SlideShare uma empresa Scribd logo
1 de 59
Chapter 4 Linear TransformationsChapter 4 Linear Transformations
4.1 Introduction to Linear Transformations4.1 Introduction to Linear Transformations
4.2 The Kernel and Range of a Linear Transformation4.2 The Kernel and Range of a Linear Transformation
4.3 Matrices for Linear Transformations4.3 Matrices for Linear Transformations
4.4 Transition Matrices and Similarity4.4 Transition Matrices and Similarity
6 - 2
4.1 Introduction to Linear Transformations4.1 Introduction to Linear Transformations

A linear transformation is a function TT that maps a vector space
VV into another vector space WW:
mapping
: , , : vector spaceT V W V W→
V: the domain of T
W: the co-domain of T
(1) (u v) (u) (v), u, vT T T V+ = + ∀ ∈
(2) ( u) (u),T c cT c R= ∀ ∈
Two axioms of linear transformationsTwo axioms of linear transformations
6 - 3

Image of v under T:
If v is in V and w is in W such that
wv =)(T
Then w is called the image of v under T .

the range ofthe range of TT::
The set of all images of vectors in VThe set of all images of vectors in V.

the pre-image of w:
The set of all v in V such that T(v)=w.
}|)({)( VTTrange ∈∀= vv
6 - 4

Notes:
(1) A linear transformationlinear transformation is said to be operation preservingoperation preserving.
(u v) (u) (v)T T T+ = +
Addition
in V
Addition
in W
( u) (u)T c cT=
Scalar
multiplication
in V
Scalar
multiplication
in W
(2) A linear transformation from a vector space intoa vector space into
itselfitself is called a linear operatorlinear operator.
:T V V→
6 - 5

Ex: Verifying a linear transformation T from R2
into R2
Pf:Pf:
1 2 1 2 1 2( , ) ( , 2 )T v v v v v v= − +
numberrealany:,invector:),(),,( 2
2121 cRvvuu == vu
(1) Vector addition :
1 2 1 2 1 1 2 2u v ( , ) ( , ) ( , )u u v v u v u v+ = + = + +
)()(
)2,()2,(
))2()2(),()((
))(2)(),()((
),()(
21212121
21212121
22112211
2211
vu
vu
TT
vvvvuuuu
vvuuvvuu
vuvuvuvu
vuvuTT
+=
+−++−=
+++−+−=
++++−+=
++=+
6 - 6
),(),(
tionmultiplicaScalar)2(
2121 cucuuucc ==u
)(
)2,(
)2,(),()(
2121
212121
u
u
cT
uuuuc
cucucucucucuTcT
=
+−=
+−==
Therefore, T is a linear transformation.
6 - 7

Ex: Functions that are not linear transformations
xxfa sin)()( =
2
)()( xxfb =
1)()( += xxfc
)sin()sin()sin( 2121 xxxx +≠+
)sin()sin()sin( 3232
ππππ
+≠+
2
2
2
1
2
21 )( xxxx +≠+
222
21)21( +≠+
1)( 2121 ++=+ xxxxf
2)1()1()()( 212121 ++=+++=+ xxxxxfxf
)()()( 2121 xfxfxxf +≠+
( ) sin is not a
linear transformation
f x x⇐ =
2
( ) is not a linear
transformation
f x x⇐ =
( ) 1 is not a
linear transformation
f x x⇐ = +
6 - 8

Notes: Two uses of the term “linear”.
(1) is called a linear functiona linear function because its graph is
a line. But
1)( += xxf
(2) is not a linear transformationnot a linear transformation from a
vector space R into R because it preserves neitherbecause it preserves neither
vector addition nor scalar multiplicationvector addition nor scalar multiplication.
1)( += xxf
6 - 9

Zero transformation:
: , u, vT V W V→ ∈
VT ∈∀= vv ,0)(

Identity transformation:
VVT →: VT ∈∀= vvv ,)(

Thm 4.1Thm 4.1: (Properties of linear transformations)
WVT →:
00 =)((1)T
)()((2) vv TT −=−
)()()((3) vuvu TTT −=−
(4) If 1 1 2 2
1 1 2 2
1 1 2 2
v
Then (v) ( )
( ) ( ) ( )
n n
n n
n n
c v c v c v
T T c v c v c v
c T v c T v c T v
= + + +
= + + +
= + + +
L
L
L
6 - 10

Ex: (Linear transformations and bases)
Let be a linear transformation such that33
: RRT →
)4,1,2()0,0,1( −=T
)2,5,1()0,1,0( −=T
)1,3,0()1,0,0( =T
Sol:
)1,0,0(2)0,1,0(3)0,0,1(2)2,3,2( −+=−
(2,3, 2) 2 (1,0,0) 3 (0,1,0) 2 (0,0,1)
2(2, 1,4) 3(1,5, 2) 2(0,3,1)
(7,7,0)
T T T T− = + −
= − + − −
=
(T is a L.T.)
Find T(2, 3, -2).
6 - 11

Thm 4.2Thm 4.2: (The linear transformation given by a matrix)
Let A be an m×n matrix. The function T defined by
vv AT =)(
is a linear transformation from Rn
into Rm
.

Note:
11 12 1 1 11 1 12 2 1
21 22 2 2 21 1 22 2 2
1 2 1 1 2 2
v
n n n
n n n
m m mn n m m mn n
a a a v a v a v a v
a a a v a v a v a v
A
a a a v a v a v a v
+ + +     
     + + +     = =
     
     
+ + +     
L L
L L
M M M M M
L L
vv AT =)(
mn
RRT →:
vectorn
R vectorm
R
6 - 12
Show that the L.T. given by the matrix
has the property that it rotates every vector in R2
counterclockwise about the origin through the angle θ.

Rotation in the planeRotation in the plane
22
: RRT →
cos sin
sin cos
A
θ θ
θ θ
− 
=  
 
Sol:
( , ) ( cos , sin )v x y r rα α= = (polar coordinates)
r : the length of v
 : the angle from the
positive x-axis
counterclockwise to the
6 - 13




+
+
=




+
−
=







 −
=






 −
==
)sin(
)cos(
sincoscossin
sinsincoscos
sin
cos
cossin
sincos
cossin
sincos
)(
αθ
αθ
αθαθ
αθαθ
α
α
θθ
θθ
θθ
θθ
r
r
rr
rr
r
r
y
x
AT vv
r : the length of T(v)
θ +α : the angle from the positive x-axis counterclockwise
to
the vector T(v)Thus, T(v) is the vector that results from rotating the vector v
counterclockwise through the angle θ.
6 - 14
is called a projection in R3
.

A projection inA projection in RR33
The linear transformation is given by33
: RRT →








=
000
010
001
A
6 - 15
Show that T is a linear transformation.

A linear transformation fromA linear transformation from MMmm××nn intointo MMnn ××mm
):()( mnnm
T
MMTAAT ×× →=
Sol:
nmMBA ×∈,
)()()()( BTATBABABAT TTT
+=+=+=+
)()()( AcTcAcAcAT TT
===
Therefore, T is a linear transformation from Mm×n into Mn ×m.
6 - 16
4.2 The Kernel and Range of a Linear Transformation4.2 The Kernel and Range of a Linear Transformation

KernelKernel of a linear transformation T:
Let be a linear transformationWVT →:
Then the set of all vectors v in V that satisfy is
called the kernelkernel of T and is denoted by kerker(T).
0)( =vT
ker( ) {v | (v) 0, v }T T V= = ∀ ∈
6 - 17

Finding the kernel of a linear transformationFinding the kernel of a linear transformation
1
3 2
2
3
1 1 2
(x) x ( : )
1 2 3
x
T A x T R R
x
 
− −   
= = →   −    
?)ker( =T
Sol:Sol:
}),,(),0,0(),,(|),,{()ker( 3
321321321 RxxxxxxxTxxxT ∈===
1 2 3( , , ) (0,0)T x x x = ⇒




=












−
−−
0
0
321
211
3
2
1
x
x
x
1
2
3
1
1
1
x t
x t t
x t
     
     ⇒ = − = −     
         
real numberker( ) { (1, 1,1) | }
span{(1, 1,1)} = Nullspace of A
T t t⇒ = − ∈
= −
.1 1 2 0 1 0 1 0
1 2 3 0 0 1 1 0
G E− − −   
→   −   
6 - 18

Thm 4.3:Thm 4.3: The kernel is a subspace of V.
The kernel of a linear transformation is a subspace of the
domain V.
WVT →:
(0) 0 (Theorem 4.1)T =QPf:Pf:
is a nonempty subset ofker( )T V∴
then.ofkernelin thevectorsbeandLet Tvu
000)()()( =+=+=+ vuvu TTT
00)()( === ccTcT uu )ker(Tc ∈⇒ u
)ker(T∈+⇒ vu
.ofsubspaceais)ker(Thus, VT

