = K(2a + 1)( 2 - 1)
Analog filtering:
one of the most common methods to improve S/N ratio is the use of a low-pass analog
filter -is effective at removing many high frequency components such as thermal or shot
noise because majority of analyte signals are dc with bandwidths that extend over only
a few Hz -high-pass signals used in systems where the analyte signal is ac and the filter
can reduce drift and flicker noise -to attenuate noise we use narrow band electronic
filters because magnitude of fundamental noise is directly proportional to the sq. rt. of
the frequency bandwidth signal. significant noise reduction occurs if input signal is
restricted to a narrow band and then an amplifier tuned to this band is used. The band
past by the filter must be wide enough to carry all information carried by the signal.
First order analog filters depend on one of two things: an inductor or a capicitor.
Although we did not actually use these particular components, as much as Sam wanted
to, it is these components that make analog filters work. We decided on active rather
than passive filters because they give better results.
Schematics and Graphs
Lowpass Filter:
Highpass Filter:
To give those not familiar with analog circuits (or maybe its just been a really long time) an idea
of what we wired together we have included some pictures of our breadboard with our first
order lowpass filters.
Analog Second Order Filters
By going to second order filters we were able to shorten the transision band providing greater
attenuation of the noise. We were also able to make a bandpass filter using second order
design. Also note that compared to first order filters these circuits only require the addition of
one capacitor.
Schematics and Graphs
Lowpass Filter:
Highpass Filter:
Bandpass Filter:
Modulation:
amplifier drift and flicker noise often interfere with the amplification of a low frequency
or dc signal and 1/f noise is often much larger than noises that predominate at larger
frequencies therefore modulators are used to convert these to a higher frequency
where 1/f is less troublesome
the modulated signal is amplified then filtered with a high-pass filter to remove the
amplifier 1/f noise
the signal is then demodulated and filtered with a low-pass filter in order to provide an amplified dc
signal to the readout device
noise is a concern because source intensity and detector sensitivity are low which result
'in a small electrical signal from transducer
IR transducers are heat detectors, this adds environmental noise due to the thermal
radiation of their surroundings -a slotted rotating disk placed in the beam path produces
a radiant signal that fluctuates between zero and some max. -signal is converted by
transducer to a sq. wave ac electrical signal whose frequency depends upon size of slots
and rate of rotation
in IR, environmental noise is usually dc and can be reduced with a high-pass filter before
amplification -(refer to figure 4-6 on next page) This is a chopper amplifier that uses a
solid state switch to shot the input or output signal to the ground appearance of signal
at certain stages 0) input a 6-mV dc signal a) switch converts to approx. sq. wave signal
of amplitude 6mV b) amplification to ac signal amplitude 6V c) shorted to ground
periodically which results in d) reduced amplitude to 3V e) RC filter serves to smooth
signal and produce 1.5V dc output
Lock-in amplifiers:
permit recovery of signals even when S/N is unity or less
generally requires a reference signal at same frequency and phase (must have fixed
phase relationship) as signal to be amplified
Software:
based on digital computer algorithms that permit extraction of signal from noisy
environment
requires some hardware to condition output and convert it to digital form
computer and readout system are also needed
common software are generally applicable to non-periodic or irregular wave forms, such
as absorption spec. or signals having no synchronizing or reference wave
Ensemble averaging:
successive sets of data (arrays) are collected and summed point by point (often called
coaddition)
then data for each point is averaged
signal to noise ratio for signal average:
points must be measured at a frequency at least 2x that of the highest frequency
component of the wave form, much greater frequencies will include more noise but no
additional information -wave form reproducibility is important, generally accomplished
through synchronizing pulse derived from the wave form -can result in dramatic
improvements.
Boxcar averaging:
digital procedure for smoothing irregularities, that arise from noise, in a wave form
assumed analog signal varies slowly with time and that the average of a small number of
adjacent points is better than any one individual point
usually done by a computer as data is being collected (real time) -limitations include loss
of detail, application to only complex signals that change rapidly as a function of time -
for square wave or repetitive pulsed outputs where only ave. amplitude is important, it
is very important -moving window averaging means point I is the ave. of 1, 2 and 3,
point 2 is an ave. of points 2, 3 and 4 etc. here only the first and last points are lost
Digital Filtering:
moving-window boxcar method is a kind of linear filtering where it assumed that there
is an approximate linear relationship among points being sampled -more complex
polynomial relationships derive a center point for each window
can also be carried out by Fourier transform procedure where the original signal which
varies as a function of time (time domain signal) is converted to a frequency domain
signal where the independent variable is frequency not time -accomplished
mathematically on a computer by a Fourier transform procedure
then frequency signal is multiplied by the frequency response of a digital filter which
removes a certain frequency region of the transformed signal
the filtered time domain signal is retrieved by an inverse Fourier transform

