SlideShare uma empresa Scribd logo
1 de 208
$ HY<
x m
“It's in Apple's DNA that technology alone is not enough. 

It's technology married with liberal arts.”
The Convergence of IT, BT and Medicine
최윤섭 지음
의료인공지능
표지디자인•최승협
컴퓨터
털 헬
치를 만드는 것을 화두로
기업가, 엔젤투자가, 에반
의 대표적인 전문가로, 활
이 분야를 처음 소개한 장
포항공과대학교에서 컴
동 대학원 시스템생명공
취득하였다. 스탠퍼드대
조교수, KT 종합기술원 컨
구원 연구조교수 등을 거
저널에 10여 편의 논문을
국내 최초로 디지털 헬스
윤섭 디지털 헬스케어 연
국내 유일의 헬스케어 스
어 파트너스’의 공동 창업
스타트업을 의료 전문가
관대학교 디지털헬스학과
뷰노, 직토, 3billion, 서지
소울링, 메디히어, 모바일
자문을 맡아 한국에서도
고 있다. 국내 최초의 디
케어 이노베이션』에 활발
을 연재하고 있다. 저서로
와 『그렇게 나는 스스로
•블로그_ http://www
•페이스북_ https://w
•이메일_ yoonsup.c
최윤섭
의료 인공지능은 보수적인 의료 시스템을 재편할 혁신을 일으키고 있다. 의료 인공지능의 빠른 발전과
광범위한 영향은 전문화, 세분화되며 발전해 온 현대 의료 전문가들이 이해하기가 어려우며, 어디서부
터 공부해야 할지도 막연하다. 이런 상황에서 의료 인공지능의 개념과 적용, 그리고 의사와의 관계를 쉽
게 풀어내는 이 책은 좋은 길라잡이가 될 것이다. 특히 미래의 주역이 될 의학도와 젊은 의료인에게 유용
한 소개서이다.
━ 서준범, 서울아산병원 영상의학과 교수, 의료영상인공지능사업단장
인공지능이 의료의 패러다임을 크게 바꿀 것이라는 것에 동의하지 않는 사람은 거의 없다. 하지만 인공
지능이 처리해야 할 의료의 난제는 많으며 그 해결 방안도 천차만별이다. 흔히 생각하는 만병통치약 같
은 의료 인공지능은 존재하지 않는다. 이 책은 다양한 의료 인공지능의 개발, 활용 및 가능성을 균형 있
게 분석하고 있다. 인공지능을 도입하려는 의료인, 생소한 의료 영역에 도전할 인공지능 연구자 모두에
게 일독을 권한다.
━ 정지훈, 경희사이버대 미디어커뮤니케이션학과 선임강의교수, 의사
서울의대 기초의학교육을 책임지고 있는 교수의 입장에서, 산업화 이후 변하지 않은 현재의 의학 교육
으로는 격변하는 인공지능 시대에 의대생을 대비시키지 못한다는 한계를 절실히 느낀다. 저와 함께 의
대 인공지능 교육을 개척하고 있는 최윤섭 소장의 전문적 분석과 미래 지향적 안목이 담긴 책이다. 인공
지능이라는 미래를 대비할 의대생과 교수, 그리고 의대 진학을 고민하는 학생과 학부모에게 추천한다.
━ 최형진, 서울대학교 의과대학 해부학교실 교수, 내과 전문의
최근 의료 인공지능의 도입에 대해서 극단적인 시각과 태도가 공존하고 있다. 이 책은 다양한 사례와 깊
은 통찰을 통해 의료 인공지능의 현황과 미래에 대해 균형적인 시각을 제공하여, 인공지능이 의료에 본
격적으로 도입되기 위한 토론의 장을 마련한다. 의료 인공지능이 일상화된 10년 후 돌아보았을 때, 이 책
이 그런 시대를 이끄는 길라잡이 역할을 하였음을 확인할 수 있기를 기대한다.
━ 정규환, 뷰노 CTO
의료 인공지능은 다른 분야 인공지능보다 더 본질적인 이해가 필요하다. 단순히 인간의 일을 대신하는
수준을 넘어 의학의 패러다임을 데이터 기반으로 변화시키기 때문이다. 따라서 인공지능을 균형있게 이
해하고, 어떻게 의사와 환자에게 도움을 줄 수 있을지 깊은 고민이 필요하다. 세계적으로 일어나고 있는
이러한 노력의 결과물을 집대성한 이 책이 반가운 이유다.
━ 백승욱, 루닛 대표
의료 인공지능의 최신 동향뿐만 아니라, 의의와 한계, 전망, 그리고 다양한 생각거리까지 주는 책이다.
논쟁이 되는 여러 이슈에 대해서도 저자는 자신의 시각을 명확한 근거에 기반하여 설득력 있게 제시하
고 있다. 개인적으로는 이 책을 대학원 수업 교재로 활용하려 한다.
━ 신수용, 성균관대학교 디지털헬스학과 교수
최윤섭지음
의료인공지능
값 20,000원
ISBN 979-11-86269-99-2
최초의 책!
계 안팎에서 제기
고 있다. 현재 의
분 커버했다고 자
것인가, 어느 진료
제하고 효용과 안
누가 지는가, 의학
쉬운 언어로 깊이
들이 의료 인공지
적인 용어를 최대
서 다른 곳에서 접
를 접하게 될 것
너무나 빨리 발전
책에서 제시하는
술을 공부하며, 앞
란다.
의사 면허를 취득
저가 도움되면 좋
를 불러일으킬 것
화를 일으킬 수도
슈에 제대로 대응
분은 의학 교육의
예비 의사들은 샌
지능과 함께하는
레이닝 방식도 이
전에 진료실과 수
겠지만, 여러분들
도생하는 수밖에
미래의료학자 최윤섭 박사가 제시하는
의료 인공지능의 현재와 미래
의료 딥러닝과 IBM 왓슨의 현주소
인공지능은 의사를 대체하는가
값 20,000원
ISBN 979-11-86269-99-2
레이닝 방식도 이
전에 진료실과 수
겠지만, 여러분들
도생하는 수밖에
소울링, 메디히어, 모바일
자문을 맡아 한국에서도
고 있다. 국내 최초의 디
케어 이노베이션』에 활발
을 연재하고 있다. 저서로
와 『그렇게 나는 스스로
•블로그_ http://www
•페이스북_ https://w
•이메일_ yoonsup.c
l 0 (
l( 0 t
l) 0 x w m
l 0 (
l( 0 t
l) 0 x w m
Inevitable Tsunami of Change
(& -$,
Vinod Khosla
Founder, 1st CEO of Sun Microsystems
Partner of KPCB, CEO of KhoslaVentures
LegendaryVenture Capitalist in SiliconValley
“Technology will replace 80% of doctors”
https://www.youtube.com/watch?time_continue=70&v=2HMPRXstSvQ
“영상의학과 전문의를 양성하는 것을 당장 그만둬야 한다.
5년 안에 딥러닝이 영상의학과 전문의를 능가할 것은 자명하다.”