Corollary to Thm 4.3:Corollary to Thm 4.3:
0ofspacesolutionthetoequalisTofkernelThen the
)(bygivenL.Tthebe:Let
=
=→
x
xx
A
ATRRT mn
{ }
a linear transformation(x) x ( : )
( ) ( ) x | x 0, x (a subspace of )
n m
n n
T A T R R
ker T NS A A R R
= →
⇒ = = = ∀ ∈
6 - 19
Finding a basis for the kernelFinding a basis for the kernel
Let be defined by , where and5 4 5
: (x) x x is in R
1 2 0 1 1
2 1 3 1 0
1 0 2 0 1
0 0 0 2 8
T R R T A
A
→ =
− 
 
 =
 − −
 
 
Find a basis for ker(T) as a
subspace of RR55
.
Sol:
[ ] .
1 2 0 1 1 0 1 0 2 0 1 0
2 1 3 1 0 0 0 1 1 0 2 0
0
1 0 2 0 1 0 0 0 0 1 4 0
0 0 0 2 8 0 0 0 0 0 0 0
G E
A
− −   
   − −   = →
   − −
   
   
s t
1
2
3
4
5
2 2 1
2 1 2
1 0
4 0 4
0 1
x s t
x s t
xx s ts
x t
x t
− + −       
       +       
       ⇒ = = = +
       
− −       
             
is a basis
of the kernel of
{( 2, 1, 1, 0, 0)
(1, 2, 0, 4, 1)}
B and
T
= −
−
6 - 20
.:Tnnsformatiolinear traaofrangeThe WWV foecapsbusasi→

Thm 4.4Thm 4.4: The range of T is a subspace of W
Pf:Pf: (0) 0 (Thm 4.1)T =Q ( ) is a nonempty subset ofrange T W⇒
TTT ofrangein thevectorbe)(and)(Let vu
)()()()( TrangeTTT ∈+=+ vuvu
)()()( TrangecTcT ∈= uu
),( VVV ∈+⇒∈∈ vuvu
)( VcV ∈⇒∈ uu
Therefore, ( ) is a subspace ofrange T W
6 - 21
Let be the L.T. represented by
then the range of is equal to the column space of
( ) ( ) {
( ,
}
: x) xn
n
m
range T CS A
T R R
Ax
T A
T A
x R
=
= = ∀ ∈
→
⇒

Rank of a linear transformation T: V→W:
( ) the dimension of the range ofrank T T=

Nullity of a linear transformation T: V→W:
( ) the dimension of the kernel ofnullity T T=

Note:Note:
Let be the L.T. represented by ,then: (x) x
( ) ( ) dim[ ( )]
( ) ( ) dim[ ( )]
n m
T R R T A
rank T rank A CS A
nullity T nullity A NS A
→ =
= =
= =
6 - 22
Finding a basis for the range of a linear transformationFinding a basis for the range of a linear transformation
5 4 5
Let : be defined by ( ) ,where and
1 2 0 1 1
2 1 3 1 0
1 0 2 0 1
0 0 0 2 8
T R R T A R
A
→ = ∈
− 
 
 =
 − −
 
 
x x x
Find a basis for the range(T).
Sol:Sol:
.
1 2 0 1 1 1 0 2 0 1
2 1 3 1 0 0 1 1 0 2
1 0 2 0 1 0 0 0 1 4
0 0 0 2 8 0 0 0 0 0
G E
A B
− −   
   −   = → =
   − −
   
   
54321 ccccc
54321 wwwww
{ }
{ } )(,,
)(,,
421
421
ACSccc
BCSwww
forbasisais
forbasisais⇒
{ } Tofrangefor thebasisais)2,0,1,1(),0,0,1,2(),0,1,2,1( −⇒
6 - 23
Let be a L.T.from an n - dimensional
vector space into a vector space
:
,
then
T V W
V W
→

Thm 4.5Thm 4.5: Sum of rank and nullity
Pf:Pf: Let is represented by a mnT matrix A
. ., dim(range of ) dim(kerne
( ) ( )
l of ) dim(domain of )
,rank T nullity T n
i e T T T+
=
=
+
Assume ( ) ( . ., var )rank A r i e the number of leading iables=
(1) ( ) dim(range of ) dim(column space of )
( )
rank T T A
rank A r
= =
= =
(2) ( ) dim(kernel of ) dim(solution space of )nullity T T A
n r
= =
= −
( ) ( ) ( )rank T nullity T r n r n⇒ + = + − =
( )T x Ax=Q
6 - 24

Finding the rank and nullity of a linear transformation
Find the rank and nullity of the L.T. define by3 3
:
1 0 2
0 1 1
0 0 0
T R R
A
→
− 
 =  
  
Sol:
( ) ( ) 2
( ) dim(domain of ) ( ) 3 2 1
rank T rank A
nullity T T rank T
= =
= − = − =
6 - 25
A function : is called one-to-one if the preimage of
every w in the range of T consists of a single vector.
T V W→

One-to-one:One-to-one:
T is one-to-one if and only if for all u and v in V,
T(u)=T(v) implies that u=v.
one-to-one not one-to-one
6 - 26
A function is said to be if
has a preimage in
onto: every element
in
T V W
W V
→

Onto:Onto:
i.e., T is onto W when rangerange((TT))=W=W.
6 - 27

Thm 4.6:Thm 4.6: (One-to-one linear transformation)
T is one - to -one if and
Let
only
be a L.T.,
if ( ) {0}
:
ker T
T V W
=
→
Pf: 1-1isSupposeT
0:solutiononeonlyhavecan0)(Then == vvT
.,.e ) {0i ( }ker T =
Suppose and( ) {0} ( ) ( )ker T T u T v= =
0)()()( =−=− vTuTvuT
L.T.aisT
( ) 0u v ker T u v− ∈ ⇒ − =Q is one- to -one L.T.T⇒
i.e., The addtive unit element in V is mapped onto
the additive unit element in W.
6 - 28

One-to-one and not one-to-one linear transformationOne-to-one and not one-to-one linear transformation
The L.T.( ) : given by ( )
is one-to-one.
T
m n n ma T M M T A A× ×→ =
mn
zero matrix
i.e., ker(T) = {0 }.
Because its kernel consists of only the m n×
one.-to-onenotis:ationtransformzeroThe)( 33
RRTb →
.ofalliskernelitsBecause 3
R
6 - 29

Onto linear transformationOnto linear transformation
Let be a L.T., where is finite dimensional,
then is equal to the dimension of
:
is onto iff the rank of .
T V W W
T T W
→

Thm 4.7Thm 4.7: (One-to-one and onto linear transformation)
Let be a L.T. with vector space both of
dimension then is one - to -one iff it is onto.
: and
,
T V W V W
n T
→
Pf:Pf: If is one- to -one, then and( ) {0} dim( ( )) 0T ker T ker T= =
( ) dim( ( )) dim( ( )) dim( )rank T range T n ker T n W= = − = =
onto.isly,Consequent T
dim( ( )) dim(range of ) 0ker T n T n n= − = − =
Therefore, ker(T) = {0}. is one - to -one.(from Thm 4.6)T
nWTT == )dim()ofrangedim(thenonto,isIf
( ) dim[range( )] dim[ ( )]rank T T CS A= =Note:
6 - 30

Ex:
The L.T. is given by find the nullity and rank
of and determine whether is one- to -one, onto, or neither.
: (x) x,n m
T R R T A
T T
→ =








=
100
110
021
)( Aa








=
00
10
21
)( Ab




−
=
110
021
)( Ac








=
000
110
021
)( Ad
Sol:
T:Rn
→Rm dim(domain
of T)
rank(T)
nullity(T
)
1-1 onto
(a)T:R3
→R33
3 33 00 YesYes YesYes
(b)T:R2
→R3
2 2 00 YesYes No
(c)T:R3
→R22
3 22 1 No YesYes
(d)T:R3
→R3
3 2 1 No No
( ) the dimension of the range of dim( ( ))rank T T CS A= =Note:
6 - 31

IsomorphismIsomorphism
A linear transformation that is one to one and onto is called an isomorphism.
Moreover, if are vector spaces such that there exists an isomorphism from
then are said to b
:
and
to , and
T V W
V W V
W V W
→
e isomorphic to each other.
Pf:Pf: .dimensionhaswhere,toisomorphicisthatAssume nVWV
onto.andonetooneisthat:L.T.aexistsThere WVT →⇒
is one - to -oneTQ
dim(range of ) dim(domain of ) dim( ( ))
0
T T Ker T
n n
⇒ = −
= − =
is onto.TQ
nWT ==⇒ )dim()ofrangedim( nWV == )dim()dim(Thus

Thm 4.8:Thm 4.8: (Isomorphic spaces and dimension)
Two finite-dimensional vector space V and W are isomorphic if
and only if they are of the same dimension.
dim( ( )) 0Ker T⇒ =
6 - 32

Ex: (Isomorphic vector spaces)
space-4)( 4
=Ra
matrices14allofspace)( 14 ×=×Mb
matrices22allofspace)( 22 ×=×Mc
lessor3degreeofspolynomialallofspace)()( 3 =xPd
)ofsubspace}(numberrealais),0,,,,{()( 5
4321 RxxxxxVe i=
The following vector spaces are isomorphic to each other.
6 - 33
4.3 Matrices for Linear Transformations4.3 Matrices for Linear Transformations
)43,23,2(),,()1( 32321321321 xxxxxxxxxxxT +−+−−+=

Three reasons for matrix representationmatrix representation of a linear transformation:
















−−
−
==
3
2
1
430
231
112
)()2(
x
x
x
AT xx

It is simpler to write.