Mais conteúdo relacionado

Mais procurados

Luminescence presentation
Luminescence presentationLuminescence presentation
Luminescence presentation
guestdebbbc
 
Fluorescence spectroscopy
Fluorescence spectroscopyFluorescence spectroscopy
Fluorescence spectroscopy
Nimisha Dutta
 
Auger electron spectroscopy
Auger electron spectroscopyAuger electron spectroscopy
Auger electron spectroscopy
Gulfam Hussain
 

Mais procurados (20)

FTIR
FTIRFTIR
FTIR
 
Atomic Absorption Techniques & Applications
Atomic Absorption  Techniques & ApplicationsAtomic Absorption  Techniques & Applications
Atomic Absorption Techniques & Applications
 
Nuclear magnetic resonance ( NMR)
Nuclear magnetic resonance ( NMR)Nuclear magnetic resonance ( NMR)
Nuclear magnetic resonance ( NMR)
 
Fluorescence , Phosphorescence and photoluminescence
Fluorescence , Phosphorescence and photoluminescenceFluorescence , Phosphorescence and photoluminescence
Fluorescence , Phosphorescence and photoluminescence
 
Flourescence and phosphorescence
Flourescence and phosphorescenceFlourescence and phosphorescence
Flourescence and phosphorescence
 
FTIR spectroscopy
FTIR spectroscopyFTIR spectroscopy
FTIR spectroscopy
 
Ftir principle
Ftir principleFtir principle
Ftir principle
 
Elemental analysis & Trace metals by ICP-MS
Elemental analysis & Trace metals by ICP-MSElemental analysis & Trace metals by ICP-MS
Elemental analysis & Trace metals by ICP-MS
 
APPLICATION OF COLORIMETRY IN TRACE MINERAL ANALYSIS
APPLICATION OF COLORIMETRY IN TRACE MINERAL ANALYSISAPPLICATION OF COLORIMETRY IN TRACE MINERAL ANALYSIS
APPLICATION OF COLORIMETRY IN TRACE MINERAL ANALYSIS
 
gas-sensors.ppt
gas-sensors.pptgas-sensors.ppt
gas-sensors.ppt
 
Luminescence presentation
Luminescence presentationLuminescence presentation
Luminescence presentation
 
Fluorescence spectroscopy
Fluorescence spectroscopyFluorescence spectroscopy
Fluorescence spectroscopy
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
 
Band pass filter
Band pass filterBand pass filter
Band pass filter
 
Biosensors (structure and application)
Biosensors (structure and application)Biosensors (structure and application)
Biosensors (structure and application)
 
Photo luminescence
Photo luminescence Photo luminescence
Photo luminescence
 
Fluorescence spectroscopy
Fluorescence spectroscopyFluorescence spectroscopy
Fluorescence spectroscopy
 
Flamephotometer
FlamephotometerFlamephotometer
Flamephotometer
 
Auger electron spectroscopy
Auger electron spectroscopyAuger electron spectroscopy
Auger electron spectroscopy
 
Atomic absorption spectroscopy ppt
Atomic absorption spectroscopy pptAtomic absorption spectroscopy ppt
Atomic absorption spectroscopy ppt
 

Destaque

Communication Engineering - Chapter 6 - Noise
Communication Engineering - Chapter 6 - NoiseCommunication Engineering - Chapter 6 - Noise
Communication Engineering - Chapter 6 - Noise
mkazree
 
Noise in Communication System
Noise in Communication SystemNoise in Communication System
Noise in Communication System
Izah Asmadi
 