Hinton on Radiology
Luddites in the 1810’s
and/or
q9H 2 v
q $((( z t
q +((z s +$((( z
• 1978
• As part of the obscure task of “discovery” —
providing documents relevant to a lawsuit — the
studios examined six million documents at a
cost of more than $2.2 million, much of it to pay
for a platoon of lawyers and paralegals who
worked for months at high hourly rates.
• 2011
• Now, thanks to advances in artificial intelligence,
“e-discovery” software can analyze documents
in a fraction of the time for a fraction of the
cost.
• In January, for example, Blackstone Discovery of
Palo Alto, Calif., helped analyze 1.5 million
documents for less than $100,000.
“At its height back in 2000, the U.S. cash equities trading desk at
Goldman Sachs’s New York headquarters employed 600 traders,
buying and selling stock on the orders of the investment bank’s
large clients. Today there are just two equity traders left”
q >f f
+( $ A:E ORed =ia cVc
q ORed
q +(

q JGA t
q) 2 ),( jV
q 2 (( jV
Copyright 2016 American Medical Association. All rights reserved.
Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs
Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD;
Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB;
Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD
IMPORTANCE Deep learning is a family of computational methods that allow an algorithm to
program itself by learning from a large set of examples that demonstrate the desired
behavior, removing the need to specify rules explicitly. Application of these methods to
medical imaging requires further assessment and validation.
OBJECTIVE To apply deep learning to create an algorithm for automated detection of diabetic
retinopathy and diabetic macular edema in retinal fundus photographs.
DESIGN AND SETTING A specific type of neural network optimized for image classification
called a deep convolutional neural network was trained using a retrospective development
data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy,
diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists
and ophthalmology senior residents between May and December 2015. The resultant
algorithm was validated in January and February 2016 using 2 separate data sets, both
graded by at least 7 US board-certified ophthalmologists with high intragrader consistency.
EXPOSURE Deep learning–trained algorithm.
MAIN OUTCOMES AND MEASURES The sensitivity and specificity of the algorithm for detecting
referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy,
referable diabetic macular edema, or both, were generated based on the reference standard
of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2
operating points selected from the development set, one selected for high specificity and
another for high sensitivity.
RESULTS TheEyePACS-1datasetconsistedof9963imagesfrom4997patients(meanage,54.4
years;62.2%women;prevalenceofRDR,683/8878fullygradableimages[7.8%]);the
Messidor-2datasethad1748imagesfrom874patients(meanage,57.6years;42.6%women;
prevalenceofRDR,254/1745fullygradableimages[14.6%]).FordetectingRDR,thealgorithm
hadanareaunderthereceiveroperatingcurveof0.991(95%CI,0.988-0.993)forEyePACS-1and
0.990(95%CI,0.986-0.995)forMessidor-2.Usingthefirstoperatingcutpointwithhigh
specificity,forEyePACS-1,thesensitivitywas90.3%(95%CI,87.5%-92.7%)andthespecificity
was98.1%(95%CI,97.8%-98.5%).ForMessidor-2,thesensitivitywas87.0%(95%CI,81.1%-
91.0%)andthespecificitywas98.5%(95%CI,97.7%-99.1%).Usingasecondoperatingpoint
withhighsensitivityinthedevelopmentset,forEyePACS-1thesensitivitywas97.5%and
specificitywas93.4%andforMessidor-2thesensitivitywas96.1%andspecificitywas93.9%.
CONCLUSIONS AND RELEVANCE In this evaluation of retinal fundus photographs from adults
with diabetes, an algorithm based on deep machine learning had high sensitivity and
specificity for detecting referable diabetic retinopathy. Further research is necessary to
determine the feasibility of applying this algorithm in the clinical setting and to determine
whether use of the algorithm could lead to improved care and outcomes compared with
current ophthalmologic assessment.
JAMA. doi:10.1001/jama.2016.17216
Published online November 29, 2016.
Editorial
Supplemental content
Author Affiliations: Google Inc,
Mountain View, California (Gulshan,
Peng, Coram, Stumpe, Wu,
Narayanaswamy, Venugopalan,
Widner, Madams, Nelson, Webster);
Department of Computer Science,
University of Texas, Austin
(Venugopalan); EyePACS LLC,
San Jose, California (Cuadros); School
of Optometry, Vision Science
Graduate Group, University of
California, Berkeley (Cuadros);
Aravind Medical Research
Foundation, Aravind Eye Care
System, Madurai, India (Kim); Shri
Bhagwan Mahavir Vitreoretinal
Services, Sankara Nethralaya,
Chennai, Tamil Nadu, India (Raman);
Verily Life Sciences, Mountain View,
California (Mega); Cardiovascular
Division, Department of Medicine,
Brigham and Women’s Hospital and
Harvard Medical School, Boston,
Massachusetts (Mega).
Corresponding Author: Lily Peng,
MD, PhD, Google Research, 1600
Amphitheatre Way, Mountain View,
CA 94043 (lhpeng@google.com).
Research
JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY
(Reprinted) E1
Copyright 2016 American Medical Association. All rights reserved.
Downloaded From: http://jamanetwork.com/ on 12/02/2016
안과
LETTERS
https://doi.org/10.1038/s41591-018-0335-9
1
Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China. 2
Institute for Genomic Medicine, Institute of
Engineering in Medicine, and Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA. 3
Hangzhou YITU Healthcare Technology Co. Ltd,
Hangzhou, China. 4
Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory and
National Clinical Research Center for Respiratory Disease, Guangzhou, China. 5
Guangzhou Kangrui Co. Ltd, Guangzhou, China. 6
Guangzhou Regenerative
Medicine and Health Guangdong Laboratory, Guangzhou, China. 7
Veterans Administration Healthcare System, San Diego, CA, USA. 8
These authors contributed
equally: Huiying Liang, Brian Tsui, Hao Ni, Carolina C. S. Valentim, Sally L. Baxter, Guangjian Liu. *e-mail: kang.zhang@gmail.com; xiahumin@hotmail.com
Artificial intelligence (AI)-based methods have emerged as
powerful tools to transform medical care. Although machine
learning classifiers (MLCs) have already demonstrated strong
performance in image-based diagnoses, analysis of diverse
and massive electronic health record (EHR) data remains chal-
lenging. Here, we show that MLCs can query EHRs in a manner
similar to the hypothetico-deductive reasoning used by physi-
cians and unearth associations that previous statistical meth-
ods have not found. Our model applies an automated natural
language processing system using deep learning techniques
to extract clinically relevant information from EHRs. In total,
101.6 million data points from 1,362,559 pediatric patient
visits presenting to a major referral center were analyzed to
train and validate the framework. Our model demonstrates
high diagnostic accuracy across multiple organ systems and is
comparable to experienced pediatricians in diagnosing com-
mon childhood diseases. Our study provides a proof of con-
cept for implementing an AI-based system as a means to aid
physicians in tackling large amounts of data, augmenting diag-
nostic evaluations, and to provide clinical decision support in
cases of diagnostic uncertainty or complexity. Although this
impact may be most evident in areas where healthcare provid-
ers are in relative shortage, the benefits of such an AI system
are likely to be universal.
