SlideShare uma empresa Scribd logo
1 de 26
Baixar para ler offline
January 27, 2005 11:44    L24-ch04            Sheet number 1 Page number 127                black



                                                              CHAPTER 4
                 Derivatives of Logarithmic, Exponential, and
                       Inverse Trigonometric Functions

              EXERCISE SET 4.1
                                                   2
               1. y = (2x − 5)1/3 ; dy/dx =          (2x − 5)−2/3
                                                   3
                             1                  −2/3                      2                             −2/3
               2. dy/dx =      2 + tan(x2 )            sec2 (x2 )(2x) =     x sec2 (x2 ) 2 + tan(x2 )
                             3                                            3
                                            −1/3
                             2    x+1              x − 2 − (x + 1)             2
               3. dy/dx =                                          =−
                             3    x−2                 (x − 2)2        (x + 1)1/3 (x − 2)5/3

                                            −1/2                                  −1/2
                             1 x2 + 1               d x2 + 1   1 x2 + 1                    −12x               6x
               4. dy/dx =                                    =                                     =−            √
                             2 x2 − 5              dx x2−5     2 x2 − 5                  (x2 − 5)2    (x2 − 5)3/2 x2 + 1

                                       2                                                    1 2
               5. dy/dx = x3 −             (5x2 + 1)−5/3 (10x) + 3x2 (5x2 + 1)−2/3 =          x (5x2 + 1)−5/3 (25x2 + 9)
                                       3                                                    3
                                 √
                                 3
                                     2x − 1 1       2           −4x + 3
               6. dy/dx = −                +                = 2
                                      x2     x 3(2x − 1)2/3  3x (2x − 1)2/3

                             5                                      15[sin(3/x)]3/2 cos(3/x)
               7. dy/dx =      [sin(3/x)]3/2 [cos(3/x)](−3/x2 ) = −
                             2                                                2x2
                                 1            −3/2                          3 2                     −3/2
               8. dy/dx = −        cos(x3 )          − sin(x3 ) (3x2 ) =      x sin(x3 ) cos(x3 )
                                 2                                          2

                                dy            dy    6x2 − y − 1
               9. (a) 1 + y + x    − 6x2 = 0,     =
                                dx            dx          x
                           2 + 2x3 − x   2             dy      2
                   (b) y =             = + 2x2 − 1,        = − 2 + 4x
                                x        x             dx     x
                                      dy         1   1           1  1                    2                        2
                   (c) From Part (a),    = 6x − − y = 6x − −                               + 2x2 − 1     = 4x −
                                      dx         x x             x x                     x                        x2

                       1 −1/2 dy                 dy      √
              10. (a)    y        − cos x = 0 or     = 2 y cos x
                       2      dx                 dx
                                                                 dy
                   (b) y = (2 + sin x) = 4 + 4 sin x + sin2 x so
                                      2
                                                                    = 4 cos x + 2 sin x cos x
                                                                 dx
                                       dy    √
                   (c) from Part (a),     = 2 y cos x = 2 cos x(2 + sin x) = 4 cos x + 2 sin x cos x
                                       dx
                            dy        dy    x
              11. 2x + 2y      = 0 so    =−
                            dx        dx    y

                               dy             dy dy   3y 2 − 3x   y 2 − x2
              12. 3x2 + 3y 2      = 3y 2 + 6xy ,    = 2         = 2
                               dx             dx dx  3y − 6xy    y − 2xy

                      dy                   dy
              13. x2     + 2xy + 3x(3y 2 )    + 3y 3 − 1 = 0
                     dx                    dx
                                 dy                     dy   1 − 2xy − 3y 3
                   (x2 + 9xy 2 )    = 1 − 2xy − 3y 3 so    =
                                 dx                     dx     x2 + 9xy 2

                                                                          127
January 27, 2005 11:44       L24-ch04          Sheet number 2 Page number 128               black



             128                                                                                                           Chapter 4


                          dy                 dy
             14. x3 (2y)     + 3x2 y 2 − 5x2    − 10xy + 1 = 0
                          dx                 dx
                                  dy                         dy   10xy − 3x2 y 2 − 1
                   (2x3 y − 5x2 )    = 10xy − 3x2 y 2 − 1 so    =
                                  dx                         dx      2x3 y − 5x2
                                 dy
                          1             dy    y 3/2
             15. −            − dx = 0,    = − 3/2
                        2x3/2  2y 3/2   dx    x

                        (x − y)(1 + dy/dx) − (x + y)(1 − dy/dx)
             16. 2x =                                           ,
                                        (x − y)2
                                         dy     dy    x(x − y)2 + y
                   2x(x − y)2 = −2y + 2x     so    =
                                         dx     dx          x

                                          dy              dy   1 − 2xy 2 cos(x2 y 2 )
             17. cos(x2 y 2 ) x2 (2y)        + 2xy 2 = 1,    =
                                          dx              dx     2x2 y cos(x2 y 2 )

                                             dy   dy dy      y 2 sin(xy 2 )
             18. − sin(xy 2 ) y 2 + 2xy         =   ,   =−
                                             dx   dx dx    2xy sin(xy 2 ) + 1

                                                            dy        dy
             19. 3 tan2 (xy 2 + y) sec2 (xy 2 + y) 2xy         + y2 +           =1
                                                            dx        dx
                        dy     1 − 3y 2 tan2 (xy 2 + y) sec2 (xy 2 + y)
                   so      =
                        dx   3(2xy + 1) tan2 (xy 2 + y) sec2 (xy 2 + y)

                   (1 + sec y)[3xy 2 (dy/dx) + y 3 ] − xy 3 (sec y tan y)(dy/dx)        dy
             20.                                                                  = 4y 3 ,
                                          (1 + sec y)2                                  dx
                                                                         dy
                   multiply through by (1 + sec y)2 and solve for           to get
                                                                         dx
                   dy                      y(1 + sec y)
                      =
                   dx    4y(1 + sec y)2 − 3x(1 + sec y) + xy sec y tan y

                                                                2
                             dy      dy   2x               dy              d2 y
             21. 4x − 6y        = 0,    =    , 4−6                  − 6y        = 0,
                             dx      dx   3y               dx              dx2
                                      2
                   d2 y    3     dy
                                 dx       −2       2(3y 2 − 2x2 )    8
                        =−                     =                  =− 3
                   dx2             3y                   9y 3        9y

                   dy      x2 d2 y       y 2 (2x) − x2 (2ydy/dx)    2xy 2 − 2x2 y(−x2 /y 2 )    2x(y 3 + x3 )
             22.      = − 2,        =−                           =−                          =−               ,
                   dx      y dx2                     y4                       y4                     y5
                                       d2 y       2x
                   but x3 + y 3 = 1 so        =− 5
                                       dx2        y

                   dy   y d2 y    x(dy/dx) − y(1)    x(−y/x) − y  2y
             23.      =− ,     =−                 =−             = 2
                   dx   x dx2           x2               x2       x

                                                                                            2
                           dy      dy      dy      y      dy   d2 y                    dy              d2 y      d2 y   2y(x + y)
             24. y + x        + 2y    = 0,    =−       ,2    +x 2 +2                            + 2y      2
                                                                                                            = 0,      =
                           dx      dx      dx    x + 2y dx     dx                      dx              dx        dx2    (x + 2y)3

                   dy                   d2 y                            dy       sin y
             25.      = (1 + cos y)−1 ,      = −(1 + cos y)−2 (− sin y)    =
                   dx                   dx2                             dx   (1 + cos y)3
January 27, 2005 11:44      L24-ch04            Sheet number 3 Page number 129          black



              Exercise Set 4.1                                                                                          129


                    dy      cos y
              26.      =             ,
                    dx   1 + x sin y
                    d2 y   (1 + x sin y)(− sin y)(dy/dx) − (cos y)[(x cos y)(dy/dx) + sin y]
                         =
                    dx2                              (1 + x sin y)2
                                 2 sin y cos y + (x cos y)(2 sin2 y + cos2 y)
                         =−                                                   ,
                                                (1 + x sin y)3
                    but x cos y = y, 2 sin y cos y = sin 2y, and sin2 y + cos2 y = 1 so
                    d2 y    sin 2y + y(sin2 y + 1)
                         =−
                    dx2          (1 + x sin y)3


                                                                  dy      x        √       dy     √
              27. By implicit differentiation, 2x + 2y(dy/dx) = 0,    = − ; at (1/2, 3/2),      = − 3/3; at
                                                                  dx      y                dx
                         √       dy       √                                      √        dy       −x
                  (1/2, − 3/2),      = + 3/3. Directly, at the upper point y = 1 − x   2,     = √        =
                                 dx                                                       dx      1 − x2
                     1/2         √                             √        dy      x          √
                  −       = −1/ 3 and at the lower point y = − 1 − x2 ,     =√       = +1/ 3.
                      3/4                                               dx     1−x 2



                                               √                                                       √
              28. If y 2 − x + 1 = 0, then y = x − 1 goes through the point (10, 3) so dy/dx = 1/(2 x − √ By1).
                  implicit differentiation dy/dx = 1/(2y). In both cases, dy/dx|(10,3) = 1/6. Similarly y = − x − 1
                                                          √
                  goes through (10, −3) so dy/dx = −1/(2 x − 1) = −1/6 which yields dy/dx = 1/(2y) = −1/6.


                                  dy         dy    x3      1
              29. 4x3 + 4y 3         = 0, so    = − 3 = − 3/4 ≈ −0.1312.
                                  dx         dx    y     15


                         dy      dy                 dy         dy         y+1
              30. 3y 2      + x2    + 2xy + 2x − 6y    = 0, so    = −2x 2           = 0 at x = 0
                         dx      dx                 dx         dx      3y + x2 − 6y


                                             dy                     dy
              31. 4(x2 + y 2 ) 2x + 2y              = 25 2x − 2y       ,
                                             dx                     dx
                    dy   x[25 − 4(x2 + y 2 )]             dy
                       =                      ; at (3, 1)    = −9/13
                    dx   y[25 + 4(x2 + y 2 )]             dx


                    2                      dy            dy    y 1/3 √           √
              32.        x−1/3 + y −1/3           = 0,      = − 1/3 = 3 at (−1, 3 3)
                    3                      dx            dx    x


                         da                    da             da        da  2t3 + 3a2
              33. 4a3       − 4t3 = 6 a2 + 2at    , solve for    to get    = 3
                         dt                    dt             dt        dt  2a − 6at

                                                  √
                    1 −1/2 du 1 −1/2        du      u
              34.     u       + v    = 0 so    = −√
                    2      dv  2            dv      v


                          dω                dω   b2 λ                                        dx    dx     1
              35. 2a2 ω      + 2b2 λ = 0 so    =− 2                        36. 1 = (cos x)      so    =       = sec x
                          dλ                dλ   a ω                                         dy    dy   cos x
January 27, 2005 11:44        L24-ch04                     Sheet number 4 Page number 130             black



             130                                                                                                                    Chapter 4


             37. (a)                               y



                                               2
                                                                       x
                                  –4                       4

                                           –2




                                                                                                                     dy             dy
                   (b) Implicit differentiation of the equation of the curve yields (4y 3 + 2y)                          = 2x − 1 so    =0
                                                                                                                     dx             dx
                         only if x = 1/2 but y 4 + y 2 ≥ 0, so x = 1/2 is impossible.
                                                                                                       1±     1 + 4y 2 + 4y 4
                   (c) x2 − x − (y 4 + y 2 ) = 0, so by the Quadratic Formula x =                                             = 1 + y 2 , −y 2
                                                                                                                 2
                         which gives the parabolas x = 1 + y 2 , x = −y 2 .

             38. (a)          y
                          2


                                                                       x
                          0                1           2


                         –2



                           dy                                                                    dy
                   (b) 2y      = (x − a)(x − b) + x(x − b) + x(x − a) = 3x2 − 2(a + b)x + ab. If    = 0 then
                           dx                                                                    dx
                         3x2 − 2(a + b)x + ab = 0. By the Quadratic Formula
                                  2(a + b) ±                   4(a + b)2 − 4 · 3ab   1
                         x=                                                        =   a + b ± (a2 + b2 − ab)1/2 .
                                                                 6                   3
                   (c) y = ± x(x − a)(x − b). The square root is only defined for nonnegative arguments, so it is
                       necessary that all three of the factors x, x − a, x − b be nonnegative, or that two of them be
                       nonpositive. If, for example, 0 < a < b then the function is defined on the disjoint intervals
                       0 < x < a and b < x < +∞, so there are two parts.

             39. (a)                           y                                           (b) x ≈ ±1.1547
                                       2


                                                                   x
                          –2                                   2


                                       –2


                                                            dy          dy                 dy   y − 2x        dy
                   (c) Implicit differentiation yields 2x − x   − y + 2y     = 0. Solve for    =         . If     =0
                                                            dx          dx                 dx   2y − x        dx
                                                                                                            2
                         then y − 2x = 0 or y = 2x. Thus 4 = x2 − xy + y 2 = x2 − 2x2 + 4x2 = 3x2 , x = ± √ .
                                                                                                             3

             40. (a) See Exercise 39 (a)
                 (b) Since the equation is symmetric in x and y, we obtain, as in Exercise 39, x ≈ ±1.1547.
January 27, 2005 11:44      L24-ch04            Sheet number 5 Page number 131    black



              Exercise Set 4.1                                                                                      131


                                                             dy            dy                   dx    2y − x       dx
                    (c) Implicit differentiation yields 2x − x   − y + 2y       = 0. Solve for      =         . If     =0
                                                             dx            dx                   dy    y − 2x       dy
                                                                                                2                4
                          then 2y − x = 0 or x = 2y. Thus 4 = 4y 2 − 2y 2 + y 2 = 3y 2 , y = ± √ , x = 2y = ± √ .
                                                                                                 3                3

              41. Solve the simultaneous equations y = x, x2 −xy+y 2 = 4 to get x2 −x2 +x2 = 4, x = ±2, y = x = ±2,
                  so the points of intersection are (2, 2) and (−2, −2).
                                               dy    y − 2x                    dy                          dy
                  From Exercise 39 part (c),      =          . When x = y = 2,    = −1; when x = y = −2,      = −1;
                                               dx    2y − x                    dx                          dx
                  the slopes are equal.

              42. Suppose a2 − 2ab + b2 = 4. Then (−a)2 − 2(−a)(−b) + (−b)2 = a2 − 2ab + b2 = 4 so if P (a, b) lies
                  on C then so does Q(−a, −b).
                                              dy      y − 2x                              dy   b − 2a
                  From Exercise 39 part (c),      =          . When x = a, y = b then        =        , and when
                                              dx      2y − x                              dx   2b − a
                                        dy   b − 2a
                  x = −a, y = −b, then     =        , so the slopes at P and Q are equal.
                                        dx   2b − a

              43. The point (1,1) is on the graph, so 1 + a = b. The slope of the tangent line at (1,1) is −4/3; use
                                                 dy       2xy                      2       4
                  implicit differentiation to get    =− 2         so at (1,1), −        = − , 1 + 2a = 3/2, a = 1/4
                                                 dx     x + 2ay                 1 + 2a     3
                  and hence b = 1 + 1/4 = 5/4.

              44. The slope of the line x + 2y − 2 = 0 is m1 = −1/2, so the line perpendicular has slope m = 2
                  (negative reciprocal). The slope of the curve y 3 = 2x2 can be obtained by implicit differentiation:
                       dy       dy    4x         dy         4x
                  3y 2    = 4x,    = 2 . Set        = 2; 2 = 2, x = (3/2)y 2 . Use this in the equation of the curve:
                       dx       dx    3y         dx        3y
                                                                           2
                                                                      3 2       2
                  y 3 = 2x2 = 2((3/2)y 2 )2 = (9/2)y 4 , y = 2/9, x =        =    .
                                                                      2 9      27

              45. (a)                       y                            (b) x ≈ 0.84
                                        2


                                                        x
                           –3     –1                2
                                       –1



                                       –3

                    (c) Use implicit differentiation to get dy/dx = (2y −3x2 )/(3y 2 −2x), so dy/dx = 0 if y = (3/2)x2 .
                        Substitute this into x3 − 2xy + y 3 = 0 to obtain 27x6 − 16x3 = 0, x3 = 16/27, x = 24/3 /3
                        and hence y = 25/3 /3.

