SlideShare uma empresa Scribd logo
1 de 6
Baixar para ler offline
1
The Statistical Mechanical Derivation of the van der Waals Equation of State
and its associated thermodynamic properties
David Keffer
Department of Chemical Engineering
The University of Tennessee, Knoxville
dkeffer@utk.edu
started: February 23, 2005
last updated: February 23, 2005
We will perform our derivation in the canonical ensemble, where we specify the number
of molecules, N, the volume, V, and the temperature T. For a monatomic ideal gas, the well-
known partition function is
N
IG
V
N
Q ⎟
⎠
⎞
⎜
⎝
⎛
Λ
= 3
!
1
(1)
where the thermal deBroglie wavelength is defined as
Tmk
h
Bπ
=Λ
2
2
(2)
where h is Planck’s constant, kB is Boltzmann’s constant, and m is the mass of the molecule. The
van der Waals fluid differs from an ideal gas in two ways. First, the molecules have a finite
minimum molar volume, b. In other words, they can not be compressed to infinite density. This
volume occupied by the molecules is not part of the accessible volume of the system. Therefore,
the partition function becomes,
N
NbV
N
Q ⎟
⎠
⎞
⎜
⎝
⎛
Λ
−
= 3
!
1
(3)
where we have multiplied b by N to account for the total volume occupied by molecules. The
second way in that a van der Waals fluid differs from an ideal gas is that the van der Waals
molecule experiences a net attractive force to all other molecules. This attraction is based upon a
mean field approximation. The energy associated with each molecule is linearly proportional to
the molar density of the system,
V
N
aEvdw −= (4)
This energetic term modifies the partition function to become
2
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
⎟
⎠
⎞
⎜
⎝
⎛
Λ
−
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−⎟
⎠
⎞
⎜
⎝
⎛
Λ
−
=
TVk
aNNbV
NTk
NENbV
N
Q
B
N
B
vdw
N
vdw
2
33
exp
!
1
exp
!
1
(5)
As always, we require the natural log of the partition function
( ) ( )
TVk
aNNbV
NNQ
B
vdw
2
3
ln!lnln +⎟
⎠
⎞
⎜
⎝
⎛
Λ
−
+−= (6)
We use Stirling’s approximation for the natural log of the factorial of a large number
( ) ( )
TVk
aNNbV
NNNNQ
B
vdw
2
3
lnlnln +⎟
⎠
⎞
⎜
⎝
⎛
Λ
−
++−= (7)
The first thermodynamic property that we will calculate is the pressure because that is what
everyone associates with the van der Waals equation of state.
( )
22
,
ln
mm
BB
TN
B
V
a
bV
Tk
N
V
a
b
N
V
Tk
V
Q
Tkp −
−
=
⎟
⎠
⎞
⎜
⎝
⎛
−
−
=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
= (8)
where we have defined a molecular volume,
N
V
Vm ≡ . This is the van der Waals equation of
state.
Now let’s derive other thermodynamic functions. We will start with the molecular
Helmholtz free energy,
( ) ( ) ⎥
⎦
⎤
⎢
⎣
⎡
+⎟
⎠
⎞
⎜
⎝
⎛
Λ
−
++−−=−==
TVk
NaNbV
NTkQ
N
Tk
N
A
A
B
BTN
B
m 3, ln1lnln (9)
The molecular internal energy is
( )
m
BB
VN
B
m
V
a
Tk
V
Na
Tk
T
Q
N
Tk
N
E
E −=−=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
==
2
3
2
3ln
,
2
(10)
Unlike the ideal gas, the internal energy of a vdW fluid is not only a function of temperature but
also a function of molar volume. The chemical potential is
( )
⎥
⎦
⎤
⎢
⎣
⎡
+
−
−⎟
⎠
⎞
⎜
⎝
⎛
Λ
−
−=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
−=µ
TkV
a
bV
bbV
Tk
N
Q
Tk
Bmm
m
B
VT
B
2
ln
ln
3
,
(11)
The molecular entropy is
3
⎥
⎦
⎤
⎢
⎣
⎡
⎟
⎠
⎞
⎜
⎝
⎛
Λ
−
+=
−
=
−
== 3
ln
2
5 bV
k
T
AE
NT
AE
N
S
S m
B
mm
m (12)
The molecular enthalpy is
bV
TVk
V
a
TkPVE
N
PVE
N
H
H
m
mB
m
Bmmm
−
+−=+=
+
== 2
2
3
(13)
The molecular Gibbs free energy is
m
m
m
m
Bmmm
V
abV
bV
V
TkTSH
N
TSH
N
G
G 2ln1 3
−⎥
⎦
⎤
⎢
⎣
⎡
⎟
⎠
⎞
⎜