Medical information has become increasingly complex over
time. The range of disease entities, diagnostic testing and biomark-
ers, and treatment modalities has increased exponentially in recent
years. Subsequently, clinical decision-making has also become more
complex and demands the synthesis of decisions from assessment
of large volumes of data representing clinical information. In the
current digital age, the electronic health record (EHR) represents a
massive repository of electronic data points representing a diverse
array of clinical information1–3
. Artificial intelligence (AI) methods
have emerged as potentially powerful tools to mine EHR data to aid
in disease diagnosis and management, mimicking and perhaps even
augmenting the clinical decision-making of human physicians1
.
To formulate a diagnosis for any given patient, physicians fre-
quently use hypotheticodeductive reasoning. Starting with the chief
complaint, the physician then asks appropriately targeted questions
relating to that complaint. From this initial small feature set, the
physician forms a differential diagnosis and decides what features
(historical questions, physical exam findings, laboratory testing,
and/or imaging studies) to obtain next in order to rule in or rule
out the diagnoses in the differential diagnosis set. The most use-
ful features are identified, such that when the probability of one of
the diagnoses reaches a predetermined level of acceptability, the
process is stopped, and the diagnosis is accepted. It may be pos-
sible to achieve an acceptable level of certainty of the diagnosis with
only a few features without having to process the entire feature set.
Therefore, the physician can be considered a classifier of sorts.
In this study, we designed an AI-based system using machine
learning to extract clinically relevant features from EHR notes to
mimic the clinical reasoning of human physicians. In medicine,
machine learning methods have already demonstrated strong per-
formance in image-based diagnoses, notably in radiology2
, derma-
tology4
, and ophthalmology5–8
, but analysis of EHR data presents
a number of difficult challenges. These challenges include the vast
quantity of data, high dimensionality, data sparsity, and deviations
Evaluation and accurate diagnoses of pediatric
diseases using artificial intelligence
Huiying Liang1,8
, Brian Y. Tsui 2,8
, Hao Ni3,8
, Carolina C. S. Valentim4,8
, Sally L. Baxter 2,8
,
Guangjian Liu1,8
, Wenjia Cai 2
, Daniel S. Kermany1,2
, Xin Sun1
, Jiancong Chen2
, Liya He1
, Jie Zhu1
,
Pin Tian2
, Hua Shao2
, Lianghong Zheng5,6
, Rui Hou5,6
, Sierra Hewett1,2
, Gen Li1,2
, Ping Liang3
,
Xuan Zang3
, Zhiqi Zhang3
, Liyan Pan1
, Huimin Cai5,6
, Rujuan Ling1
, Shuhua Li1
, Yongwang Cui1
,
Shusheng Tang1
, Hong Ye1
, Xiaoyan Huang1
, Waner He1
, Wenqing Liang1
, Qing Zhang1
, Jianmin Jiang1
,
Wei Yu1
, Jianqun Gao1
, Wanxing Ou1
, Yingmin Deng1
, Qiaozhen Hou1
, Bei Wang1
, Cuichan Yao1
,
Yan Liang1
, Shu Zhang1
, Yaou Duan2
, Runze Zhang2
, Sarah Gibson2
, Charlotte L. Zhang2
, Oulan Li2
,
Edward D. Zhang2
, Gabriel Karin2
, Nathan Nguyen2
, Xiaokang Wu1,2
, Cindy Wen2
, Jie Xu2
, Wenqin Xu2
,
Bochu Wang2
, Winston Wang2
, Jing Li1,2
, Bianca Pizzato2
, Caroline Bao2
, Daoman Xiang1
, Wanting He1,2
,
Suiqin He2
, Yugui Zhou1,2
, Weldon Haw2,7
, Michael Goldbaum2
, Adriana Tremoulet2
, Chun-Nan Hsu 2
,
Hannah Carter2
, Long Zhu3
, Kang Zhang 1,2,7
* and Huimin Xia 1
*
NATURE MEDICINE | www.nature.com/naturemedicine
소아청소년과
ARTICLES
https://doi.org/10.1038/s41591-018-0177-5
1
Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA. 2
Skirball Institute, Department of Cell Biology,
New York University School of Medicine, New York, NY, USA. 3
Department of Pathology, New York University School of Medicine, New York, NY, USA.
4
School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece. 5
Institute for Systems Genetics, New York University School
of Medicine, New York, NY, USA. 6
Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY,
USA. 7
Center for Biospecimen Research and Development, New York University, New York, NY, USA. 8
Department of Population Health and the Center for
Healthcare Innovation and Delivery Science, New York University School of Medicine, New York, NY, USA. 9
These authors contributed equally to this work:
Nicolas Coudray, Paolo Santiago Ocampo. *e-mail: narges.razavian@nyumc.org; aristotelis.tsirigos@nyumc.org
A
ccording to the American Cancer Society and the Cancer
Statistics Center (see URLs), over 150,000 patients with lung
cancer succumb to the disease each year (154,050 expected
for 2018), while another 200,000 new cases are diagnosed on a
yearly basis (234,030 expected for 2018). It is one of the most widely
spread cancers in the world because of not only smoking, but also
exposure to toxic chemicals like radon, asbestos and arsenic. LUAD
and LUSC are the two most prevalent types of non–small cell lung
cancer1
, and each is associated with discrete treatment guidelines. In
the absence of definitive histologic features, this important distinc-
tion can be challenging and time-consuming, and requires confir-
matory immunohistochemical stains.
Classification of lung cancer type is a key diagnostic process
because the available treatment options, including conventional
chemotherapy and, more recently, targeted therapies, differ for
LUAD and LUSC2
. Also, a LUAD diagnosis will prompt the search
for molecular biomarkers and sensitizing mutations and thus has
a great impact on treatment options3,4
. For example, epidermal
growth factor receptor (EGFR) mutations, present in about 20% of
LUAD, and anaplastic lymphoma receptor tyrosine kinase (ALK)
rearrangements, present in<5% of LUAD5
, currently have tar-
geted therapies approved by the Food and Drug Administration
(FDA)6,7
. Mutations in other genes, such as KRAS and tumor pro-
tein P53 (TP53) are very common (about 25% and 50%, respec-
tively) but have proven to be particularly challenging drug targets
so far5,8
. Lung biopsies are typically used to diagnose lung cancer
type and stage. Virtual microscopy of stained images of tissues is
typically acquired at magnifications of 20×to 40×, generating very
large two-dimensional images (10,000 to>100,000 pixels in each
dimension) that are oftentimes challenging to visually inspect in
an exhaustive manner. Furthermore, accurate interpretation can be
difficult, and the distinction between LUAD and LUSC is not always
clear, particularly in poorly differentiated tumors; in this case, ancil-
lary studies are recommended for accurate classification9,10
. To assist
experts, automatic analysis of lung cancer whole-slide images has
been recently studied to predict survival outcomes11
and classifica-
tion12
. For the latter, Yu et al.12
combined conventional thresholding
and image processing techniques with machine-learning methods,
such as random forest classifiers, support vector machines (SVM) or
Naive Bayes classifiers, achieving an AUC of ~0.85 in distinguishing
normal from tumor slides, and ~0.75 in distinguishing LUAD from
LUSC slides. More recently, deep learning was used for the classi-
fication of breast, bladder and lung tumors, achieving an AUC of
0.83 in classification of lung tumor types on tumor slides from The
Cancer Genome Atlas (TCGA)13
. Analysis of plasma DNA values
was also shown to be a good predictor of the presence of non–small
cell cancer, with an AUC of ~0.94 (ref. 14
) in distinguishing LUAD
from LUSC, whereas the use of immunochemical markers yields an
AUC of ~0.94115
.
