SlideShare uma empresa Scribd logo
1 de 17
FLUIDOS CURSO DE FÍSICA II
CONTENIDO ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Características de los fluidos ,[object Object],[object Object],[object Object]
Densidad La  densidad media ,   , se define como: La relación entre la densidad de cualquier líquido y la densidad del agua se llama  gravedad específica . Fluido Densidad (kg/m 3 ) Núcleo del Sol 1.6 x 10 5 Mercurio líquido 13.6 x 10 3 Núcleo de la Tierra 9.5 x 10 3 Glicerina 1.26 x 10 3 Agua 1.00 x 10 3 Un buen aceite de oliva 0.92 x 10 3 Alcohol  etílico 0.79 x 10 3 Aire a nivel del mar 1.29
Presión   La presión se define como la fuerza por unidad de área, que actúa perpendicularmente a una superficie: Bajo la influencia de la gravedad, la presión varía como función de la profundidad .  Suponga una pequeña área   A  en un punto  r , y calculemos el límite cuando   A     0. Representamos con   F  la fuerza perpendicular a esta área, tenemos    F  A r
Variación de la presión en un fluido en reposo   Un cilindro delgado imaginario de fluido se aísla para indicar las fuerzas que actúan sobre él, manteniéndolo en equilibrio F hacia arriba  = ( p  +  p ) A F hacia abajo  =  pA  + (  m ) g  =  pA  +    ( A    y ) g
[object Object],[object Object],Es fácil llegar a : O sea:   p  =  p 0  +   gy
Flotabilidad y principio de Arquímedes   F neta   =  F hacia abajo     F hacia arriba   =   ghA       w gyA
Podemos interpretar la diferencia entre el peso del bloque y la fuerza neta como la  fuerza de flotación  hacia arriba:   F flot  =  F g  –  F neta   Cuando el bloque está parcialmente sumergido, se tiene: F flot  =   w gyA   Cuando el bloque está totalmente sumergido, se tiene: F flot  =   w ghA  =   w gV   El principio de Arquímedes establece que: La fuerza de flotación sobre un objeto sumergido es igual al peso del líquido desplazado.
Aplicación de la ley de Pascal La presión atmisférica equilibra la presión de la columna de mercurio. Entonces: P 0  =   Hg  gh Al nivel del mar y a 0 o  C  h  = 0.760 m, entonces P 0  = 1.013 x 10 5  Pa
Fluidos en movimiento   Nos concentraremos en el  flujo estable , es decir, en el  movimiento de fluido para el cual  v  y  p  no dependen del tiempo .  La presión y la velocidad pueden variar de un punto a otro, pero supondremos que todos los cambios son uniformes.   Un gráfico de velocidades se llama diagrama de  línea de flujo . Como el de la siguiente figura.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],SIPLIFICACIONES
La ecuación de continuidad   Considere el siguiente  tubo de flujo .   De acuerdo a la conservación de la masa, se tiene:  1 v 1  A 1  =  2 v 2  A 2   Si nos restringimos a fluidos incomprensibles, entonces   1  =  2  y se deduce que v 1  A 1  =  v 2  A 2 El producto (velocidad perpendicular a un área) x (área) es el  flujo ,   .
Ecuación de Bernoulli   Dado que  W neto  =   K  +   U , se puede llegar a En otras palabras:
La ecuación de Bernoulli establece que la suma de la presión, ( p ), la energía cinética por unidad de volumen (1/2    v 2 ) y la energía potencial gravitacional por unidad de volumen (   gy ) tiene el mismo valor en todos los puntos a lo largo de una línes de corriente.
El tubo de Venturi
Ley de Torricelli

Mais conteúdo relacionado

Mais procurados

Practica #11- Perfil de temperaturas
Practica #11- Perfil de temperaturasPractica #11- Perfil de temperaturas
Practica #11- Perfil de temperaturasAzarael Inzunza
 
Viscosidad en gases y líquidos
Viscosidad en gases y líquidosViscosidad en gases y líquidos
Viscosidad en gases y líquidosKaren M. Guillén
 
Lab. inte. i practica #6-constante de conductividad termica
Lab. inte. i practica #6-constante de conductividad termicaLab. inte. i practica #6-constante de conductividad termica
Lab. inte. i practica #6-constante de conductividad termicajricardo001
 
Práctica 3: Caída de presión lecho empacado y fluidizado
Práctica 3: Caída de presión lecho empacado y fluidizadoPráctica 3: Caída de presión lecho empacado y fluidizado
Práctica 3: Caída de presión lecho empacado y fluidizadoLaboratorio integral 1
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoKaren M. Guillén
 