              46. (a)                       y                            (b) Evidently the tangent line at the point
                                        2
                                                                             x = 1, y = 1 has slope −1.

                                                        x
                           –3     –1                2
                                       –1



                                       –3
January 27, 2005 11:44     L24-ch04       Sheet number 6 Page number 132           black



             132                                                                                               Chapter 4


                   (c) Use implicit differentiation to get dy/dx = (2y −3x2 )/(3y 2 −2x), so dy/dx = −1 if 2y −3x2 =
                       −3y 2 +2x, 2(y−x)+3(y−x)(y+x) = 0. One solution is y = x; this together with x3 +y 3 = 2xy
                       yields x = y = 1. For these values dy/dx = −1, so that (1, 1) is a solution.
                         To prove that there is no other solution, suppose y = x. From dy/dx = −1 it follows
                         that 2(y − x) + 3(y − x)(y + x) = 0. But y = x, so x + y = −2/3. Then x3 + y 3 =
                         (x + y)(x2 − xy + y 2 ) = 2xy, so replacing x + y with −2/3 we get x2 + 2xy + y 2 = 0, or
                         (x + y)2 = 0, so y = −x. Substitute that into x3 + y 3 = 2xy to obtain x3 − x3 = −2x2 , x = 0.
                         But at x = y = 0 the derivative is not defined.

             47. (a) The curve is the circle (x − 2)2 + y 2 = 1 about the point (2, 0) of radius 1. One tangent
                     line is tangent at a point P(x,y) in the first quadrant. Let Q(2, 0) be the center of the
                     circle. Then OP Q is a right angle, with sides |P Q| = r = 1 and |OP | = x2 + y 2 . By
                     the Pythagorean Theorem x2 + y 2 + 12 = 22 . Substitute this into (x − 2)2 + y 2 = 1 to
                                                            √          √
                     obtain √ − 4x + 4 = 1, x = 3/2, y = 3 − x2 = 3/2. So the required tangent lines are
                             3
                     y = ±( 3/3)x.
                   (b) Let P (x0 , y0 ) be a point where a line through the origin is tangent to the curve
                       x2 − 4x + y 2 + 3 = 0. Implicit differentiation applied to the equation of the curve gives
                       dy/dx = (2 − x)/y. At P the slope of the curve must equal the slope of the line so
                       (2 − x0 )/y0 = y0 /x0 , or y0 = 2x0 − x2 . But x2 − 4x0 + y0 + 3 = 0 because (x0 , y0 ) is on the
                                                   2
                                                               0       0
                                                                                   2

                       curve, and elimination of y0 in the latter two equations gives x2 − 4x0 + (2x0 − x√) + 3 = 0,
                                                     2
                                                                                          0
                                                                                                            2
                                                                                                            0
                       x0 = 3/2 which when substituted into y0 =√ 0 − x0 yields y0 = 3/4, so y0 = ± 3/2. The
                                                   √
                                                                  2
                                                                      2x      2         2
                                                                                                           √
                       slopes of the lines are (± 3/2)/(3/2) = ± 3/3 and their equations are y = ( 3/3)x and
                              √
                       y = −( 3/3)x.

             48. Let P (x0 , y0 ) be a point where a line through the origin is tangent to the curve
                 2x2 − 4x + y 2 + 1 = 0. Implicit differentiation applied to the equation of the curve gives
                 dy/dx = (2 − 2x)/y. At P the slope of the curve must equal the slope of the line so
                 (2 − 2x0 )/y0 = y0 /x0 , or y0 = 2x0 (1 − x0 ). But 2x2 − 4x0 + y0 + 1 = 0 because (x0 , y0 ) is on the
                                              2
                                                                       0
                                                                                   2

                 curve, and elimination of y0 in the latter two equations gives 2x0 = 4x0 − 1, x0 = 1/2 which when
                                              2
                                                                                    √
                 substituted into y0 = 2x0 (1 − x0 ) yields y0 = 1/2, √ y0 = ± 2/2. The slopes of the lines are
                    √
                                      2
                                        √
                                                                2
                                                                         so             √
                 (± 2/2)/(1/2) = ± 2 and their equations are y = 2x and y = − 2x.

             49. The linear equation axr−1 x + by0 y = c is the equation of a line . Implicit differentiation of the
                                           0
                                                     r−1

                                                                dy      dy      axr−1
                 equation of the curve yields raxr−1 + rby r−1     = 0,     = − r−1 . At the point (x0 , y0 ) the slope
                                                                dx      dx      by
                                           axr−1
                 of the line must be − r−1 , which is the slope of . Moreover, the equation of is satisfied by
                                             0
                                           by0
                 the point (x0 , y0 ), so this point lies on . By the point-slope formula, must be the line tangent
                 to the curve at (x0 , y0 ).
                                                                                            dy
             50. Implicit differentiation of the equation of the curve yields rxr−1 + ry r−1    = 0. At the point (1, 1)
                                    dy        dy                                            dx
                 this becomes r + r     = 0,     = −1.
                                    dx        dx
                                      dy   dy dt
             51. By the chain rule,      =       . Use implicit differentiation on 2y 3 t + t3 y = 1 to get
                                      dx   dt dx
                   dy    2y 3 + 3t2 y       dt    1       dy       2y 3 + 3t2 y
                      =−              , but    =       so    =−                     .
                   dt     6ty 2 + t3        dx   cos t    dx    (6ty 2 + t3 ) cos t

                                4 1/3           4
             52. (a) f (x) =      x , f (x) = x−2/3
                                3               9
                                7 4/3           28 1/3           28 −2/3
                   (b) f (x) = x , f (x) =         x , f (x) =      x
                                3                9               27
                   (c) generalize parts (a) and (b) with k = (n − 1) + 1/3 = n − 2/3
January 27, 2005 11:44       L24-ch04           Sheet number 7 Page number 133                black



              Exercise Set 4.2                                                                                           133


              53. y = rxr−1 , y = r(r − 1)xr−2 so 3x2 r(r − 1)xr−2 + 4x rxr−1 − 2xr = 0,
                  3r(r − 1)xr + 4rxr − 2xr = 0, (3r2 + r − 2)xr = 0,
                  3r2 + r − 2 = 0, (3r − 2)(r + 1) = 0; r = −1, 2/3

              54. y = rxr−1 , y = r(r − 1)xr−2 so 16x2 r(r − 1)xr−2 + 24x rxr−1 + xr = 0,
                  16r(r − 1)xr + 24rxr + xr = 0, (16r2 + 8r + 1)xr = 0,
                  16r2 + 8r + 1 = 0, (4r + 1)2 = 0; r = −1/4

              55. We shall find when the curves intersect and check that the slopes are negative reciprocals. For the
                  intersection solve the simultaneous equations x2 + (y − c)2 = c2 and (x − k)2 + y 2 = k 2 to obtain
                               1                                                                   y−c         x−k
                  cy = kx = (x2 + y 2 ). Thus x2 + y 2 = cy + kx, or y 2 − cy = −x2 + kx, and             =−        .
                               2                                                                     x           y
                                                                 dy        x               dy     x−k
                  Differentiating the two families yields (black)    =−        , and (gray)    =−        . But it was
                                                                 dx      y−c               dx        y
                  proven that these quantities are negative reciprocals of each other.

                                                                 dy                            dy
              56. Differentiating, we get the equations (black) x    + y = 0 and (gray) 2x − 2y    = 0. The first
                                                                 dx                            dx
                                               y                                        x
                  says the (black) slope is = − and the second says the (gray) slope is , and these are negative
                                               x                                        y
                  reciprocals of each other.



              EXERCISE SET 4.2

                     1       1                                                        1 1    1
               1.      (5) =                                                    2.         =
                    5x       x                                                       x/3 3   x

                     1                                                                 1         1             1
               3.                                                               4.      √        √       = √     √
                    1+x                                                              2+ x      2 x        2 x(2 + x)

                      1          2x                                                   3x2 − 14x
               5.    2−1
                         (2x) = 2                                               6.
                    x          x −1                                                  x3 − 7x2 − 3

                        1      (1 + x2 )(1) − x(2x)    1 − x2
               7.           2)              2 )2
                                                    =
                    x/(1 + x        (1 + x            x(1 + x2 )

                           1       1−x+1+x        2                                   d              d      2
               8.                            =                                  9.      (2 ln x) = 2 ln x =
                    (1 + x)/(1 − x) (1 − x)2   1 − x2                                dx             dx      x

                                 1                                                   1               1          1
                                                                                       (ln x)−1/2
                             2
              10. 3 (ln x)                                                    11.                        =     √
                                 x                                                   2               x       2x ln x

                     1 1    1                                                                1
              12.   √ √ =                                                     13. ln x + x     = 1 + ln x
                      x2 x 2x                                                                x

                         1                                                                                   2x2
              14. x3             + (3x2 ) ln x = x2 (1 + 3 ln x)              15. 2x log2 (3 − 2x) −
                         x                                                                               (3 − 2x) ln 2

                                        3                          2      2x − 2
              16.    log2 (x2 − 2x)         + 3x log2 (x2 − 2x)
                                                                       (x2 − 2x) ln 2
January 27, 2005 11:44         L24-ch04        Sheet number 8 Page number 134                  black



             134                                                                                                              Chapter 4


                   2x(1 + log x) − x/(ln 10)
             17.                                                             18. 1/[x(ln 10)(1 + log x)2 ]
                         (1 + log x)2

                    1      1            1                                                1      1 1
             19.                 =                                           20.
                   ln x    x         x ln x                                          ln(ln(x)) ln x x

                     1                                                                 1
             21.         (sec2 x) = sec x csc x                              22.           (− sin x) = − tan x
                   tan x                                                             cos x

                  1                                                                               1   sin(2 ln x)   sin(ln x2 )
             23. − sin(ln x)                                    24.       2 sin(ln x) cos(ln x)     =             =
                  x                                                                               x       x             x
                        1                         cot x
             25.            2 (2 sin x cos x) = 2 ln 10
                   ln 10 sin x
                            1                               2 sin x cos x    2 tan x
             26.                      (−2 sin x cos x) = −                =−
                   (ln 10)(1 − sin x)
                                  2                        (ln 10) cos 2x     ln 10

                    d                               3    8x    11x2 − 8x + 3
             27.      3 ln(x − 1) + 4 ln(x2 + 1) =    + 2   =
                   dx                              x−1 x +1   (x − 1)(x2 + 1)

                    d              1                            2x3
             28.      [2 ln cos x + ln(1 + x4 )] = −2 tan x +
                   dx              2                          1 + x4

                    d           1                           3x
             29.      ln cos x − ln(4 − 3x2 ) = − tan x +
                   dx           2                         4 − 3x2

                    d     1                                 1    1   1
             30.            [ln(x − 1) − ln(x + 1)]     =          −
                   dx     2                                 2   x−1 x+1

                                        1               dy            1    2x
             31. ln |y| = ln |x| +        ln |1 + x2 |,
                                                              3
                                                           = x 1 + x2   +
                                        3               dx            x 3(1 + x2 )

                               1                            dy   1        x−1  1   1
             32. ln |y| =        [ln |x − 1| − ln |x + 1|],    =      5
                                                                                 −
                               5                            dx   5        x+1 x−1 x+1

                          1              1
             33. ln |y| =   ln |x2 − 8| + ln |x3 + 1| − ln |x6 − 7x + 5|
                          3              2
                                    √
                   dy   (x2 − 8)1/3 x3 + 1       2x            3x2       6x5 − 7
                      =                                  +           − 6
                   dx       x6 − 7x + 5       3(x2 − 8) 2(x3 + 1) x − 7x + 5

                                                                          1
             34. ln |y| = ln | sin x| + ln | cos x| + 3 ln | tan x| −       ln |x|
                                                                          2
                   dy   sin x cos x tan3 x                 3 sec2 x    1
                      =        √           cot x − tan x +          −
                   dx             x                         tan x     2x
                                                                                                    √           √
                                                                                  √         1 dy      10 dy       10
             35. f (x) = ex      e−1
                                                                36.       ln y = − 10 ln x,      =−     ,   =−    √
                                                                                            y dx     x dx      x1+ 10

                                       ln e    1    d               1
             37. (a) logx e =               =     , [logx e] = −
                                       ln x   ln x dx            x(ln x)2
                                       ln 2 d               ln 2
                   (b) logx 2 =            , [logx 2] = −
                                       ln x dx            x(ln x)2
January 27, 2005 11:44      L24-ch04        Sheet number 9 Page number 135                  black



              Exercise Set 4.2                                                                                                 135


                                        ln b                                             ln e      1
              38. (a) From loga b =          for a, b > 0 it follows that log(1/x) e =         =−      , hence
                                        ln a                                           ln(1/x)    ln x
                           d                   1
                             log(1/x) e =
                          dx                x(ln x)2
                                          ln e        1           d                      1         1              1
                    (b) log(ln x) e =            =          , so    log(ln x) e = −                    =−
                                        ln(ln x)   ln(ln x)      dx                 (ln(ln x))2 x ln x    x(ln x)(ln(ln x))2

                                                       1
              39. f (x0 ) = f (e−1 ) = −1, f (x) =       , f (x0 ) = e, y − (−1) = e(x − 1/e) = ex − 1, y = ex − 2
                                                       x

                                                               dy                    1
              40. y0 = log 10 = 1, y = log x = (log e) ln x,               = log e      ,
                                                               dx   x=10             10
                         log e               log e
                    y−1=       (x − 10), y =       x + 1 − log e
                          10                  10

                                                         1                            1              1
              41. f (x0 ) = f (−e) = 1, f (x)          =− ,           42. y − ln 2 = − (x + 2), y = − x + ln 2 − 1
                                                x=−e     e                            2              2
                             1              1
                    y − 1 = − (x + e), y = − x
                             e              e

              43. Let the equation of the tangent line be y = mx and suppose that it meets the curve at (x0 , y0 ).
                             1          1                                1    ln x0                              1
                  Then m =          =      and y0 = mx0 = ln x0 . So m =    =       and ln x0 = 1, x0 = e, m =
                             x x=x0    x0                                x0    x0                                e
                                                             1
                  and the equation of the tangent line is y = x.
                                                             e

              44. Let y = mx + b be a line tangent to the curve at (x0 , y0 ). Then b is the y-intercept and the
                                                         1
                  slope of the tangent line is m =         . Moreover, at the point of tangency, mx0 + b = ln x0 or
                                                        x0
                   1
                     x0 + b = ln x0 , b = ln x0 − 1, as required.
                  x0
                                                                                                         y
              45. The area of the triangle P QR, given by |P Q||QR|/2 is
                  required. |P Q| = w, and, by Exercise 44, |QR| = 1, so                             1
                                                                                                             P (w, ln w)
                  area = w/2.                                                                       Q                           x
                                                                                                                   w       2
                                                                                                    R

                                                                                                    –2




              46. Since y = 2 ln x, let y = 2z; then z = ln x and we apply the result of Exercise 45 to find that the
                  area is, in the x-z plane, w/2. In the x-y plane, since y = 2z, the vertical dimension gets doubled,
                  so the area is w.

                                                       dy    1                       dy   1
              47. If x = 0 then y = ln e = 1, and         =     . But ey = x + e, so    = y = e−y .
                                                       dx   x+e                      dx  e

                                                                    dy     1
                                                                              . But ey = e− ln(e −x) = (e2 − x)−1 , so
                                                                                                2
              48. When x = 0, y = − ln(e2 ) = −2. Next,                = 2
                                                                    dx   e −x
                    dy
                       = ey .
                    dx
January 27, 2005 11:44     L24-ch04             Sheet number 10 Page number 136           black



             136                                                                                                          Chapter 4


                                                                          dy    1
             49. Let y = ln(x + a). Following Exercise 47 we get             =     = e−y , and when x = 0, y = ln(a) = 0
                                                                          dx   x+a
                   if a = 1, so let a = 1, then y = ln(x + 1).