Noise in communication system
Noise in communication systemNoise in communication system
Noise in communication system
firdous006
 
Noise in communication system
Noise in communication systemNoise in communication system
Noise in communication system
firdous006
 
Understanding noise figure
Understanding noise figureUnderstanding noise figure
Understanding noise figure
Niko Glamuzina
 
Advanced lock in amplifier for detection of phase transitions in liquid crystals
Advanced lock in amplifier for detection of phase transitions in liquid crystalsAdvanced lock in amplifier for detection of phase transitions in liquid crystals
Advanced lock in amplifier for detection of phase transitions in liquid crystals
IAEME Publication
 
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
sonix022
 
Algorithms for Sparse Signal Recovery in Compressed Sensing
Algorithms for Sparse Signal Recovery in Compressed SensingAlgorithms for Sparse Signal Recovery in Compressed Sensing
Algorithms for Sparse Signal Recovery in Compressed Sensing
Aqib Ejaz
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
thinfilmsworkshop
 

Destaque (20)

Noise 2.0
Noise 2.0Noise 2.0
Noise 2.0
 
Electrical noise and signal to noise ratio
Electrical noise and signal to noise ratioElectrical noise and signal to noise ratio
Electrical noise and signal to noise ratio
 
Noise
NoiseNoise
Noise
 
Communication Engineering - Chapter 6 - Noise
Communication Engineering - Chapter 6 - NoiseCommunication Engineering - Chapter 6 - Noise
Communication Engineering - Chapter 6 - Noise
 
Noise in Communication System
Noise in Communication SystemNoise in Communication System
Noise in Communication System
 
Noise in communication system
Noise in communication systemNoise in communication system
Noise in communication system
 
Noise
NoiseNoise
Noise
 
Types of noise
Types of noiseTypes of noise
Types of noise
 
Noise
NoiseNoise
Noise
 
Noise in communication system
Noise in communication systemNoise in communication system
Noise in communication system
 
C Programming[Sample]
C Programming[Sample]C Programming[Sample]
C Programming[Sample]
 
Chapter 5 noise
Chapter 5 noiseChapter 5 noise
Chapter 5 noise
 
Understanding Noise Figure
Understanding Noise FigureUnderstanding Noise Figure
Understanding Noise Figure
 
Understanding noise figure
Understanding noise figureUnderstanding noise figure
Understanding noise figure
 
Time Series Analysis:Basic Stochastic Signal Recovery
Time Series Analysis:Basic Stochastic Signal RecoveryTime Series Analysis:Basic Stochastic Signal Recovery
Time Series Analysis:Basic Stochastic Signal Recovery
 
Super Conductivity
Super ConductivitySuper Conductivity
Super Conductivity
 
Advanced lock in amplifier for detection of phase transitions in liquid crystals
Advanced lock in amplifier for detection of phase transitions in liquid crystalsAdvanced lock in amplifier for detection of phase transitions in liquid crystals
Advanced lock in amplifier for detection of phase transitions in liquid crystals
 
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measur...
 
Algorithms for Sparse Signal Recovery in Compressed Sensing
Algorithms for Sparse Signal Recovery in Compressed SensingAlgorithms for Sparse Signal Recovery in Compressed Sensing
Algorithms for Sparse Signal Recovery in Compressed Sensing
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
 

Semelhante a Signals and noise

Transmission impairments
Transmission impairmentsTransmission impairments
Transmission impairments
avocado1111
 
Lecture 1 introduction and signals analysis
Lecture 1 introduction and signals analysisLecture 1 introduction and signals analysis
Lecture 1 introduction and signals analysis
talhawaqar
 
Noise....pdf
Noise....pdfNoise....pdf
Noise....pdf
kanizsuburna10
 
Signal Integrity Asif
Signal Integrity AsifSignal Integrity Asif
Signal Integrity Asif
Mohammed Asif
 
OBT751 Analytical methods Instrumentation materials
OBT751 Analytical methods Instrumentation materialsOBT751 Analytical methods Instrumentation materials
OBT751 Analytical methods Instrumentation materials
Mercy Joseph
 
Electromagnetic compatibility and its effects
Electromagnetic compatibility and its effectsElectromagnetic compatibility and its effects
Electromagnetic compatibility and its effects
SubhashMSubhash
 

