SlideShare uma empresa Scribd logo
1 de 23
SEMINAR BY: RAHUL RAGHVENDRA
USN- 1MV11 EC076
 WHAT IS MoS2?
 WHY MoS2?
 PROPERTIES OF MoS2
 ENERGY BAND STRUCTURE
 ENERGY BAND ENGINEERING
 CARRIER MOBILITY
 FABRICATION METHODS
 DEVICE APPLICATIONS
 CONCLUSIONS and OUTLOOK
Since the invention of the first transistor, silicon has been at the
heart of electronics but as the demands increases , we are asking way
too much out of silicon thus for all its drawbacks scientists began
searching for futuristic elements that can replace and even
outperform silicon.
This search led us to MoS2- single layer and few monolayer thick
2-dimensional semiconductor.
Its unique physical properties outperforms silicon and its closest
competitor graphene.
MoS2 is classified as a metal dichalcogenide. It is a silvery
black solid that occurs as the mineral molybdenite, the
principal ore for molybdenum.
 In appearance and feel, molybdenum disulphide is similar to
graphite.
 It is widely used as a solid lubricant because of its low
friction properties and robustness.
Excellent gate control
Saturation
Scalability
High current capability
Very low noise
Wide direct band gap
It exhibits good electrical and transport properties
Chemically and thermally stable
Transparent and flexible
Relatively inexpensive
ATOMIC STRUCTURE:-
 MoS2 belongs to the group of TMDs with the common
formula MX2, wherein M represents a transition metal.
 Within a single X-M-X layer, the M and X atoms form a 2D
hexagonal sub-lattice
Fig.1 Arrangement of MoS2 Atoms
The Young’s modulus of MoS2 can be enhanced by a factor
of five by sandwiching it between two Grapheme layers.
Fig.2. MoS2 sandwiched between Graphene layers
MoS2 also has the advantage that it is as stiff as stainless steel
but is also capable of being flexible.
It can be bent to large angles and can be stretched upto 10% of
its length.
It has a key advantage over graphene- it can amplify electronic
signals at room temperature, while graphene must be cooled to
70 Kelvin- cold enough for nitrogen to turn into liquid.
 Along with the other group-VI layered compounds, MoS2
exhibits semiconducting behavior.
The fundamental indirect band gap of bulk MoS2 is 1.22 to
1.23 eV, while the direct band gap ranges from 1.74 to 1.77 eV.
In 1973 Mattheiss used a non relativistic augmented-plane-
wave (APW) method to calculate the electronic band
structures of several TMDs, including MoS2.
Fig 3. DFT-GGA calculated band structures for (a) bulk MoS2, (b) 4-layer MoS2, (c) bi-layer
MoS2, and (d)monolayer MoS2 . The solid arrows indicate the lowest energy transitions.
MECHANICAL STRAIN:-
 Mechanical strain can strongly affect the band structure,
carrier effective masses, and transport, optical, and magnetic
properties of MoS2 via changing the distance between the
atoms and also the crystal symmetry.
 Larger strain can be applied to low-dimensional MoS2 due
to its mechanical flexibility, and its properties can be tuned
by applied strain, which opens possibilities for developing
new tunable electronic devices.
 The energy band gap gradually decreases with increasing
tensile strain, whereas it initially rises and then decreases
linearly under applied compressive strain.
Fig.6 a) Top and side views of MoS2 monolayer lattice. b) Calculated band gap of
monolayer MoS2 versus isotropic strain. c) – g) Electronic band structure of MoS2
monolayer under isotropic compressive strain of c) –8% and d) –2%,
e) Unstrained MoS2 monolayer, and under isotropic tensile strain of f) 2% and g) 8%. The
red dashed line denotes the Fermi level.
 The hole mobility (96.62 cm2 V−1 s−1) in monolayer sheets
of MoS2 is about twice that of the electron mobility (43.96
cm2 V−1 s−1).
 The highest mobility value of 700 cm2 V−1 s−1 was
reported for a back-gated FET based on 10-nm-thick