Here, we demonstrate how the field can further benefit from deep
learning by presenting a strategy based on convolutional neural
networks (CNNs) that not only outperforms methods in previously
Classification and mutation prediction from
non–small cell lung cancer histopathology
images using deep learning
Nicolas Coudray 1,2,9
, Paolo Santiago Ocampo3,9
, Theodore Sakellaropoulos4
, Navneet Narula3
,
Matija Snuderl3
, David Fenyö5,6
, Andre L. Moreira3,7
, Narges Razavian 8
* and Aristotelis Tsirigos 1,3
*
Visual inspection of histopathology slides is one of the main methods used by pathologists to assess the stage, type and sub-
type of lung tumors. Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the most prevalent subtypes of lung
cancer, and their distinction requires visual inspection by an experienced pathologist. In this study, we trained a deep con-
volutional neural network (inception v3) on whole-slide images obtained from The Cancer Genome Atlas to accurately and
automatically classify them into LUAD, LUSC or normal lung tissue. The performance of our method is comparable to that of
pathologists, with an average area under the curve (AUC) of 0.97. Our model was validated on independent datasets of frozen
tissues, formalin-fixed paraffin-embedded tissues and biopsies. Furthermore, we trained the network to predict the ten most
commonly mutated genes in LUAD. We found that six of them—STK11, EGFR, FAT1, SETBP1, KRAS and TP53—can be pre-
dicted from pathology images, with AUCs from 0.733 to 0.856 as measured on a held-out population. These findings suggest
that deep-learning models can assist pathologists in the detection of cancer subtype or gene mutations. Our approach can be
applied to any cancer type, and the code is available at https://github.com/ncoudray/DeepPATH.
NATURE MEDICINE | www.nature.com/naturemedicine
병리과병리과병리과병리과병리과병리과병리과
ARTICLES
https://doi.org/10.1038/s41551-018-0301-3
1
Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China. 2
Shanghai Wision AI Co., Ltd, Shanghai, China. 3
Beth Israel
Deaconess Medical Center and Harvard Medical School, Center for Advanced Endoscopy, Boston , MA, USA. *e-mail: gary.samsph@gmail.com
C
olonoscopy is the gold-standard screening test for colorectal
cancer1–3
, one of the leading causes of cancer death in both the
United States4,5
and China6
. Colonoscopy can reduce the risk
of death from colorectal cancer through the detection of tumours
at an earlier, more treatable stage as well as through the removal of
precancerous adenomas3,7
. Conversely, failure to detect adenomas
may lead to the development of interval cancer. Evidence has shown
that each 1.0% increase in adenoma detection rate (ADR) leads to a
3.0% decrease in the risk of interval colorectal cancer8
.
Although more than 14million colonoscopies are performed
in the United States annually2
, the adenoma miss rate (AMR) is
estimated to be 6–27%9
. Certain polyps may be missed more fre-
quently, including smaller polyps10,11
, flat polyps12
and polyps in the
left colon13
. There are two independent reasons why a polyp may
be missed during colonoscopy: (i) it was never in the visual field or
(ii) it was in the visual field but not recognized. Several hardware
innovations have sought to address the first problem by improv-
ing visualization of the colonic lumen, for instance by providing a
larger, panoramic camera view, or by flattening colonic folds using a
distal-cap attachment. The problem of unrecognized polyps within
the visual field has been more difficult to address14
. Several studies
have shown that observation of the video monitor by either nurses
or gastroenterology trainees may increase polyp detection by up
to 30%15–17
. Ideally, a real-time automatic polyp-detection system
could serve as a similarly effective second observer that could draw
the endoscopist’s eye, in real time, to concerning lesions, effec-
tively creating an ‘extra set of eyes’ on all aspects of the video data
with fidelity. Although automatic polyp detection in colonoscopy
videos has been an active research topic for the past 20 years, per-
formance levels close to that of the expert endoscopist18–20
have not
been achieved. Early work in automatic polyp detection has focused
on applying deep-learning techniques to polyp detection, but most
published works are small in scale, with small development and/or
training validation sets19,20
.
Here, we report the development and validation of a deep-learn-
ing algorithm, integrated with a multi-threaded processing system,
for the automatic detection of polyps during colonoscopy. We vali-
dated the system in two image studies and two video studies. Each
study contained two independent validation datasets.
Results
We developed a deep-learning algorithm using 5,545colonoscopy
images from colonoscopy reports of 1,290patients that underwent
a colonoscopy examination in the Endoscopy Center of Sichuan
Provincial People’s Hospital between January 2007 and December
2015. Out of the 5,545images used, 3,634images contained polyps
(65.54%) and 1,911 images did not contain polyps (34.46%). For
algorithm training, experienced endoscopists annotated the pres-
ence of each polyp in all of the images in the development data-
set. We validated the algorithm on four independent datasets.
DatasetsA and B were used for image analysis, and datasetsC and D
were used for video analysis.
DatasetA contained 27,113colonoscopy images from colo-
noscopy reports of 1,138consecutive patients who underwent a
colonoscopy examination in the Endoscopy Center of Sichuan
Provincial People’s Hospital between January and December 2016
and who were found to have at least one polyp. Out of the 27,113
images, 5,541images contained polyps (20.44%) and 21,572images
did not contain polyps (79.56%). All polyps were confirmed histo-
logically after biopsy. DatasetB is a public database (CVC-ClinicDB;
Development and validation of a deep-learning
algorithm for the detection of polyps during
colonoscopy
Pu Wang1
, Xiao Xiao2
, Jeremy R. Glissen Brown3
, Tyler M. Berzin 3
, Mengtian Tu1
, Fei Xiong1
,
Xiao Hu1
, Peixi Liu1
, Yan Song1
, Di Zhang1
, Xue Yang1
, Liangping Li1
, Jiong He2
, Xin Yi2
, Jingjia Liu2
and
Xiaogang Liu 1
*
The detection and removal of precancerous polyps via colonoscopy is the gold standard for the prevention of colon cancer.
However, the detection rate of adenomatous polyps can vary significantly among endoscopists. Here, we show that a machine-
learningalgorithmcandetectpolypsinclinicalcolonoscopies,inrealtimeandwithhighsensitivityandspecificity.Wedeveloped
the deep-learning algorithm by using data from 1,290 patients, and validated it on newly collected 27,113 colonoscopy images
from 1,138 patients with at least one detected polyp (per-image-sensitivity, 94.38%; per-image-specificity, 95.92%; area under
the receiver operating characteristic curve, 0.984), on a public database of 612 polyp-containing images (per-image-sensitiv-
ity, 88.24%), on 138 colonoscopy videos with histologically confirmed polyps (per-image-sensitivity of 91.64%; per-polyp-sen-
sitivity, 100%), and on 54 unaltered full-range colonoscopy videos without polyps (per-image-specificity, 95.40%). By using a
multi-threaded processing system, the algorithm can process at least 25 frames per second with a latency of 76.80±5.60ms
in real-time video analysis. The software may aid endoscopists while performing colonoscopies, and help assess differences in
polyp and adenoma detection performance among endoscopists.