⎝
⎛
Λ
−
+
−
−−=−=
−
== (14)
In addition to the basic thermodynamic properties, we can also calculate a variety of
thermodynamic properties from the partial derivatives.
bV
k
T
p
m
B
Vm
−
=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
(15)
( ) 32
2
mm
B
Tm V
a
bV
Tk
V
p
+
−
−=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
∂
(16)
( )
3
2
1
mB
m
m
Tm
V
p
m
Vk
bVa
bV
T
V
p
T
p
T
V m
−
−
−
=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
∂
⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
−=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
(17)
The molecular constant volume-heat capacity is
B
V
m
v k
T
E
C
m
2
3
=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
= (18)
The molecular constant-pressure heat capacity is
p
m
p
m
p
m
p
T
V
p
T
E
T
H
C ⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
= (19)
Now we need, the first term on the RHS. Going to the Tables of P.W. Bridgman, we have
4
p
m
p
m
V
V
p
m
T
V
p
T
V
T
p
TC
T
E
m
⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
−⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
+=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
(20)
Substituting equation (20) into equation (19) yields
( )
3
2
21
1
2
3
mB
m
BB
p
m
V
Vp
TVk
bVa
kk
T
V
T
p
TCC
m
−
−
+=⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
+= (21)
The constant-pressure heat capacity is a function of temperature and molar volume.
Now let’s look at vapor-liquid equilibrium. The internal energy of vaporization is
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−=−=∆ V
m
L
m
L
m
V
mm
VV
aEEE
11
(22)
The enthalpy of vaporization is
( )L
m
V
mV
m
L
m
mm
L
m
V
mm VVp
VV
aVpEHHH −∆+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−=∆+∆=−=∆
11
(23)
The entropy of vaporization is
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
=−=∆
bV
bV
kSSS L
m
V
m
B
L
m
V
mm ln (24)
The molecular Gibbs free energy of vaporization is
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−+
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
−
+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−
−
=−=∆ V
m
L
m
L
m
L
m
V
m
V
m
V
m
L
m
B
L
m
V
mm
VV
a
bV
V
bV
V
bV
bV
TkGGG
11
2ln (25)
Since the molecular Gibbs free energy of vaporization is zero at equilibrium, this gives a
condition for vapor-liquid equilibrium, namely,
0
11
2ln =⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−+
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
−
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
V
m
L
m
L
m
L
m
V
m
V
m
V
m
L
m
B
VV
a
bV
V
bV
V
bV
bV
Tk (26)
The chemical potentials should also be equal at equilibrium
5
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−−
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
−
+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−
−
=µ−µ=µ∆ L
m
V
m
L
m
V
m
V
m
L
m
BLV
VV
a
bV
b
bV
b
bV
bV
Tk
11
2ln (27)
This expression doesn’t look the same as equation (26), but if you get a common denominator in
equations (26) and (27) then it turns out that they are identical equations.
So at VLE, given the temperature, we have three unknowns: the vapor molar volume, the
liquid molar volume, and the vapor pressure. The two molar volumes are found by
simultaneously solving equation (27) and the condition of mechanical equilibrium, namely
022
=+
−
−−
−
=−=∆
L
m
L
m
B
V
m
V
m
B
LV
V
a
bV
Tk
V
a
bV
Tk
ppp (28)
Once the molar volumes are known, the vapor pressure can be obtained by evaluating equation
(8) at either molar volume.