Semelhante a Signals and noise (20)

Noise
NoiseNoise
Noise
 
Communication Theory - Noise Characterization.pdf
Communication Theory - Noise Characterization.pdfCommunication Theory - Noise Characterization.pdf
Communication Theory - Noise Characterization.pdf
 
Noise in bio electric signals
Noise in bio electric signalsNoise in bio electric signals
Noise in bio electric signals
 
Transmission impairments
Transmission impairmentsTransmission impairments
Transmission impairments
 
NOISE IN Analog Communication Part-1.ppt
NOISE IN Analog Communication  Part-1.pptNOISE IN Analog Communication  Part-1.ppt
NOISE IN Analog Communication Part-1.ppt
 
Lecture 1 introduction and signals analysis
Lecture 1 introduction and signals analysisLecture 1 introduction and signals analysis
Lecture 1 introduction and signals analysis
 
Noise....pdf
Noise....pdfNoise....pdf
Noise....pdf
 
Noise in Electronic System
Noise in Electronic SystemNoise in Electronic System
Noise in Electronic System
 
Unit 2_Noise.pdf
Unit 2_Noise.pdfUnit 2_Noise.pdf
Unit 2_Noise.pdf
 
Signal Integrity Asif
Signal Integrity AsifSignal Integrity Asif
Signal Integrity Asif
 
1536998350_Optical Receiver Operation.pdf
1536998350_Optical Receiver Operation.pdf1536998350_Optical Receiver Operation.pdf
1536998350_Optical Receiver Operation.pdf
 
OBT751 Analytical methods Instrumentation materials
OBT751 Analytical methods Instrumentation materialsOBT751 Analytical methods Instrumentation materials
OBT751 Analytical methods Instrumentation materials
 
Electromagnetic compatibility and its effects
Electromagnetic compatibility and its effectsElectromagnetic compatibility and its effects
Electromagnetic compatibility and its effects
 
satellite Transmission fundamentals
satellite Transmission fundamentalssatellite Transmission fundamentals
satellite Transmission fundamentals
 
DOC-20231009-WA0000..pdf
DOC-20231009-WA0000..pdfDOC-20231009-WA0000..pdf
DOC-20231009-WA0000..pdf
 
S@P Noise.pptx
S@P Noise.pptxS@P Noise.pptx
S@P Noise.pptx
 
Radio Conformance Test
Radio Conformance TestRadio Conformance Test
Radio Conformance Test
 
Generaltec power line-en
Generaltec power line-enGeneraltec power line-en
Generaltec power line-en
 
ShriyaMhatre_p21006_Paper1_ppt.pptx
ShriyaMhatre_p21006_Paper1_ppt.pptxShriyaMhatre_p21006_Paper1_ppt.pptx
ShriyaMhatre_p21006_Paper1_ppt.pptx
 
O045039194
O045039194O045039194
O045039194
 

Último

Último (20)

Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 

Signals and noise

  • 1. BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI. Submitted By: RAVIKANT KUMAR (MCA/10040/2012) DATA COMMUNICATION AND COMPUTER NETWORKS
  • 2. Introduction Undesired sound that is intrinsically objectionable or that interferes with other sounds being listened to. In electronics and information theory, noise refers to those random, unpredictable, and undesirable signals, or changes in signals, that mask the desired information content. In radio, this noise is called static; in television, it is called snow. White noise is a complex signal or sound covering the entire range of component frequencies, or tones, all of which possess equal intensity. In other words we can say that, noise is a random fluctuation in an electrical signal, a characteristic of all electronic circuits. Noise generated by electronic devices varies greatly, as it can be produced by several different effects. Thermal noise is unavoidable at non-zero temperature, while other types depend mostly on device type (such as shot noise, which needs steep potential barrier) or manufacturing quality and semiconductor defects, such as conductance fluctuations, including noise. In communication systems, noise is an error or undesired random disturbance of a useful information signal in a communication channel. The noise is a summation of unwanted or disturbing energy from natural and sometimes man-made sources. Noise is, however, typically distinguished from interference, (e.g. cross-talk, deliberate jamming or other unwanted electromagnetic interference from specific transmitters), for example in the signal-to-noise ratio (SNR), signal-to-interference ratio (SIR) and signal-to-noise plus interference ratio (SNIR) measures. Noise is also typically distinguished from distortion, which is an unwanted systematic alteration of the signal waveform by the communication equipment, for example in the signal- to-noise and distortion ratio (SINAD). In a carrier-modulated passband analog communication system, a certain carrier-to-noise ratio (CNR) at the radio receiver input would result in a certain signal-to-noise ratio in the detected message signal. In a digital communications system, a certain Eb/N0 (normalized signal-to-noise ratio) would result in a certain bit error rate (BER). SOURCES OF NOISE It is important for the analyst who uses a particular instrumental method to be aware of the sources of noise and the instrument components used to minimize this noise because noise determines both the accuracy and detection limits of any measurement. Noise enters a
  • 3. measurement system from environmental sources external to the measurement system, or it appears as a result of fundamental, intrinsic properties of the system. It is usually possible to identify the sources of environmental noise and to either reduce or avoid their effects on the measurement. Such is not the case with fundamental noise because it arises from the discontinuous nature of matter and energy. Thus, fundamental noise ultimately limits accuracy, precision. and detection limits in every measurement. The major kinds of noise associated with solid-state electronic devices are thermal, shot, and flicker. Fundamental Noise Thermal Noise. Noise that originates from the thermally induced motions in charge carriers is known as thermal noise. It exists even in the absence of current flow and is represented by the formula where V., is the average voltage due to thermal noise, k is the Boltzmann constant, T is the absolute temperature. R is the resistance of the electronic device, and Af is the bandwidth of measurement frequencies, Since thermal noise is independent of the absolute values of frequencies, it is also known as "white noise." Methods for reducing thermal noise are suggested by Equation. Sensitive radiation detectors are often cooled to minimize this noise. Narrowing the frequency bandwidth of the detector is another way to reduce thermal noise, provided the frequencies important to the measurement of interest are not excluded. Sources of noise in instrumental analysis: Types of noise: Chemical: This noise arises from uncontrollable variables in the chemistry of the system such as variation in temperature, pressure, humidity, light and chemical fumes present in the room.
  • 4. Instrumental : Noise that arises due to the instrumentation itself. It could come from any of the following components- source, input transducer all signal processing elements, and the output transducer. This noise has many types and can arise from several sources. There are four main categories of instrumental noise: Thermal or Johnson, Shot, Flicker, and Environmental. Thermal noise or Johnson noise: arises from thermal agitation of electrons or other charged carriers in resistors, capacitors, radiation detectors, electrochemical cells and other resistive elements in the instrument. this agitation is random and can create charge variations that create voltage fluctuations that we view as noise the magnitude of thermal noise is given by: vrms = (4kTR f)1/2 where vrms = root mean square noise voltage, f = frequency bandwidth, k = l.38 x 10-27 J/K (Boltzman Constant), T = temperature in Kelvin, R = resistance in ohms of the resistive element the bandwidth is inversely proportional to the rise time (t), (response time in seconds to an abrupt change in input) f = 1/3tr rise time is taken as the time required for the output to increase from 10% to 90 of the final value narrowing bandwidth can decrease thermal noise but it will also slow the rate of the machine therefor increasing time required to make a reliable measurement can also be lowered by lowering temperature or electrical resistance dependent upon frequency bandwidth but independent of frequency Shot Noise: Shot noise is encountered whenever electrons and other charged particles cross a junction. In typical electronic circuits, these junctions are found at pn interfaces. The shot noise in arises when current involves the movement of electrons or charged particles across a junction these junctions are typically found at pn interfaces; in photocells and vacuum tubes. shot noises are random and their rate of occurrence is subject to statistical fluctuations which are defined as follows: irms. = (2I f)1/2 where irms = root mean sq. current fluctuation associated with average direct current (I), e = l.60 x 10-19 C, f = bandwidth of frequencies shot noise can be minimized only by reducing bandwidth