multilayer MoS2 flake.
 The charge mobilities in MoS2 armchair nanoribbons can
be regulated by edge modification owing to the changing
electronic structures. In pristine armchair nanoribbons, the
electron and hole mobilities are about 30 cm2 V−1 s−1 and 25
cm2 V−1 s−1, respectively.
[1]. MECHANICAL EXFOLIATION TECHNIQUE:-
Single and multilayer MoS2 films are deposited onto
Si/SiO2 using the mechanical exfoliation technique.
 The films were then used for the fabrication of field-
effect transistors.
 These FET devices can be used as gas sensors to
detect nitrous oxide (NO).
 Selective solution method to prepare Molybdenum
Disulfide (MoS2) thin films for functional thin film
transistors (TFTs).
 The selective area solution-processed MoS2grows on top
and around the gold (Au) source and drain electrodes and
in the channel area of the TFT. MoS2 thicknesses in the
channel area are in the order of 11 nm
 Recent success in the growth of monolayer MoS2 via
chemical vapor deposition (CVD) has opened up
prospects for the implementation of these materials
into thin film electronic and optoelectronic devices.
A schematic of the CVD process for growing single-layer MoS2
MoS2 has a wide range of applications.
 This material is highly anisotropic with excellent
nonlinear optical properties and also is a very good
lubricant.
 The layered material helps the membranes to have
mechanical strengths some 30 times higher than that of
steel.
 It has stability at up to 1100 ◦C in an inert atmosphere.
 It has a key advantage over graphene- it can amplify
electronic signals at room temperature whereas graphene
must be cooled at 70 kelvin.
 the mechanical strength and flexibility of these
materials, we demonstrate integration onto a polymer
substrate to create flexible and transparent FETs that
show unchanged performance up to 1.5% strain.
 Two-dimensional MoS2 may be used in sensors and
memory and photovoltaic devices. Direct band gap and
confinement effects in single-layer MoS2 makes this
material attractive for optoelectronics.
 Ultrasensitive monolayer-MoS2 phototransistors with
improved device mobility and ON currents have been
already demonstrated.
 Molybdenite (MoS2) has a number of benefits over
silicon (Si) when it comes to creating a micro chip. Future
chips using MoS2 will be smaller than silicon chips.
Reduced electricity consumption is another benefit, along
with mechanical flexibility.
 Two-dimensional materials, particularly the TMD mono
layers, are emerging as a new class of materials.
Among them, semiconducting MoS2 is gaining increasing
attention owing to an attractive combination of physical
properties, which include band gap tunability and
reasonably high electron mobility.
 On the experimental front, researchers have focused on s
practical applications of 2D MoS2, in particular the
development of field-effect transistors,and negligible off
current.
 Ultrasensitive phototransistors, logic circuits, and
amplifiers based on monolayer MoS2 have also been
demonstrated, with good output current saturation and
high currents.
 The flexibility, stretchability, and optical transparency of
monolayer MoS2 make it particularly attractive for
transparent and flexible electronics.
 Since the properties of MoS2 depend strongly on the
number of monolayers, techniques providing control over
the number of deposited monolayers are highly desirable.
 For use in flexible electronics, the major challenge is to
find approaches that would produce electronic-quality
material at deposition temperatures below 400 ◦C
necessitated by the need for growth directly on transparent
plastic substrates.
 Development of 2D MoS2-based devices, in particular
FETs, for real applications also requires further studies of
electrode and gate dielectric materials.
MoS2