NATURE BIOMEDICA L ENGINEERING | VOL 2 | OCTOBER 2018 | 741–748 | www.nature.com/natbiomedeng 741
소화기내과
1Wang P, et al. Gut 2019;0:1–7. doi:10.1136/gutjnl-2018-317500
Endoscopy
ORIGINAL ARTICLE
Real-time automatic detection system increases
colonoscopic polyp and adenoma detection rates: a
prospective randomised controlled study
Pu Wang,  1
Tyler M Berzin,  2
Jeremy Romek Glissen Brown,  2
Shishira Bharadwaj,2
Aymeric Becq,2
Xun Xiao,1
Peixi Liu,1
Liangping Li,1
Yan Song,1
Di Zhang,1
Yi Li,1
Guangre Xu,1
Mengtian Tu,1
Xiaogang Liu  1
To cite: Wang P, Berzin TM,
Glissen Brown JR, et al. Gut
Epub ahead of print: [please
include Day Month Year].
doi:10.1136/
gutjnl-2018-317500
► Additional material is
published online only.To view
please visit the journal online
(http://dx.doi.org/10.1136/
gutjnl-2018-317500).
1
Department of
Gastroenterology, Sichuan
Academy of Medical Sciences
& Sichuan Provincial People’s
Hospital, Chengdu, China
2
Center for Advanced
Endoscopy, Beth Israel
Deaconess Medical Center and
Harvard Medical School, Boston,
Massachusetts, USA
Correspondence to
Xiaogang Liu, Department
of Gastroenterology Sichuan
Academy of Medical Sciences
and Sichuan Provincial People’s
Hospital, Chengdu, China;
Gary.samsph@gmail.com
Received 30 August 2018
Revised 4 February 2019
Accepted 13 February 2019
© Author(s) (or their
employer(s)) 2019. Re-use
permitted under CC BY-NC. No
commercial re-use. See rights
and permissions. Published
by BMJ.
ABSTRACT
Objective The effect of colonoscopy on colorectal
cancer mortality is limited by several factors, among them
a certain miss rate, leading to limited adenoma detection
rates (ADRs).We investigated the effect of an automatic
polyp detection system based on deep learning on polyp
detection rate and ADR.
Design In an open, non-blinded trial, consecutive
patients were prospectively randomised to undergo
diagnostic colonoscopy with or without assistance of a
real-time automatic polyp detection system providing
a simultaneous visual notice and sound alarm on polyp
detection.The primary outcome was ADR.
Results Of 1058 patients included, 536 were
randomised to standard colonoscopy, and 522 were
randomised to colonoscopy with computer-aided
diagnosis.The artificial intelligence (AI) system
significantly increased ADR (29.1%vs20.3%, p<0.001)
and the mean number of adenomas per patient
(0.53vs0.31, p<0.001).This was due to a higher number
of diminutive adenomas found (185vs102; p<0.001),
while there was no statistical difference in larger
adenomas (77vs58, p=0.075). In addition, the number
of hyperplastic polyps was also significantly increased
(114vs52, p<0.001).
Conclusions In a low prevalent ADR population, an
automatic polyp detection system during colonoscopy
resulted in a significant increase in the number of
diminutive adenomas detected, as well as an increase in
the rate of hyperplastic polyps.The cost–benefit ratio of
such effects has to be determined further.
Trial registration number ChiCTR-DDD-17012221;
Results.
INTRODUCTION
Colorectal cancer (CRC) is the second and third-
leading causes of cancer-related deaths in men and
women respectively.1
Colonoscopy is the gold stan-
dard for screening CRC.2 3
Screening colonoscopy
has allowed for a reduction in the incidence and
mortality of CRC via the detection and removal
of adenomatous polyps.4–8
Additionally, there is
evidence that with each 1.0% increase in adenoma
detection rate (ADR), there is an associated 3.0%
decrease in the risk of interval CRC.9 10
However,
polyps can be missed, with reported miss rates of
up to 27% due to both polyp and operator charac-
teristics.11 12
Unrecognised polyps within the visual field is
an important problem to address.11
Several studies
have shown that assistance by a second observer
increases the polyp detection rate (PDR), but such a
strategy remains controversial in terms of increasing
the ADR.13–15
Ideally, a real-time automatic polyp detec-
tion system, with performance close to that of
expert endoscopists, could assist the endosco-
pist in detecting lesions that might correspond to
adenomas in a more consistent and reliable way
Significance of this study
What is already known on this subject?
► Colorectal adenoma detection rate (ADR)
is regarded as a main quality indicator of
(screening) colonoscopy and has been shown
to correlate with interval cancers. Reducing
adenoma miss rates by increasing ADR has
been a goal of many studies focused on
imaging techniques and mechanical methods.
► Artificial intelligence has been recently
introduced for polyp and adenoma detection
as well as differentiation and has shown
promising results in preliminary studies.
What are the new findings?
► This represents the first prospective randomised
controlled trial examining an automatic polyp
detection during colonoscopy and shows an
increase of ADR by 50%, from 20% to 30%.
► This effect was mainly due to a higher rate of
small adenomas found.
► The detection rate of hyperplastic polyps was
also significantly increased.
How might it impact on clinical practice in the
foreseeable future?
► Automatic polyp and adenoma detection could
be the future of diagnostic colonoscopy in order
to achieve stable high adenoma detection rates.
► However, the effect on ultimate outcome is
still unclear, and further improvements such as
polyp differentiation have to be implemented.
on17March2019byguest.Protectedbycopyright.http://gut.bmj.com/Gut:firstpublishedas10.1136/gutjnl-2018-317500on27February2019.Downloadedfrom
소화기내과
Downloadedfromhttps://journals.lww.com/ajspbyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3MyLIZIvnCFZVJ56DGsD590P5lh5KqE20T/dBX3x9CoM=on10/14/2018
Downloadedfromhttps://journals.lww.com/ajspbyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3MyLIZIvnCFZVJ56DGsD590P5lh5KqE20T/dBX3x9CoM=on10/14/2018
Impact of Deep Learning Assistance on the
Histopathologic Review of Lymph Nodes for Metastatic
Breast Cancer
David F. Steiner, MD, PhD,* Robert MacDonald, PhD,* Yun Liu, PhD,* Peter Truszkowski, MD,*
Jason D. Hipp, MD, PhD, FCAP,* Christopher Gammage, MS,* Florence Thng, MS,†
Lily Peng, MD, PhD,* and Martin C. Stumpe, PhD*
Abstract: Advances in the quality of whole-slide images have set the
stage for the clinical use of digital images in anatomic pathology.