For a certain application, we may want to know the change in the molar volume as a
function of temperature along the two-phase boundary of the phase diagram, also known as the
saturation line. In order to obtain an analytical expression for this derivative, we must
differentiate both equation (27) and (28) with respect to temperature. We will then obtain two
derivatives, one for the liquid and one for the vapor. We will combine the two equations to solve
for the two derivatives individually. We begin by differentiating equation (27) with respect to
temperature along the saturation line.
( ) ( )
0
11
2ln
11
22
22
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
∂
∂
−
∂
∂
+
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
−
+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−
−
+
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
∂
∂
−
+
∂
∂
−
−
∂
∂
−
−
∂
∂
−
sat
L
m
L
msat
V
m
V
m
L
m
V
m
V
m
L
m
B
sat
L
m
L
msat
V
m
V
msat
V
m
V
msat
L
m
L
m
B
T
V
VT
V
V
a
bV
b
bV
b
bV
bV
k
T
V
bV
b
T
V
bV
b
T
V
bVT
V
bV
Tk
(29)
Next we differentiate equation (28)
( ) ( )
022 3232
=
∂
∂
−
−
−
∂
∂
−
+
∂
∂
+
−
+
∂
∂
−
−
sat
L
m
L
m
L
m
B
sat
L
m
L
m
B
sat
V
m
V
m
V
m
B
sat
V
m
V
m
B
T
V
V
a
bV
k
T
V
bV
Tk
T
V
V
a
bV
k
T
V
bV
Tk
(30)
Now we solve these two equations for the two partial derivatives. Take equation (30) and
combine like terms.
( ) ( ) bV
k
bV
k
T
V
V
a
bV
Tk
T
V
V
a
bV
Tk
V
m
B
L
m
B
sat
L
m
L
m
L
m
B
sat
V
m
V
m
V
m
B
−
−
−
=
∂
∂
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
+
∂
∂
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
−
− 3232
22 (31)
6
( )
( ) ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
∂
∂
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
+
−
−
−
=
∂
∂
32
32
2
2
L
m
L
m
B
sat
V
m
V
m
V
m
B
V
m
B
L
m
B
sat
L
m
V
a
bV
Tk
T
V
V
a
bV
Tk
bV
k
bV
k
T
V
(32)
Next we combine terms in equation (29)
( ) ( )
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
−
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−=
∂
∂
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
+
−
−
∂
∂
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
+
−
bV
b
bV
b
bV
bV
k
T
V
V
a
bV
Tbk
bV
Tk
T
V
V
a
bV
Tbk
bV
Tk
L
m
V
m
V
m
L
m
B
sat
V
m
V
m
V
m
B
V
m
B
sat
L
m
L
m
L
m
B
L
m
B
ln
22
2222
(33)
( )
( ) ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
+
−
∂
∂
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
+
−
+
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
−
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
=
∂
∂
22
22
2
2
ln
L
m
L
m
B
L
m
B
sat
V
m
V
m
V
m
B
V
m
B
L
m
V
m
V
m
L
m
B
sat
L
m
V
a
bV
Tbk
bV
Tk
T
V
V
a
bV
Tbk
bV
Tk
bV
b
bV
b
bV
bV
k
T
V
(34)
Now we equate (32) and (34), and solve to obtain
( ) ( )
( )
( )
( )
( ) ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
+
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
+
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
+
−
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
−
−
+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−
−
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
−
−
=
∂
∂
32
32
22
22
2232
2
2
2
2
2
ln
2
L
m
L
m
B
V
m
V
m
B
L
m
L
m
B
L
m
B
V
m
V
m
B
V
m
B
L
m
L
m
B
L
m
B
L
m
V
m
V
m
L
m
B
L
m
L
m
B
V
m
B
L
m
B
sat
V
m
V
a
bV
Tk
V
a
bV
Tk
V
a
bV
Tbk
bV
Tk
V
a
bV
Tbk
bV
Tk
V
a
bV
Tbk
bV
Tk
bV
b
bV
b
bV
bV
k
V
a
bV
Tk
bV
k
bV
k
T
V
(35)
We can obtain the corresponding partial derivative for the liquid phase by substituting equation
(35) into equation (32).