Mais conteúdo relacionado

Mais procurados

seawater desalination using MoS2 nanopore POWER POINT
seawater desalination using MoS2 nanopore POWER POINTseawater desalination using MoS2 nanopore POWER POINT
seawater desalination using MoS2 nanopore POWER POINTprincely oriomojor
 
Graphene electronic properties (1)
Graphene electronic properties (1)Graphene electronic properties (1)
Graphene electronic properties (1)Sapan Anand
 
Two-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei LiTwo-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei LiYifei Li
 
superparamagnetism and its biological applications
superparamagnetism  and its biological applicationssuperparamagnetism  and its biological applications
superparamagnetism and its biological applicationsudhay roopavath
 
Sputtering process and its types
Sputtering process and its typesSputtering process and its types
Sputtering process and its typesMuhammadWajid37
 
nanomaterial and dimensional effect
nanomaterial and dimensional effect nanomaterial and dimensional effect
nanomaterial and dimensional effect sameerr98
 
Electrodeposited Ni- Based nano composites
Electrodeposited Ni- Based nano compositesElectrodeposited Ni- Based nano composites
Electrodeposited Ni- Based nano compositeskumarbhaskar786
 
Arc discharge method
Arc discharge methodArc discharge method
Arc discharge methodSudama04
 
Density functional theory
Density functional theoryDensity functional theory
Density functional theorysandhya singh
 
Optical properties of nanomaterials
Optical properties of nanomaterialsOptical properties of nanomaterials
Optical properties of nanomaterialsudhay roopavath
 
Optical properties of 2D materials
Optical properties of 2D materialsOptical properties of 2D materials
Optical properties of 2D materialsMariaAshraf25
 

Mais procurados (20)

seawater desalination using MoS2 nanopore POWER POINT
seawater desalination using MoS2 nanopore POWER POINTseawater desalination using MoS2 nanopore POWER POINT
seawater desalination using MoS2 nanopore POWER POINT
 
Graphene electronic properties (1)
Graphene electronic properties (1)Graphene electronic properties (1)
Graphene electronic properties (1)
 
Two-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei LiTwo-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei Li
 
Molecular beam epitaxy
Molecular beam epitaxyMolecular beam epitaxy
Molecular beam epitaxy
 
Mechanical, thermal, and electronic properties of transition metal dichalcoge...
Mechanical, thermal, and electronic properties of transition metal dichalcoge...Mechanical, thermal, and electronic properties of transition metal dichalcoge...
Mechanical, thermal, and electronic properties of transition metal dichalcoge...
 
Organic Semiconductor Optoelectronics.
Organic Semiconductor Optoelectronics.Organic Semiconductor Optoelectronics.
Organic Semiconductor Optoelectronics.
 
superparamagnetism and its biological applications
superparamagnetism  and its biological applicationssuperparamagnetism  and its biological applications
superparamagnetism and its biological applications
 
Preparation of thin films
Preparation of thin filmsPreparation of thin films
Preparation of thin films
 
Sputtering process and its types
Sputtering process and its typesSputtering process and its types
Sputtering process and its types
 
Sputtering process
Sputtering processSputtering process
Sputtering process
 
nanomaterial and dimensional effect
nanomaterial and dimensional effect nanomaterial and dimensional effect
nanomaterial and dimensional effect
 
Dft presentation
Dft presentationDft presentation
Dft presentation
 
Graphene ppt
Graphene pptGraphene ppt
Graphene ppt
 
Electrodeposited Ni- Based nano composites
Electrodeposited Ni- Based nano compositesElectrodeposited Ni- Based nano composites
Electrodeposited Ni- Based nano composites
 
Arc discharge method
Arc discharge methodArc discharge method
Arc discharge method
 
Density functional theory
Density functional theoryDensity functional theory
Density functional theory
 
Optical properties of nanomaterials
Optical properties of nanomaterialsOptical properties of nanomaterials
Optical properties of nanomaterials
 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor
 
Graphene
GrapheneGraphene
Graphene
 
Optical properties of 2D materials
Optical properties of 2D materialsOptical properties of 2D materials
Optical properties of 2D materials
 

Destaque (18)

5171 2015 YRen The synthesis of monolayer MoS2
5171 2015 YRen The synthesis of monolayer MoS25171 2015 YRen The synthesis of monolayer MoS2
5171 2015 YRen The synthesis of monolayer MoS2
 
Andrés Castellano-Gómez-Exotic 2D materials
Andrés Castellano-Gómez-Exotic 2D materialsAndrés Castellano-Gómez-Exotic 2D materials
Andrés Castellano-Gómez-Exotic 2D materials
 
TMDC Vidrio Presentation
TMDC Vidrio PresentationTMDC Vidrio Presentation
TMDC Vidrio Presentation
 
2015 Jusang Park
2015 Jusang Park2015 Jusang Park
2015 Jusang Park
 
Sabrina Skinner
Sabrina SkinnerSabrina Skinner
Sabrina Skinner
 
Midterm Symposium Presentation
Midterm Symposium PresentationMidterm Symposium Presentation
Midterm Symposium Presentation
 
2014 APS March Meeting Presentation
2014 APS March Meeting Presentation2014 APS March Meeting Presentation
2014 APS March Meeting Presentation
 