                                             dy       1                1        dy
             50. Let y = − ln(a − x), then      =        . But ey =        , so    = ey .
                                             dx     a−x              a−x        dx
                   If x = 0 then y = − ln(a) = − ln 2 provided a = 2, so y = − ln(2 − x).

                                                        ln(e2 + ∆x) − 2    d                      1
             51. (a) f (x) = ln x; f (e2 ) = lim                        =    (ln x)           =              = e−2
                                                   ∆x→0       ∆x          dx           x=e2       x   x=e2

                                                           ln(1 + h) − ln 1       ln(1 + h)   1
                   (b) f (w) = ln w; f (1) = lim                            = lim           =           =1
                                                   h→0            h           h→0     h       w   w=1

                                                                                                                  f (x) − f (0)
             52. (a) Let f (x) = ln(cos x), then f (0) = ln(cos 0) = ln 1 = 0, so f (0) = lim                                   =
                                                                                                              x→0       x
                               ln(cos x)
                         lim             , and f (0) = − tan 0 = 0.
                         x→0       x                                                                                 √
                                           √
                                            2                         f (1 + h) − f (1)       (1 + h)                 2
                                                                                                                          −1
                   (b) Let f (x) = x , then f (1) = 1, so f (1) = lim                   = lim                                  , and
                               √ √              √                 h→0         h           h→0       h
                       f (x) = 2x 2−1 , f (1) = 2.

                    d                logb (x + h) − logb (x)
             53.      [logb x] = lim
                   dx            h→0            h
                                         1        x+h
                               = lim       logb                           Theorem 1.6.2(b)
                                   h→0   h         x
                                         1          h
                               = lim       logb 1 +
                                   h→0   h          x
                                          1
                               = lim        logb (1 + v)                  Let v = h/x and note that v → 0 as h → 0
                                   v→0   vx
                                   1     1
                               =     lim logb (1 + v)                     h and v are variable, whereas x is constant
                                   x v→0 v
                                   1
                               =     lim log (1 + v)1/v                   Theorem 1.6.2.(c)
                                   x v→0 b
                                   1
                               =     logb lim (1 + v)1/v                  Theorem 2.5.5
                                   x      v→0

                                   1
                               =     logb e                               Formula 7 of Section 7.1
                                   x



             EXERCISE SET 4.3
              1. (a) f (x) = 5x4 + 3x2 + 1 ≥ 1 so f is one-to-one on −∞ < x < +∞.
                                                        d −1           1                         1     1
                   (b) f (1) = 3 so 1 = f −1 (3);         f (x) =      −1 (x))
                                                                               , (f −1 ) (3) =       =
                                                       dx         f (f                         f (1)   9

              2. (a) f (x) = 3x2 + 2ex ; for −1 < x < 1, f (x) ≥ 2e−1 = 2/e, and for |x| > 1, f (x) ≥ 3x2 ≥ 3, so
                     f is increasing and one-to-one
                                                       d −1           1                         1     1
                   (b) f (0) = 2 so 0 = f −1 (2);        f (x) =              , (f −1 ) (2) =       =
                                                      dx         f (f −1 (x))                 f (0)   2
January 27, 2005 11:44      L24-ch04        Sheet number 11 Page number 137            black



              Exercise Set 4.3                                                                                      137


                              2                     d −1         2
               3. f −1 (x) =    − 3, so directly      f (x) = − 2 . Using Formula (1),
                              x                    dx           x
                               −2              1
                    f (x) =          , so              = −(1/2)(f −1 (x) + 3)2 ,
                            (x + 3)2      f (f −1 (x))
                                                2
                     d −1                   2            2
                       f (x) = −(1/2)               =−
                    dx                      x            x2

                                 ex − 1                 d −1     ex                 2
               4. f −1 (x) =            , so directly,    f (x) = . Next, f (x) =        , and using Formula (1),
                                    2                  dx         2               2x + 1
                     d −1      2f −1 (x) + 1   ex
                       f (x) =               =
                    dx                2         2

               5. (a) f (x) = 2x + 8; f < 0 on (−∞, −4) and f > 0 on (−4, +∞); not enough information. By
                      inspection, f (1) = 10 = f (−9), so not one-to-one
                  (b) f (x) = 10x4 + 3x2 + 3 ≥ 3 > 0; f (x) is positive for all x, so f is one-to-one
                  (c) f (x) = 2 + cos x ≥ 1 > 0 for all x, so f is one-to-one
                                          x
                  (d) f (x) = −(ln 2) 1 < 0 because ln 2 > 0, so f is one-to-one for all x.
                                        2

               6. (a) f (x) = 3x2 + 6x = x(3x + 6) changes sign at x = −2, 0, so √ enough information; by
                                                                                   not               √
                      observation (of the graph, and using some guesswork), f (−1 + 3) = −6 = f (−1 − 3), so
                      f is not one-to-one.
                    (b) f (x) = 5x4 + 24x2 + 2 ≥ 2 > 0; f is positive for all x, so f is one-to-one
                                    1
                    (c) f (x) =           ; f is one-to-one because:
                                 (x + 1)2
                        if x1 < x2 < −1 then f > 0 on [x1 , x2 ], so f (x1 ) = f (x2 )
                        if −1 < x1 < x2 then f > 0 on [x1 , x2 ], so f (x1 ) = f (x2 )
                        if x1 < −1 < x2 then f (x1 ) > 1 > f (x2 ) since f (x) > 1 on (−∞, −1) and f (x) < 1 on
                        (−1, +∞)
                                                                          d              1
                    (d) Note that f (x) is only defined for x > 0.            logb x =         , which is always negative
                                                                         dx            x ln b
                        (0 < b < 1), so f is one-to-one.

                                                              dx              dy       1
               7. y = f −1 (x), x = f (y) = 5y 3 + y − 7,        = 15y 2 + 1,    =           ;
                                                              dy              dx   15y 2 + 1
                                       dy   dy dy       1
                    check: 1 = 15y 2      +   ,   =     2+1
                                       dx dx dx     15y

                                                      dx            dy
               8. y = f −1 (x), x = f (y) = 1/y 2 ,      = −2y −3 ,    = −y 3 /2;
                                                      dy            dx
                                        dy dy
                    check: 1 = −2y −3     ,   = −y 3 /2
                                        dx dx

                                                        dx                     dy         1
               9. y = f −1 (x), x = f (y) = 2y 5 + y 3 + 1,   = 10y 4 + 3y 2 ,    =     4 + 3y 2
                                                                                                 ;
                                                        dy                     dx   10y
                                     dy       dy dy         1
                    check: 1 = 10y 4    + 3y 2 ,    =
                                     dx       dx dx   10y 4 + 3y 2

                                                       dx                 dy        1
              10. y = f −1 (x), x = f (y) = 5y − sin 2y,  = 5 − 2 cos 2y,    =              ;
                                                       dy                 dx   5 − 2 cos 2y
                                             dy dy        1
                    check: 1 = (5 − 2 cos 2y) ,    =
                                             dx dx   5 − 2 cos 2y
January 27, 2005 11:44       L24-ch04             Sheet number 12 Page number 138                black



             138                                                                                                           Chapter 4


                                                                           12. −10xe−5x
                                                                                             2
             11. 7e7x

                                                                                    1 1/x
             13. x3 ex + 3x2 ex = x2 ex (x + 3)                            14. −       e
                                                                                    x2

                   dy   (ex + e−x )(ex + e−x ) − (ex − e−x )(ex − e−x )
             15.      =
                   dx                    (ex + e−x )2

                           (e2x + 2 + e−2x ) − (e2x − 2 + e−2x )
                       =                                         = 4/(ex + e−x )2
                                       (ex + e−x )2

             16. ex cos(ex )

                                                                                  dy   (ln x)ex − ex (1/x)   ex (x ln x − 1)
             17. (x sec2 x + tan x)ex tan x                                18.       =                     =
                                                                                  dx         (ln x)2             x(ln x)2

                                                                                  15 2
                                                                                     x (1 + 5x3 )−1/2 exp( 1 + 5x3 )
                                     3x
             19. (1 − 3e3x )e(x−e         )
                                                                           20.
                                                                                   2

                   (x − 1)e−x   x−1                                                  1
             21.              = x                                          22.             [− sin(ex )]ex = −ex tan(ex )
                    1 − xe−x   e −x                                               cos(ex )

                                                                 1
             23. f (x) = 2x ln 2; y = 2x , ln y = x ln 2,          y = ln 2, y = y ln 2 = 2x ln 2
                                                                 y

                                                                        1
             24. f (x) = −3−x ln 3; y = 3−x , ln y = −x ln 3,             y = − ln 3, y = −y ln 3 = −3−x ln 3
                                                                        y

             25. f (x) = π sin x (ln π) cos x;
                                                         1
                   y = π sin x , ln y = (sin x) ln π,      y = (ln π) cos x, y = π sin x (ln π) cos x
                                                         y

             26. f (x) = π x tan x (ln π)(x sec2 x + tan x);
                                                             1
                   y = π x tan x , ln y = (x tan x) ln π,      y = (ln π)(x sec2 x + tan x)
                                                             y
                   y = π x tan x (ln π)(x sec2 x + tan x)

                                                     1 dy  3x2 − 2       1
             27. ln y = (ln x) ln(x3 − 2x),               = 3      ln x + ln(x3 − 2x),
                                                     y dx  x − 2x        x

                   dy                 3x2 − 2       1
                      = (x3 − 2x)ln x 3       ln x + ln(x3 − 2x)
                   dx                 x − 2x        x

                                              1 dy   sin x                 dy          sin x
             28. ln y = (sin x) ln x,              =       + (cos x) ln x,    = xsin x       + (cos x) ln x
                                              y dx     x                   dx            x

                                                  1 dy      1
             29. ln y = (tan x) ln(ln x),              =        tan x + (sec2 x) ln(ln x),
                                                  y dx   x ln x
                   dy               tan x
                      = (ln x)tan x        + (sec2 x) ln(ln x)
                   dx               x ln x
January 27, 2005 11:44        L24-ch04           Sheet number 13 Page number 139             black



              Exercise Set 4.3                                                                                                   139


                                                  1 dy    2x       1
              30. ln y = (ln x) ln(x2 + 3),            = 2   ln x + ln(x2 + 3),
                                                  y dx  x +3       x
                    dy                 2x        1
                       = (x2 + 3)ln x 2    ln x + ln(x2 + 3)
                    dx                x +3       x


              31. f (x) = exe−1

              32. (a) because xx is not of the form ax where a is constant
                                             1
                  (b) y = xx , ln y = x ln x, y = 1 + ln x, y = xx (1 + ln x)
                                             y

                          3                  3                                         1/2                      1
              33.                     =√                                 34. −                       =−
                       1−     (3x)2        1 − 9x2                                   1−     x+1 2           4 − (x + 1)2
                                                                                             2

                          1                               1                          sin x       sin x            1, sin x > 0
              35.                 (−1/x2 ) = −          √                36.   √              =          =
                       1 − 1/x2                      |x| x2 − 1                    1 − cos2 x   | sin x|         −1, sin x < 0

                       3x2         3x2                                                5x4                     5
              37.              =                                         38.                         =      √
                    1 + (x3 )2   1 + x6                                        |x5 | (x5 )2 − 1          |x| x10 − 1

              39. y = 1/ tan x = cot x, dy/dx = − csc2 x

                                                                        1
              40. y = (tan−1 x)−1 , dy/dx = −(tan−1 x)−2
                                                                     1 + x2

                        ex                                                                 1
              41.      √       + ex sec−1 x                              42. −              √
                    |x| x2 − 1                                                   (cos−1   x) 1 − x2

                                                                               3x2 (sin−1 x)2
              43. 0                                                      44.     √            + 2x(sin−1 x)3
                                                                                    1 − x2

                                                                                √
              45. 0                                                      46. −1/ e2x − 1

                       1         1 −1/2                1                              1
              47. −                x        =−            √              48. − √
                      1+x        2                2(1 + x) x                       −1
                                                                              2 cot x(1 + x2 )

              49. (a) Let x = f (y) = cot y, 0 < y < π, −∞ < x < +∞. Then f is differentiable and one-to-one
                      and f (f −1 (x)) = − csc2 (cot−1 x) = −x2 − 1 = 0, and
                           d                                  1                 1
                             [cot−1 x]           = lim                = − lim 2     = −1.
                          dx               x=0
                                                   x→0   f (f −1 (x))     x→0 x + 1


                    (b) If x = 0 then, from Exercise 50(a) of Section 1.5,
                         d             d       1       1      1             1
                            cot−1 x =     tan−1 = − 2                =− 2      . For x = 0, Part (a) shows the same;
                        dx            dx       x      x 1 + (1/x)2        x +1
                                                  d                  1
                        thus for −∞ < x < +∞, [cot−1 x] = − 2            .
                                                 dx               x +1

                                                                                           d                 1 du
                    (c) For −∞ < u < +∞, by the chain rule it follows that                   [cot−1 u] = − 2       .
                                                                                          dx              u + 1 dx
January 27, 2005 11:44       L24-ch04          Sheet number 14 Page number 140                        black



             140                                                                                                                 Chapter 4


                                                    d              d      1    1                       1                −1
             50. (a) By the chain rule,               [csc−1 x] =    sin−1 = − 2                                =      √
                                                   dx             dx      x   x                   1−   (1/x)2       |x| x2 − 1
                                                    d             du d                  −1     du
                   (b) By the chain rule,             [csc−1 u] =       [csc−1 u] =    √
                                                   dx             dx du             |u| u2 − 1 dx

                                                         x                             (3x2 + tan−1 y)(1 + y 2 )
             51. x3 + x tan−1 y = ey , 3x2 +                  y + tan−1 y = ey y , y =
                                                        1+y 2                               (1 + y 2 )ey − x

                                                             1                                1
             52. sin−1 (xy) = cos−1 (x − y),                              (xy + y) = −                     (1 − y ),
                                                          1−     x2 y 2                  1 − (x − y)2
                         y    1 − (x − y)2 +        1 − x2 y 2
                   y =
                             1 − x2 y 2 − x 1 − (x − y)2

             53. (a) f (x) = x3 − 3x2 + 2x = x(x − 1)(x − 2) so f (0) = f (1) = f (2) = 0 thus f is not one-to-one.
                                                                        √
                                                                    6 ± 36 − 24            √
                 (b) f (x) = 3x − 6x + 2, f (x) = 0 when x =
                                 2
                                                                                    = 1 ± 3/3. f (x) > 0 (f is
                                            √                              6        √                √
                     increasing) if x < 1 − 3/3, f (x) < 0 (f is decreasing) if 1 − 3/3 < x < 1 + 3/3, so f (x)
                                                     √                           √              √
                     takes on values less than f (1 − 3/3) on both sides of 1 − 3/3 thus 1 − 3/3 is the largest
                     value of k.

             54. (a) f (x) = x3 (x − 2) so f (0) = f (2) = 0 thus f is not one to one.
                 (b) f (x) = 4x3 − 6x2 = 4x2 (x − 3/2), f (x) = 0 when x = 0 or 3/2; f is decreasing on (−∞, 3/2]
                     and increasing on [3/2, +∞) so 3/2 is the smallest value of k.

             55. (a) f (x) = 4x3 + 3x2 = (4x + 3)x2 = 0 only at x = 0. But on [0, 2], f has no sign change, so f
                     is one-to-one.
                 (b) F (x) = 2f (2g(x))g (x) so F (3) = 2f (2g(3))g (3). By inspection f (1) = 3, so
                     g(3) = f −1 (3) = 1 and g (3) = (f −1 ) (3) = 1/f (f −1 (3)) = 1/f (1) = 1/7 because
                     f (x) = 4x3 + 3x2 . Thus F (3) = 2f (2)(1/7) = 2(44)(1/7) = 88/7.
                     F (3) = f (2g(3)) = f (2·1) = f (2) = 24, so the line tangent to F (x) at (3, 25) has the equation
                     y − 25 = (88/7)(x − 3), y = (88/7)x − 89/7.