It is simpler to read.

It is more easily adapted for computer use.

Two representationsTwo representations of the linear transformation T:R3
→R3
:
6 - 34

Thm 4.9Thm 4.9: (Standard matrixStandard matrix for a linear transformation)
1 2 n
n
Let be a linear transformation and{e ,e ,...,e }
are the basis of R such that
: n m
T R R→
r r r
1 1 1
2
2
2
2
1
1
21
1 2
2
( ) , ( ) , , ( ) ,
m
n
n
m
n
nm
a a a
a a a
T e T e T e
a a a
     
     
     = = =
     
     
     
L
M M M
Then the matrix whose columns correspond to ( )im n i T e×
is such that for every in .
A is called th standard me atrix for
(v) v v
.
n
T A R
T
=
11 12 1
21 22 2
1 2
1 2
( ) ( ) ( )
n
n
n
m m mn
a a a
a a a
A T e T e T e
a a a
 
 
 = =    
 
 
L
L
L
M M O M
L
6 - 35
Pf:Pf: 1
2
1 1 2 2
n
n n
n
v
v
v R v v e v e v e
v
 
 
 ∈ ⇒ = = + + +
 
 
 
r r r
L
M
is a L.T. 1 1 2 2
1 1 2 2
1 1 2 2
(v) ( )
( ) ( ) ( )
( ) ( ) ( )
n n
n n
n n
T T T v e v e v e
T v e T v e T v e
v T e v T e v T e
⇒ = + + +
= + + +
= + + +
r r r
L
r r r
L
r r r
L
11 12 1 1 11 1 12 2 1
21 22 2 2 21 1 22 2 2
1 2 1 1 2 2
v
n n n
n n n
m m mn n m m mn n
a a a v a v a v a v
a a a v a v a v a v
A
a a a v a v a v a v
+ + +     
     + + +     = =
     
     
+ + +     
L L
L L
M M O M M M
L L
6 - 36
11 12 1
21 22 2
1 2
1 2
1 1 2 2( ) ( ) ( )
n
n
n
m m mn
n n
a a a
a a a
v v v
a a a
v T e v T e v T e
     
     
     = + + +
     
     
     
= + + +
L
M M M
L
n
RAT ineachfor)(Therefore, vvv =
6 - 37

Ex : (Finding the standard matrix of a linear transformation)
Find the standard matrix for the L.T. define by3 2
:T R R→
)2,2(),,( yxyxzyxT +−=
Sol:
)2,1()0,0,1()( 1 == TeT
)1,2()0,1,0()( 2 −== TeT
)0,0()1,0,0()( 3 == TeT
2
1
)
0
0
1
()( 1 



=








= TeT
1
2
)
0
1
0
()( 2 


−
=








= TeT
0
0
)
1
0
0
()( 3 



=








= TeT
Vector Notation Matrix NotationVector Notation Matrix Notation
6 - 38
[ ]



 −
=
=
012
021
)()()( 321 eTeTeTA

Note:
zyx
zyx
A
012
021
012
021
++
+−
←
←



 −
=




+
−
=











 −
=








yx
yx
z
y
x
z
y
x
A
2
2
012
021
i.e., ( , , ) ( 2 ,2 )T x y z x y x y= − +

Check:
6 - 39

Composition of T1: Rn
→Rm
with T2: Rm
→Rp
:
n
RTTT ∈= vvv )),(()( 12
2 1 1, domain of domain ofT T T T T= =o

Thm 4.10:Thm 4.10: (Composition of linear transformations)
then,andmatricesstandardwith
L.T.be:and:Let
21
21
AA
RRTRRT pmmn
→→
is a .The composition L.T2 1(1) : , defined by (v) ( (v)),n p
TT R R T T→ =
is given by the matrix product 2 1(2) The standard ma fortrix A A AT A=
6 - 40
Pf:
nscalar theanybecletandinvectorsbeandLet
L.T.)ais((1)
n
R
T
vu
)formatrixstandardtheis)(2( 12 TAA
)()())(())((
))()(())(()(
1212
11212
vuvu
vuvuvu
TTTTTT
TTTTTT
+=+=
+=+=+
)())(())(())(()( 121212 vvvvv cTTcTcTTcTTcT ====
vvvvv )()())(()( 12121212 AAAAATTTT ====

But note:
1 2 2 1T T T T≠o o
6 - 41

Ex : (The standard matrix of a composition)
Let and be L.T.from into such that3 3
1 2T T R R
),0,2(),,(1 zxyxzyxT ++=
),z,(),,(2 yyxzyxT −=
,'and
nscompositiofor thematricesstandardtheFind
2112 TTTTTT  ==
Sol:
)formatrixstandard(
101
000
012
11 TA










=
)formatrixstandard(
010
100
011
22 TA









 −
=
6 - 42
2 1The standard matrix for T T T= o
1 2The standard matrix for 'T T T= o








=















 −
==
000
101
012
101
000
012
010
100
011
12 AAA









 −
=









 −










==
001
000
122
010
100
011
101
000
012
' 21AAA
6 - 43

Inverse linear transformationInverse linear transformation
If and are L.T.such that for every1 2: : v inn n n n n
T R R T R R R→ →
))((and))(( 2112 vvvv == TTTT
invertiblebetosaidisandofinversethecalledisThen 112 TTT

Note:
If the transformation T is invertible, then the inverse is
unique and denoted by T–1
.
6 - 44

Existence of an inverse transformation
.equivalentareconditionfollowingThen the
,matrixstandardwithL.T.abe:Let ARRT nn
→

Note:
If T is invertible with standard matrix A, then the standard
matrix for T–1
is A–1
.
(1) T is invertible.
(2) T is an isomorphism.
(3) A is invertible.
6 - 45

Ex : (Finding the inverse of a linear transformation)
The L.T. is defined by3 3
:T R R→
1 2 3 1 2 3 1 2 3 1 2 3( , , ) (2 3 , 3 3 , 2 4 )T x x x x x x x x x x x x= + + + + + +
Sol:Sol:
142
133
132
formatrixstandardThe










=A
T
1 2 3
1 2 3
1 2 3
2 3
3 3
2 4
x x x
x x x
x x x
¬ + +
¬ + +
¬ + +
3
2 3 1 1 0 0
3 3 1 0 1 0
2 4 1 0 0 1
A I
 
 =    
  
Show that T is invertible, and find its inverse.
. . 1
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 6 2 3
G J E
I A−
− 
   → − =   
 − − 
6 - 46
11
isformatrixstandardtheandinvertibleisTherefore −−
ATT
1
1 1 0
1 0 1
6 2 3
A−
− 
 = − 
 − − 
1 1 2
1 1
2 1 3
3 1 2 3
1 1 0
(v) v 1 0 1
6 2 3 6 2 3
x x x
T A x x x
x x x x
− −
− − +    
    = = − = − +    
    − − − −     
In other words,
1
1 2 3 1 2 1 3 1 2 3( , , ) ( , , 6 2 3 )T x x x x x x x x x x−
= − + − + − −
6 - 47

the matrix ofthe matrix of TT relative to the basesrelative to the bases B andB and BB''
a L.T.
1 2
1 2
: ( )
{ , , , } (a basis for )
' { , , , } (a basis for )
n
m
T V W
B v v v V
B w w w W
→
=
=
L
L
Thus, the matrix of T relative to the bases B and B' is
1 2' ' '
( ) , ( ) , , ( )n m nB B B
A T v T v T v M ×
 = ∈           L
6 - 48

Transformation matrix for nonstandard basesTransformation matrix for nonstandard bases
11 12 1
21 22 2
1 2' ' '
1 2
( ) , ( ) , , ( )
n
n
nB B B
m m mn
a a a
a a a
T v T v T v
a a a
     
     
     = = =               
     
     
L
M M M
Let be finite -dimensional vector spaces with basis
respectively,where 1 2
and
and ', { , , , }n
V W
B B B v v v= L
If is a L.T.such that:T V W→
6 - 49
[ ]such that for every in'
(v) [v] v .BB
T A V=
11 12 1
21 22 2
1 2
1 2
( ) ( ) ( )
n
n
n
m m mn
a a a
a a a
A T v T v T v
a a a
 
 
 = =    
 
 
L
L
L
M M O M
L
the matrix whose i columns correspond to '
( )i B
m n T v is×   
6 - 50

Ex : (Finding a transformation matrix relative to nonstandard bases)
bydefinedL.T.abe:Let 22
RRT →
)2,(),( 212121 xxxxxxT −+=
)}1,0(),0,1{('and)}1,1(),2,1{(
basisthetorelativeofmatrixtheFind
=−= BB
T
Sol:Sol:
)1,0(3)0,1(0)3,0()1,1(
)1,0(0)0,1(3)0,3()2,1(
−=−=−
+==
T
T
[ ] [ ]' '
3 0
(1, 2) , ( 1, 1)
0 3B B
T T
   