Final Presentation
Final PresentationFinal Presentation
Final Presentation
 
Properties of Nano-materials
Properties of Nano-materialsProperties of Nano-materials
Properties of Nano-materials
 
MOLYBDENUM METABOLISM
MOLYBDENUM METABOLISMMOLYBDENUM METABOLISM
MOLYBDENUM METABOLISM
 
計算材料学
計算材料学計算材料学
計算材料学
 
MGH Poster 2014
MGH Poster 2014MGH Poster 2014
MGH Poster 2014
 
APS march meeting 2015
APS march meeting 2015APS march meeting 2015
APS march meeting 2015
 
Shaowei zhang-graphene-based-composites-for-future-applications
Shaowei zhang-graphene-based-composites-for-future-applicationsShaowei zhang-graphene-based-composites-for-future-applications
Shaowei zhang-graphene-based-composites-for-future-applications
 
TMDC Horizontal Poster
TMDC Horizontal PosterTMDC Horizontal Poster
TMDC Horizontal Poster
 
TMDC Report
TMDC ReportTMDC Report
TMDC Report
 
Molybdenum
MolybdenumMolybdenum
Molybdenum
 
Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013
Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013
Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013
 

Semelhante a MoS2

Orienting MoS2 flakes into ordered films
Orienting MoS2 flakes into ordered filmsOrienting MoS2 flakes into ordered films
Orienting MoS2 flakes into ordered filmsSagi Appel
 
5164 2015 YRen Two-Dimensional Field Effect Transistors
5164 2015 YRen Two-Dimensional Field Effect Transistors5164 2015 YRen Two-Dimensional Field Effect Transistors
5164 2015 YRen Two-Dimensional Field Effect TransistorsYi Ren
 
Electrical transportation mechanisms of molybdenum disulfide flakes graphene ...
Electrical transportation mechanisms of molybdenum disulfide flakes graphene ...Electrical transportation mechanisms of molybdenum disulfide flakes graphene ...
Electrical transportation mechanisms of molybdenum disulfide flakes graphene ...Journal Papers
 
1-s2.0-S0169433222032020-main (2).pdf
1-s2.0-S0169433222032020-main (2).pdf1-s2.0-S0169433222032020-main (2).pdf
1-s2.0-S0169433222032020-main (2).pdfAbdulJaleelLecturerP
 
2015 CAMP Joshua MoTe2 Exfol Trans-2 NMG
2015 CAMP Joshua MoTe2 Exfol Trans-2 NMG2015 CAMP Joshua MoTe2 Exfol Trans-2 NMG
2015 CAMP Joshua MoTe2 Exfol Trans-2 NMGJoshua Woods
 
3 d ordered macroporous mos2@c nanostructure for flexible li ion batteries de...
3 d ordered macroporous mos2@c nanostructure for flexible li ion batteries de...3 d ordered macroporous mos2@c nanostructure for flexible li ion batteries de...
3 d ordered macroporous mos2@c nanostructure for flexible li ion batteries de...PaulJames187
 
Advanced Science - 2021 - Kim - Improved Contact Resistance by a Single Atomi...
Advanced Science - 2021 - Kim - Improved Contact Resistance by a Single Atomi...Advanced Science - 2021 - Kim - Improved Contact Resistance by a Single Atomi...
Advanced Science - 2021 - Kim - Improved Contact Resistance by a Single Atomi...ArifuzzamanFaisal2
 
Structural and Optical properties of Multiwalled Carbon Nanotubes Modified by...
Structural and Optical properties of Multiwalled Carbon Nanotubes Modified by...Structural and Optical properties of Multiwalled Carbon Nanotubes Modified by...
Structural and Optical properties of Multiwalled Carbon Nanotubes Modified by...TELKOMNIKA JOURNAL
 
Final-Investigation into interlayer interactions in MoSe2
Final-Investigation into interlayer interactions in MoSe2Final-Investigation into interlayer interactions in MoSe2
Final-Investigation into interlayer interactions in MoSe2André Mengel
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Review on Synthesis and Applications of Nanomaterial Molybdenum Disulphide (M...
Review on Synthesis and Applications of Nanomaterial Molybdenum Disulphide (M...Review on Synthesis and Applications of Nanomaterial Molybdenum Disulphide (M...
Review on Synthesis and Applications of Nanomaterial Molybdenum Disulphide (M...IRJET Journal
 