Along with advances in computer image analysis, this raises the
possibility for computer-assisted diagnostics in pathology to improve
histopathologic interpretation and clinical care. To evaluate the
potential impact of digital assistance on interpretation of digitized
slides, we conducted a multireader multicase study utilizing our deep
learning algorithm for the detection of breast cancer metastasis in
lymph nodes. Six pathologists reviewed 70 digitized slides from lymph
node sections in 2 reader modes, unassisted and assisted, with a wash-
out period between sessions. In the assisted mode, the deep learning
algorithm was used to identify and outline regions with high like-
lihood of containing tumor. Algorithm-assisted pathologists demon-
strated higher accuracy than either the algorithm or the pathologist
alone. In particular, algorithm assistance significantly increased the
sensitivity of detection for micrometastases (91% vs. 83%, P=0.02).
In addition, average review time per image was significantly shorter
with assistance than without assistance for both micrometastases (61
vs. 116 s, P=0.002) and negative images (111 vs. 137 s, P=0.018).
Lastly, pathologists were asked to provide a numeric score regarding
the difficulty of each image classification. On the basis of this score,
pathologists considered the image review of micrometastases to be
significantly easier when interpreted with assistance (P=0.0005).
Utilizing a proof of concept assistant tool, this study demonstrates the
potential of a deep learning algorithm to improve pathologist accu-
racy and efficiency in a digital pathology workflow.
Key Words: artificial intelligence, machine learning, digital pathology,
breast cancer, computer aided detection
(Am J Surg Pathol 2018;00:000–000)
The regulatory approval and gradual implementation of
whole-slide scanners has enabled the digitization of glass
slides for remote consults and archival purposes.1 Digitiza-
tion alone, however, does not necessarily improve the con-
sistency or efficiency of a pathologist’s primary workflow. In
fact, image review on a digital medium can be slightly
slower than on glass, especially for pathologists with limited
digital pathology experience.2 However, digital pathology
and image analysis tools have already demonstrated po-
tential benefits, including the potential to reduce inter-reader
variability in the evaluation of breast cancer HER2 status.3,4
Digitization also opens the door for assistive tools based on
Artificial Intelligence (AI) to improve efficiency and con-
sistency, decrease fatigue, and increase accuracy.5
Among AI technologies, deep learning has demon-
strated strong performance in many automated image-rec-
ognition applications.6–8 Recently, several deep learning–
based algorithms have been developed for the detection of
breast cancer metastases in lymph nodes as well as for other
applications in pathology.9,10 Initial findings suggest that
some algorithms can even exceed a pathologist’s sensitivity
for detecting individual cancer foci in digital images. How-
ever, this sensitivity gain comes at the cost of increased false
positives, potentially limiting the utility of such algorithms for
automated clinical use.11 In addition, deep learning algo-
rithms are inherently limited to the task for which they have
been specifically trained. While we have begun to understand
the strengths of these algorithms (such as exhaustive search)
and their weaknesses (sensitivity to poor optical focus, tumor
mimics; manuscript under review), the potential clinical util-
ity of such algorithms has not been thoroughly examined.
While an accurate algorithm alone will not necessarily aid
pathologists or improve clinical interpretation, these benefits
may be achieved through thoughtful and appropriate in-
tegration of algorithm predictions into the clinical workflow.8
From the *Google AI Healthcare; and †Verily Life Sciences, Mountain
View, CA.
D.F.S., R.M., and Y.L. are co-first authors (equal contribution).
Work done as part of the Google Brain Healthcare Technology Fellowship
(D.F.S. and P.T.).
Conflicts of Interest and Source of Funding: D.F.S., R.M., Y.L., P.T.,
J.D.H., C.G., F.T., L.P., M.C.S. are employees of Alphabet and have
Alphabet stock.
Correspondence: David F. Steiner, MD, PhD, Google AI Healthcare,
1600 Amphitheatre Way, Mountain View, CA 94043
(e-mail: davesteiner@google.com).
Supplemental Digital Content is available for this article. Direct URL citations
appear in the printed text and are provided in the HTML and PDF
versions of this article on the journal’s website, www.ajsp.com.
Copyright © 2018 The Author(s). Published by Wolters Kluwer Health,
Inc. This is an open-access article distributed under the terms of the
Creative Commons Attribution-Non Commercial-No Derivatives
License 4.0 (CCBY-NC-ND), where it is permissible to download and
share the work provided it is properly cited. The work cannot be
changed in any way or used commercially without permission from
the journal.
ORIGINAL ARTICLE
Am J Surg Pathol  Volume 00, Number 00, ’’ 2018 www.ajsp.com | 1
병리과
S E P S I S
A targeted real-time early warning score (TREWScore)
for septic shock
Katharine E. Henry,1
David N. Hager,2
Peter J. Pronovost,3,4,5
Suchi Saria1,3,5,6
*
Sepsis is a leading cause of death in the United States, with mortality highest among patients who develop septic
shock. Early aggressive treatment decreases morbidity and mortality. Although automated screening tools can detect
patients currently experiencing severe sepsis and septic shock, none predict those at greatest risk of developing
shock. We analyzed routinely available physiological and laboratory data from intensive care unit patients and devel-
oped “TREWScore,” a targeted real-time early warning score that predicts which patients will develop septic shock.
TREWScore identified patients before the onset of septic shock with an area under the ROC (receiver operating
characteristic) curve (AUC) of 0.83 [95% confidence interval (CI), 0.81 to 0.85]. At a specificity of 0.67, TREWScore
achieved a sensitivity of 0.85 and identified patients a median of 28.2 [interquartile range (IQR), 10.6 to 94.2] hours
before onset. Of those identified, two-thirds were identified before any sepsis-related organ dysfunction. In compar-
ison, the Modified Early Warning Score, which has been used clinically for septic shock prediction, achieved a lower
AUC of 0.73 (95% CI, 0.71 to 0.76). A routine screening protocol based on the presence of two of the systemic inflam-
matory response syndrome criteria, suspicion of infection, and either hypotension or hyperlactatemia achieved a low-
er sensitivity of 0.74 at a comparable specificity of 0.64. Continuous sampling of data from the electronic health
records and calculation of TREWScore may allow clinicians to identify patients at risk for septic shock and provide
earlier interventions that would prevent or mitigate the associated morbidity and mortality.
INTRODUCTION
Seven hundred fifty thousand patients develop severe sepsis and septic
shock in the United States each year. More than half of them are
admitted to an intensive care unit (ICU), accounting for 10% of all
ICU admissions, 20 to 30% of hospital deaths, and $15.4 billion in an-
nual health care costs (1–3). Several studies have demonstrated that
morbidity, mortality, and length of stay are decreased when severe sep-
sis and septic shock are identified and treated early (4–8). In particular,
one study showed that mortality from septic shock increased by 7.6%
with every hour that treatment was delayed after the onset of hypo-
tension (9).
More recent studies comparing protocolized care, usual care, and
early goal-directed therapy (EGDT) for patients with septic shock sug-
gest that usual care is as effective as EGDT (10–12). Some have inter-
preted this to mean that usual care has improved over time and reflects
important aspects of EGDT, such as early antibiotics and early ag-
gressive fluid resuscitation (13). It is likely that continued early identi-
fication and treatment will further improve outcomes. However, the
best approach to managing patients at high risk of developing septic
shock before the onset of severe sepsis or shock has not been studied.