= − =   −   
relative tothe transformation matrix and 'T B B
[ ] [ ]' '
3 0
(1, 2) ( 1, 1)
0 3B B
A T T
 
 = − =    − 
6 - 51
to findse the matrix (v),where v (2, 1)Now u A T =
)1,1(1)2,1(1)1,2( −−==v
[ ] 



−
=⇒
1
1
Bv
[ ] [ ] 



=



−



−
==⇒
3
3
1
1
30
03
)( ' BB AT vv
)3,3()1,0(3)0,1(3)( =+=⇒ vT )}1,0(),0,1{('=B
)}1,1(),2,1{( −=B
)3,3()12(2),12()1,2( =−+=T
Check:
6 - 52

Notes:Notes:
is called the matrix of relative to the basis
(1) In the special case where and ',
the matrix
V W B B
A T B
= =
relative to the basis
1 2
1 2
(2) : : the identity transformation
{ , , , }: a basis for
the matrix of
1 0 0
0 1 0
( ) , ( ) , , ( )
0 0 1
n
n nB B B
T V V
B v v v V
T B
A T v T v T v I
→
=
⇒
 
 
  = = =             
 
 
r r r
L
L
Lr r r
L
M M O M
L
6 - 53
4.4 Transition Matrices and Similarity4.4 Transition Matrices and Similarity
a L.T.
1
2
2
1
: ( )
{ , , , }
' {
( a basis of )
(a basis of ), , , }
n
nB w
T V V
B v v
w Vw
v V
→
=
= L
L
relative to1 2( ) , ( ) , , ( ) ( matrix of )nB B B
A T v T v T v T B =            L
relative to1 2' ' '
' ( ) , ( ) , , ( ) (matrix of ')nB B B
w w wT T BA T T =            L
1 2, , , ( transition matrix from ' to )nB B B
P Bw w w B =            L
1
1 ' '2'
, , , ( transition matrix from to ')nB B B
P v v v B B−
 =            L
[ ] [ ] [ ] [ ]1
' '
v v , v vB B B B
P P−
∴ = =
[ ] [ ]
[ ] [ ]' '
(v) v
(v) ' v
B B
B B
T A
T A
=
=
6 - 54
direct
indirect

Two ways to get from to :Two ways to get from to :
' '
(1) direct
'[v] [ (v)]B BA T=
[ ] 'Bv [ ] ')( BT v
1
' '
(2) indirect
[v] [ (v)]B BP AP T−
=
1
'' '' B B B BBB P AA P−
⇒ =
6 - 55

ExEx
Sol:Sol:
[ ] '
(1, 0) (2, 1) (1, 0) (1, 1) (1,
3
1
)3 01 B
T T−
−
 
= − = ⇒ =  
 
Find the transformation matrix for 2 2
:A' T R R→
1 2 1 2 1 2( , ) (2 2 , 3 )with T x x x x x x= − − +
reletive to the basis ' {(1, 0), (1, 1)}B =
[ ] '
(1, 1) (0, 2) (1, 0) (1, 1) (1,
2
2
)2 12 B
T T
 
= = + ⇒ =  

−

−
[ ] [ ]' '
3 2
' (1, 0) (1, 1)
1 2B B
A T T
− 
 ⇒ = =    − 
[ ] [ ]' '
(I) ' (1, 0) (1, 1)B B
A T T =  
6 - 56
relative to
(II) Standard matrix for ( . ., the transformation
matrix of {(1, 0), (0, 1)})
T i e
T B =
[ ] 



−
−
==
31
22
)1,0()0,1( TTA
[ ] [ ]
1 1
The transition matrix from ' to : (1, 0) (1, 1)
0 1B B
B B P
 
 = =   
 
1 1 1
The transition matrix from to ':
0 1
B B P− − 
=  
 
relative
1
The transformation matrix of '{(1,0),(1,1)}
1 1 2 2 1 1 3 2
'
0 1 1 3 0 1 1 2
T B
A P AP− − − −       
= = =       − −       
)3,22(),( 212121 xxxxxxT +−−=with
6 - 57

Similar matrix:Similar matrix:
For square matrices A and A‘ of order n, A‘ is said to be similar to A
if there exist an invertible matrixan invertible matrix PP such that
1
'A P AP−
=

Thm 4.12:Thm 4.12: (Properties of similar matrices)
Let A, B, and C be square matrices of order n.
Then the following properties are true.
(1) A is similar to A.
(2) If A is similar to B, then B is similar to A.
(3) If A is similar to B and B is similar to C, then A is similar to C.
Pf:Pf:
nn AIIA =)1(
)(
)()2(
111
1111
−−−
−−−−
==⇒=
=⇒=
PQBAQQBPAP
PBPPPPAPBPPA
6 - 58

Ex : (A comparison of two matrices for a linear transformation)
Suppose is the matrix for relative
to the standard basis B.
3 3
1 3 0
3 1 0 :
0 0 2
A T R R
 
 = → 
 − 
)}1,0,0(),0,1,1(),0,1,1{('
basisthetorelativeformatrixtheFind
−=B
T
Sol:Sol:
[ ] [ ] [ ]
The transition matrix P from to the standard basis B is
1 1 0
(1, 1, 0) (1, 1, 0) (0, 0, 1) 1 1 0
0 0 1
B B B
B'
P
 
  = − = −   
  1 1
2 2
1 1 1
2 2
0
0
0 0 1
P−
 
 
⇒ = − 
  
6 - 59
relative to
1 1
2 2
1 1 1
2 2
''
The matrix of :
0 1 3 0 1 1 0
' 0 3 1 0 1 1 0
0 0 1 0 0 2 0 0 1
4 0 0
0 2 0
'
0 0 2
B B BB B
T
A P AP
diagonal matrix
B
−
→→
     
     = = − −     
     −    
 
 = − = 
 − 

Mais conteúdo relacionado

Mais procurados

vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace
2461998
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
EasyStudy3
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
Riddhi Patel
 
Vector calculus
Vector calculusVector calculus
Vector calculus
raghu ram
 

Mais procurados (20)

Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectors
 
linear transfermation.pptx
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptx
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace
 
Rank of a matrix
Rank of a matrixRank of a matrix
Rank of a matrix
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
Real analysis
Real analysis Real analysis
Real analysis
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
 
Newton's forward difference
Newton's forward differenceNewton's forward difference
Newton's forward difference
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
 
Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
Unit1
Unit1Unit1
Unit1
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent Set
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
 
Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relations
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 

Semelhante a Linear transformation.ppt

chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
lipsa91
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
Abi finni
 

Semelhante a Linear transformation.ppt (20)

linear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdflinear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdf
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 
nabil-201-chap-06.ppt
nabil-201-chap-06.pptnabil-201-chap-06.ppt
nabil-201-chap-06.ppt
 
linear tranformation- VC&LA
linear tranformation- VC&LAlinear tranformation- VC&LA
linear tranformation- VC&LA
 
Vcla 1
Vcla 1Vcla 1
Vcla 1
 
Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
Signal & system
Signal & systemSignal & system
Signal & system
 
chapter-2.ppt control system slide for students
chapter-2.ppt control system slide for studentschapter-2.ppt control system slide for students
chapter-2.ppt control system slide for students
 
Signals and System Assignment Help
Signals and System Assignment HelpSignals and System Assignment Help
Signals and System Assignment Help
 
Laplace_1.ppt
Laplace_1.pptLaplace_1.ppt
Laplace_1.ppt
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
 
Signals Processing Homework Help
Signals Processing Homework HelpSignals Processing Homework Help
Signals Processing Homework Help
 
ch3-2
ch3-2ch3-2
ch3-2
 
Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)
Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)
Ad2014 calvec-industrial-jllf.ps14000302.curvas (1)
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Unit 2 analysis of continuous time signals-mcq questions
Unit 2   analysis of continuous time signals-mcq questionsUnit 2   analysis of continuous time signals-mcq questions
Unit 2 analysis of continuous time signals-mcq questions
 
Ch4
Ch4Ch4
Ch4
 
D021018022
D021018022D021018022
D021018022
 

Mais de Raj Parekh (11)

Intrenet and its uses
Intrenet and its usesIntrenet and its uses
Intrenet and its uses
 
Fuel cells and its types
Fuel cells and its typesFuel cells and its types
Fuel cells and its types
 
Switch statement, break statement, go to statement
Switch statement, break statement, go to statementSwitch statement, break statement, go to statement
Switch statement, break statement, go to statement
 
Isomorphism
IsomorphismIsomorphism
Isomorphism
 
3 d-printing
3 d-printing3 d-printing
3 d-printing
 
Rain water harvesting
Rain water harvestingRain water harvesting
Rain water harvesting
 
Cs
CsCs
Cs
 
Classification of singularity
Classification of singularityClassification of singularity
Classification of singularity
 
Msm
MsmMsm
Msm
 
Various work holding devices
Various work holding devicesVarious work holding devices
Various work holding devices
 
Metal melting furnaces
Metal melting furnacesMetal melting furnaces
Metal melting furnaces
 

Último

Chat 9316020077💋 Call Girls Agency In Goa By Goa Call Girls Agency 💋
Chat 9316020077💋 Call Girls  Agency In Goa  By Goa  Call Girls  Agency 💋Chat 9316020077💋 Call Girls  Agency In Goa  By Goa  Call Girls  Agency 💋
Chat 9316020077💋 Call Girls Agency In Goa By Goa Call Girls Agency 💋
russian goa call girl and escorts service
 
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
rajveermohali2022
 
Beautiful 😋 Call girls in Lahore 03210033448
Beautiful 😋 Call girls in Lahore 03210033448Beautiful 😋 Call girls in Lahore 03210033448
Beautiful 😋 Call girls in Lahore 03210033448
ont65320
 
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
mriyagarg453
 
Desi Bhabhi Call Girls In Goa 💃 730 02 72 001💃desi Bhabhi Escort Goa
Desi Bhabhi Call Girls  In Goa  💃 730 02 72 001💃desi Bhabhi Escort GoaDesi Bhabhi Call Girls  In Goa  💃 730 02 72 001💃desi Bhabhi Escort Goa
Desi Bhabhi Call Girls In Goa 💃 730 02 72 001💃desi Bhabhi Escort Goa
russian goa call girl and escorts service
 

Último (20)

Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
 
Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...
Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...
Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...
 