Electrical characterization of semiconductor-insulator interfaces in VLSI:ULS...
Electrical characterization of semiconductor-insulator interfaces in VLSI:ULS...Electrical characterization of semiconductor-insulator interfaces in VLSI:ULS...
Electrical characterization of semiconductor-insulator interfaces in VLSI:ULS...Dang Trang
 
Layered memristive and memcapacitive switches for printable electronics
Layered memristive and memcapacitive switches for printable electronicsLayered memristive and memcapacitive switches for printable electronics
Layered memristive and memcapacitive switches for printable electronicsThe Skolkovo Foundation
 
C0502 01 1116
C0502 01 1116C0502 01 1116
C0502 01 1116IJMER
 
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...Kal Tar
 
Few-layered MoSe2 nanosheets an an advanced...
Few-layered MoSe2 nanosheets an an advanced...Few-layered MoSe2 nanosheets an an advanced...
Few-layered MoSe2 nanosheets an an advanced...suresh kannan
 

Semelhante a MoS2 (20)

bio sensoring
bio sensoringbio sensoring
bio sensoring
 
Orienting MoS2 flakes into ordered films
Orienting MoS2 flakes into ordered filmsOrienting MoS2 flakes into ordered films
Orienting MoS2 flakes into ordered films
 
5164 2015 YRen Two-Dimensional Field Effect Transistors
5164 2015 YRen Two-Dimensional Field Effect Transistors5164 2015 YRen Two-Dimensional Field Effect Transistors
5164 2015 YRen Two-Dimensional Field Effect Transistors
 
Applsci 08-00424
Applsci 08-00424Applsci 08-00424
Applsci 08-00424
 
Electrical transportation mechanisms of molybdenum disulfide flakes graphene ...
Electrical transportation mechanisms of molybdenum disulfide flakes graphene ...Electrical transportation mechanisms of molybdenum disulfide flakes graphene ...
Electrical transportation mechanisms of molybdenum disulfide flakes graphene ...
 
1-s2.0-S0169433222032020-main (2).pdf
1-s2.0-S0169433222032020-main (2).pdf1-s2.0-S0169433222032020-main (2).pdf
1-s2.0-S0169433222032020-main (2).pdf
 
2015 CAMP Joshua MoTe2 Exfol Trans-2 NMG
2015 CAMP Joshua MoTe2 Exfol Trans-2 NMG2015 CAMP Joshua MoTe2 Exfol Trans-2 NMG
2015 CAMP Joshua MoTe2 Exfol Trans-2 NMG
 
Implementation of Plasmonics
Implementation of PlasmonicsImplementation of Plasmonics
Implementation of Plasmonics
 
3 d ordered macroporous mos2@c nanostructure for flexible li ion batteries de...
3 d ordered macroporous mos2@c nanostructure for flexible li ion batteries de...3 d ordered macroporous mos2@c nanostructure for flexible li ion batteries de...
3 d ordered macroporous mos2@c nanostructure for flexible li ion batteries de...
 
Advanced Science - 2021 - Kim - Improved Contact Resistance by a Single Atomi...
Advanced Science - 2021 - Kim - Improved Contact Resistance by a Single Atomi...Advanced Science - 2021 - Kim - Improved Contact Resistance by a Single Atomi...
Advanced Science - 2021 - Kim - Improved Contact Resistance by a Single Atomi...
 
Structural and Optical properties of Multiwalled Carbon Nanotubes Modified by...
Structural and Optical properties of Multiwalled Carbon Nanotubes Modified by...Structural and Optical properties of Multiwalled Carbon Nanotubes Modified by...
Structural and Optical properties of Multiwalled Carbon Nanotubes Modified by...
 
Final-Investigation into interlayer interactions in MoSe2
Final-Investigation into interlayer interactions in MoSe2Final-Investigation into interlayer interactions in MoSe2
Final-Investigation into interlayer interactions in MoSe2
 
PPT-PIEAS.pptx
PPT-PIEAS.pptxPPT-PIEAS.pptx
PPT-PIEAS.pptx
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Review on Synthesis and Applications of Nanomaterial Molybdenum Disulphide (M...
Review on Synthesis and Applications of Nanomaterial Molybdenum Disulphide (M...Review on Synthesis and Applications of Nanomaterial Molybdenum Disulphide (M...
Review on Synthesis and Applications of Nanomaterial Molybdenum Disulphide (M...
 