Mais conteúdo relacionado

Mais procurados

6 Trabajo y Calor
6 Trabajo y Calor6 Trabajo y Calor
6 Trabajo y Calor
roampra
 
Equilibrio Gas Liquido
Equilibrio Gas LiquidoEquilibrio Gas Liquido
Equilibrio Gas Liquido
Angelica Rada
 
Volumen de control
Volumen de controlVolumen de control
Volumen de control
YormanP
 

Mais procurados (20)

Propiedades de las sustancias puras.pptx
Propiedades de las sustancias puras.pptxPropiedades de las sustancias puras.pptx
Propiedades de las sustancias puras.pptx
 
Equations of State
Equations of StateEquations of State
Equations of State
 
Segunda ley de la termodinamica
Segunda ley de la termodinamicaSegunda ley de la termodinamica
Segunda ley de la termodinamica
 
Presentacion
PresentacionPresentacion
Presentacion
 
Real Gases and the Virial Equation
Real Gases and the Virial EquationReal Gases and the Virial Equation
Real Gases and the Virial Equation
 
Reacción química 6.Disoluciones y sus propiedades coligativas - Ejercicio 0...
Reacción química   6.Disoluciones y sus propiedades coligativas - Ejercicio 0...Reacción química   6.Disoluciones y sus propiedades coligativas - Ejercicio 0...
Reacción química 6.Disoluciones y sus propiedades coligativas - Ejercicio 0...
 
6 Trabajo y Calor
6 Trabajo y Calor6 Trabajo y Calor
6 Trabajo y Calor
 
Equilibrio de fases
Equilibrio de fasesEquilibrio de fases
Equilibrio de fases
 
Chapter 19
Chapter 19Chapter 19
Chapter 19
 
Mys factor de_compresibilidad_y_factor_acéntrico
Mys factor de_compresibilidad_y_factor_acéntricoMys factor de_compresibilidad_y_factor_acéntrico
Mys factor de_compresibilidad_y_factor_acéntrico
 
Deducción Clausius-Clapeyron
Deducción Clausius-ClapeyronDeducción Clausius-Clapeyron
Deducción Clausius-Clapeyron
 
Equilibrio Quimico Fugacidad Coeficiente de Fugacidad y Ecuaciones
Equilibrio Quimico Fugacidad Coeficiente de Fugacidad y EcuacionesEquilibrio Quimico Fugacidad Coeficiente de Fugacidad y Ecuaciones
Equilibrio Quimico Fugacidad Coeficiente de Fugacidad y Ecuaciones
 
Equilibrio Gas Liquido
Equilibrio Gas LiquidoEquilibrio Gas Liquido
Equilibrio Gas Liquido
 
heat conduction equations
heat conduction equationsheat conduction equations
heat conduction equations
 
Volumen de control
Volumen de controlVolumen de control
Volumen de control
 
Tema I. Propiedades residuales ejercicio
Tema I. Propiedades residuales ejercicioTema I. Propiedades residuales ejercicio
Tema I. Propiedades residuales ejercicio
 
Conducción bidimensional
Conducción bidimensionalConducción bidimensional
Conducción bidimensional
 
Laboratorio n 03 f isica ii final
Laboratorio n  03 f isica ii finalLaboratorio n  03 f isica ii final
Laboratorio n 03 f isica ii final
 
Destilacion
DestilacionDestilacion
Destilacion
 
Chem II - Real Gases: Van der Waals (Liquids and Solids)
Chem II - Real Gases: Van der Waals  (Liquids and Solids)Chem II - Real Gases: Van der Waals  (Liquids and Solids)
Chem II - Real Gases: Van der Waals (Liquids and Solids)
 

Destaque

Thermodynamic partial diff
Thermodynamic partial diff Thermodynamic partial diff
Thermodynamic partial diff
derry92
 
Cost Analysis : Definition of Cost, Types of Cost and Cost-output Relationship
Cost Analysis : Definition of Cost, Types of Cost and Cost-output RelationshipCost Analysis : Definition of Cost, Types of Cost and Cost-output Relationship
Cost Analysis : Definition of Cost, Types of Cost and Cost-output Relationship
Harinadh Karimikonda
 
Q913 rfp w2 lec 8
Q913 rfp w2 lec 8Q913 rfp w2 lec 8
Q913 rfp w2 lec 8
AFATous
 
Q913 rfp w2 lec 6
Q913 rfp w2 lec 6Q913 rfp w2 lec 6
Q913 rfp w2 lec 6
AFATous
 
Q913 rfp w1 lec 3
Q913 rfp w1 lec 3Q913 rfp w1 lec 3
Q913 rfp w1 lec 3
AFATous
 
Q913 rfp w2 lec 7
Q913 rfp w2 lec 7Q913 rfp w2 lec 7
Q913 rfp w2 lec 7
AFATous
 

Destaque (20)