Chat 9316020077💋 Call Girls Agency In Goa By Goa Call Girls Agency 💋
Chat 9316020077💋 Call Girls  Agency In Goa  By Goa  Call Girls  Agency 💋Chat 9316020077💋 Call Girls  Agency In Goa  By Goa  Call Girls  Agency 💋
Chat 9316020077💋 Call Girls Agency In Goa By Goa Call Girls Agency 💋
 
Borum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Borum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort ServiceBorum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Borum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
 
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
 
Model Call Girls In Velappanchavadi WhatsApp Booking 7427069034 call girl ser...
Model Call Girls In Velappanchavadi WhatsApp Booking 7427069034 call girl ser...Model Call Girls In Velappanchavadi WhatsApp Booking 7427069034 call girl ser...
Model Call Girls In Velappanchavadi WhatsApp Booking 7427069034 call girl ser...
 
Science City Kolkata ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sex...
Science City Kolkata ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sex...Science City Kolkata ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sex...
Science City Kolkata ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sex...
 
Beautiful 😋 Call girls in Lahore 03210033448
Beautiful 😋 Call girls in Lahore 03210033448Beautiful 😋 Call girls in Lahore 03210033448
Beautiful 😋 Call girls in Lahore 03210033448
 
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRLBhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
 
Independent Diamond Harbour Escorts ✔ 9332606886✔ Full Night With Room Online...
Independent Diamond Harbour Escorts ✔ 9332606886✔ Full Night With Room Online...Independent Diamond Harbour Escorts ✔ 9332606886✔ Full Night With Room Online...
Independent Diamond Harbour Escorts ✔ 9332606886✔ Full Night With Room Online...
 
College Call Girls Pune 8617697112 Short 1500 Night 6000 Best call girls Service
College Call Girls Pune 8617697112 Short 1500 Night 6000 Best call girls ServiceCollege Call Girls Pune 8617697112 Short 1500 Night 6000 Best call girls Service
College Call Girls Pune 8617697112 Short 1500 Night 6000 Best call girls Service
 
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
 
Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...
Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...
Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...
 
VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...
VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...
VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...
 
2k Shot Call girls Laxmi Nagar Delhi 9205541914
2k Shot Call girls Laxmi Nagar Delhi 92055419142k Shot Call girls Laxmi Nagar Delhi 9205541914
2k Shot Call girls Laxmi Nagar Delhi 9205541914
 
Tikiapara Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex A...
Tikiapara Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex A...Tikiapara Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex A...
Tikiapara Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex A...
 
❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.
❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.
❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.
 
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
 
Independent Garulia Escorts ✔ 9332606886✔ Full Night With Room Online Booking...
Independent Garulia Escorts ✔ 9332606886✔ Full Night With Room Online Booking...Independent Garulia Escorts ✔ 9332606886✔ Full Night With Room Online Booking...
Independent Garulia Escorts ✔ 9332606886✔ Full Night With Room Online Booking...
 
Desi Bhabhi Call Girls In Goa 💃 730 02 72 001💃desi Bhabhi Escort Goa
Desi Bhabhi Call Girls  In Goa  💃 730 02 72 001💃desi Bhabhi Escort GoaDesi Bhabhi Call Girls  In Goa  💃 730 02 72 001💃desi Bhabhi Escort Goa
Desi Bhabhi Call Girls In Goa 💃 730 02 72 001💃desi Bhabhi Escort Goa
 