  • 5. Shot noise refers to the random fluctuations of the electric current in an electrical conductor, which are caused by the fact that the current is carried by discrete charges (electrons). The strength of this noise increases for growing magnitude of the average current flowing through the conductor. Shot noise is to be distinguished from current fluctuations in equilibrium, which happen without any applied voltage and without any average current flowing. These equilibrium current fluctuations are known as Johnson-Nyquist noise. Flicker noise: its magnitude is inversely proportional to frequency of signal causes of flicker noise not understood but recognized by frequency dependence can be significant at frequencies lower than 100 Hz causes long term drift in de amplifiers, meters, and galvanometers can be reduced significantly by using wire-wound or metallic film resistors rather than composition type Flicker Noise is associated with crystal surface defects in semiconductors and is also found in vacuum tubes. The noise power is proportional to the bias current, and, unlike thermal and shot noise, flicker noise decreases with frequency. An exact mathematical model does not exist for flicker noise because it is so device-specific. However, the inverse proportionality with frequency is almost exactly 1/f for low frequencies, whereas for frequencies above a few kilohertz, the noise power is weak but essentially flat. Flicker noise is essentially random, but because its frequency spectrum is not flat, it is not a white noise. It is often referred to as pink noise because most of the power is concentrated at the lower end of the frequency spectrum. Environmental noise: Environmental noise is due to a composite of noises from different sources in the environment surrounding the instrument. Figure 5-3 shows some common sources of environmental noise. Much environmental noise occurs because each conductor in an instrument is potentially an antenna capable of picking up electromagnetic radiation and converting it to an electrical signal. There are numerous sources of electromagnetic radiation in the environment including ac power lines, radio and TV stations, gasoline engine ignition systems, arcing switches, brushes in electrical motors, lightening, and ionospheric disturbances. HARDWARE TECHNIQUES FOR SIGNAL- TO-NOISE ENHANCEMENT To avoid losing data, the signal from the input transducer (see Section 1.4) should be sampled at a rate twice that of the highest frequency component of the signal according to the Nyquist
  • 6. sampling theorem (see Section 2.6). Adherence to this theorem is important to obtain reliable results from either hardware or software S enhancement methods. The rise of time of an instrument is its response time in seconds to an abrupt change in input and normally is taken as the time required for the output to increase from 10% to 90% of its final value. If the rise time is 0.01s, the bandwidth is 33Hz. It is important to note that thermal noise can also be reduced by lowering the electrical resistance of instrument circuits and by lowering the temperature of instrument components. Cooling often reduces the thermal noise in transducers. It is important to note that thermal noise, while dependent on the frequency bandwidth is independent of frequency itself, thus it is sometimes termed white noise by analogy to white light, which contains all visible frequencies. Thermal noise in resistive circuit elements is independent of the physical size of the resistor. Filtering Although amplitude and the phase relationship of input and output signals can be used to discriminate between meaningful signals and noise, frequency is the property most commonly used. As discussed in the previous section, white noise can be reduced by narrowing the range of measured frequencies, environmental noise can be eliminated by selecting the proper frequency. Three kinds of electronic filters are used to select the band of measured frequencies: low-pass filters that allow the passage of all si2nals below a predetermined cutoff frequency, high-pass filters that transmit all frequencies above a given cutoff point, and band pass filters that combine the properties of the other two filters to pass only a narrow band of frequencies. The simplest filters are composed of passive circuit elements (resistors, R, capacitors, C. and inductance coils, L) with the transmitted frequencies determined by values of the individual circuit components.