Methods that can identify ahead of time which patients will later expe-
rience septic shock are needed to further understand, study, and im-
prove outcomes in this population.
General-purpose illness severity scoring systems such as the Acute
Physiology and Chronic Health Evaluation (APACHE II), Simplified
Acute Physiology Score (SAPS II), SequentialOrgan Failure Assessment
(SOFA) scores, Modified Early Warning Score (MEWS), and Simple
Clinical Score (SCS) have been validated to assess illness severity and
risk of death among septic patients (14–17). Although these scores
are useful for predicting general deterioration or mortality, they typical-
ly cannot distinguish with high sensitivity and specificity which patients
are at highest risk of developing a specific acute condition.
The increased use of electronic health records (EHRs), which can be
queried in real time, has generated interest in automating tools that
identify patients at risk for septic shock (18–20). A number of “early
warning systems,” “track and trigger” initiatives, “listening applica-
tions,” and “sniffers” have been implemented to improve detection
andtimelinessof therapy forpatients with severe sepsis andseptic shock
(18, 20–23). Although these tools have been successful at detecting pa-
tients currently experiencing severe sepsis or septic shock, none predict
which patients are at highest risk of developing septic shock.
The adoption of the Affordable Care Act has added to the growing
excitement around predictive models derived from electronic health
data in a variety of applications (24), including discharge planning
(25), risk stratification (26, 27), and identification of acute adverse
events (28, 29). For septic shock in particular, promising work includes
that of predicting septic shock using high-fidelity physiological signals
collected directly from bedside monitors (30, 31), inferring relationships
between predictors of septic shock using Bayesian networks (32), and
using routine measurements for septic shock prediction (33–35). No
current prediction models that use only data routinely stored in the
EHR predict septic shock with high sensitivity and specificity many
hours before onset. Moreover, when learning predictive risk scores, cur-
rent methods (34, 36, 37) often have not accounted for the censoring
effects of clinical interventions on patient outcomes (38). For instance,
a patient with severe sepsis who received fluids and never developed
septic shock would be treated as a negative case, despite the possibility
that he or she might have developed septic shock in the absence of such
treatment and therefore could be considered a positive case up until the
1
Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.
2
Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of
Medicine, Johns Hopkins University, Baltimore, MD 21205, USA. 3
Armstrong Institute for
Patient Safety and Quality, Johns Hopkins University, Baltimore, MD 21202, USA. 4
Department
of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University,
Baltimore, MD 21202, USA. 5
Department of Health Policy and Management, Bloomberg
School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA. 6
Department
of Applied Math and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA.
*Corresponding author. E-mail: ssaria@cs.jhu.edu
R E S E A R C H A R T I C L E
www.ScienceTranslationalMedicine.org 5 August 2015 Vol 7 Issue 299 299ra122 1
onNovember3,2016http://stm.sciencemag.org/Downloadedfrom
An Algorithm Based on Deep Learning for Predicting In-Hospital
Cardiac Arrest
Joon-myoung Kwon, MD;* Youngnam Lee, MS;* Yeha Lee, PhD; Seungwoo Lee, BS; Jinsik Park, MD, PhD
Background-—In-hospital cardiac arrest is a major burden to public health, which affects patient safety. Although traditional track-
and-trigger systems are used to predict cardiac arrest early, they have limitations, with low sensitivity and high false-alarm rates.
We propose a deep learning–based early warning system that shows higher performance than the existing track-and-trigger
systems.
Methods and Results-—This retrospective cohort study reviewed patients who were admitted to 2 hospitals from June 2010 to July
2017. A total of 52 131 patients were included. Specifically, a recurrent neural network was trained using data from June 2010 to
January 2017. The result was tested using the data from February to July 2017. The primary outcome was cardiac arrest, and the
secondary outcome was death without attempted resuscitation. As comparative measures, we used the area under the receiver
operating characteristic curve (AUROC), the area under the precision–recall curve (AUPRC), and the net reclassification index.
Furthermore, we evaluated sensitivity while varying the number of alarms. The deep learning–based early warning system (AUROC:
0.850; AUPRC: 0.044) significantly outperformed a modified early warning score (AUROC: 0.603; AUPRC: 0.003), a random forest
algorithm (AUROC: 0.780; AUPRC: 0.014), and logistic regression (AUROC: 0.613; AUPRC: 0.007). Furthermore, the deep learning–
based early warning system reduced the number of alarms by 82.2%, 13.5%, and 42.1% compared with the modified early warning
system, random forest, and logistic regression, respectively, at the same sensitivity.
Conclusions-—An algorithm based on deep learning had high sensitivity and a low false-alarm rate for detection of patients with
cardiac arrest in the multicenter study. (J Am Heart Assoc. 2018;7:e008678. DOI: 10.1161/JAHA.118.008678.)
Key Words: artificial intelligence • cardiac arrest • deep learning • machine learning • rapid response system • resuscitation
In-hospital cardiac arrest is a major burden to public health,
which affects patient safety.1–3
More than a half of cardiac
arrests result from respiratory failure or hypovolemic shock,
and 80% of patients with cardiac arrest show signs of
deterioration in the 8 hours before cardiac arrest.4–9
However,
209 000 in-hospital cardiac arrests occur in the United States
each year, and the survival discharge rate for patients with
cardiac arrest is 20% worldwide.10,11
Rapid response systems
(RRSs) have been introduced in many hospitals to detect
cardiac arrest using the track-and-trigger system (TTS).12,13
Two types of TTS are used in RRSs. For the single-parameter
TTS (SPTTS), cardiac arrest is predicted if any single vital sign
(eg, heart rate [HR], blood pressure) is out of the normal
range.14
The aggregated weighted TTS calculates a weighted
score for each vital sign and then finds patients with cardiac
arrest based on the sum of these scores.15
The modified early
warning score (MEWS) is one of the most widely used
approaches among all aggregated weighted TTSs (Table 1)16
;
however, traditional TTSs including MEWS have limitations, with
low sensitivity or high false-alarm rates.14,15,17
Sensitivity and
false-alarm rate interact: Increased sensitivity creates higher
false-alarm rates and vice versa.
Current RRSs suffer from low sensitivity or a high false-
alarm rate. An RRS was used for only 30% of patients before
unplanned intensive care unit admission and was not used for
22.8% of patients, even if they met the criteria.18,19
From the Departments of Emergency Medicine (J.-m.K.) and Cardiology (J.P.), Mediplex Sejong Hospital, Incheon, Korea; VUNO, Seoul, Korea (Youngnam L., Yeha L.,
S.L.).
*Dr Kwon and Mr Youngnam Lee contributed equally to this study.
Correspondence to: Joon-myoung Kwon, MD, Department of Emergency medicine, Mediplex Sejong Hospital, 20, Gyeyangmunhwa-ro, Gyeyang-gu, Incheon 21080,
Korea. E-mail: kwonjm@sejongh.co.kr
Received January 18, 2018; accepted May 31, 2018.