Viscosidad de gases, viscosidad de un liquido, problemas.
Viscosidad de gases, viscosidad de un liquido, problemas.Viscosidad de gases, viscosidad de un liquido, problemas.
Viscosidad de gases, viscosidad de un liquido, problemas.Rebeca Arzola
 
Proceso isobárico-
 Proceso isobárico- Proceso isobárico-
Proceso isobárico-Karely Segura
 
Práctica V Curvas Características de una bomba
Práctica V Curvas Características de una bombaPráctica V Curvas Características de una bomba
Práctica V Curvas Características de una bombaKaren M. Guillén
 
Instrumentos de nivel
Instrumentos de nivelInstrumentos de nivel
Instrumentos de nivelJose Cabrera
 
Perfiles de Velocidad flujo laminar y turbulento.
 Perfiles de Velocidad flujo laminar y turbulento. Perfiles de Velocidad flujo laminar y turbulento.
Perfiles de Velocidad flujo laminar y turbulento.Samuel Lepe de Alba
 
P 2 Caìda de presiòn en lechos empacados y fluidizados
P 2 Caìda de presiòn en lechos empacados y fluidizadosP 2 Caìda de presiòn en lechos empacados y fluidizados
P 2 Caìda de presiòn en lechos empacados y fluidizadosLucero Gallegos González
 
Reporte practica 6 Separación Mecánica
Reporte practica 6 Separación Mecánica  Reporte practica 6 Separación Mecánica
Reporte practica 6 Separación Mecánica Beyda Rolon
 

Mais procurados (20)

Practica #11- Perfil de temperaturas
Practica #11- Perfil de temperaturasPractica #11- Perfil de temperaturas
Practica #11- Perfil de temperaturas
 
Variables de procesos
Variables de procesosVariables de procesos
Variables de procesos
 
Viscosidad funcion-temperatura
Viscosidad funcion-temperaturaViscosidad funcion-temperatura
Viscosidad funcion-temperatura
 
Medidores de flujo
Medidores de flujoMedidores de flujo
Medidores de flujo
 
Viscosidad en gases y líquidos
Viscosidad en gases y líquidosViscosidad en gases y líquidos
Viscosidad en gases y líquidos
 
Viscosidad
ViscosidadViscosidad
Viscosidad
 
Lab. inte. i practica #6-constante de conductividad termica
Lab. inte. i practica #6-constante de conductividad termicaLab. inte. i practica #6-constante de conductividad termica
Lab. inte. i practica #6-constante de conductividad termica
 
Práctica 3: Caída de presión lecho empacado y fluidizado
Práctica 3: Caída de presión lecho empacado y fluidizadoPráctica 3: Caída de presión lecho empacado y fluidizado
Práctica 3: Caída de presión lecho empacado y fluidizado
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimiento
 
Viscosidad de gases, viscosidad de un liquido, problemas.
Viscosidad de gases, viscosidad de un liquido, problemas.Viscosidad de gases, viscosidad de un liquido, problemas.
Viscosidad de gases, viscosidad de un liquido, problemas.
 
Proceso isobárico-
 Proceso isobárico- Proceso isobárico-
Proceso isobárico-
 
Práctica V Curvas Características de una bomba
Práctica V Curvas Características de una bombaPráctica V Curvas Características de una bomba
Práctica V Curvas Características de una bomba
 
Medidores de flujo
Medidores de flujoMedidores de flujo
Medidores de flujo
 
Instrumentos de nivel
Instrumentos de nivelInstrumentos de nivel
Instrumentos de nivel
 
Viscosidad
ViscosidadViscosidad
Viscosidad
 
Perfiles de Velocidad flujo laminar y turbulento.
 Perfiles de Velocidad flujo laminar y turbulento. Perfiles de Velocidad flujo laminar y turbulento.
Perfiles de Velocidad flujo laminar y turbulento.
 
pruebas-mecanicas
pruebas-mecanicaspruebas-mecanicas
pruebas-mecanicas
 
Medidores de flujo
Medidores de flujoMedidores de flujo
Medidores de flujo
 
P 2 Caìda de presiòn en lechos empacados y fluidizados
P 2 Caìda de presiòn en lechos empacados y fluidizadosP 2 Caìda de presiòn en lechos empacados y fluidizados
P 2 Caìda de presiòn en lechos empacados y fluidizados
 