  • 7. Signal to noise enhancement: for some measurements only minimal efforts are required for maintaining a good signal to noise ratio because the signals are relatively strong and the requirements for precision and accuracy are low Examples: o weight determinations made in synthesis and color comparisons made in chemical content determinations o when precision is important the signal to noise ratio can become the limiting factor and must be improved, there are two ways to approach this: Hardware: noise is reduced by incorporating into the instrument components such as filters, choppers, shields, modulators, and synchronous detectors these will remove or attenuate noise without affecting the analytical signal significantly Types of Hardware: Grounding and shielding: Shielding, grounding, and minimizing the lengths of conductors with the instrumental system can often substantially reduce noise that arises from environmentally generated electromagnetic radiation. shielding consists of surrounding a circuit, or some of the wires in a circuit with a conducting material that is attached to earth ground this allows electromagnetic radiation to be absorbed by the shield thus avoiding noise generation in the instrument circuit -important when using high-impedance transducers (i.e. glass electrodes)
  • 8. This is the first line of defense against outside noise caused by high-frequency electrical field and magnetic field coupling as well as electromagnetic radiation. The theory is that the shielding wire, foil or conduit will prevent the bulk of the noise coming in from the outside. It works by relying on two properties 1. Reflection back to the outside world where it can't do any harm... (and, to a small extent, re-reflection within the shield, but this is a VERY small extent) 2. Absorption - where the energy is absorbed by the shield and sent to ground. The effectiveness of the shield is dependent on its: 1. Thickness - the thinner the shield the less effective. This is particularly true of low- frequency noise... Aluminum foil shield works well at rejecting up to 90 dB at frequencies above 30 MHz, but it's inadequate at fending off low-frequency magnetic fields (in fact it's practically transparent below 1 kHz), We rely on balancing and differential amplifiers to get rid of these. 2. Conductivity - the shield must be able to sink all stray currents to the ground plane more easily than anything else. 3. Continuity - we cannot break the shield. It must be continuous around the signal paths, otherwise the noise will leak in like water into a hole in a boat. Don't forget that the holes in your equipment for cooling, potentiometers and so on are breaks in the continuity. General guideline: keep the diameter of your holes at less than 1/20 of the wavelength of the highest frequency you're worried about to ensure at least 20 dB of attenuation. Most high-frequency noise problems are caused by openings in the shield material. Grounding The grounding of audio equipment is there for one primary purpose: to keep you alive. If something goes horribly wrong inside one of those devices and winds up connecting the 120 V AC from the wall to the box (chassis) itself, and you come along and touch the front panel while standing in a pool of water, YOU are the path to ground. This is bad. So, the manufacturers put a third pin on their AC cables which is connected to the chassis on the equipment end, and the third pin in the wall socket. This third pin in the wall socket is called the ground bus and is connected to the electrical breaker box somewhere in the facility. All of the ground busses connect to a primary ground point somewhere in the building. This is the point at which the building makes contact with the earth through a spike or piling called the grounding electrode. The wires which connect these grounds together MUST be heavy-gauge (and therefore very low impedance) in order to ensure that they have a MUCH lower impedance than you when you and it are a parallel connection to ground. The lower this impedance, the less current will flow through you if something goes wrong.
  • 9. An added benefit to this ground is that we use it as a huge sink where all of the noise on our shielding is routed. Conductor Out From Low Dynamic Range (< 60 dB) Med Dynamic Range (60 to 80 dB) High Dynamic Range (> 80 dB) Low EMI High EMI Low EMI High EMI Ground Electrode 6 2 00 00 0000 Master Bus 10 8 6 4 0 Local Bus 14 12 12* 12* 10* Maximum resistance for any cable (W) 0.5 0.1 0.01 0.001 0.0001 * Do not share ground conductors - run individual branch grounds. In all cases the ground conductor must not be smaller than the neutral conductor of the panel it services. Difference amplifiers: used to attenuate noise generated in the transducer ac signal induced in the transducer circuit generally appears in phase at both the inverting and non-inverting terminals; cancellation then occurs at output Any noise generated in the transducer circuit is particularly critical because it usually appears in an amplified form in the instrument read out. To attenuate this type of noise, most instruments employ a difference amplifier for the first stage of amplification. Common mode noise in the transducer circuit generally appears in the phase at both the inverting and noninverting inputs of the amplifier and is largely subtracted out by the circuit so that the noise at its output is diminished substantially. Instrumentation amplifiers are composed of three op amps. Op amp A and op amp B make up the input stage of the instrumentation amplifier in which the two op amps are cross coupled through three resistors. The second stage of the module is the difference amplifier of op amp C. The overall gain of the circuit is given by: o = K(2a + 1)( 2 - 1) Analog filtering: one of the most common methods to improve S/N ratio is the use of a low-pass analog filter -is effective at removing many high frequency components such as thermal or shot noise because majority of analyte signals are dc with bandwidths that extend over only a few Hz -high-pass signals used in systems where the analyte signal is ac and the filter