Electrical characterization of semiconductor-insulator interfaces in VLSI:ULS...
Electrical characterization of semiconductor-insulator interfaces in VLSI:ULS...Electrical characterization of semiconductor-insulator interfaces in VLSI:ULS...
Electrical characterization of semiconductor-insulator interfaces in VLSI:ULS...
 
Layered memristive and memcapacitive switches for printable electronics
Layered memristive and memcapacitive switches for printable electronicsLayered memristive and memcapacitive switches for printable electronics
Layered memristive and memcapacitive switches for printable electronics
 
C0502 01 1116
C0502 01 1116C0502 01 1116
C0502 01 1116
 
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...
Al gan ultraviolet photodetectors grown by molecular beam epitaxy on si(111) ...
 
Few-layered MoSe2 nanosheets an an advanced...
Few-layered MoSe2 nanosheets an an advanced...Few-layered MoSe2 nanosheets an an advanced...
Few-layered MoSe2 nanosheets an an advanced...
 

Último

Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 

Último (20)

Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 

MoS2

  • 1. SEMINAR BY: RAHUL RAGHVENDRA USN- 1MV11 EC076
  • 2.  WHAT IS MoS2?  WHY MoS2?  PROPERTIES OF MoS2  ENERGY BAND STRUCTURE  ENERGY BAND ENGINEERING  CARRIER MOBILITY  FABRICATION METHODS  DEVICE APPLICATIONS  CONCLUSIONS and OUTLOOK
  • 3. Since the invention of the first transistor, silicon has been at the heart of electronics but as the demands increases , we are asking way too much out of silicon thus for all its drawbacks scientists began searching for futuristic elements that can replace and even outperform silicon. This search led us to MoS2- single layer and few monolayer thick 2-dimensional semiconductor. Its unique physical properties outperforms silicon and its closest competitor graphene.
  • 4. MoS2 is classified as a metal dichalcogenide. It is a silvery black solid that occurs as the mineral molybdenite, the principal ore for molybdenum.  In appearance and feel, molybdenum disulphide is similar to graphite.  It is widely used as a solid lubricant because of its low friction properties and robustness.
  • 5. Excellent gate control Saturation Scalability High current capability Very low noise Wide direct band gap It exhibits good electrical and transport properties Chemically and thermally stable Transparent and flexible Relatively inexpensive
  • 6. ATOMIC STRUCTURE:-  MoS2 belongs to the group of TMDs with the common formula MX2, wherein M represents a transition metal.  Within a single X-M-X layer, the M and X atoms form a 2D hexagonal sub-lattice Fig.1 Arrangement of MoS2 Atoms
  • 7. The Young’s modulus of MoS2 can be enhanced by a factor of five by sandwiching it between two Grapheme layers. Fig.2. MoS2 sandwiched between Graphene layers
  • 8. MoS2 also has the advantage that it is as stiff as stainless steel but is also capable of being flexible. It can be bent to large angles and can be stretched upto 10% of its length. It has a key advantage over graphene- it can amplify electronic signals at room temperature, while graphene must be cooled to 70 Kelvin- cold enough for nitrogen to turn into liquid.
  • 9.  Along with the other group-VI layered compounds, MoS2 exhibits semiconducting behavior. The fundamental indirect band gap of bulk MoS2 is 1.22 to 1.23 eV, while the direct band gap ranges from 1.74 to 1.77 eV. In 1973 Mattheiss used a non relativistic augmented-plane- wave (APW) method to calculate the electronic band structures of several TMDs, including MoS2.
  • 10. Fig 3. DFT-GGA calculated band structures for (a) bulk MoS2, (b) 4-layer MoS2, (c) bi-layer MoS2, and (d)monolayer MoS2 . The solid arrows indicate the lowest energy transitions.
  • 11. MECHANICAL STRAIN:-  Mechanical strain can strongly affect the band structure, carrier effective masses, and transport, optical, and magnetic properties of MoS2 via changing the distance between the atoms and also the crystal symmetry.  Larger strain can be applied to low-dimensional MoS2 due to its mechanical flexibility, and its properties can be tuned by applied strain, which opens possibilities for developing new tunable electronic devices.  The energy band gap gradually decreases with increasing tensile strain, whereas it initially rises and then decreases linearly under applied compressive strain.