Thermodynamics spring 2013
Thermodynamics spring 2013Thermodynamics spring 2013
Thermodynamics spring 2013
 
Symbolic equation with_physical_states
Symbolic equation with_physical_statesSymbolic equation with_physical_states
Symbolic equation with_physical_states
 
Pvt behaviour
Pvt behaviourPvt behaviour
Pvt behaviour
 
Thermodynamic Property Models for Transport and Storage of CO2 - Roland Span,...
Thermodynamic Property Models for Transport and Storage of CO2 - Roland Span,...Thermodynamic Property Models for Transport and Storage of CO2 - Roland Span,...
Thermodynamic Property Models for Transport and Storage of CO2 - Roland Span,...
 
Types of cost
Types of costTypes of cost
Types of cost
 
Thermodynamic partial diff
Thermodynamic partial diff Thermodynamic partial diff
Thermodynamic partial diff
 
Simulation
SimulationSimulation
Simulation
 
Cost Analysis : Definition of Cost, Types of Cost and Cost-output Relationship
Cost Analysis : Definition of Cost, Types of Cost and Cost-output RelationshipCost Analysis : Definition of Cost, Types of Cost and Cost-output Relationship
Cost Analysis : Definition of Cost, Types of Cost and Cost-output Relationship
 
PVT behaviour of gases and relations.
PVT behaviour of gases and relations.PVT behaviour of gases and relations.
PVT behaviour of gases and relations.
 
Basic laws from the relationship of pressure, volume and temperature to deriv...
Basic laws from the relationship of pressure, volume and temperature to deriv...Basic laws from the relationship of pressure, volume and temperature to deriv...
Basic laws from the relationship of pressure, volume and temperature to deriv...
 
Types of cost
Types of costTypes of cost
Types of cost
 
Cengel ch10
Cengel ch10Cengel ch10
Cengel ch10
 
Types of Cost in Projects
Types of Cost in ProjectsTypes of Cost in Projects
Types of Cost in Projects
 
Different types of costs PPT ON COST ACCOUNTANCY MBA
Different types of costs PPT ON COST ACCOUNTANCY MBADifferent types of costs PPT ON COST ACCOUNTANCY MBA
Different types of costs PPT ON COST ACCOUNTANCY MBA
 
Energy methods for damped systems
Energy methods for damped systemsEnergy methods for damped systems
Energy methods for damped systems
 
Linear Equation In one variable class 7
 Linear Equation In one variable class 7 Linear Equation In one variable class 7
Linear Equation In one variable class 7
 
Q913 rfp w2 lec 8
Q913 rfp w2 lec 8Q913 rfp w2 lec 8
Q913 rfp w2 lec 8
 
Q913 rfp w2 lec 6
Q913 rfp w2 lec 6Q913 rfp w2 lec 6
Q913 rfp w2 lec 6
 
Q913 rfp w1 lec 3
Q913 rfp w1 lec 3Q913 rfp w1 lec 3
Q913 rfp w1 lec 3
 
Q913 rfp w2 lec 7
Q913 rfp w2 lec 7Q913 rfp w2 lec 7
Q913 rfp w2 lec 7
 

Semelhante a The statistical mechanical derivation of the van der waals equation of state

KNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptxKNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptx
ParaDise11
 
Helium gas with Lennard-Jones potential in MC&MD
Helium gas with Lennard-Jones potential in MC&MDHelium gas with Lennard-Jones potential in MC&MD
Helium gas with Lennard-Jones potential in MC&MD
Tzu-Ping Chen
 
Ch10 outline
Ch10 outlineCh10 outline
Ch10 outline
AP_Chem
 
AP Chemistry Chapter 10 Outline
AP Chemistry Chapter 10 OutlineAP Chemistry Chapter 10 Outline
AP Chemistry Chapter 10 Outline
Jane Hamze
 
Lecture17.pdf this PPT for education and training and happiness
Lecture17.pdf this PPT for education and training and happinessLecture17.pdf this PPT for education and training and happiness
Lecture17.pdf this PPT for education and training and happiness
jagannathsahoopapun
 