                                           2            1
             56. (a) f (x) = −e4−x                 2+         < 0 for all x > 0, so f is one-to-one.
                                                        x2
                   (b) By inspection, f (2) = 1/2, so 2 = f −1 (1/2) = g(1/2). By inspection,
                                               1       9
                         f (2) = − 2 +              = − , and
                                               4       4
                                                         d
                         F (1/2) = f ([g(x)]2 )            [g(x)2 ]           = f ([g(x)]2 )2g(x)g (x)
                                                        dx            x=1/2                                x=1/2
                                                                                   −12      1
                                             1                        f (4)    e (2 +      16 )        33    11
                         = f (22 )2 · 2                          =4         =4                    =        = 12
                                          f (g(x))      x=1/2         f (2)     (2 + 1 )
                                                                                     4
                                                                                                      9e12  3e

             57. (a) f (x) = kekx , f (x) = k 2 ekx , f (x) = k 3 ekx , . . . , f (n) (x) = k n ekx
                   (b) g (x) = −ke−kx , g (x) = k 2 e−kx , g (x) = −k 3 e−kx , . . . , g (n) (x) = (−1)n k n e−kx

                   dy
             58.      = e−λt (ωA cos ωt − ωB sin ωt) + (−λ)e−λt (A sin ωt + B cos ωt)
                   dt
                      = e−λt [(ωA − λB) cos ωt − (ωB + λA) sin ωt]
January 27, 2005 11:44        L24-ch04             Sheet number 15 Page number 141                             black



              Exercise Set 4.3                                                                                                              141

                                                                    2                             2
                                   1         1        x−µ                d   1          x−µ
              59. f (x) = √            exp −                               −
                                   2πσ       2         σ                dx   2           σ
                                                                    2
                                   1         1        x−µ                         x−µ         1
                          =√           exp −                              −
                                   2πσ       2         σ                           σ          σ
                                                                                    2
                                     1                  1               x−µ
                          = −√            (x − µ) exp −
                                    2πσ 3               2                σ

              60. y = Aekt , dy/dt = kAekt = k(Aekt ) = ky

              61. y = Ae2x + Be−4x , y = 2Ae2x − 4Be−4x , y = 4Ae2x + 16Be−4x so
                  y + 2y − 8y = (4Ae2x + 16Be−4x ) + 2(2Ae2x − 4Be−4x ) − 8(Ae2x + Be−4x ) = 0

              62. (a) y = −xe−x + e−x = e−x (1 − x), xy = xe−x (1 − x) = y(1 − x)
                    (b) y = −x2 e−x                + e−x          = e−x          (1 − x2 ), xy = xe−x
                                          2              2              2                                 2
                                              /2             /2             /2                                /2
                                                                                                                   (1 − x2 ) = y(1 − x2 )

                    dy
              63.      = 100(−0.2)e−0.2x = −20y, k = −0.2
                    dx

              64. ln y = (5x + 1) ln 3 − (x/2) ln 4, so
                  y /y = 5 ln 3 − (1/2) ln 4 = 5 ln 3 − ln 2, and
                  y = (5 ln 3 − ln 2)y

                                                           y     7e−t     7e−t + 5 − 5       1
              65. ln y = ln 60 − ln(5 + 7e−t ),              =          =              = 1 − y, so
                                                           y   5 + 7e−t     5 + 7e−t        12
                    dy       y
                       =r 1−   y, with r = 1, K = 12.
                    dt       K

              66. (a)         12




                          0                                        9
                              0

                                                                                                         60            60        60
                    (b) P tends to 12 as t gets large; lim P (t) = lim                                         =               =    = 12
                                                                        t→+∞              t→+∞        5 + 7e−t   5 + 7 lim e−t   5
                                                                                                                             t→+∞
                    (c) the rate of population growth tends to zero
                           3.2




                          0                                        9
                              0


                        10h − 1    d x                         d x ln 10
              67.   lim         =    10                  =       e                  = ln 10
                    h→0    h      dx               x=0        dx              x=0
January 27, 2005 11:44          L24-ch04         Sheet number 16 Page number 142                          black



             142                                                                                                                      Chapter 4


                       tan−1 (1 + h) − π/4    d                                   1                  1
             68.   lim                     =    tan−1 x                   =                      =
                   h→0          h            dx                     x=1        1 + x2      x=1       2
                                    √
                           9[sin−1 ( 23   + ∆x)]2 − π 2    d                                                          3
             69.    lim                                 =    (3 sin−1 x)2              √
                                                                                                 = 2(3 sin−1 x) √              √
                   ∆x→0                   ∆x              dx                         x= 3/2                         1 − x2   x= 3/2
                        π            3
                   = 2(3 )                    = 12π
                        3         1 − (3/4)

                        (2 + ∆x)(2+∆x) − 4    d x                         d x ln x
             70.    lim                    =    x                   =       e
                   ∆x→0        ∆x            dx               x=2        dx              x=2

                   = (1 + ln x)ex ln x           = (1 + ln 2)22 = 4(1 + ln 2)
                                           x=2

                                                                                √
                     3 sec−1 w − π    d                                 3         3
             71. lim               =    3 sec−1 x                  = √        =
                 w→2     w−2         dx                      x=2    |2| 2 2−1    2

                       4(tan−1 w)w − π    d                                        d x ln tan−1 x
             72.   lim                 =    4(tan−1 x)x                       =      4e
                   w→1      w−1          dx                             x=1       dx                     x=1
                                                                    2
                                                         1/(1 + x )                                       14
                   = 4(tan−1 x)x ln tan−1 x + x                                     = π ln(π/4) +                 == 2 + π ln(π/4)
                                                          tan−1 x             x=1                         2π



             EXERCISE SET 4.4
                                    x2 − 4        (x − 2)(x + 2)       x+2   2
              1. (a)       lim              = lim                = lim     =
                           x→2 x2   + 2x − 8 x→2 (x + 4)(x − 2) x→2 x + 4    3
                                             5
                            2x − 5   2 − lim     2
                                        x→+∞ x
                   (b)  lim        =           =
                       x→+∞ 3x + 7           7   3
                                     3 + lim
                                        x→+∞ x


                           sin x         cos x                sin x
              2. (a)             = sin x       = cos x so lim       = lim cos x = 1
                           tan x         sin x            x→0 tan x   x→0

                           x2 − 1      (x − 1)(x + 1)        x+1        x2 − 1   2
                   (b)      3−1
                                  =                      = 2     so lim 3      =
                           x        (x − 1)(x 2 + x + 1)  x +x+1    x→1 x − 1    3

                                                                                                               π                  π
              3. Tf (x) = −2(x + 1), Tg (x) = −3(x + 1),                            4. Tf (x) = − x −            , Tg (x) = − x −
                                                                                                               2                  2
                 limit = 2/3                                                             limit = 1
                            x
                           e                                                                       1
              5.   lim          =1                                                  6.    lim           = 1/5
                   x→0    cos x                                                          x→3    6x − 13

                       sec2 θ                                                                tet + et
              7.   lim        =1                                                    8. lim            = −1
                   θ→0   1                                                               t→0   −et
                           cos x                                                                 cos x
              9.    lim+         = −1                                             10.     lim          = +∞
                   x→π       1                                                           x→0+     2x

                       1/x                                                                   3e3x       9e3x
             11.    lim    =0                                                     12.      lim    = lim      = +∞
                   x→+∞ 1                                                                x→+∞ 2x   x→+∞ 2
January 27, 2005 11:44        L24-ch04          Sheet number 17 Page number 143              black



              Exercise Set 4.4                                                                                          143


                            − csc2 x        −x            −1
              13.    lim+            = lim   2  = lim+             = −∞
                    x→0       1/x     x→0 sin x
                                          +      x→0 2 sin x cos x


                               −1/x              x
              14.    lim                 = lim 1/x = 0
                    x→0+    (−1/x2 )e1/x  x→0+ e


                         100x99       (100)(99)x98               (100)(99)(98) · · · (1)
              15.    lim    x
                                = lim       x
                                                   = · · · = lim                         =0
                    x→+∞   e     x→+∞      e                x→+∞         ex
                                                                                       √
                        cos x/ sin x                                                 2/ 1 − 4x2
              16. lim                = lim+ cos2 x = 1                       17. lim            =2
                  x→0+ sec2 x/ tan x  x→0                                        x→0     1

                                    1
                           1−                     1        1                                           x         1
              18.   lim          1 + x2 = lim            =                   19.   lim xe−x = lim         = lim x = 0
                    x→0         3x 2      x→0 3(1 + x2 )   3                       x→+∞         x→+∞   ex  x→+∞ e


                                                          x−π                1
              20.   lim (x − π) tan(x/2) = lim                   = lim                  = −2
                    x→π                           x→π    cot(x/2) x→π −(1/2) csc2 (x/2)

                                                 sin(π/x)       (−π/x2 ) cos(π/x)
              21.    lim x sin(π/x) = lim                 = lim                   = lim π cos(π/x) = π
                    x→+∞                    x→+∞    1/x    x→+∞     −1/x2          x→+∞


                                                  ln x        1/x         − sin2 x        −2 sin x cos x
              22.    lim tan x ln x = lim              = lim+      = lim+          = lim+                =0
                    x→0+                  x→0+   cot x x→0 − csc2 x x→0      x      x→0         1

                                                                cos 5x          −5 sin 5x    −5(+1)     5
              23.      lim       sec 3x cos 5x =        lim            = lim              =          =−
                    x→(π/2)−                       x→(π/2)−     cos 3x x→(π/2)− −3 sin 3x   (−3)(−1)    3

                                                   x−π           1
              24.   lim (x − π) cot x = lim              = lim        =1
                    x→π                     x→π    tan x   x→π sec2 x


                                                                   ln(1 − 3/x)         −3
              25. y = (1 − 3/x)x , lim ln y = lim                              = lim         = −3, lim y = e−3
                                          x→+∞            x→+∞         1/x      x→+∞ 1 − 3/x      x→+∞


                                                                  3 ln(1 + 2x)            6
              26. y = (1 + 2x)−3/x , lim ln y = lim −                          = lim −        = −6, lim y = e−6
                                           x→0            x→0           x        x→0   1 + 2x       x→0


                                                            ln(ex + x)       ex + 1
              27. y = (ex + x)1/x , lim ln y = lim                     = lim x      = 2, lim y = e2
                                          x→0           x→0     x        x→0 e + x       x→0


                                                                     b ln(1 + a/x)          ab
              28. y = (1 + a/x)bx , lim ln y = lim                                 = lim         = ab, lim y = eab
                                          x→+∞                x→+∞        1/x       x→+∞ 1 + a/x      x→+∞


                                                                   ln(2 − x)       2 sin2 (πx/2)
              29. y = (2 − x)tan(πx/2) , lim ln y = lim                      = lim               = 2/π, lim y = e2/π
                                                x→1            x→1 cot(πx/2)   x→1   π(2 − x)           x→1


                                      2                         ln cos(2/x)       (−2/x2 )(− tan(2/x))
              30. y = [cos(2/x)]x , lim ln y = lim                          = lim
                                          x→+∞             x→+∞     1/x2     x→+∞       −2/x3
                               − tan(2/x)       (2/x2 ) sec2 (2/x)
                      = lim               = lim                    = −2,               lim y = e−2
                          x→+∞    1/x      x→+∞     −1/x2                             x→+∞


                               1    1                 x − sin x          1 − cos x                sin x
              31.   lim           −        = lim                = lim                 = lim                   =0
                    x→0      sin x x         x→0       x sin x    x→0 x cos x + sin x   x→0 2 cos x − x sin x
January 27, 2005 11:44      L24-ch04      Sheet number 18 Page number 144          black



             144                                                                                         Chapter 4


                         1 − cos 3x       3 sin 3x       9        9
             32.   lim        2
                                    = lim          = lim cos 3x =
                   x→0       x        x→0    2x      x→0 2        2

                        (x2 + x) − x2           x                             1
             33.    lim  √            = lim √        = lim                                = 1/2
                   x→+∞    x2+x+x      x→+∞   x2+x+x  x→+∞                1 + 1/x + 1

                      ex − 1 − x         ex − 1             ex
             34.   lim           = lim x           = lim x        = 1/2
                   x→0 xex − x     x→0 xe + ex − 1   x→0 xe + 2ex


                                                                                    ex
             35.    lim [x − ln(x2 + 1)] = lim [ln ex − ln(x2 + 1)] = lim ln             ,
                   x→+∞                    x→+∞                       x→+∞        x2 + 1
                              x            x              x
                             e         e       e
                    lim          = lim   = lim   = +∞ so lim [x − ln(x2 + 1)] = +∞
                   x→+∞    x2 + 1 x→+∞ 2x x→+∞ 2        x→+∞


                               x           1
             36.    lim ln        = lim ln      = ln(1) = 0
                   x→+∞      1 + x x→+∞ 1/x + 1

                            ln x        1/x         1
             38. (a)       lim   = lim       = lim     =0
                             xn
                          x→+∞    x→+∞ nxn−1  x→+∞ nxn

                             xn        nxn−1
                   (b)  lim      = lim       = lim nxn = +∞
                       x→+∞ ln x  x→+∞ 1/x    x→+∞


                                                                           3x2 − 2x + 1                    0
             39. (a) L’Hˆpital’s Rule does not apply to the problem lim
                        o                                                               because it is not a form.
                                                                       x→1   3x2 − 2x                      0
                              3x2 − 2x + 1
                   (b) lim                 =2
                          x→1   3x2 − 2x

                                                                 e3x −12x+12
                                                                      2
                                                                                                    e0
             40. L’Hˆpital’s Rule does not apply to the problem
                    o                                                        , which is of the form    , and from
                                                                   x4 − 16                          0
                 which it follows that lim− and lim+ exist, with values −∞ if x approaches 2 from the left and
                                         x→2        x→2
                   +∞ if from the right. The general limit lim does not exist.
                                                              x→2


                           1/(x ln x)          2
             41.    lim         √     = lim √        =0                                0.15
                   x→+∞    1/(2 x)     x→+∞   x ln x




                                                                                    100                     10000
                                                                                          0


                                               ln x
             42. y = xx , lim ln y = lim            = lim −x = 0, lim y = 1                       1
                            x→0+       x→0+    1/x x→0+          x→0+




                                                                                              0                0.5
                                                                                                  0
January 27, 2005 11:44        L24-ch04        Sheet number 19 Page number 145     black



              Exercise Set 4.4                                                                             145




              43. y = (sin x)3/ ln x ,                                                            25
                                         3 ln sin x                   x
                     lim ln y = lim                 = lim (3 cos x)       = 3,
                    x→0+          x→0+      ln x     x→0+           sin x
                     lim y = e3
                    x→0+


                                                                                              0             0.5
                                                                                                  19




                                4 sec2 x           4                                          4.1
              44.     lim −              = lim         =4
                    x→π/2     sec x tan x x→π/2− sin x




                                                                                          1.4               1.6
                                                                                                3.3




                                          1        e−x ln x − 1
              45. ln x − ex = ln x −           =                ;                                     0
                                         e−x           e−x                                        0           3

                                                ln x       1/x
                     lim e−x ln x = lim              = lim     = 0 by L’Hˆpital’s Rule,
                                                                         o
                    x→+∞                 x→+∞    ex   x→+∞ ex

                                                    e−x ln x − 1
                    so lim [ln x − ex ] = lim                    = −∞
                       x→+∞                    x→+∞     e−x
                                                                                                  –16




                                                                  ex
              46.    lim [ln ex − ln(1 + 2ex )] = lim ln                                      –0.6
                    x→+∞                              x→+∞      1 + 2ex                       0              12
                                    1       1
                    = lim ln            = ln ;
                       x→+∞      e−x +2     2
                    horizontal asymptote y = − ln 2


                                                                                              –1.2




                                                                                      1.02
              47. y = (ln x)1/x ,
                                       ln(ln x)          1
                     lim ln y = lim             = lim        = 0;
                    x→+∞          x→+∞    x      x→+∞ x ln x

                     lim y = 1, y = 1 is the horizontal asymptote
                    x→+∞


                                                                                    100                   10000
                                                                                          1
January 27, 2005 11:44       L24-ch04                Sheet number 20 Page number 146           black



             146                                                                                                               Chapter 4