Reporte practica 6 Separación Mecánica
Reporte practica 6 Separación Mecánica  Reporte practica 6 Separación Mecánica
Reporte practica 6 Separación Mecánica
 

Destaque

Destaque (20)

Fluidos en reposo
Fluidos en reposoFluidos en reposo
Fluidos en reposo
 
Principio de arquimides
Principio de arquimidesPrincipio de arquimides
Principio de arquimides
 
Fluidos
FluidosFluidos
Fluidos
 
Ondas
OndasOndas
Ondas
 
fluidos newtonianos y no newtonianos
fluidos newtonianos y no newtonianosfluidos newtonianos y no newtonianos
fluidos newtonianos y no newtonianos
 
Principio de arquímedes
Principio de arquímedesPrincipio de arquímedes
Principio de arquímedes
 
1 intro estatica de fluidos
1 intro estatica de fluidos1 intro estatica de fluidos
1 intro estatica de fluidos
 
Tipos de Fluidos
Tipos de FluidosTipos de Fluidos
Tipos de Fluidos
 
Propiedades de los Fluidos
Propiedades de los FluidosPropiedades de los Fluidos
Propiedades de los Fluidos
 
Densidad
DensidadDensidad
Densidad
 
Densidad
DensidadDensidad
Densidad
 
DIAPOSITIVAS DENSIDAD
DIAPOSITIVAS DENSIDADDIAPOSITIVAS DENSIDAD
DIAPOSITIVAS DENSIDAD
 
Tipos de fluidos
Tipos de fluidosTipos de fluidos
Tipos de fluidos
 
Flujo de fluidos
Flujo de fluidosFlujo de fluidos
Flujo de fluidos
 
Fluidos newtonianos y no newtonianos
Fluidos newtonianos y no newtonianosFluidos newtonianos y no newtonianos
Fluidos newtonianos y no newtonianos
 
Fluidos: gases y líquidos
Fluidos: gases y líquidosFluidos: gases y líquidos
Fluidos: gases y líquidos
 
clasificacion de fluidos
clasificacion de fluidos clasificacion de fluidos
clasificacion de fluidos
 
Propiedades de los fluidos(densidad)
Propiedades de los fluidos(densidad)Propiedades de los fluidos(densidad)
Propiedades de los fluidos(densidad)
 
PROPIEDADES DE LOS FLUIDOS
PROPIEDADES DE LOS FLUIDOSPROPIEDADES DE LOS FLUIDOS
PROPIEDADES DE LOS FLUIDOS
 
Fluidos
FluidosFluidos
Fluidos
 

Semelhante a Fluidos: Densidad, Presión, Ecuación de Bernoulli (20)

TEORIA-DE-FLUIDOS-PRESENTACION-1
TEORIA-DE-FLUIDOS-PRESENTACION-1TEORIA-DE-FLUIDOS-PRESENTACION-1
TEORIA-DE-FLUIDOS-PRESENTACION-1
 
Fluidos
FluidosFluidos
Fluidos
 
Fluidos
FluidosFluidos
Fluidos
 
Dinamica defluidos
Dinamica defluidosDinamica defluidos
Dinamica defluidos
 
Fluidos
FluidosFluidos
Fluidos
 
Estatica y dinamica de fluidos hidrostaticos.pdf
Estatica y dinamica de fluidos hidrostaticos.pdfEstatica y dinamica de fluidos hidrostaticos.pdf
Estatica y dinamica de fluidos hidrostaticos.pdf
 
Estatica y dinamica de fluidos
Estatica y dinamica de fluidos Estatica y dinamica de fluidos
Estatica y dinamica de fluidos
 
Principio de bernoulli aplicaciones
Principio de bernoulli aplicacionesPrincipio de bernoulli aplicaciones
Principio de bernoulli aplicaciones
 
Fluidos
FluidosFluidos
Fluidos
 
Capitulo 3 hidraulica
Capitulo 3 hidraulicaCapitulo 3 hidraulica
Capitulo 3 hidraulica
 
Fluidos ideales, mecanica de fluidos
Fluidos ideales, mecanica de fluidosFluidos ideales, mecanica de fluidos
Fluidos ideales, mecanica de fluidos
 
Fluidos ideales
Fluidos idealesFluidos ideales
Fluidos ideales
 
Fluidos Ideales [Hidrodinámica/Física]
Fluidos Ideales [Hidrodinámica/Física]Fluidos Ideales [Hidrodinámica/Física]
Fluidos Ideales [Hidrodinámica/Física]
 