Lecture17.pdf ppts laser pppt also beru very useful for education
Lecture17.pdf ppts laser pppt also beru very useful for educationLecture17.pdf ppts laser pppt also beru very useful for education
Lecture17.pdf ppts laser pppt also beru very useful for education
jagannathsahoopapun
 
Lecture17.pdf this PPT for education and
Lecture17.pdf this PPT for education andLecture17.pdf this PPT for education and
Lecture17.pdf this PPT for education and
jagannathsahoopapun
 
Gas Laws
Gas LawsGas Laws
Gas Laws
itutor
 

Semelhante a The statistical mechanical derivation of the van der waals equation of state (20)

GAS LAWS.pptx
GAS LAWS.pptxGAS LAWS.pptx
GAS LAWS.pptx
 
Thermodynamic, part 2
Thermodynamic, part 2Thermodynamic, part 2
Thermodynamic, part 2
 
Canonical Partition Function Parameters.ppt
Canonical Partition Function Parameters.pptCanonical Partition Function Parameters.ppt
Canonical Partition Function Parameters.ppt
 
KNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptxKNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptx
 
Gas laws Diagrams
Gas laws DiagramsGas laws Diagrams
Gas laws Diagrams
 
3rd Lecture on States of Matter | Chemistry Part II | 11th Std
3rd Lecture on States of Matter | Chemistry Part II | 11th Std3rd Lecture on States of Matter | Chemistry Part II | 11th Std
3rd Lecture on States of Matter | Chemistry Part II | 11th Std
 
Helium gas with Lennard-Jones potential in MC&MD
Helium gas with Lennard-Jones potential in MC&MDHelium gas with Lennard-Jones potential in MC&MD
Helium gas with Lennard-Jones potential in MC&MD
 
Lecture 14 maxwell-boltzmann distribution. heat capacities
Lecture 14   maxwell-boltzmann distribution. heat capacitiesLecture 14   maxwell-boltzmann distribution. heat capacities
Lecture 14 maxwell-boltzmann distribution. heat capacities
 
02 bsb 228 properties of fluids
02 bsb 228 properties of fluids02 bsb 228 properties of fluids
02 bsb 228 properties of fluids
 
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficientThermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
Thermodynamic relations, Clausius Clapreyon equation , joule thomson coefficient
 
Ch10 outline
Ch10 outlineCh10 outline
Ch10 outline
 
AP Chemistry Chapter 10 Outline
AP Chemistry Chapter 10 OutlineAP Chemistry Chapter 10 Outline
AP Chemistry Chapter 10 Outline
 
Lecture17.pdf this PPT for education and training and happiness
Lecture17.pdf this PPT for education and training and happinessLecture17.pdf this PPT for education and training and happiness
Lecture17.pdf this PPT for education and training and happiness
 
Lecture17.pdf ppts laser pppt also beru very useful for education
Lecture17.pdf ppts laser pppt also beru very useful for educationLecture17.pdf ppts laser pppt also beru very useful for education
Lecture17.pdf ppts laser pppt also beru very useful for education
 
Lecture17.pdf this PPT for education and
Lecture17.pdf this PPT for education andLecture17.pdf this PPT for education and
Lecture17.pdf this PPT for education and
 
Equation of State
Equation of StateEquation of State
Equation of State
 
Chapter 5 - Collision Theory.pdf
Chapter 5 - Collision Theory.pdfChapter 5 - Collision Theory.pdf
Chapter 5 - Collision Theory.pdf
 
Problem and solution i ph o 18
Problem and solution i ph o 18Problem and solution i ph o 18
Problem and solution i ph o 18
 
Gas Laws
Gas LawsGas Laws
Gas Laws
 
theory of gases and solid state
 theory of gases and solid state theory of gases and solid state
theory of gases and solid state
 

Último

"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
chumtiyababu
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 

Último (20)

Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 

The statistical mechanical derivation of the van der waals equation of state

  • 1. 1 The Statistical Mechanical Derivation of the van der Waals Equation of State and its associated thermodynamic properties David Keffer Department of Chemical Engineering The University of Tennessee, Knoxville dkeffer@utk.edu started: February 23, 2005 last updated: February 23, 2005 We will perform our derivation in the canonical ensemble, where we specify the number of molecules, N, the volume, V, and the temperature T. For a monatomic ideal gas, the well- known partition function is N IG V N Q ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Λ = 3 ! 1 (1) where the thermal deBroglie wavelength is defined as Tmk h Bπ =Λ 2 2 (2) where h is Planck’s constant, kB is Boltzmann’s constant, and m is the mass of the molecule. The van der Waals fluid differs from an ideal gas in two ways. First, the molecules have a finite minimum molar volume, b. In other words, they can not be compressed to infinite density. This volume occupied by the molecules is not part of the accessible volume of the system. Therefore, the partition function becomes, N NbV N Q ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Λ − = 3 ! 1 (3) where we have multiplied b by N to account for the total volume occupied by molecules. The second way in that a van der Waals fluid differs from an ideal gas is that the van der Waals molecule experiences a net attractive force to all other molecules. This attraction is based upon a mean field approximation. The energy associated with each molecule is linearly proportional to the molar density of the system, V N aEvdw −= (4) This energetic term modifies the partition function to become
  • 2. 2 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Λ − =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Λ − = TVk aNNbV NTk NENbV N Q B N B vdw N vdw 2 33 exp ! 1 exp ! 1 (5) As always, we require the natural log of the partition function ( ) ( ) TVk aNNbV NNQ B vdw 2 3 ln!lnln +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Λ − +−= (6) We use Stirling’s approximation for the natural log of the factorial of a large number ( ) ( ) TVk aNNbV NNNNQ B vdw 2 3 lnlnln +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Λ − ++−= (7) The first thermodynamic property that we will calculate is the pressure because that is what everyone associates with the van der Waals equation of state. ( ) 22 , ln mm BB TN B V a bV Tk N V a b N V Tk V Q Tkp − − = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ = (8) where we have defined a molecular volume, N V Vm ≡ . This is the van der Waals equation of state. Now let’s derive other thermodynamic functions. We will start with the molecular Helmholtz free energy, ( ) ( ) ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Λ − ++−−=−== TVk NaNbV NTkQ N Tk N A A B BTN B m 3, ln1lnln (9) The molecular internal energy is ( ) m BB VN B m V a Tk V Na Tk T Q N Tk N E E −=−=⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ == 2 3 2 3ln , 2 (10) Unlike the ideal gas, the internal energy of a vdW fluid is not only a function of temperature but also a function of molar volume. The chemical potential is ( ) ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + − −⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Λ − −=⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ −=µ TkV a bV bbV Tk N Q Tk Bmm m B VT B 2 ln ln 3 , (11) The molecular entropy is
  • 3. 3 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Λ − += − = − == 3 ln 2 5 bV k T AE NT AE N S S m B mm m (12) The molecular enthalpy is bV TVk V a TkPVE N PVE N H H m mB m Bmmm − +−=+= + == 2 2 3 (13) The molecular Gibbs free energy is m m m m Bmmm V abV bV V TkTSH N TSH N G G 2ln1 3 −⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Λ − + − −−=−= − == (14) In addition to the basic thermodynamic properties, we can also calculate a variety of thermodynamic properties from the partial derivatives. bV k T p m B Vm − =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ (15) ( ) 32 2 mm B Tm V a bV Tk V p + − −=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ (16) ( ) 3 2 1 mB m m Tm V p m Vk bVa bV T V p T p T V m − − − = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ −=⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ (17) The molecular constant volume-heat capacity is B V m v k T E C m 2 3 =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ = (18) The molecular constant-pressure heat capacity is p m p m p m p T V p T E T H C ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ = (19) Now we need, the first term on the RHS. Going to the Tables of P.W. Bridgman, we have