                                                              x+1
                           x+1
                                      x                           ln
             48. y =                      , lim ln y = lim    x+2                                          1
                           x+2             x→+∞       x→+∞   1/x
                                                                −x2
                                                     = lim                = −1;
                                                      x→+∞ (x + 1)(x + 2)

                    lim y = e−1 is the horizontal asymptote
                   x→+∞

                                                                                                       0                              50
                                                                                                           0


             49. (a) 0                      (b) +∞             (c) 0              (d) −∞               (e) +∞               (f ) −∞

                                                                                   (ln a) ln x        (ln a)/x
             50. (a) Type 00 ; y = x(ln a)/(1+ln x) ; lim ln y = lim                           = lim+          = lim+ ln a = ln a,
                                                              x→0+          x→0+    1 + ln x    x→0     1/x     x→0
                           lim y = eln a = a
                           x→0+

                   (b) Type ∞0 ; same calculation as Part (a) with x → +∞
                                                                                  (ln a) ln(x + 1)        ln a
                   (c) Type 1∞ ; y = (x + 1)(ln a)/x , lim ln y = lim                              = lim       = ln a,
                                                                x→0         x→0           x          x→0 x + 1
                           lim y = eln a = a
                           x→0


                            1 + 2 cos 2x                                   x + sin 2x          sin 2x
             51.    lim                  does not exist, nor is it ±∞; lim            = lim 1+                                 =1
                   x→+∞          1                                    x→+∞     x       x→+∞      x

                            2 − cos x                                   2x − sin x       2 − (sin x)/x   2
             52.    lim               does not exist, nor is it ±∞; lim            = lim               =
                   x→+∞     3 + cos x                              x→+∞ 3x + sin x  x→+∞ 3 + (sin x)/x   3

                                                                                   x(2 + sin 2x)       2 + sin 2x
             53.    lim (2 + x cos 2x + sin 2x) does not exist, nor is it ±∞; lim                = lim            ,
                   x→+∞                                                                x+1
                                                                                         x→+∞     x→+∞ 1 + 1/x
                   which does not exist because sin 2x oscillates between −1 and 1 as x → +∞

                             1 1        sin x
             54.    lim       + cos x +                    does not exist, nor is it ±∞;
                   x→+∞      x 2         2x
                            x(2 + sin x)       2 + sin x
                    lim                  = lim           =0
                   x→+∞       x2 + 1      x→+∞ x + 1/x


                           V t −Rt/L
                           L e                  Vt
             55.    lim+                    =
                   R→0            1             L

                                                                  π/2 − x          −1
             56. (a)        lim (π/2 − x) tan x = lim                     = lim           = lim sin2 x = 1
                           x→π/2                          x→π/2    cot x   x→π/2 − csc2 x  x→π/2

                                         1                                 1     sin x                     cos x − (π/2 − x) sin x
                   (b)      lim               − tan x = lim                    −            = lim
                           x→π/2      π/2 − x          x→π/2            π/2 − x cos x          x→π/2           (π/2 − x) cos x
                                                                          −(π/2 − x) cos x
                                                            = lim
                                                               x→π/2   −(π/2 − x) sin x − cos x
                                                                      (π/2 − x) sin x + cos x
                                                            = lim                               =0
                                                               x→π/2 −(π/2 − x) cos x + 2 sin x


                   (c) 1/(π/2 − 1.57) ≈ 1255.765534, tan 1.57 ≈ 1255.765592;
                       1/(π/2 − 1.57) − tan 1.57 ≈ 0.000058
Chapter 04
Chapter 04
Chapter 04
Chapter 04
Chapter 04
Chapter 04

Mais conteúdo relacionado

Mais procurados

1 4 homework
1 4 homework1 4 homework
1 4 homeworkmath123b
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiationdicosmo178
 
Integrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_AnsIntegrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_Ansken1470
 
Factorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónFactorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónWuendy Garcia
 
8-5 Adding and Subtracting Rational Expressions
8-5 Adding and Subtracting Rational Expressions8-5 Adding and Subtracting Rational Expressions
8-5 Adding and Subtracting Rational Expressionsrfrettig
 
Chapter 2.5
Chapter 2.5Chapter 2.5
Chapter 2.5nglaze10
 
Topic 1 adding & subtracting polynomials
Topic 1   adding & subtracting polynomialsTopic 1   adding & subtracting polynomials
Topic 1 adding & subtracting polynomialsAnnie cox
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 
Day 3 subtracting polynomials
Day 3 subtracting polynomialsDay 3 subtracting polynomials
Day 3 subtracting polynomialsErik Tjersland
 

Mais procurados (20)

9-9 Notes
9-9 Notes9-9 Notes
9-9 Notes
 
Lesson 15: The Chain Rule
Lesson 15: The Chain RuleLesson 15: The Chain Rule
Lesson 15: The Chain Rule
 
1 4 homework
1 4 homework1 4 homework
1 4 homework
 
πιασαμε τα ορια
πιασαμε τα ορια πιασαμε τα ορια
πιασαμε τα ορια
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
 
Stepenovanje
StepenovanjeStepenovanje
Stepenovanje
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Integrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_AnsIntegrated exercise a_(book_2_B)_Ans
Integrated exercise a_(book_2_B)_Ans
 
Week 2
Week 2 Week 2
Week 2
 
Factoring notes
Factoring notesFactoring notes
Factoring notes
 
Factorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónFactorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de Evaluación
 
8-5 Adding and Subtracting Rational Expressions
8-5 Adding and Subtracting Rational Expressions8-5 Adding and Subtracting Rational Expressions
8-5 Adding and Subtracting Rational Expressions
 
0905 ch 9 day 5
0905 ch 9 day 50905 ch 9 day 5
0905 ch 9 day 5
 
answers tutor 8
answers tutor 8answers tutor 8
answers tutor 8
 
Chapter 2.5
Chapter 2.5Chapter 2.5
Chapter 2.5
 
0304 ch 3 day 4
0304 ch 3 day 40304 ch 3 day 4
0304 ch 3 day 4
 
Topic 1 adding & subtracting polynomials
Topic 1   adding & subtracting polynomialsTopic 1   adding & subtracting polynomials
Topic 1 adding & subtracting polynomials
 
0408 ch 4 day 8
0408 ch 4 day 80408 ch 4 day 8
0408 ch 4 day 8
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Day 3 subtracting polynomials
Day 3 subtracting polynomialsDay 3 subtracting polynomials
Day 3 subtracting polynomials
 

Semelhante a Chapter 04

4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functionsdicosmo178
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialZerick Lucernas
 
Ecs lineales
Ecs linealesEcs lineales
Ecs linealesklorofila
 
Solving quadratic equations by completing a square
Solving quadratic equations by completing a squareSolving quadratic equations by completing a square
Solving quadratic equations by completing a squarezwanenkosinathi
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Matthew Leingang
 
Lecture 03 special products and factoring
Lecture 03 special products and factoringLecture 03 special products and factoring
Lecture 03 special products and factoringHazel Joy Chong
 
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11thdifferentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11thkrishnarewani11
 
เอกนาม
เอกนามเอกนาม
เอกนามkrookay2012
 
Math refresher
Math refresherMath refresher
Math refresherdelilahnan
 
Area between curves
Area between curvesArea between curves
Area between curvesShaun Wilson
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Hareem Aslam
 
Unit 4 Review
Unit 4 ReviewUnit 4 Review
Unit 4 Reviewrfrettig
 

Semelhante a Chapter 04 (20)

4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions4.2 derivatives of logarithmic functions
4.2 derivatives of logarithmic functions
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
整卷
整卷整卷
整卷
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Sect1 5
Sect1 5Sect1 5
Sect1 5
 
125 5.2
125 5.2125 5.2
125 5.2
 
Ecs lineales
Ecs linealesEcs lineales
Ecs lineales
 
Solving quadratic equations by completing a square
Solving quadratic equations by completing a squareSolving quadratic equations by completing a square
Solving quadratic equations by completing a square
 
Slide share
Slide shareSlide share
Slide share
 
MS2 POwer Rules
MS2 POwer RulesMS2 POwer Rules
MS2 POwer Rules
 
Sect1 4
Sect1 4Sect1 4
Sect1 4
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
 
Lecture 03 special products and factoring
Lecture 03 special products and factoringLecture 03 special products and factoring
Lecture 03 special products and factoring
 
differentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11thdifferentiation assignment.pdf for class 11th
differentiation assignment.pdf for class 11th
 
เอกนาม
เอกนามเอกนาม
เอกนาม
 
Math refresher
Math refresherMath refresher
Math refresher
 
Area between curves
Area between curvesArea between curves
Area between curves
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
 
Unit 4 Review
Unit 4 ReviewUnit 4 Review
Unit 4 Review
 

Mais de ramiz100111

Mais de ramiz100111 (9)

Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Appendix a page_524
Appendix a page_524Appendix a page_524
Appendix a page_524
 

Último

General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
latest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answerslatest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answersdalebeck957
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 

Último (20)

General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
latest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answerslatest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answers
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 