Fluidos ideales
Fluidos idealesFluidos ideales
Fluidos ideales
 
Fluidos ideales
Fluidos idealesFluidos ideales
Fluidos ideales
 
Fluidos ideales
Fluidos idealesFluidos ideales
Fluidos ideales
 
Fluidos_ideales.doc
Fluidos_ideales.docFluidos_ideales.doc
Fluidos_ideales.doc
 
Bernoulli
BernoulliBernoulli
Bernoulli
 
7_DINAMICA DE FLUIDOS.pdf
7_DINAMICA DE FLUIDOS.pdf7_DINAMICA DE FLUIDOS.pdf
7_DINAMICA DE FLUIDOS.pdf
 
Mecanica de fluidos_2015
Mecanica de fluidos_2015 Mecanica de fluidos_2015
Mecanica de fluidos_2015
 

Último

Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxLolaBunny11
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx241521559
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfsoporteupcology
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíassuserf18419
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudianteAndreaHuertas24
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)GDGSucre
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...silviayucra2
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfJulian Lamprea
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIAWilbisVega
 

Último (13)

Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptx
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdf
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdf
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
 

Fluidos: Densidad, Presión, Ecuación de Bernoulli

  • 1. FLUIDOS CURSO DE FÍSICA II
  • 2.
  • 3.
  • 4. Densidad La densidad media ,  , se define como: La relación entre la densidad de cualquier líquido y la densidad del agua se llama gravedad específica . Fluido Densidad (kg/m 3 ) Núcleo del Sol 1.6 x 10 5 Mercurio líquido 13.6 x 10 3 Núcleo de la Tierra 9.5 x 10 3 Glicerina 1.26 x 10 3 Agua 1.00 x 10 3 Un buen aceite de oliva 0.92 x 10 3 Alcohol etílico 0.79 x 10 3 Aire a nivel del mar 1.29
  • 5. Presión La presión se define como la fuerza por unidad de área, que actúa perpendicularmente a una superficie: Bajo la influencia de la gravedad, la presión varía como función de la profundidad . Suponga una pequeña área  A en un punto r , y calculemos el límite cuando  A  0. Representamos con  F la fuerza perpendicular a esta área, tenemos  F  A r
  • 6. Variación de la presión en un fluido en reposo Un cilindro delgado imaginario de fluido se aísla para indicar las fuerzas que actúan sobre él, manteniéndolo en equilibrio F hacia arriba = ( p +  p ) A F hacia abajo = pA + (  m ) g = pA +  ( A  y ) g
  • 7.
  • 8. Flotabilidad y principio de Arquímedes F neta = F hacia abajo  F hacia arriba =  ghA   w gyA
  • 9. Podemos interpretar la diferencia entre el peso del bloque y la fuerza neta como la fuerza de flotación hacia arriba:   F flot = F g – F neta   Cuando el bloque está parcialmente sumergido, se tiene: F flot =  w gyA   Cuando el bloque está totalmente sumergido, se tiene: F flot =  w ghA =  w gV   El principio de Arquímedes establece que: La fuerza de flotación sobre un objeto sumergido es igual al peso del líquido desplazado.
  • 10. Aplicación de la ley de Pascal La presión atmisférica equilibra la presión de la columna de mercurio. Entonces: P 0 =  Hg gh Al nivel del mar y a 0 o C h = 0.760 m, entonces P 0 = 1.013 x 10 5 Pa
  • 11. Fluidos en movimiento Nos concentraremos en el flujo estable , es decir, en el movimiento de fluido para el cual v y p no dependen del tiempo . La presión y la velocidad pueden variar de un punto a otro, pero supondremos que todos los cambios son uniformes. Un gráfico de velocidades se llama diagrama de línea de flujo . Como el de la siguiente figura.
  • 12.
  • 13. La ecuación de continuidad Considere el siguiente tubo de flujo . De acuerdo a la conservación de la masa, se tiene:  1 v 1 A 1 =  2 v 2 A 2 Si nos restringimos a fluidos incomprensibles, entonces  1 =  2 y se deduce que v 1 A 1 =  v 2 A 2 El producto (velocidad perpendicular a un área) x (área) es el flujo ,  .
  • 14. Ecuación de Bernoulli Dado que W neto =  K +  U , se puede llegar a En otras palabras:
  • 15. La ecuación de Bernoulli establece que la suma de la presión, ( p ), la energía cinética por unidad de volumen (1/2  v 2 ) y la energía potencial gravitacional por unidad de volumen (  gy ) tiene el mismo valor en todos los puntos a lo largo de una línes de corriente.
  • 16. El tubo de Venturi