Linear transformation.ppt

  • 1. Chapter 4 Linear TransformationsChapter 4 Linear Transformations 4.1 Introduction to Linear Transformations4.1 Introduction to Linear Transformations 4.2 The Kernel and Range of a Linear Transformation4.2 The Kernel and Range of a Linear Transformation 4.3 Matrices for Linear Transformations4.3 Matrices for Linear Transformations 4.4 Transition Matrices and Similarity4.4 Transition Matrices and Similarity
  • 2. 6 - 2 4.1 Introduction to Linear Transformations4.1 Introduction to Linear Transformations  A linear transformation is a function TT that maps a vector space VV into another vector space WW: mapping : , , : vector spaceT V W V W→ V: the domain of T W: the co-domain of T (1) (u v) (u) (v), u, vT T T V+ = + ∀ ∈ (2) ( u) (u),T c cT c R= ∀ ∈ Two axioms of linear transformationsTwo axioms of linear transformations
  • 3. 6 - 3  Image of v under T: If v is in V and w is in W such that wv =)(T Then w is called the image of v under T .  the range ofthe range of TT:: The set of all images of vectors in VThe set of all images of vectors in V.  the pre-image of w: The set of all v in V such that T(v)=w. }|)({)( VTTrange ∈∀= vv
  • 4. 6 - 4  Notes: (1) A linear transformationlinear transformation is said to be operation preservingoperation preserving. (u v) (u) (v)T T T+ = + Addition in V Addition in W ( u) (u)T c cT= Scalar multiplication in V Scalar multiplication in W (2) A linear transformation from a vector space intoa vector space into itselfitself is called a linear operatorlinear operator. :T V V→
  • 5. 6 - 5  Ex: Verifying a linear transformation T from R2 into R2 Pf:Pf: 1 2 1 2 1 2( , ) ( , 2 )T v v v v v v= − + numberrealany:,invector:),(),,( 2 2121 cRvvuu == vu (1) Vector addition : 1 2 1 2 1 1 2 2u v ( , ) ( , ) ( , )u u v v u v u v+ = + = + + )()( )2,()2,( ))2()2(),()(( ))(2)(),()(( ),()( 21212121 21212121 22112211 2211 vu vu TT vvvvuuuu vvuuvvuu vuvuvuvu vuvuTT += +−++−= +++−+−= ++++−+= ++=+
  • 6. 6 - 6 ),(),( tionmultiplicaScalar)2( 2121 cucuuucc ==u )( )2,( )2,(),()( 2121 212121 u u cT uuuuc cucucucucucuTcT = +−= +−== Therefore, T is a linear transformation.
  • 7. 6 - 7  Ex: Functions that are not linear transformations xxfa sin)()( = 2 )()( xxfb = 1)()( += xxfc )sin()sin()sin( 2121 xxxx +≠+ )sin()sin()sin( 3232 ππππ +≠+ 2 2 2 1 2 21 )( xxxx +≠+ 222 21)21( +≠+ 1)( 2121 ++=+ xxxxf 2)1()1()()( 212121 ++=+++=+ xxxxxfxf )()()( 2121 xfxfxxf +≠+ ( ) sin is not a linear transformation f x x⇐ = 2 ( ) is not a linear transformation f x x⇐ = ( ) 1 is not a linear transformation f x x⇐ = +
  • 8. 6 - 8  Notes: Two uses of the term “linear”. (1) is called a linear functiona linear function because its graph is a line. But 1)( += xxf (2) is not a linear transformationnot a linear transformation from a vector space R into R because it preserves neitherbecause it preserves neither vector addition nor scalar multiplicationvector addition nor scalar multiplication. 1)( += xxf
  • 9. 6 - 9  Zero transformation: : , u, vT V W V→ ∈ VT ∈∀= vv ,0)(  Identity transformation: VVT →: VT ∈∀= vvv ,)(  Thm 4.1Thm 4.1: (Properties of linear transformations) WVT →: 00 =)((1)T )()((2) vv TT −=− )()()((3) vuvu TTT −=− (4) If 1 1 2 2 1 1 2 2 1 1 2 2 v Then (v) ( ) ( ) ( ) ( ) n n n n n n c v c v c v T T c v c v c v c T v c T v c T v = + + + = + + + = + + + L L L
  • 10. 6 - 10  Ex: (Linear transformations and bases) Let be a linear transformation such that33 : RRT → )4,1,2()0,0,1( −=T )2,5,1()0,1,0( −=T )1,3,0()1,0,0( =T Sol: )1,0,0(2)0,1,0(3)0,0,1(2)2,3,2( −+=− (2,3, 2) 2 (1,0,0) 3 (0,1,0) 2 (0,0,1) 2(2, 1,4) 3(1,5, 2) 2(0,3,1) (7,7,0) T T T T− = + − = − + − − = (T is a L.T.) Find T(2, 3, -2).
  • 11. 6 - 11  Thm 4.2Thm 4.2: (The linear transformation given by a matrix) Let A be an m×n matrix. The function T defined by vv AT =)( is a linear transformation from Rn into Rm .  Note: 11 12 1 1 11 1 12 2 1 21 22 2 2 21 1 22 2 2 1 2 1 1 2 2 v n n n n n n m m mn n m m mn n a a a v a v a v a v a a a v a v a v a v A a a a v a v a v a v + + +           + + +     = =             + + +      L L L L M M M M M L L vv AT =)( mn RRT →: vectorn R vectorm R
  • 12. 6 - 12 Show that the L.T. given by the matrix has the property that it rotates every vector in R2 counterclockwise about the origin through the angle θ.  Rotation in the planeRotation in the plane 22 : RRT → cos sin sin cos A θ θ θ θ −  =     Sol: ( , ) ( cos , sin )v x y r rα α= = (polar coordinates) r : the length of v  : the angle from the positive x-axis counterclockwise to the
  • 13. 6 - 13     + + =     + − =         − =        − == )sin( )cos( sincoscossin sinsincoscos sin cos cossin sincos cossin sincos )( αθ αθ αθαθ αθαθ α α θθ θθ θθ θθ r r rr rr r r y x AT vv r : the length of T(v) θ +α : the angle from the positive x-axis counterclockwise to the vector T(v)Thus, T(v) is the vector that results from rotating the vector v counterclockwise through the angle θ.
  • 14. 6 - 14 is called a projection in R3 .  A projection inA projection in RR33 The linear transformation is given by33 : RRT →         = 000 010 001 A
  • 15. 6 - 15 Show that T is a linear transformation.  A linear transformation fromA linear transformation from MMmm××nn intointo MMnn ××mm ):()( mnnm T MMTAAT ×× →= Sol: nmMBA ×∈, )()()()( BTATBABABAT TTT +=+=+=+ )()()( AcTcAcAcAT TT === Therefore, T is a linear transformation from Mm×n into Mn ×m.
  • 16. 6 - 16 4.2 The Kernel and Range of a Linear Transformation4.2 The Kernel and Range of a Linear Transformation  KernelKernel of a linear transformation T: Let be a linear transformationWVT →: Then the set of all vectors v in V that satisfy is called the kernelkernel of T and is denoted by kerker(T). 0)( =vT ker( ) {v | (v) 0, v }T T V= = ∀ ∈
  • 17. 6 - 17  Finding the kernel of a linear transformationFinding the kernel of a linear transformation 1 3 2 2 3 1 1 2 (x) x ( : ) 1 2 3 x T A x T R R x   − −    = = →   −     ?)ker( =T Sol:Sol: }),,(),0,0(),,(|),,{()ker( 3 321321321 RxxxxxxxTxxxT ∈=== 1 2 3( , , ) (0,0)T x x x = ⇒     =             − −− 0 0 321 211 3 2 1 x x x 1 2 3 1 1 1 x t x t t x t            ⇒ = − = −                real numberker( ) { (1, 1,1) | } span{(1, 1,1)} = Nullspace of A T t t⇒ = − ∈ = − .1 1 2 0 1 0 1 0 1 2 3 0 0 1 1 0 G E− − −    →   −   
  • 18. 6 - 18  Thm 4.3:Thm 4.3: The kernel is a subspace of V. The kernel of a linear transformation is a subspace of the domain V. WVT →: (0) 0 (Theorem 4.1)T =QPf:Pf: is a nonempty subset ofker( )T V∴ then.ofkernelin thevectorsbeandLet Tvu 000)()()( =+=+=+ vuvu TTT 00)()( === ccTcT uu )ker(Tc ∈⇒ u )ker(T∈+⇒ vu .ofsubspaceais)ker(Thus, VT  Corollary to Thm 4.3:Corollary to Thm 4.3: 0ofspacesolutionthetoequalisTofkernelThen the )(bygivenL.Tthebe:Let = =→ x xx A ATRRT mn { } a linear transformation(x) x ( : ) ( ) ( ) x | x 0, x (a subspace of ) n m n n T A T R R ker T NS A A R R = → ⇒ = = = ∀ ∈
  • 19. 6 - 19 Finding a basis for the kernelFinding a basis for the kernel Let be defined by , where and5 4 5 : (x) x x is in R 1 2 0 1 1 2 1 3 1 0 1 0 2 0 1 0 0 0 2 8 T R R T A A → = −     =  − −     Find a basis for ker(T) as a subspace of RR55 . Sol: [ ] . 1 2 0 1 1 0 1 0 2 0 1 0 2 1 3 1 0 0 0 1 1 0 2 0 0 1 0 2 0 1 0 0 0 0 1 4 0 0 0 0 2 8 0 0 0 0 0 0 0 G E A − −       − −   = →    − −         s t 1 2 3 4 5 2 2 1 2 1 2 1 0 4 0 4 0 1 x s t x s t xx s ts x t x t − + −               +               ⇒ = = = +         − −                      is a basis of the kernel of {( 2, 1, 1, 0, 0) (1, 2, 0, 4, 1)} B and T = − −
  • 20. 6 - 20 .:Tnnsformatiolinear traaofrangeThe WWV foecapsbusasi→  Thm 4.4Thm 4.4: The range of T is a subspace of W Pf:Pf: (0) 0 (Thm 4.1)T =Q ( ) is a nonempty subset ofrange T W⇒ TTT ofrangein thevectorbe)(and)(Let vu )()()()( TrangeTTT ∈+=+ vuvu )()()( TrangecTcT ∈= uu ),( VVV ∈+⇒∈∈ vuvu )( VcV ∈⇒∈ uu Therefore, ( ) is a subspace ofrange T W