  • 10. can reduce drift and flicker noise -to attenuate noise we use narrow band electronic filters because magnitude of fundamental noise is directly proportional to the sq. rt. of the frequency bandwidth signal. significant noise reduction occurs if input signal is restricted to a narrow band and then an amplifier tuned to this band is used. The band past by the filter must be wide enough to carry all information carried by the signal. First order analog filters depend on one of two things: an inductor or a capicitor. Although we did not actually use these particular components, as much as Sam wanted to, it is these components that make analog filters work. We decided on active rather than passive filters because they give better results. Schematics and Graphs Lowpass Filter: Highpass Filter:
  • 11. To give those not familiar with analog circuits (or maybe its just been a really long time) an idea of what we wired together we have included some pictures of our breadboard with our first order lowpass filters. Analog Second Order Filters By going to second order filters we were able to shorten the transision band providing greater attenuation of the noise. We were also able to make a bandpass filter using second order design. Also note that compared to first order filters these circuits only require the addition of one capacitor. Schematics and Graphs Lowpass Filter: Highpass Filter:
  • 13. Modulation: amplifier drift and flicker noise often interfere with the amplification of a low frequency or dc signal and 1/f noise is often much larger than noises that predominate at larger frequencies therefore modulators are used to convert these to a higher frequency where 1/f is less troublesome the modulated signal is amplified then filtered with a high-pass filter to remove the amplifier 1/f noise the signal is then demodulated and filtered with a low-pass filter in order to provide an amplified dc signal to the readout device noise is a concern because source intensity and detector sensitivity are low which result 'in a small electrical signal from transducer IR transducers are heat detectors, this adds environmental noise due to the thermal radiation of their surroundings -a slotted rotating disk placed in the beam path produces a radiant signal that fluctuates between zero and some max. -signal is converted by transducer to a sq. wave ac electrical signal whose frequency depends upon size of slots and rate of rotation in IR, environmental noise is usually dc and can be reduced with a high-pass filter before amplification -(refer to figure 4-6 on next page) This is a chopper amplifier that uses a solid state switch to shot the input or output signal to the ground appearance of signal at certain stages 0) input a 6-mV dc signal a) switch converts to approx. sq. wave signal of amplitude 6mV b) amplification to ac signal amplitude 6V c) shorted to ground periodically which results in d) reduced amplitude to 3V e) RC filter serves to smooth signal and produce 1.5V dc output Lock-in amplifiers: permit recovery of signals even when S/N is unity or less generally requires a reference signal at same frequency and phase (must have fixed phase relationship) as signal to be amplified Software: based on digital computer algorithms that permit extraction of signal from noisy environment requires some hardware to condition output and convert it to digital form computer and readout system are also needed common software are generally applicable to non-periodic or irregular wave forms, such as absorption spec. or signals having no synchronizing or reference wave Ensemble averaging: successive sets of data (arrays) are collected and summed point by point (often called coaddition)
  • 14. then data for each point is averaged signal to noise ratio for signal average: points must be measured at a frequency at least 2x that of the highest frequency component of the wave form, much greater frequencies will include more noise but no additional information -wave form reproducibility is important, generally accomplished through synchronizing pulse derived from the wave form -can result in dramatic improvements. Boxcar averaging: digital procedure for smoothing irregularities, that arise from noise, in a wave form assumed analog signal varies slowly with time and that the average of a small number of adjacent points is better than any one individual point usually done by a computer as data is being collected (real time) -limitations include loss of detail, application to only complex signals that change rapidly as a function of time - for square wave or repetitive pulsed outputs where only ave. amplitude is important, it is very important -moving window averaging means point I is the ave. of 1, 2 and 3, point 2 is an ave. of points 2, 3 and 4 etc. here only the first and last points are lost Digital Filtering: moving-window boxcar method is a kind of linear filtering where it assumed that there is an approximate linear relationship among points being sampled -more complex polynomial relationships derive a center point for each window can also be carried out by Fourier transform procedure where the original signal which varies as a function of time (time domain signal) is converted to a frequency domain signal where the independent variable is frequency not time -accomplished mathematically on a computer by a Fourier transform procedure then frequency signal is multiplied by the frequency response of a digital filter which removes a certain frequency region of the transformed signal the filtered time domain signal is retrieved by an inverse Fourier transform