Chapter 04

  • 1. January 27, 2005 11:44 L24-ch04 Sheet number 1 Page number 127 black CHAPTER 4 Derivatives of Logarithmic, Exponential, and Inverse Trigonometric Functions EXERCISE SET 4.1 2 1. y = (2x − 5)1/3 ; dy/dx = (2x − 5)−2/3 3 1 −2/3 2 −2/3 2. dy/dx = 2 + tan(x2 ) sec2 (x2 )(2x) = x sec2 (x2 ) 2 + tan(x2 ) 3 3 −1/3 2 x+1 x − 2 − (x + 1) 2 3. dy/dx = =− 3 x−2 (x − 2)2 (x + 1)1/3 (x − 2)5/3 −1/2 −1/2 1 x2 + 1 d x2 + 1 1 x2 + 1 −12x 6x 4. dy/dx = = =− √ 2 x2 − 5 dx x2−5 2 x2 − 5 (x2 − 5)2 (x2 − 5)3/2 x2 + 1 2 1 2 5. dy/dx = x3 − (5x2 + 1)−5/3 (10x) + 3x2 (5x2 + 1)−2/3 = x (5x2 + 1)−5/3 (25x2 + 9) 3 3 √ 3 2x − 1 1 2 −4x + 3 6. dy/dx = − + = 2 x2 x 3(2x − 1)2/3 3x (2x − 1)2/3 5 15[sin(3/x)]3/2 cos(3/x) 7. dy/dx = [sin(3/x)]3/2 [cos(3/x)](−3/x2 ) = − 2 2x2 1 −3/2 3 2 −3/2 8. dy/dx = − cos(x3 ) − sin(x3 ) (3x2 ) = x sin(x3 ) cos(x3 ) 2 2 dy dy 6x2 − y − 1 9. (a) 1 + y + x − 6x2 = 0, = dx dx x 2 + 2x3 − x 2 dy 2 (b) y = = + 2x2 − 1, = − 2 + 4x x x dx x dy 1 1 1 1 2 2 (c) From Part (a), = 6x − − y = 6x − − + 2x2 − 1 = 4x − dx x x x x x x2 1 −1/2 dy dy √ 10. (a) y − cos x = 0 or = 2 y cos x 2 dx dx dy (b) y = (2 + sin x) = 4 + 4 sin x + sin2 x so 2 = 4 cos x + 2 sin x cos x dx dy √ (c) from Part (a), = 2 y cos x = 2 cos x(2 + sin x) = 4 cos x + 2 sin x cos x dx dy dy x 11. 2x + 2y = 0 so =− dx dx y dy dy dy 3y 2 − 3x y 2 − x2 12. 3x2 + 3y 2 = 3y 2 + 6xy , = 2 = 2 dx dx dx 3y − 6xy y − 2xy dy dy 13. x2 + 2xy + 3x(3y 2 ) + 3y 3 − 1 = 0 dx dx dy dy 1 − 2xy − 3y 3 (x2 + 9xy 2 ) = 1 − 2xy − 3y 3 so = dx dx x2 + 9xy 2 127
  • 2. January 27, 2005 11:44 L24-ch04 Sheet number 2 Page number 128 black 128 Chapter 4 dy dy 14. x3 (2y) + 3x2 y 2 − 5x2 − 10xy + 1 = 0 dx dx dy dy 10xy − 3x2 y 2 − 1 (2x3 y − 5x2 ) = 10xy − 3x2 y 2 − 1 so = dx dx 2x3 y − 5x2 dy 1 dy y 3/2 15. − − dx = 0, = − 3/2 2x3/2 2y 3/2 dx x (x − y)(1 + dy/dx) − (x + y)(1 − dy/dx) 16. 2x = , (x − y)2 dy dy x(x − y)2 + y 2x(x − y)2 = −2y + 2x so = dx dx x dy dy 1 − 2xy 2 cos(x2 y 2 ) 17. cos(x2 y 2 ) x2 (2y) + 2xy 2 = 1, = dx dx 2x2 y cos(x2 y 2 ) dy dy dy y 2 sin(xy 2 ) 18. − sin(xy 2 ) y 2 + 2xy = , =− dx dx dx 2xy sin(xy 2 ) + 1 dy dy 19. 3 tan2 (xy 2 + y) sec2 (xy 2 + y) 2xy + y2 + =1 dx dx dy 1 − 3y 2 tan2 (xy 2 + y) sec2 (xy 2 + y) so = dx 3(2xy + 1) tan2 (xy 2 + y) sec2 (xy 2 + y) (1 + sec y)[3xy 2 (dy/dx) + y 3 ] − xy 3 (sec y tan y)(dy/dx) dy 20. = 4y 3 , (1 + sec y)2 dx dy multiply through by (1 + sec y)2 and solve for to get dx dy y(1 + sec y) = dx 4y(1 + sec y)2 − 3x(1 + sec y) + xy sec y tan y 2 dy dy 2x dy d2 y 21. 4x − 6y = 0, = , 4−6 − 6y = 0, dx dx 3y dx dx2 2 d2 y 3 dy dx −2 2(3y 2 − 2x2 ) 8 =− = =− 3 dx2 3y 9y 3 9y dy x2 d2 y y 2 (2x) − x2 (2ydy/dx) 2xy 2 − 2x2 y(−x2 /y 2 ) 2x(y 3 + x3 ) 22. = − 2, =− =− =− , dx y dx2 y4 y4 y5 d2 y 2x but x3 + y 3 = 1 so =− 5 dx2 y dy y d2 y x(dy/dx) − y(1) x(−y/x) − y 2y 23. =− , =− =− = 2 dx x dx2 x2 x2 x 2 dy dy dy y dy d2 y dy d2 y d2 y 2y(x + y) 24. y + x + 2y = 0, =− ,2 +x 2 +2 + 2y 2 = 0, = dx dx dx x + 2y dx dx dx dx dx2 (x + 2y)3 dy d2 y dy sin y 25. = (1 + cos y)−1 , = −(1 + cos y)−2 (− sin y) = dx dx2 dx (1 + cos y)3
  • 3. January 27, 2005 11:44 L24-ch04 Sheet number 3 Page number 129 black Exercise Set 4.1 129 dy cos y 26. = , dx 1 + x sin y d2 y (1 + x sin y)(− sin y)(dy/dx) − (cos y)[(x cos y)(dy/dx) + sin y] = dx2 (1 + x sin y)2 2 sin y cos y + (x cos y)(2 sin2 y + cos2 y) =− , (1 + x sin y)3 but x cos y = y, 2 sin y cos y = sin 2y, and sin2 y + cos2 y = 1 so d2 y sin 2y + y(sin2 y + 1) =− dx2 (1 + x sin y)3 dy x √ dy √ 27. By implicit differentiation, 2x + 2y(dy/dx) = 0, = − ; at (1/2, 3/2), = − 3/3; at dx y dx √ dy √ √ dy −x (1/2, − 3/2), = + 3/3. Directly, at the upper point y = 1 − x 2, = √ = dx dx 1 − x2 1/2 √ √ dy x √ − = −1/ 3 and at the lower point y = − 1 − x2 , =√ = +1/ 3. 3/4 dx 1−x 2 √ √ 28. If y 2 − x + 1 = 0, then y = x − 1 goes through the point (10, 3) so dy/dx = 1/(2 x − √ By1). implicit differentiation dy/dx = 1/(2y). In both cases, dy/dx|(10,3) = 1/6. Similarly y = − x − 1 √ goes through (10, −3) so dy/dx = −1/(2 x − 1) = −1/6 which yields dy/dx = 1/(2y) = −1/6. dy dy x3 1 29. 4x3 + 4y 3 = 0, so = − 3 = − 3/4 ≈ −0.1312. dx dx y 15 dy dy dy dy y+1 30. 3y 2 + x2 + 2xy + 2x − 6y = 0, so = −2x 2 = 0 at x = 0 dx dx dx dx 3y + x2 − 6y dy dy 31. 4(x2 + y 2 ) 2x + 2y = 25 2x − 2y , dx dx dy x[25 − 4(x2 + y 2 )] dy = ; at (3, 1) = −9/13 dx y[25 + 4(x2 + y 2 )] dx 2 dy dy y 1/3 √ √ 32. x−1/3 + y −1/3 = 0, = − 1/3 = 3 at (−1, 3 3) 3 dx dx x da da da da 2t3 + 3a2 33. 4a3 − 4t3 = 6 a2 + 2at , solve for to get = 3 dt dt dt dt 2a − 6at √ 1 −1/2 du 1 −1/2 du u 34. u + v = 0 so = −√ 2 dv 2 dv v dω dω b2 λ dx dx 1 35. 2a2 ω + 2b2 λ = 0 so =− 2 36. 1 = (cos x) so = = sec x dλ dλ a ω dy dy cos x
  • 4. January 27, 2005 11:44 L24-ch04 Sheet number 4 Page number 130 black 130 Chapter 4 37. (a) y 2 x –4 4 –2 dy dy (b) Implicit differentiation of the equation of the curve yields (4y 3 + 2y) = 2x − 1 so =0 dx dx only if x = 1/2 but y 4 + y 2 ≥ 0, so x = 1/2 is impossible. 1± 1 + 4y 2 + 4y 4 (c) x2 − x − (y 4 + y 2 ) = 0, so by the Quadratic Formula x = = 1 + y 2 , −y 2 2 which gives the parabolas x = 1 + y 2 , x = −y 2 . 38. (a) y 2 x 0 1 2 –2 dy dy (b) 2y = (x − a)(x − b) + x(x − b) + x(x − a) = 3x2 − 2(a + b)x + ab. If = 0 then dx dx 3x2 − 2(a + b)x + ab = 0. By the Quadratic Formula 2(a + b) ± 4(a + b)2 − 4 · 3ab 1 x= = a + b ± (a2 + b2 − ab)1/2 . 6 3 (c) y = ± x(x − a)(x − b). The square root is only defined for nonnegative arguments, so it is necessary that all three of the factors x, x − a, x − b be nonnegative, or that two of them be nonpositive. If, for example, 0 < a < b then the function is defined on the disjoint intervals 0 < x < a and b < x < +∞, so there are two parts. 39. (a) y (b) x ≈ ±1.1547 2 x –2 2 –2 dy dy dy y − 2x dy (c) Implicit differentiation yields 2x − x − y + 2y = 0. Solve for = . If =0 dx dx dx 2y − x dx 2 then y − 2x = 0 or y = 2x. Thus 4 = x2 − xy + y 2 = x2 − 2x2 + 4x2 = 3x2 , x = ± √ . 3 40. (a) See Exercise 39 (a) (b) Since the equation is symmetric in x and y, we obtain, as in Exercise 39, x ≈ ±1.1547.
  • 5. January 27, 2005 11:44 L24-ch04 Sheet number 5 Page number 131 black Exercise Set 4.1 131 dy dy dx 2y − x dx (c) Implicit differentiation yields 2x − x − y + 2y = 0. Solve for = . If =0 dx dx dy y − 2x dy 2 4 then 2y − x = 0 or x = 2y. Thus 4 = 4y 2 − 2y 2 + y 2 = 3y 2 , y = ± √ , x = 2y = ± √ . 3 3 41. Solve the simultaneous equations y = x, x2 −xy+y 2 = 4 to get x2 −x2 +x2 = 4, x = ±2, y = x = ±2, so the points of intersection are (2, 2) and (−2, −2). dy y − 2x dy dy From Exercise 39 part (c), = . When x = y = 2, = −1; when x = y = −2, = −1; dx 2y − x dx dx the slopes are equal. 42. Suppose a2 − 2ab + b2 = 4. Then (−a)2 − 2(−a)(−b) + (−b)2 = a2 − 2ab + b2 = 4 so if P (a, b) lies on C then so does Q(−a, −b). dy y − 2x dy b − 2a From Exercise 39 part (c), = . When x = a, y = b then = , and when dx 2y − x dx 2b − a dy b − 2a x = −a, y = −b, then = , so the slopes at P and Q are equal. dx 2b − a 43. The point (1,1) is on the graph, so 1 + a = b. The slope of the tangent line at (1,1) is −4/3; use dy 2xy 2 4 implicit differentiation to get =− 2 so at (1,1), − = − , 1 + 2a = 3/2, a = 1/4 dx x + 2ay 1 + 2a 3 and hence b = 1 + 1/4 = 5/4. 44. The slope of the line x + 2y − 2 = 0 is m1 = −1/2, so the line perpendicular has slope m = 2 (negative reciprocal). The slope of the curve y 3 = 2x2 can be obtained by implicit differentiation: dy dy 4x dy 4x 3y 2 = 4x, = 2 . Set = 2; 2 = 2, x = (3/2)y 2 . Use this in the equation of the curve: dx dx 3y dx 3y 2 3 2 2 y 3 = 2x2 = 2((3/2)y 2 )2 = (9/2)y 4 , y = 2/9, x = = . 2 9 27 45. (a) y (b) x ≈ 0.84 2 x –3 –1 2 –1 –3 (c) Use implicit differentiation to get dy/dx = (2y −3x2 )/(3y 2 −2x), so dy/dx = 0 if y = (3/2)x2 . Substitute this into x3 − 2xy + y 3 = 0 to obtain 27x6 − 16x3 = 0, x3 = 16/27, x = 24/3 /3 and hence y = 25/3 /3. 46. (a) y (b) Evidently the tangent line at the point 2 x = 1, y = 1 has slope −1. x –3 –1 2 –1 –3
  • 6. January 27, 2005 11:44 L24-ch04 Sheet number 6 Page number 132 black 132 Chapter 4 (c) Use implicit differentiation to get dy/dx = (2y −3x2 )/(3y 2 −2x), so dy/dx = −1 if 2y −3x2 = −3y 2 +2x, 2(y−x)+3(y−x)(y+x) = 0. One solution is y = x; this together with x3 +y 3 = 2xy yields x = y = 1. For these values dy/dx = −1, so that (1, 1) is a solution. To prove that there is no other solution, suppose y = x. From dy/dx = −1 it follows that 2(y − x) + 3(y − x)(y + x) = 0. But y = x, so x + y = −2/3. Then x3 + y 3 = (x + y)(x2 − xy + y 2 ) = 2xy, so replacing x + y with −2/3 we get x2 + 2xy + y 2 = 0, or (x + y)2 = 0, so y = −x. Substitute that into x3 + y 3 = 2xy to obtain x3 − x3 = −2x2 , x = 0. But at x = y = 0 the derivative is not defined. 47. (a) The curve is the circle (x − 2)2 + y 2 = 1 about the point (2, 0) of radius 1. One tangent line is tangent at a point P(x,y) in the first quadrant. Let Q(2, 0) be the center of the circle. Then OP Q is a right angle, with sides |P Q| = r = 1 and |OP | = x2 + y 2 . By the Pythagorean Theorem x2 + y 2 + 12 = 22 . Substitute this into (x − 2)2 + y 2 = 1 to √ √ obtain √ − 4x + 4 = 1, x = 3/2, y = 3 − x2 = 3/2. So the required tangent lines are 3 y = ±( 3/3)x. (b) Let P (x0 , y0 ) be a point where a line through the origin is tangent to the curve x2 − 4x + y 2 + 3 = 0. Implicit differentiation applied to the equation of the curve gives dy/dx = (2 − x)/y. At P the slope of the curve must equal the slope of the line so (2 − x0 )/y0 = y0 /x0 , or y0 = 2x0 − x2 . But x2 − 4x0 + y0 + 3 = 0 because (x0 , y0 ) is on the 2 0 0 2 curve, and elimination of y0 in the latter two equations gives x2 − 4x0 + (2x0 − x√) + 3 = 0, 2 0 2 0 x0 = 3/2 which when substituted into y0 =√ 0 − x0 yields y0 = 3/4, so y0 = ± 3/2. The √ 2 2x 2 2 √ slopes of the lines are (± 3/2)/(3/2) = ± 3/3 and their equations are y = ( 3/3)x and √ y = −( 3/3)x. 48. Let P (x0 , y0 ) be a point where a line through the origin is tangent to the curve 2x2 − 4x + y 2 + 1 = 0. Implicit differentiation applied to the equation of the curve gives dy/dx = (2 − 2x)/y. At P the slope of the curve must equal the slope of the line so (2 − 2x0 )/y0 = y0 /x0 , or y0 = 2x0 (1 − x0 ). But 2x2 − 4x0 + y0 + 1 = 0 because (x0 , y0 ) is on the 2 0 2 curve, and elimination of y0 in the latter two equations gives 2x0 = 4x0 − 1, x0 = 1/2 which when 2 √ substituted into y0 = 2x0 (1 − x0 ) yields y0 = 1/2, √ y0 = ± 2/2. The slopes of the lines are √ 2 √ 2 so √ (± 2/2)/(1/2) = ± 2 and their equations are y = 2x and y = − 2x. 49. The linear equation axr−1 x + by0 y = c is the equation of a line . Implicit differentiation of the 0 r−1 dy dy axr−1 equation of the curve yields raxr−1 + rby r−1 = 0, = − r−1 . At the point (x0 , y0 ) the slope dx dx by axr−1 of the line must be − r−1 , which is the slope of . Moreover, the equation of is satisfied by 0 by0 the point (x0 , y0 ), so this point lies on . By the point-slope formula, must be the line tangent to the curve at (x0 , y0 ). dy 50. Implicit differentiation of the equation of the curve yields rxr−1 + ry r−1 = 0. At the point (1, 1) dy dy dx this becomes r + r = 0, = −1. dx dx dy dy dt 51. By the chain rule, = . Use implicit differentiation on 2y 3 t + t3 y = 1 to get dx dt dx dy 2y 3 + 3t2 y dt 1 dy 2y 3 + 3t2 y =− , but = so =− . dt 6ty 2 + t3 dx cos t dx (6ty 2 + t3 ) cos t 4 1/3 4 52. (a) f (x) = x , f (x) = x−2/3 3 9 7 4/3 28 1/3 28 −2/3 (b) f (x) = x , f (x) = x , f (x) = x 3 9 27 (c) generalize parts (a) and (b) with k = (n − 1) + 1/3 = n − 2/3