  • 21. 6 - 21 Let be the L.T. represented by then the range of is equal to the column space of ( ) ( ) { ( , } : x) xn n m range T CS A T R R Ax T A T A x R = = = ∀ ∈ → ⇒  Rank of a linear transformation T: V→W: ( ) the dimension of the range ofrank T T=  Nullity of a linear transformation T: V→W: ( ) the dimension of the kernel ofnullity T T=  Note:Note: Let be the L.T. represented by ,then: (x) x ( ) ( ) dim[ ( )] ( ) ( ) dim[ ( )] n m T R R T A rank T rank A CS A nullity T nullity A NS A → = = = = =
  • 22. 6 - 22 Finding a basis for the range of a linear transformationFinding a basis for the range of a linear transformation 5 4 5 Let : be defined by ( ) ,where and 1 2 0 1 1 2 1 3 1 0 1 0 2 0 1 0 0 0 2 8 T R R T A R A → = ∈ −     =  − −     x x x Find a basis for the range(T). Sol:Sol: . 1 2 0 1 1 1 0 2 0 1 2 1 3 1 0 0 1 1 0 2 1 0 2 0 1 0 0 0 1 4 0 0 0 2 8 0 0 0 0 0 G E A B − −       −   = → =    − −         54321 ccccc 54321 wwwww { } { } )(,, )(,, 421 421 ACSccc BCSwww forbasisais forbasisais⇒ { } Tofrangefor thebasisais)2,0,1,1(),0,0,1,2(),0,1,2,1( −⇒
  • 23. 6 - 23 Let be a L.T.from an n - dimensional vector space into a vector space : , then T V W V W →  Thm 4.5Thm 4.5: Sum of rank and nullity Pf:Pf: Let is represented by a mnT matrix A . ., dim(range of ) dim(kerne ( ) ( ) l of ) dim(domain of ) ,rank T nullity T n i e T T T+ = = + Assume ( ) ( . ., var )rank A r i e the number of leading iables= (1) ( ) dim(range of ) dim(column space of ) ( ) rank T T A rank A r = = = = (2) ( ) dim(kernel of ) dim(solution space of )nullity T T A n r = = = − ( ) ( ) ( )rank T nullity T r n r n⇒ + = + − = ( )T x Ax=Q
  • 24. 6 - 24  Finding the rank and nullity of a linear transformation Find the rank and nullity of the L.T. define by3 3 : 1 0 2 0 1 1 0 0 0 T R R A → −   =      Sol: ( ) ( ) 2 ( ) dim(domain of ) ( ) 3 2 1 rank T rank A nullity T T rank T = = = − = − =
  • 25. 6 - 25 A function : is called one-to-one if the preimage of every w in the range of T consists of a single vector. T V W→  One-to-one:One-to-one: T is one-to-one if and only if for all u and v in V, T(u)=T(v) implies that u=v. one-to-one not one-to-one
  • 26. 6 - 26 A function is said to be if has a preimage in onto: every element in T V W W V →  Onto:Onto: i.e., T is onto W when rangerange((TT))=W=W.
  • 27. 6 - 27  Thm 4.6:Thm 4.6: (One-to-one linear transformation) T is one - to -one if and Let only be a L.T., if ( ) {0} : ker T T V W = → Pf: 1-1isSupposeT 0:solutiononeonlyhavecan0)(Then == vvT .,.e ) {0i ( }ker T = Suppose and( ) {0} ( ) ( )ker T T u T v= = 0)()()( =−=− vTuTvuT L.T.aisT ( ) 0u v ker T u v− ∈ ⇒ − =Q is one- to -one L.T.T⇒ i.e., The addtive unit element in V is mapped onto the additive unit element in W.
  • 28. 6 - 28  One-to-one and not one-to-one linear transformationOne-to-one and not one-to-one linear transformation The L.T.( ) : given by ( ) is one-to-one. T m n n ma T M M T A A× ×→ = mn zero matrix i.e., ker(T) = {0 }. Because its kernel consists of only the m n× one.-to-onenotis:ationtransformzeroThe)( 33 RRTb → .ofalliskernelitsBecause 3 R
  • 29. 6 - 29  Onto linear transformationOnto linear transformation Let be a L.T., where is finite dimensional, then is equal to the dimension of : is onto iff the rank of . T V W W T T W →  Thm 4.7Thm 4.7: (One-to-one and onto linear transformation) Let be a L.T. with vector space both of dimension then is one - to -one iff it is onto. : and , T V W V W n T → Pf:Pf: If is one- to -one, then and( ) {0} dim( ( )) 0T ker T ker T= = ( ) dim( ( )) dim( ( )) dim( )rank T range T n ker T n W= = − = = onto.isly,Consequent T dim( ( )) dim(range of ) 0ker T n T n n= − = − = Therefore, ker(T) = {0}. is one - to -one.(from Thm 4.6)T nWTT == )dim()ofrangedim(thenonto,isIf ( ) dim[range( )] dim[ ( )]rank T T CS A= =Note:
  • 30. 6 - 30  Ex: The L.T. is given by find the nullity and rank of and determine whether is one- to -one, onto, or neither. : (x) x,n m T R R T A T T → =         = 100 110 021 )( Aa         = 00 10 21 )( Ab     − = 110 021 )( Ac         = 000 110 021 )( Ad Sol: T:Rn →Rm dim(domain of T) rank(T) nullity(T ) 1-1 onto (a)T:R3 →R33 3 33 00 YesYes YesYes (b)T:R2 →R3 2 2 00 YesYes No (c)T:R3 →R22 3 22 1 No YesYes (d)T:R3 →R3 3 2 1 No No ( ) the dimension of the range of dim( ( ))rank T T CS A= =Note:
  • 31. 6 - 31  IsomorphismIsomorphism A linear transformation that is one to one and onto is called an isomorphism. Moreover, if are vector spaces such that there exists an isomorphism from then are said to b : and to , and T V W V W V W V W → e isomorphic to each other. Pf:Pf: .dimensionhaswhere,toisomorphicisthatAssume nVWV onto.andonetooneisthat:L.T.aexistsThere WVT →⇒ is one - to -oneTQ dim(range of ) dim(domain of ) dim( ( )) 0 T T Ker T n n ⇒ = − = − = is onto.TQ nWT ==⇒ )dim()ofrangedim( nWV == )dim()dim(Thus  Thm 4.8:Thm 4.8: (Isomorphic spaces and dimension) Two finite-dimensional vector space V and W are isomorphic if and only if they are of the same dimension. dim( ( )) 0Ker T⇒ =
  • 32. 6 - 32  Ex: (Isomorphic vector spaces) space-4)( 4 =Ra matrices14allofspace)( 14 ×=×Mb matrices22allofspace)( 22 ×=×Mc lessor3degreeofspolynomialallofspace)()( 3 =xPd )ofsubspace}(numberrealais),0,,,,{()( 5 4321 RxxxxxVe i= The following vector spaces are isomorphic to each other.
  • 33. 6 - 33 4.3 Matrices for Linear Transformations4.3 Matrices for Linear Transformations )43,23,2(),,()1( 32321321321 xxxxxxxxxxxT +−+−−+=  Three reasons for matrix representationmatrix representation of a linear transformation:                 −− − == 3 2 1 430 231 112 )()2( x x x AT xx  It is simpler to write.  It is simpler to read.  It is more easily adapted for computer use.  Two representationsTwo representations of the linear transformation T:R3 →R3 :
  • 34. 6 - 34  Thm 4.9Thm 4.9: (Standard matrixStandard matrix for a linear transformation) 1 2 n n Let be a linear transformation and{e ,e ,...,e } are the basis of R such that : n m T R R→ r r r 1 1 1 2 2 2 2 1 1 21 1 2 2 ( ) , ( ) , , ( ) , m n n m n nm a a a a a a T e T e T e a a a                  = = =                   L M M M Then the matrix whose columns correspond to ( )im n i T e× is such that for every in . A is called th standard me atrix for (v) v v . n T A R T = 11 12 1 21 22 2 1 2 1 2 ( ) ( ) ( ) n n n m m mn a a a a a a A T e T e T e a a a      = =         L L L M M O M L
  • 35. 6 - 35 Pf:Pf: 1 2 1 1 2 2 n n n n v v v R v v e v e v e v      ∈ ⇒ = = + + +       r r r L M is a L.T. 1 1 2 2 1 1 2 2 1 1 2 2 (v) ( ) ( ) ( ) ( ) ( ) ( ) ( ) n n n n n n T T T v e v e v e T v e T v e T v e v T e v T e v T e ⇒ = + + + = + + + = + + + r r r L r r r L r r r L 11 12 1 1 11 1 12 2 1 21 22 2 2 21 1 22 2 2 1 2 1 1 2 2 v n n n n n n m m mn n m m mn n a a a v a v a v a v a a a v a v a v a v A a a a v a v a v a v + + +           + + +     = =             + + +      L L L L M M O M M M L L
  • 36. 6 - 36 11 12 1 21 22 2 1 2 1 2 1 1 2 2( ) ( ) ( ) n n n m m mn n n a a a a a a v v v a a a v T e v T e v T e                  = + + +                   = + + + L M M M L n RAT ineachfor)(Therefore, vvv =
  • 37. 6 - 37  Ex : (Finding the standard matrix of a linear transformation) Find the standard matrix for the L.T. define by3 2 :T R R→ )2,2(),,( yxyxzyxT +−= Sol: )2,1()0,0,1()( 1 == TeT )1,2()0,1,0()( 2 −== TeT )0,0()1,0,0()( 3 == TeT 2 1 ) 0 0 1 ()( 1     =         = TeT 1 2 ) 0 1 0 ()( 2    − =         = TeT 0 0 ) 1 0 0 ()( 3     =         = TeT Vector Notation Matrix NotationVector Notation Matrix Notation
  • 38. 6 - 38 [ ]     − = = 012 021 )()()( 321 eTeTeTA  Note: zyx zyx A 012 021 012 021 ++ +− ← ←     − =     + − =             − =         yx yx z y x z y x A 2 2 012 021 i.e., ( , , ) ( 2 ,2 )T x y z x y x y= − +  Check:
  • 39. 6 - 39  Composition of T1: Rn →Rm with T2: Rm →Rp : n RTTT ∈= vvv )),(()( 12 2 1 1, domain of domain ofT T T T T= =o  Thm 4.10:Thm 4.10: (Composition of linear transformations) then,andmatricesstandardwith L.T.be:and:Let 21 21 AA RRTRRT pmmn →→ is a .The composition L.T2 1(1) : , defined by (v) ( (v)),n p TT R R T T→ = is given by the matrix product 2 1(2) The standard ma fortrix A A AT A=
  • 40. 6 - 40 Pf: nscalar theanybecletandinvectorsbeandLet L.T.)ais((1) n R T vu )formatrixstandardtheis)(2( 12 TAA )()())(())(( ))()(())(()( 1212 11212 vuvu vuvuvu TTTTTT TTTTTT +=+= +=+=+ )())(())(())(()( 121212 vvvvv cTTcTcTTcTTcT ==== vvvvv )()())(()( 12121212 AAAAATTTT ====  But note: 1 2 2 1T T T T≠o o
  • 41. 6 - 41  Ex : (The standard matrix of a composition) Let and be L.T.from into such that3 3 1 2T T R R ),0,2(),,(1 zxyxzyxT ++= ),z,(),,(2 yyxzyxT −= ,'and nscompositiofor thematricesstandardtheFind 2112 TTTTTT  == Sol: )formatrixstandard( 101 000 012 11 TA           = )formatrixstandard( 010 100 011 22 TA           − =
  • 42. 6 - 42 2 1The standard matrix for T T T= o 1 2The standard matrix for 'T T T= o         =                 − == 000 101 012 101 000 012 010 100 011 12 AAA           − =           −           == 001 000 122 010 100 011 101 000 012 ' 21AAA
  • 43. 6 - 43  Inverse linear transformationInverse linear transformation If and are L.T.such that for every1 2: : v inn n n n n T R R T R R R→ → ))((and))(( 2112 vvvv == TTTT invertiblebetosaidisandofinversethecalledisThen 112 TTT  Note: If the transformation T is invertible, then the inverse is unique and denoted by T–1 .
  • 44. 6 - 44  Existence of an inverse transformation .equivalentareconditionfollowingThen the ,matrixstandardwithL.T.abe:Let ARRT nn →  Note: If T is invertible with standard matrix A, then the standard matrix for T–1 is A–1 . (1) T is invertible. (2) T is an isomorphism. (3) A is invertible.
  • 45. 6 - 45  Ex : (Finding the inverse of a linear transformation) The L.T. is defined by3 3 :T R R→ 1 2 3 1 2 3 1 2 3 1 2 3( , , ) (2 3 , 3 3 , 2 4 )T x x x x x x x x x x x x= + + + + + + Sol:Sol: 142 133 132 formatrixstandardThe           =A T 1 2 3 1 2 3 1 2 3 2 3 3 3 2 4 x x x x x x x x x ¬ + + ¬ + + ¬ + + 3 2 3 1 1 0 0 3 3 1 0 1 0 2 4 1 0 0 1 A I    =        Show that T is invertible, and find its inverse. . . 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 6 2 3 G J E I A− −     → − =     − − 
  • 46. 6 - 46 11 isformatrixstandardtheandinvertibleisTherefore −− ATT 1 1 1 0 1 0 1 6 2 3 A− −   = −   − −  1 1 2 1 1 2 1 3 3 1 2 3 1 1 0 (v) v 1 0 1 6 2 3 6 2 3 x x x T A x x x x x x x − − − − +         = = − = − +         − − − −      In other words, 1 1 2 3 1 2 1 3 1 2 3( , , ) ( , , 6 2 3 )T x x x x x x x x x x− = − + − + − −
  • 47. 6 - 47  the matrix ofthe matrix of TT relative to the basesrelative to the bases B andB and BB'' a L.T. 1 2 1 2 : ( ) { , , , } (a basis for ) ' { , , , } (a basis for ) n m T V W B v v v V B w w w W → = = L L Thus, the matrix of T relative to the bases B and B' is 1 2' ' ' ( ) , ( ) , , ( )n m nB B B A T v T v T v M ×  = ∈           L
  • 48. 6 - 48  Transformation matrix for nonstandard basesTransformation matrix for nonstandard bases 11 12 1 21 22 2 1 2' ' ' 1 2 ( ) , ( ) , , ( ) n n nB B B m m mn a a a a a a T v T v T v a a a                  = = =                            L M M M Let be finite -dimensional vector spaces with basis respectively,where 1 2 and and ', { , , , }n V W B B B v v v= L If is a L.T.such that:T V W→
  • 49. 6 - 49 [ ]such that for every in' (v) [v] v .BB T A V= 11 12 1 21 22 2 1 2 1 2 ( ) ( ) ( ) n n n m m mn a a a a a a A T v T v T v a a a      = =         L L L M M O M L the matrix whose i columns correspond to ' ( )i B m n T v is×   
  • 50. 6 - 50  Ex : (Finding a transformation matrix relative to nonstandard bases) bydefinedL.T.abe:Let 22 RRT → )2,(),( 212121 xxxxxxT −+= )}1,0(),0,1{('and)}1,1(),2,1{( basisthetorelativeofmatrixtheFind =−= BB T Sol:Sol: )1,0(3)0,1(0)3,0()1,1( )1,0(0)0,1(3)0,3()2,1( −=−=− +== T T [ ] [ ]' ' 3 0 (1, 2) , ( 1, 1) 0 3B B T T     = − =   −    relative tothe transformation matrix and 'T B B [ ] [ ]' ' 3 0 (1, 2) ( 1, 1) 0 3B B A T T    = − =    − 
  • 51. 6 - 51 to findse the matrix (v),where v (2, 1)Now u A T = )1,1(1)2,1(1)1,2( −−==v [ ]     − =⇒ 1 1 Bv [ ] [ ]     =    −    − ==⇒ 3 3 1 1 30 03 )( ' BB AT vv )3,3()1,0(3)0,1(3)( =+=⇒ vT )}1,0(),0,1{('=B )}1,1(),2,1{( −=B )3,3()12(2),12()1,2( =−+=T Check:
  • 52. 6 - 52  Notes:Notes: is called the matrix of relative to the basis (1) In the special case where and ', the matrix V W B B A T B = = relative to the basis 1 2 1 2 (2) : : the identity transformation { , , , }: a basis for the matrix of 1 0 0 0 1 0 ( ) , ( ) , , ( ) 0 0 1 n n nB B B T V V B v v v V T B A T v T v T v I → = ⇒       = = =                  r r r L L Lr r r L M M O M L
  • 53. 6 - 53 4.4 Transition Matrices and Similarity4.4 Transition Matrices and Similarity a L.T. 1 2 2 1 : ( ) { , , , } ' { ( a basis of ) (a basis of ), , , } n nB w T V V B v v w Vw v V → = = L L relative to1 2( ) , ( ) , , ( ) ( matrix of )nB B B A T v T v T v T B =            L relative to1 2' ' ' ' ( ) , ( ) , , ( ) (matrix of ')nB B B w w wT T BA T T =            L 1 2, , , ( transition matrix from ' to )nB B B P Bw w w B =            L 1 1 ' '2' , , , ( transition matrix from to ')nB B B P v v v B B−  =            L [ ] [ ] [ ] [ ]1 ' ' v v , v vB B B B P P− ∴ = = [ ] [ ] [ ] [ ]' ' (v) v (v) ' v B B B B T A T A = =
  • 54. 6 - 54 direct indirect  Two ways to get from to :Two ways to get from to : ' ' (1) direct '[v] [ (v)]B BA T= [ ] 'Bv [ ] ')( BT v 1 ' ' (2) indirect [v] [ (v)]B BP AP T− = 1 '' '' B B B BBB P AA P− ⇒ =
  • 55. 6 - 55  ExEx Sol:Sol: [ ] ' (1, 0) (2, 1) (1, 0) (1, 1) (1, 3 1 )3 01 B T T− −   = − = ⇒ =     Find the transformation matrix for 2 2 :A' T R R→ 1 2 1 2 1 2( , ) (2 2 , 3 )with T x x x x x x= − − + reletive to the basis ' {(1, 0), (1, 1)}B = [ ] ' (1, 1) (0, 2) (1, 0) (1, 1) (1, 2 2 )2 12 B T T   = = + ⇒ =    −  − [ ] [ ]' ' 3 2 ' (1, 0) (1, 1) 1 2B B A T T −   ⇒ = =    −  [ ] [ ]' ' (I) ' (1, 0) (1, 1)B B A T T =  
  • 56. 6 - 56 relative to (II) Standard matrix for ( . ., the transformation matrix of {(1, 0), (0, 1)}) T i e T B = [ ]     − − == 31 22 )1,0()0,1( TTA [ ] [ ] 1 1 The transition matrix from ' to : (1, 0) (1, 1) 0 1B B B B P    = =      1 1 1 The transition matrix from to ': 0 1 B B P− −  =     relative 1 The transformation matrix of '{(1,0),(1,1)} 1 1 2 2 1 1 3 2 ' 0 1 1 3 0 1 1 2 T B A P AP− − − −        = = =       − −        )3,22(),( 212121 xxxxxxT +−−=with
  • 57. 6 - 57  Similar matrix:Similar matrix: For square matrices A and A‘ of order n, A‘ is said to be similar to A if there exist an invertible matrixan invertible matrix PP such that 1 'A P AP− =  Thm 4.12:Thm 4.12: (Properties of similar matrices) Let A, B, and C be square matrices of order n. Then the following properties are true. (1) A is similar to A. (2) If A is similar to B, then B is similar to A. (3) If A is similar to B and B is similar to C, then A is similar to C. Pf:Pf: nn AIIA =)1( )( )()2( 111 1111 −−− −−−− ==⇒= =⇒= PQBAQQBPAP PBPPPPAPBPPA
  • 58. 6 - 58  Ex : (A comparison of two matrices for a linear transformation) Suppose is the matrix for relative to the standard basis B. 3 3 1 3 0 3 1 0 : 0 0 2 A T R R    = →   −  )}1,0,0(),0,1,1(),0,1,1{(' basisthetorelativeformatrixtheFind −=B T Sol:Sol: [ ] [ ] [ ] The transition matrix P from to the standard basis B is 1 1 0 (1, 1, 0) (1, 1, 0) (0, 0, 1) 1 1 0 0 0 1 B B B B' P     = − = −      1 1 2 2 1 1 1 2 2 0 0 0 0 1 P−     ⇒ = −    
  • 59. 6 - 59 relative to 1 1 2 2 1 1 1 2 2 '' The matrix of : 0 1 3 0 1 1 0 ' 0 3 1 0 1 1 0 0 0 1 0 0 2 0 0 1 4 0 0 0 2 0 ' 0 0 2 B B BB B T A P AP diagonal matrix B − →→            = = − −           −        = − =   − 