  • 12. Fig.6 a) Top and side views of MoS2 monolayer lattice. b) Calculated band gap of monolayer MoS2 versus isotropic strain. c) – g) Electronic band structure of MoS2 monolayer under isotropic compressive strain of c) –8% and d) –2%, e) Unstrained MoS2 monolayer, and under isotropic tensile strain of f) 2% and g) 8%. The red dashed line denotes the Fermi level.
  • 13.  The hole mobility (96.62 cm2 V−1 s−1) in monolayer sheets of MoS2 is about twice that of the electron mobility (43.96 cm2 V−1 s−1).  The highest mobility value of 700 cm2 V−1 s−1 was reported for a back-gated FET based on 10-nm-thick multilayer MoS2 flake.  The charge mobilities in MoS2 armchair nanoribbons can be regulated by edge modification owing to the changing electronic structures. In pristine armchair nanoribbons, the electron and hole mobilities are about 30 cm2 V−1 s−1 and 25 cm2 V−1 s−1, respectively.
  • 14. [1]. MECHANICAL EXFOLIATION TECHNIQUE:- Single and multilayer MoS2 films are deposited onto Si/SiO2 using the mechanical exfoliation technique.  The films were then used for the fabrication of field- effect transistors.  These FET devices can be used as gas sensors to detect nitrous oxide (NO).
  • 15.  Selective solution method to prepare Molybdenum Disulfide (MoS2) thin films for functional thin film transistors (TFTs).  The selective area solution-processed MoS2grows on top and around the gold (Au) source and drain electrodes and in the channel area of the TFT. MoS2 thicknesses in the channel area are in the order of 11 nm
  • 16.  Recent success in the growth of monolayer MoS2 via chemical vapor deposition (CVD) has opened up prospects for the implementation of these materials into thin film electronic and optoelectronic devices. A schematic of the CVD process for growing single-layer MoS2
  • 17. MoS2 has a wide range of applications.  This material is highly anisotropic with excellent nonlinear optical properties and also is a very good lubricant.  The layered material helps the membranes to have mechanical strengths some 30 times higher than that of steel.  It has stability at up to 1100 ◦C in an inert atmosphere.  It has a key advantage over graphene- it can amplify electronic signals at room temperature whereas graphene must be cooled at 70 kelvin.
  • 18.  the mechanical strength and flexibility of these materials, we demonstrate integration onto a polymer substrate to create flexible and transparent FETs that show unchanged performance up to 1.5% strain.
  • 19.  Two-dimensional MoS2 may be used in sensors and memory and photovoltaic devices. Direct band gap and confinement effects in single-layer MoS2 makes this material attractive for optoelectronics.  Ultrasensitive monolayer-MoS2 phototransistors with improved device mobility and ON currents have been already demonstrated.  Molybdenite (MoS2) has a number of benefits over silicon (Si) when it comes to creating a micro chip. Future chips using MoS2 will be smaller than silicon chips. Reduced electricity consumption is another benefit, along with mechanical flexibility.
  • 20.  Two-dimensional materials, particularly the TMD mono layers, are emerging as a new class of materials. Among them, semiconducting MoS2 is gaining increasing attention owing to an attractive combination of physical properties, which include band gap tunability and reasonably high electron mobility.  On the experimental front, researchers have focused on s practical applications of 2D MoS2, in particular the development of field-effect transistors,and negligible off current.
  • 21.  Ultrasensitive phototransistors, logic circuits, and amplifiers based on monolayer MoS2 have also been demonstrated, with good output current saturation and high currents.  The flexibility, stretchability, and optical transparency of monolayer MoS2 make it particularly attractive for transparent and flexible electronics.  Since the properties of MoS2 depend strongly on the number of monolayers, techniques providing control over the number of deposited monolayers are highly desirable.
  • 22.  For use in flexible electronics, the major challenge is to find approaches that would produce electronic-quality material at deposition temperatures below 400 ◦C necessitated by the need for growth directly on transparent plastic substrates.  Development of 2D MoS2-based devices, in particular FETs, for real applications also requires further studies of electrode and gate dielectric materials.