  • 7. January 27, 2005 11:44 L24-ch04 Sheet number 7 Page number 133 black Exercise Set 4.2 133 53. y = rxr−1 , y = r(r − 1)xr−2 so 3x2 r(r − 1)xr−2 + 4x rxr−1 − 2xr = 0, 3r(r − 1)xr + 4rxr − 2xr = 0, (3r2 + r − 2)xr = 0, 3r2 + r − 2 = 0, (3r − 2)(r + 1) = 0; r = −1, 2/3 54. y = rxr−1 , y = r(r − 1)xr−2 so 16x2 r(r − 1)xr−2 + 24x rxr−1 + xr = 0, 16r(r − 1)xr + 24rxr + xr = 0, (16r2 + 8r + 1)xr = 0, 16r2 + 8r + 1 = 0, (4r + 1)2 = 0; r = −1/4 55. We shall find when the curves intersect and check that the slopes are negative reciprocals. For the intersection solve the simultaneous equations x2 + (y − c)2 = c2 and (x − k)2 + y 2 = k 2 to obtain 1 y−c x−k cy = kx = (x2 + y 2 ). Thus x2 + y 2 = cy + kx, or y 2 − cy = −x2 + kx, and =− . 2 x y dy x dy x−k Differentiating the two families yields (black) =− , and (gray) =− . But it was dx y−c dx y proven that these quantities are negative reciprocals of each other. dy dy 56. Differentiating, we get the equations (black) x + y = 0 and (gray) 2x − 2y = 0. The first dx dx y x says the (black) slope is = − and the second says the (gray) slope is , and these are negative x y reciprocals of each other. EXERCISE SET 4.2 1 1 1 1 1 1. (5) = 2. = 5x x x/3 3 x 1 1 1 1 3. 4. √ √ = √ √ 1+x 2+ x 2 x 2 x(2 + x) 1 2x 3x2 − 14x 5. 2−1 (2x) = 2 6. x x −1 x3 − 7x2 − 3 1 (1 + x2 )(1) − x(2x) 1 − x2 7. 2) 2 )2 = x/(1 + x (1 + x x(1 + x2 ) 1 1−x+1+x 2 d d 2 8. = 9. (2 ln x) = 2 ln x = (1 + x)/(1 − x) (1 − x)2 1 − x2 dx dx x 1 1 1 1 (ln x)−1/2 2 10. 3 (ln x) 11. = √ x 2 x 2x ln x 1 1 1 1 12. √ √ = 13. ln x + x = 1 + ln x x2 x 2x x 1 2x2 14. x3 + (3x2 ) ln x = x2 (1 + 3 ln x) 15. 2x log2 (3 − 2x) − x (3 − 2x) ln 2 3 2 2x − 2 16. log2 (x2 − 2x) + 3x log2 (x2 − 2x) (x2 − 2x) ln 2
  • 8. January 27, 2005 11:44 L24-ch04 Sheet number 8 Page number 134 black 134 Chapter 4 2x(1 + log x) − x/(ln 10) 17. 18. 1/[x(ln 10)(1 + log x)2 ] (1 + log x)2 1 1 1 1 1 1 19. = 20. ln x x x ln x ln(ln(x)) ln x x 1 1 21. (sec2 x) = sec x csc x 22. (− sin x) = − tan x tan x cos x 1 1 sin(2 ln x) sin(ln x2 ) 23. − sin(ln x) 24. 2 sin(ln x) cos(ln x) = = x x x x 1 cot x 25. 2 (2 sin x cos x) = 2 ln 10 ln 10 sin x 1 2 sin x cos x 2 tan x 26. (−2 sin x cos x) = − =− (ln 10)(1 − sin x) 2 (ln 10) cos 2x ln 10 d 3 8x 11x2 − 8x + 3 27. 3 ln(x − 1) + 4 ln(x2 + 1) = + 2 = dx x−1 x +1 (x − 1)(x2 + 1) d 1 2x3 28. [2 ln cos x + ln(1 + x4 )] = −2 tan x + dx 2 1 + x4 d 1 3x 29. ln cos x − ln(4 − 3x2 ) = − tan x + dx 2 4 − 3x2 d 1 1 1 1 30. [ln(x − 1) − ln(x + 1)] = − dx 2 2 x−1 x+1 1 dy 1 2x 31. ln |y| = ln |x| + ln |1 + x2 |, 3 = x 1 + x2 + 3 dx x 3(1 + x2 ) 1 dy 1 x−1 1 1 32. ln |y| = [ln |x − 1| − ln |x + 1|], = 5 − 5 dx 5 x+1 x−1 x+1 1 1 33. ln |y| = ln |x2 − 8| + ln |x3 + 1| − ln |x6 − 7x + 5| 3 2 √ dy (x2 − 8)1/3 x3 + 1 2x 3x2 6x5 − 7 = + − 6 dx x6 − 7x + 5 3(x2 − 8) 2(x3 + 1) x − 7x + 5 1 34. ln |y| = ln | sin x| + ln | cos x| + 3 ln | tan x| − ln |x| 2 dy sin x cos x tan3 x 3 sec2 x 1 = √ cot x − tan x + − dx x tan x 2x √ √ √ 1 dy 10 dy 10 35. f (x) = ex e−1 36. ln y = − 10 ln x, =− , =− √ y dx x dx x1+ 10 ln e 1 d 1 37. (a) logx e = = , [logx e] = − ln x ln x dx x(ln x)2 ln 2 d ln 2 (b) logx 2 = , [logx 2] = − ln x dx x(ln x)2
  • 9. January 27, 2005 11:44 L24-ch04 Sheet number 9 Page number 135 black Exercise Set 4.2 135 ln b ln e 1 38. (a) From loga b = for a, b > 0 it follows that log(1/x) e = =− , hence ln a ln(1/x) ln x d 1 log(1/x) e = dx x(ln x)2 ln e 1 d 1 1 1 (b) log(ln x) e = = , so log(ln x) e = − =− ln(ln x) ln(ln x) dx (ln(ln x))2 x ln x x(ln x)(ln(ln x))2 1 39. f (x0 ) = f (e−1 ) = −1, f (x) = , f (x0 ) = e, y − (−1) = e(x − 1/e) = ex − 1, y = ex − 2 x dy 1 40. y0 = log 10 = 1, y = log x = (log e) ln x, = log e , dx x=10 10 log e log e y−1= (x − 10), y = x + 1 − log e 10 10 1 1 1 41. f (x0 ) = f (−e) = 1, f (x) =− , 42. y − ln 2 = − (x + 2), y = − x + ln 2 − 1 x=−e e 2 2 1 1 y − 1 = − (x + e), y = − x e e 43. Let the equation of the tangent line be y = mx and suppose that it meets the curve at (x0 , y0 ). 1 1 1 ln x0 1 Then m = = and y0 = mx0 = ln x0 . So m = = and ln x0 = 1, x0 = e, m = x x=x0 x0 x0 x0 e 1 and the equation of the tangent line is y = x. e 44. Let y = mx + b be a line tangent to the curve at (x0 , y0 ). Then b is the y-intercept and the 1 slope of the tangent line is m = . Moreover, at the point of tangency, mx0 + b = ln x0 or x0 1 x0 + b = ln x0 , b = ln x0 − 1, as required. x0 y 45. The area of the triangle P QR, given by |P Q||QR|/2 is required. |P Q| = w, and, by Exercise 44, |QR| = 1, so 1 P (w, ln w) area = w/2. Q x w 2 R –2 46. Since y = 2 ln x, let y = 2z; then z = ln x and we apply the result of Exercise 45 to find that the area is, in the x-z plane, w/2. In the x-y plane, since y = 2z, the vertical dimension gets doubled, so the area is w. dy 1 dy 1 47. If x = 0 then y = ln e = 1, and = . But ey = x + e, so = y = e−y . dx x+e dx e dy 1 . But ey = e− ln(e −x) = (e2 − x)−1 , so 2 48. When x = 0, y = − ln(e2 ) = −2. Next, = 2 dx e −x dy = ey . dx
  • 10. January 27, 2005 11:44 L24-ch04 Sheet number 10 Page number 136 black 136 Chapter 4 dy 1 49. Let y = ln(x + a). Following Exercise 47 we get = = e−y , and when x = 0, y = ln(a) = 0 dx x+a if a = 1, so let a = 1, then y = ln(x + 1). dy 1 1 dy 50. Let y = − ln(a − x), then = . But ey = , so = ey . dx a−x a−x dx If x = 0 then y = − ln(a) = − ln 2 provided a = 2, so y = − ln(2 − x). ln(e2 + ∆x) − 2 d 1 51. (a) f (x) = ln x; f (e2 ) = lim = (ln x) = = e−2 ∆x→0 ∆x dx x=e2 x x=e2 ln(1 + h) − ln 1 ln(1 + h) 1 (b) f (w) = ln w; f (1) = lim = lim = =1 h→0 h h→0 h w w=1 f (x) − f (0) 52. (a) Let f (x) = ln(cos x), then f (0) = ln(cos 0) = ln 1 = 0, so f (0) = lim = x→0 x ln(cos x) lim , and f (0) = − tan 0 = 0. x→0 x √ √ 2 f (1 + h) − f (1) (1 + h) 2 −1 (b) Let f (x) = x , then f (1) = 1, so f (1) = lim = lim , and √ √ √ h→0 h h→0 h f (x) = 2x 2−1 , f (1) = 2. d logb (x + h) − logb (x) 53. [logb x] = lim dx h→0 h 1 x+h = lim logb Theorem 1.6.2(b) h→0 h x 1 h = lim logb 1 + h→0 h x 1 = lim logb (1 + v) Let v = h/x and note that v → 0 as h → 0 v→0 vx 1 1 = lim logb (1 + v) h and v are variable, whereas x is constant x v→0 v 1 = lim log (1 + v)1/v Theorem 1.6.2.(c) x v→0 b 1 = logb lim (1 + v)1/v Theorem 2.5.5 x v→0 1 = logb e Formula 7 of Section 7.1 x EXERCISE SET 4.3 1. (a) f (x) = 5x4 + 3x2 + 1 ≥ 1 so f is one-to-one on −∞ < x < +∞. d −1 1 1 1 (b) f (1) = 3 so 1 = f −1 (3); f (x) = −1 (x)) , (f −1 ) (3) = = dx f (f f (1) 9 2. (a) f (x) = 3x2 + 2ex ; for −1 < x < 1, f (x) ≥ 2e−1 = 2/e, and for |x| > 1, f (x) ≥ 3x2 ≥ 3, so f is increasing and one-to-one d −1 1 1 1 (b) f (0) = 2 so 0 = f −1 (2); f (x) = , (f −1 ) (2) = = dx f (f −1 (x)) f (0) 2
  • 11. January 27, 2005 11:44 L24-ch04 Sheet number 11 Page number 137 black Exercise Set 4.3 137 2 d −1 2 3. f −1 (x) = − 3, so directly f (x) = − 2 . Using Formula (1), x dx x −2 1 f (x) = , so = −(1/2)(f −1 (x) + 3)2 , (x + 3)2 f (f −1 (x)) 2 d −1 2 2 f (x) = −(1/2) =− dx x x2 ex − 1 d −1 ex 2 4. f −1 (x) = , so directly, f (x) = . Next, f (x) = , and using Formula (1), 2 dx 2 2x + 1 d −1 2f −1 (x) + 1 ex f (x) = = dx 2 2 5. (a) f (x) = 2x + 8; f < 0 on (−∞, −4) and f > 0 on (−4, +∞); not enough information. By inspection, f (1) = 10 = f (−9), so not one-to-one (b) f (x) = 10x4 + 3x2 + 3 ≥ 3 > 0; f (x) is positive for all x, so f is one-to-one (c) f (x) = 2 + cos x ≥ 1 > 0 for all x, so f is one-to-one x (d) f (x) = −(ln 2) 1 < 0 because ln 2 > 0, so f is one-to-one for all x. 2 6. (a) f (x) = 3x2 + 6x = x(3x + 6) changes sign at x = −2, 0, so √ enough information; by not √ observation (of the graph, and using some guesswork), f (−1 + 3) = −6 = f (−1 − 3), so f is not one-to-one. (b) f (x) = 5x4 + 24x2 + 2 ≥ 2 > 0; f is positive for all x, so f is one-to-one 1 (c) f (x) = ; f is one-to-one because: (x + 1)2 if x1 < x2 < −1 then f > 0 on [x1 , x2 ], so f (x1 ) = f (x2 ) if −1 < x1 < x2 then f > 0 on [x1 , x2 ], so f (x1 ) = f (x2 ) if x1 < −1 < x2 then f (x1 ) > 1 > f (x2 ) since f (x) > 1 on (−∞, −1) and f (x) < 1 on (−1, +∞) d 1 (d) Note that f (x) is only defined for x > 0. logb x = , which is always negative dx x ln b (0 < b < 1), so f is one-to-one. dx dy 1 7. y = f −1 (x), x = f (y) = 5y 3 + y − 7, = 15y 2 + 1, = ; dy dx 15y 2 + 1 dy dy dy 1 check: 1 = 15y 2 + , = 2+1 dx dx dx 15y dx dy 8. y = f −1 (x), x = f (y) = 1/y 2 , = −2y −3 , = −y 3 /2; dy dx dy dy check: 1 = −2y −3 , = −y 3 /2 dx dx dx dy 1 9. y = f −1 (x), x = f (y) = 2y 5 + y 3 + 1, = 10y 4 + 3y 2 , = 4 + 3y 2 ; dy dx 10y dy dy dy 1 check: 1 = 10y 4 + 3y 2 , = dx dx dx 10y 4 + 3y 2 dx dy 1 10. y = f −1 (x), x = f (y) = 5y − sin 2y, = 5 − 2 cos 2y, = ; dy dx 5 − 2 cos 2y dy dy 1 check: 1 = (5 − 2 cos 2y) , = dx dx 5 − 2 cos 2y
  • 12. January 27, 2005 11:44 L24-ch04 Sheet number 12 Page number 138 black 138 Chapter 4 12. −10xe−5x 2 11. 7e7x 1 1/x 13. x3 ex + 3x2 ex = x2 ex (x + 3) 14. − e x2 dy (ex + e−x )(ex + e−x ) − (ex − e−x )(ex − e−x ) 15. = dx (ex + e−x )2 (e2x + 2 + e−2x ) − (e2x − 2 + e−2x ) = = 4/(ex + e−x )2 (ex + e−x )2 16. ex cos(ex ) dy (ln x)ex − ex (1/x) ex (x ln x − 1) 17. (x sec2 x + tan x)ex tan x 18. = = dx (ln x)2 x(ln x)2 15 2 x (1 + 5x3 )−1/2 exp( 1 + 5x3 ) 3x 19. (1 − 3e3x )e(x−e ) 20. 2 (x − 1)e−x x−1 1 21. = x 22. [− sin(ex )]ex = −ex tan(ex ) 1 − xe−x e −x cos(ex ) 1 23. f (x) = 2x ln 2; y = 2x , ln y = x ln 2, y = ln 2, y = y ln 2 = 2x ln 2 y 1 24. f (x) = −3−x ln 3; y = 3−x , ln y = −x ln 3, y = − ln 3, y = −y ln 3 = −3−x ln 3 y 25. f (x) = π sin x (ln π) cos x; 1 y = π sin x , ln y = (sin x) ln π, y = (ln π) cos x, y = π sin x (ln π) cos x y 26. f (x) = π x tan x (ln π)(x sec2 x + tan x); 1 y = π x tan x , ln y = (x tan x) ln π, y = (ln π)(x sec2 x + tan x) y y = π x tan x (ln π)(x sec2 x + tan x) 1 dy 3x2 − 2 1 27. ln y = (ln x) ln(x3 − 2x), = 3 ln x + ln(x3 − 2x), y dx x − 2x x dy 3x2 − 2 1 = (x3 − 2x)ln x 3 ln x + ln(x3 − 2x) dx x − 2x x 1 dy sin x dy sin x 28. ln y = (sin x) ln x, = + (cos x) ln x, = xsin x + (cos x) ln x y dx x dx x 1 dy 1 29. ln y = (tan x) ln(ln x), = tan x + (sec2 x) ln(ln x), y dx x ln x dy tan x = (ln x)tan x + (sec2 x) ln(ln x) dx x ln x
  • 13. January 27, 2005 11:44 L24-ch04 Sheet number 13 Page number 139 black Exercise Set 4.3 139 1 dy 2x 1 30. ln y = (ln x) ln(x2 + 3), = 2 ln x + ln(x2 + 3), y dx x +3 x dy 2x 1 = (x2 + 3)ln x 2 ln x + ln(x2 + 3) dx x +3 x 31. f (x) = exe−1 32. (a) because xx is not of the form ax where a is constant 1 (b) y = xx , ln y = x ln x, y = 1 + ln x, y = xx (1 + ln x) y 3 3 1/2 1 33. =√ 34. − =− 1− (3x)2 1 − 9x2 1− x+1 2 4 − (x + 1)2 2 1 1 sin x sin x 1, sin x > 0 35. (−1/x2 ) = − √ 36. √ = = 1 − 1/x2 |x| x2 − 1 1 − cos2 x | sin x| −1, sin x < 0 3x2 3x2 5x4 5 37. = 38. = √ 1 + (x3 )2 1 + x6 |x5 | (x5 )2 − 1 |x| x10 − 1 39. y = 1/ tan x = cot x, dy/dx = − csc2 x 1 40. y = (tan−1 x)−1 , dy/dx = −(tan−1 x)−2 1 + x2 ex 1 41. √ + ex sec−1 x 42. − √ |x| x2 − 1 (cos−1 x) 1 − x2 3x2 (sin−1 x)2 43. 0 44. √ + 2x(sin−1 x)3 1 − x2 √ 45. 0 46. −1/ e2x − 1 1 1 −1/2 1 1 47. − x =− √ 48. − √ 1+x 2 2(1 + x) x −1 2 cot x(1 + x2 ) 49. (a) Let x = f (y) = cot y, 0 < y < π, −∞ < x < +∞. Then f is differentiable and one-to-one and f (f −1 (x)) = − csc2 (cot−1 x) = −x2 − 1 = 0, and d 1 1 [cot−1 x] = lim = − lim 2 = −1. dx x=0 x→0 f (f −1 (x)) x→0 x + 1 (b) If x = 0 then, from Exercise 50(a) of Section 1.5, d d 1 1 1 1 cot−1 x = tan−1 = − 2 =− 2 . For x = 0, Part (a) shows the same; dx dx x x 1 + (1/x)2 x +1 d 1 thus for −∞ < x < +∞, [cot−1 x] = − 2 . dx x +1 d 1 du (c) For −∞ < u < +∞, by the chain rule it follows that [cot−1 u] = − 2 . dx u + 1 dx