  • 4. 4 p m p m V V p m T V p T V T p TC T E m ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ −⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ +=⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ (20) Substituting equation (20) into equation (19) yields ( ) 3 2 21 1 2 3 mB m BB p m V Vp TVk bVa kk T V T p TCC m − − +=⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ += (21) The constant-pressure heat capacity is a function of temperature and molar volume. Now let’s look at vapor-liquid equilibrium. The internal energy of vaporization is ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −=−=∆ V m L m L m V mm VV aEEE 11 (22) The enthalpy of vaporization is ( )L m V mV m L m mm L m V mm VVp VV aVpEHHH −∆+⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −=∆+∆=−=∆ 11 (23) The entropy of vaporization is ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − =−=∆ bV bV kSSS L m V m B L m V mm ln (24) The molecular Gibbs free energy of vaporization is ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −+ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − =−=∆ V m L m L m L m V m V m V m L m B L m V mm VV a bV V bV V bV bV TkGGG 11 2ln (25) Since the molecular Gibbs free energy of vaporization is zero at equilibrium, this gives a condition for vapor-liquid equilibrium, namely, 0 11 2ln =⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −+ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − +⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − V m L m L m L m V m V m V m L m B VV a bV V bV V bV bV Tk (26) The chemical potentials should also be equal at equilibrium
  • 5. 5 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − =µ−µ=µ∆ L m V m L m V m V m L m BLV VV a bV b bV b bV bV Tk 11 2ln (27) This expression doesn’t look the same as equation (26), but if you get a common denominator in equations (26) and (27) then it turns out that they are identical equations. So at VLE, given the temperature, we have three unknowns: the vapor molar volume, the liquid molar volume, and the vapor pressure. The two molar volumes are found by simultaneously solving equation (27) and the condition of mechanical equilibrium, namely 022 =+ − −− − =−=∆ L m L m B V m V m B LV V a bV Tk V a bV Tk ppp (28) Once the molar volumes are known, the vapor pressure can be obtained by evaluating equation (8) at either molar volume. For a certain application, we may want to know the change in the molar volume as a function of temperature along the two-phase boundary of the phase diagram, also known as the saturation line. In order to obtain an analytical expression for this derivative, we must differentiate both equation (27) and (28) with respect to temperature. We will then obtain two derivatives, one for the liquid and one for the vapor. We will combine the two equations to solve for the two derivatives individually. We begin by differentiating equation (27) with respect to temperature along the saturation line. ( ) ( ) 0 11 2ln 11 22 22 = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ − ∂ ∂ + ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − + ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ∂ ∂ − + ∂ ∂ − − ∂ ∂ − − ∂ ∂ − sat L m L msat V m V m L m V m V m L m B sat L m L msat V m V msat V m V msat L m L m B T V VT V V a bV b bV b bV bV k T V bV b T V bV b T V bVT V bV Tk (29) Next we differentiate equation (28) ( ) ( ) 022 3232 = ∂ ∂ − − − ∂ ∂ − + ∂ ∂ + − + ∂ ∂ − − sat L m L m L m B sat L m L m B sat V m V m V m B sat V m V m B T V V a bV k T V bV Tk T V V a bV k T V bV Tk (30) Now we solve these two equations for the two partial derivatives. Take equation (30) and combine like terms. ( ) ( ) bV k bV k T V V a bV Tk T V V a bV Tk V m B L m B sat L m L m L m B sat V m V m V m B − − − = ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + − − 3232 22 (31)
  • 6. 6 ( ) ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + − − − = ∂ ∂ 32 32 2 2 L m L m B sat V m V m V m B V m B L m B sat L m V a bV Tk T V V a bV Tk bV k bV k T V (32) Next we combine terms in equation (29) ( ) ( ) ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − +⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − −= ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + − − ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + − bV b bV b bV bV k T V V a bV Tbk bV Tk T V V a bV Tbk bV Tk L m V m V m L m B sat V m V m V m B V m B sat L m L m L m B L m B ln 22 2222 (33) ( ) ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + − ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + − + ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − +⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − = ∂ ∂ 22 22 2 2 ln L m L m B L m B sat V m V m V m B V m B L m V m V m L m B sat L m V a bV Tbk bV Tk T V V a bV Tbk bV Tk bV b bV b bV bV k T V (34) Now we equate (32) and (34), and solve to obtain ( ) ( ) ( ) ( ) ( ) ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + − ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − − +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − − − = ∂ ∂ 32 32 22 22 2232 2 2 2 2 2 ln 2 L m L m B V m V m B L m L m B L m B V m V m B V m B L m L m B L m B L m V m V m L m B L m L m B V m B L m B sat V m V a bV Tk V a bV Tk V a bV Tbk bV Tk V a bV Tbk bV Tk V a bV Tbk bV Tk bV b bV b bV bV k V a bV Tk bV k bV k T V (35) We can obtain the corresponding partial derivative for the liquid phase by substituting equation (35) into equation (32).