  • 14. January 27, 2005 11:44 L24-ch04 Sheet number 14 Page number 140 black 140 Chapter 4 d d 1 1 1 −1 50. (a) By the chain rule, [csc−1 x] = sin−1 = − 2 = √ dx dx x x 1− (1/x)2 |x| x2 − 1 d du d −1 du (b) By the chain rule, [csc−1 u] = [csc−1 u] = √ dx dx du |u| u2 − 1 dx x (3x2 + tan−1 y)(1 + y 2 ) 51. x3 + x tan−1 y = ey , 3x2 + y + tan−1 y = ey y , y = 1+y 2 (1 + y 2 )ey − x 1 1 52. sin−1 (xy) = cos−1 (x − y), (xy + y) = − (1 − y ), 1− x2 y 2 1 − (x − y)2 y 1 − (x − y)2 + 1 − x2 y 2 y = 1 − x2 y 2 − x 1 − (x − y)2 53. (a) f (x) = x3 − 3x2 + 2x = x(x − 1)(x − 2) so f (0) = f (1) = f (2) = 0 thus f is not one-to-one. √ 6 ± 36 − 24 √ (b) f (x) = 3x − 6x + 2, f (x) = 0 when x = 2 = 1 ± 3/3. f (x) > 0 (f is √ 6 √ √ increasing) if x < 1 − 3/3, f (x) < 0 (f is decreasing) if 1 − 3/3 < x < 1 + 3/3, so f (x) √ √ √ takes on values less than f (1 − 3/3) on both sides of 1 − 3/3 thus 1 − 3/3 is the largest value of k. 54. (a) f (x) = x3 (x − 2) so f (0) = f (2) = 0 thus f is not one to one. (b) f (x) = 4x3 − 6x2 = 4x2 (x − 3/2), f (x) = 0 when x = 0 or 3/2; f is decreasing on (−∞, 3/2] and increasing on [3/2, +∞) so 3/2 is the smallest value of k. 55. (a) f (x) = 4x3 + 3x2 = (4x + 3)x2 = 0 only at x = 0. But on [0, 2], f has no sign change, so f is one-to-one. (b) F (x) = 2f (2g(x))g (x) so F (3) = 2f (2g(3))g (3). By inspection f (1) = 3, so g(3) = f −1 (3) = 1 and g (3) = (f −1 ) (3) = 1/f (f −1 (3)) = 1/f (1) = 1/7 because f (x) = 4x3 + 3x2 . Thus F (3) = 2f (2)(1/7) = 2(44)(1/7) = 88/7. F (3) = f (2g(3)) = f (2·1) = f (2) = 24, so the line tangent to F (x) at (3, 25) has the equation y − 25 = (88/7)(x − 3), y = (88/7)x − 89/7. 2 1 56. (a) f (x) = −e4−x 2+ < 0 for all x > 0, so f is one-to-one. x2 (b) By inspection, f (2) = 1/2, so 2 = f −1 (1/2) = g(1/2). By inspection, 1 9 f (2) = − 2 + = − , and 4 4 d F (1/2) = f ([g(x)]2 ) [g(x)2 ] = f ([g(x)]2 )2g(x)g (x) dx x=1/2 x=1/2 −12 1 1 f (4) e (2 + 16 ) 33 11 = f (22 )2 · 2 =4 =4 = = 12 f (g(x)) x=1/2 f (2) (2 + 1 ) 4 9e12 3e 57. (a) f (x) = kekx , f (x) = k 2 ekx , f (x) = k 3 ekx , . . . , f (n) (x) = k n ekx (b) g (x) = −ke−kx , g (x) = k 2 e−kx , g (x) = −k 3 e−kx , . . . , g (n) (x) = (−1)n k n e−kx dy 58. = e−λt (ωA cos ωt − ωB sin ωt) + (−λ)e−λt (A sin ωt + B cos ωt) dt = e−λt [(ωA − λB) cos ωt − (ωB + λA) sin ωt]
  • 15. January 27, 2005 11:44 L24-ch04 Sheet number 15 Page number 141 black Exercise Set 4.3 141 2 2 1 1 x−µ d 1 x−µ 59. f (x) = √ exp − − 2πσ 2 σ dx 2 σ 2 1 1 x−µ x−µ 1 =√ exp − − 2πσ 2 σ σ σ 2 1 1 x−µ = −√ (x − µ) exp − 2πσ 3 2 σ 60. y = Aekt , dy/dt = kAekt = k(Aekt ) = ky 61. y = Ae2x + Be−4x , y = 2Ae2x − 4Be−4x , y = 4Ae2x + 16Be−4x so y + 2y − 8y = (4Ae2x + 16Be−4x ) + 2(2Ae2x − 4Be−4x ) − 8(Ae2x + Be−4x ) = 0 62. (a) y = −xe−x + e−x = e−x (1 − x), xy = xe−x (1 − x) = y(1 − x) (b) y = −x2 e−x + e−x = e−x (1 − x2 ), xy = xe−x 2 2 2 2 /2 /2 /2 /2 (1 − x2 ) = y(1 − x2 ) dy 63. = 100(−0.2)e−0.2x = −20y, k = −0.2 dx 64. ln y = (5x + 1) ln 3 − (x/2) ln 4, so y /y = 5 ln 3 − (1/2) ln 4 = 5 ln 3 − ln 2, and y = (5 ln 3 − ln 2)y y 7e−t 7e−t + 5 − 5 1 65. ln y = ln 60 − ln(5 + 7e−t ), = = = 1 − y, so y 5 + 7e−t 5 + 7e−t 12 dy y =r 1− y, with r = 1, K = 12. dt K 66. (a) 12 0 9 0 60 60 60 (b) P tends to 12 as t gets large; lim P (t) = lim = = = 12 t→+∞ t→+∞ 5 + 7e−t 5 + 7 lim e−t 5 t→+∞ (c) the rate of population growth tends to zero 3.2 0 9 0 10h − 1 d x d x ln 10 67. lim = 10 = e = ln 10 h→0 h dx x=0 dx x=0
  • 16. January 27, 2005 11:44 L24-ch04 Sheet number 16 Page number 142 black 142 Chapter 4 tan−1 (1 + h) − π/4 d 1 1 68. lim = tan−1 x = = h→0 h dx x=1 1 + x2 x=1 2 √ 9[sin−1 ( 23 + ∆x)]2 − π 2 d 3 69. lim = (3 sin−1 x)2 √ = 2(3 sin−1 x) √ √ ∆x→0 ∆x dx x= 3/2 1 − x2 x= 3/2 π 3 = 2(3 ) = 12π 3 1 − (3/4) (2 + ∆x)(2+∆x) − 4 d x d x ln x 70. lim = x = e ∆x→0 ∆x dx x=2 dx x=2 = (1 + ln x)ex ln x = (1 + ln 2)22 = 4(1 + ln 2) x=2 √ 3 sec−1 w − π d 3 3 71. lim = 3 sec−1 x = √ = w→2 w−2 dx x=2 |2| 2 2−1 2 4(tan−1 w)w − π d d x ln tan−1 x 72. lim = 4(tan−1 x)x = 4e w→1 w−1 dx x=1 dx x=1 2 1/(1 + x ) 14 = 4(tan−1 x)x ln tan−1 x + x = π ln(π/4) + == 2 + π ln(π/4) tan−1 x x=1 2π EXERCISE SET 4.4 x2 − 4 (x − 2)(x + 2) x+2 2 1. (a) lim = lim = lim = x→2 x2 + 2x − 8 x→2 (x + 4)(x − 2) x→2 x + 4 3 5 2x − 5 2 − lim 2 x→+∞ x (b) lim = = x→+∞ 3x + 7 7 3 3 + lim x→+∞ x sin x cos x sin x 2. (a) = sin x = cos x so lim = lim cos x = 1 tan x sin x x→0 tan x x→0 x2 − 1 (x − 1)(x + 1) x+1 x2 − 1 2 (b) 3−1 = = 2 so lim 3 = x (x − 1)(x 2 + x + 1) x +x+1 x→1 x − 1 3 π π 3. Tf (x) = −2(x + 1), Tg (x) = −3(x + 1), 4. Tf (x) = − x − , Tg (x) = − x − 2 2 limit = 2/3 limit = 1 x e 1 5. lim =1 6. lim = 1/5 x→0 cos x x→3 6x − 13 sec2 θ tet + et 7. lim =1 8. lim = −1 θ→0 1 t→0 −et cos x cos x 9. lim+ = −1 10. lim = +∞ x→π 1 x→0+ 2x 1/x 3e3x 9e3x 11. lim =0 12. lim = lim = +∞ x→+∞ 1 x→+∞ 2x x→+∞ 2
  • 17. January 27, 2005 11:44 L24-ch04 Sheet number 17 Page number 143 black Exercise Set 4.4 143 − csc2 x −x −1 13. lim+ = lim 2 = lim+ = −∞ x→0 1/x x→0 sin x + x→0 2 sin x cos x −1/x x 14. lim = lim 1/x = 0 x→0+ (−1/x2 )e1/x x→0+ e 100x99 (100)(99)x98 (100)(99)(98) · · · (1) 15. lim x = lim x = · · · = lim =0 x→+∞ e x→+∞ e x→+∞ ex √ cos x/ sin x 2/ 1 − 4x2 16. lim = lim+ cos2 x = 1 17. lim =2 x→0+ sec2 x/ tan x x→0 x→0 1 1 1− 1 1 x 1 18. lim 1 + x2 = lim = 19. lim xe−x = lim = lim x = 0 x→0 3x 2 x→0 3(1 + x2 ) 3 x→+∞ x→+∞ ex x→+∞ e x−π 1 20. lim (x − π) tan(x/2) = lim = lim = −2 x→π x→π cot(x/2) x→π −(1/2) csc2 (x/2) sin(π/x) (−π/x2 ) cos(π/x) 21. lim x sin(π/x) = lim = lim = lim π cos(π/x) = π x→+∞ x→+∞ 1/x x→+∞ −1/x2 x→+∞ ln x 1/x − sin2 x −2 sin x cos x 22. lim tan x ln x = lim = lim+ = lim+ = lim+ =0 x→0+ x→0+ cot x x→0 − csc2 x x→0 x x→0 1 cos 5x −5 sin 5x −5(+1) 5 23. lim sec 3x cos 5x = lim = lim = =− x→(π/2)− x→(π/2)− cos 3x x→(π/2)− −3 sin 3x (−3)(−1) 3 x−π 1 24. lim (x − π) cot x = lim = lim =1 x→π x→π tan x x→π sec2 x ln(1 − 3/x) −3 25. y = (1 − 3/x)x , lim ln y = lim = lim = −3, lim y = e−3 x→+∞ x→+∞ 1/x x→+∞ 1 − 3/x x→+∞ 3 ln(1 + 2x) 6 26. y = (1 + 2x)−3/x , lim ln y = lim − = lim − = −6, lim y = e−6 x→0 x→0 x x→0 1 + 2x x→0 ln(ex + x) ex + 1 27. y = (ex + x)1/x , lim ln y = lim = lim x = 2, lim y = e2 x→0 x→0 x x→0 e + x x→0 b ln(1 + a/x) ab 28. y = (1 + a/x)bx , lim ln y = lim = lim = ab, lim y = eab x→+∞ x→+∞ 1/x x→+∞ 1 + a/x x→+∞ ln(2 − x) 2 sin2 (πx/2) 29. y = (2 − x)tan(πx/2) , lim ln y = lim = lim = 2/π, lim y = e2/π x→1 x→1 cot(πx/2) x→1 π(2 − x) x→1 2 ln cos(2/x) (−2/x2 )(− tan(2/x)) 30. y = [cos(2/x)]x , lim ln y = lim = lim x→+∞ x→+∞ 1/x2 x→+∞ −2/x3 − tan(2/x) (2/x2 ) sec2 (2/x) = lim = lim = −2, lim y = e−2 x→+∞ 1/x x→+∞ −1/x2 x→+∞ 1 1 x − sin x 1 − cos x sin x 31. lim − = lim = lim = lim =0 x→0 sin x x x→0 x sin x x→0 x cos x + sin x x→0 2 cos x − x sin x
  • 18. January 27, 2005 11:44 L24-ch04 Sheet number 18 Page number 144 black 144 Chapter 4 1 − cos 3x 3 sin 3x 9 9 32. lim 2 = lim = lim cos 3x = x→0 x x→0 2x x→0 2 2 (x2 + x) − x2 x 1 33. lim √ = lim √ = lim = 1/2 x→+∞ x2+x+x x→+∞ x2+x+x x→+∞ 1 + 1/x + 1 ex − 1 − x ex − 1 ex 34. lim = lim x = lim x = 1/2 x→0 xex − x x→0 xe + ex − 1 x→0 xe + 2ex ex 35. lim [x − ln(x2 + 1)] = lim [ln ex − ln(x2 + 1)] = lim ln , x→+∞ x→+∞ x→+∞ x2 + 1 x x x e e e lim = lim = lim = +∞ so lim [x − ln(x2 + 1)] = +∞ x→+∞ x2 + 1 x→+∞ 2x x→+∞ 2 x→+∞ x 1 36. lim ln = lim ln = ln(1) = 0 x→+∞ 1 + x x→+∞ 1/x + 1 ln x 1/x 1 38. (a) lim = lim = lim =0 xn x→+∞ x→+∞ nxn−1 x→+∞ nxn xn nxn−1 (b) lim = lim = lim nxn = +∞ x→+∞ ln x x→+∞ 1/x x→+∞ 3x2 − 2x + 1 0 39. (a) L’Hˆpital’s Rule does not apply to the problem lim o because it is not a form. x→1 3x2 − 2x 0 3x2 − 2x + 1 (b) lim =2 x→1 3x2 − 2x e3x −12x+12 2 e0 40. L’Hˆpital’s Rule does not apply to the problem o , which is of the form , and from x4 − 16 0 which it follows that lim− and lim+ exist, with values −∞ if x approaches 2 from the left and x→2 x→2 +∞ if from the right. The general limit lim does not exist. x→2 1/(x ln x) 2 41. lim √ = lim √ =0 0.15 x→+∞ 1/(2 x) x→+∞ x ln x 100 10000 0 ln x 42. y = xx , lim ln y = lim = lim −x = 0, lim y = 1 1 x→0+ x→0+ 1/x x→0+ x→0+ 0 0.5 0
  • 19. January 27, 2005 11:44 L24-ch04 Sheet number 19 Page number 145 black Exercise Set 4.4 145 43. y = (sin x)3/ ln x , 25 3 ln sin x x lim ln y = lim = lim (3 cos x) = 3, x→0+ x→0+ ln x x→0+ sin x lim y = e3 x→0+ 0 0.5 19 4 sec2 x 4 4.1 44. lim − = lim =4 x→π/2 sec x tan x x→π/2− sin x 1.4 1.6 3.3 1 e−x ln x − 1 45. ln x − ex = ln x − = ; 0 e−x e−x 0 3 ln x 1/x lim e−x ln x = lim = lim = 0 by L’Hˆpital’s Rule, o x→+∞ x→+∞ ex x→+∞ ex e−x ln x − 1 so lim [ln x − ex ] = lim = −∞ x→+∞ x→+∞ e−x –16 ex 46. lim [ln ex − ln(1 + 2ex )] = lim ln –0.6 x→+∞ x→+∞ 1 + 2ex 0 12 1 1 = lim ln = ln ; x→+∞ e−x +2 2 horizontal asymptote y = − ln 2 –1.2 1.02 47. y = (ln x)1/x , ln(ln x) 1 lim ln y = lim = lim = 0; x→+∞ x→+∞ x x→+∞ x ln x lim y = 1, y = 1 is the horizontal asymptote x→+∞ 100 10000 1
  • 20. January 27, 2005 11:44 L24-ch04 Sheet number 20 Page number 146 black 146 Chapter 4 x+1 x+1 x ln 48. y = , lim ln y = lim x+2 1 x+2 x→+∞ x→+∞ 1/x −x2 = lim = −1; x→+∞ (x + 1)(x + 2) lim y = e−1 is the horizontal asymptote x→+∞ 0 50 0 49. (a) 0 (b) +∞ (c) 0 (d) −∞ (e) +∞ (f ) −∞ (ln a) ln x (ln a)/x 50. (a) Type 00 ; y = x(ln a)/(1+ln x) ; lim ln y = lim = lim+ = lim+ ln a = ln a, x→0+ x→0+ 1 + ln x x→0 1/x x→0 lim y = eln a = a x→0+ (b) Type ∞0 ; same calculation as Part (a) with x → +∞ (ln a) ln(x + 1) ln a (c) Type 1∞ ; y = (x + 1)(ln a)/x , lim ln y = lim = lim = ln a, x→0 x→0 x x→0 x + 1 lim y = eln a = a x→0 1 + 2 cos 2x x + sin 2x sin 2x 51. lim does not exist, nor is it ±∞; lim = lim 1+ =1 x→+∞ 1 x→+∞ x x→+∞ x 2 − cos x 2x − sin x 2 − (sin x)/x 2 52. lim does not exist, nor is it ±∞; lim = lim = x→+∞ 3 + cos x x→+∞ 3x + sin x x→+∞ 3 + (sin x)/x 3 x(2 + sin 2x) 2 + sin 2x 53. lim (2 + x cos 2x + sin 2x) does not exist, nor is it ±∞; lim = lim , x→+∞ x+1 x→+∞ x→+∞ 1 + 1/x which does not exist because sin 2x oscillates between −1 and 1 as x → +∞ 1 1 sin x 54. lim + cos x + does not exist, nor is it ±∞; x→+∞ x 2 2x x(2 + sin x) 2 + sin x lim = lim =0 x→+∞ x2 + 1 x→+∞ x + 1/x V t −Rt/L L e Vt 55. lim+ = R→0 1 L π/2 − x −1 56. (a) lim (π/2 − x) tan x = lim = lim = lim sin2 x = 1 x→π/2 x→π/2 cot x x→π/2 − csc2 x x→π/2 1 1 sin x cos x − (π/2 − x) sin x (b) lim − tan x = lim − = lim x→π/2 π/2 − x x→π/2 π/2 − x cos x x→π/2 (π/2 − x) cos x −(π/2 − x) cos x = lim x→π/2 −(π/2 − x) sin x − cos x (π/2 − x) sin x + cos x = lim =0 x→π/2 −(π/2 − x) cos x + 2 sin x (c) 1/(π/2 − 1.57) ≈ 1255.765534, tan 1.57 ≈ 1255.765592; 1/(π/2 − 1.57) − tan 1.57 ≈ 0.000058