ª 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for
commercial purposes.
DOI: 10.1161/JAHA.118.008678 Journal of the American Heart Association 1
ORIGINAL RESEARCH
byguestonJune28,2018http://jaha.ahajournals.org/Downloadedfrom
감염내과 심장내과
BRIEF COMMUNICATION OPEN
Digital biomarkers of cognitive function
Paul Dagum1
To identify digital biomarkers associated with cognitive function, we analyzed human–computer interaction from 7 days of
smartphone use in 27 subjects (ages 18–34) who received a gold standard neuropsychological assessment. For several
neuropsychological constructs (working memory, memory, executive function, language, and intelligence), we found a family of
digital biomarkers that predicted test scores with high correlations (p  10−4
). These preliminary results suggest that passive
measures from smartphone use could be a continuous ecological surrogate for laboratory-based neuropsychological assessment.
npj Digital Medicine (2018)1:10 ; doi:10.1038/s41746-018-0018-4
INTRODUCTION
By comparison to the functional metrics available in other
disciplines, conventional measures of neuropsychiatric disorders
have several challenges. First, they are obtrusive, requiring a
subject to break from their normal routine, dedicating time and
often travel. Second, they are not ecological and require subjects
to perform a task outside of the context of everyday behavior.
Third, they are episodic and provide sparse snapshots of a patient
only at the time of the assessment. Lastly, they are poorly scalable,
taxing limited resources including space and trained staff.
In seeking objective and ecological measures of cognition, we
attempted to develop a method to measure memory and
executive function not in the laboratory but in the moment,
day-to-day. We used human–computer interaction on smart-
phones to identify digital biomarkers that were correlated with
neuropsychological performance.
RESULTS
In 2014, 27 participants (ages 27.1 ± 4.4 years, education
14.1 ± 2.3 years, M:F 8:19) volunteered for neuropsychological
assessment and a test of the smartphone app. Smartphone
human–computer interaction data from the 7 days following
the neuropsychological assessment showed a range of correla-
tions with the cognitive scores. Table 1 shows the correlation
between each neurocognitive test and the cross-validated
predictions of the supervised kernel PCA constructed from
the biomarkers for that test. Figure 1 shows each participant
test score and the digital biomarker prediction for (a) digits
backward, (b) symbol digit modality, (c) animal fluency,
(d) Wechsler Memory Scale-3rd Edition (WMS-III) logical
memory (delayed free recall), (e) brief visuospatial memory test
(delayed free recall), and (f) Wechsler Adult Intelligence Scale-
4th Edition (WAIS-IV) block design. Construct validity of the
predictions was determined using pattern matching that
computed a correlation of 0.87 with p  10−59
between the
covariance matrix of the predictions and the covariance matrix
of the tests.
Table 1. Fourteen neurocognitive assessments covering five cognitive
domains and dexterity were performed by a neuropsychologist.
Shown are the group mean and standard deviation, range of score,
and the correlation between each test and the cross-validated
prediction constructed from the digital biomarkers for that test
Cognitive predictions
Mean (SD) Range R (predicted),
p-value
Working memory
Digits forward 10.9 (2.7) 7–15 0.71 ± 0.10, 10−4
Digits backward 8.3 (2.7) 4–14 0.75 ± 0.08, 10−5
Executive function
Trail A 23.0 (7.6) 12–39 0.70 ± 0.10, 10−4
Trail B 53.3 (13.1) 37–88 0.82 ± 0.06, 10−6
Symbol digit modality 55.8 (7.7) 43–67 0.70 ± 0.10, 10−4
Language
Animal fluency 22.5 (3.8) 15–30 0.67 ± 0.11, 10−4
FAS phonemic fluency 42 (7.1) 27–52 0.63 ± 0.12, 10−3
Dexterity
Grooved pegboard test
(dominant hand)
62.7 (6.7) 51–75 0.73 ± 0.09, 10−4
Memory
California verbal learning test
(delayed free recall)
14.1 (1.9) 9–16 0.62 ± 0.12, 10−3
WMS-III logical memory
(delayed free recall)
29.4 (6.2) 18–42 0.81 ± 0.07, 10−6
Brief visuospatial memory test
(delayed free recall)
10.2 (1.8) 5–12 0.77 ± 0.08, 10−5
Intelligence scale
WAIS-IV block design 46.1(12.8) 12–61 0.83 ± 0.06, 10−6
WAIS-IV matrix reasoning 22.1(3.3) 12–26 0.80 ± 0.07, 10−6
WAIS-IV vocabulary 40.6(4.0) 31–50 0.67 ± 0.11, 10−4
Received: 5 October 2017 Revised: 3 February 2018 Accepted: 7 February 2018
1
Mindstrong Health, 248 Homer Street, Palo Alto, CA 94301, USA
Correspondence: Paul Dagum (paul@mindstronghealth.com)
www.nature.com/npjdigitalmed
정신의학과
P R E C I S I O N M E D I C I N E
Identification of type 2 diabetes subgroups through
topological analysis of patient similarity
Li Li,1
Wei-Yi Cheng,1
Benjamin S. Glicksberg,1
Omri Gottesman,2
Ronald Tamler,3
Rong Chen,1
Erwin P. Bottinger,2
Joel T. Dudley1,4
*
Type 2 diabetes (T2D) is a heterogeneous complex disease affecting more than 29 million Americans alone with a
rising prevalence trending toward steady increases in the coming decades. Thus, there is a pressing clinical need to
improve early prevention and clinical management of T2D and its complications. Clinicians have understood that
patients who carry the T2D diagnosis have a variety of phenotypes and susceptibilities to diabetes-related compli-
cations. We used a precision medicine approach to characterize the complexity of T2D patient populations based
on high-dimensional electronic medical records (EMRs) and genotype data from 11,210 individuals. We successfully
identified three distinct subgroups of T2D from topology-based patient-patient networks. Subtype 1 was character-
ized by T2D complications diabetic nephropathy and diabetic retinopathy; subtype 2 was enriched for cancer ma-
lignancy and cardiovascular diseases; and subtype 3 was associated most strongly with cardiovascular diseases,
neurological diseases, allergies, and HIV infections. We performed a genetic association analysis of the emergent
T2D subtypes to identify subtype-specific genetic markers and identified 1279, 1227, and 1338 single-nucleotide
polymorphisms (SNPs) that mapped to 425, 322, and 437 unique genes specific to subtypes 1, 2, and 3, respec-
tively. By assessing the human disease–SNP association for each subtype, the enriched phenotypes and
biological functions at the gene level for each subtype matched with the disease comorbidities and clinical dif-
ferences that we identified through EMRs. Our approach demonstrates the utility of applying the precision
medicine paradigm in T2D and the promise of extending the approach to the study of other complex, multi-
factorial diseases.
INTRODUCTION
Type 2 diabetes (T2D) is a complex, multifactorial disease that has
emerged as an increasing prevalent worldwide health concern asso-
ciated with high economic and physiological burdens. An estimated
29.1 million Americans (9.3% of the population) were estimated to
have some form of diabetes in 2012—up 13% from 2010—with T2D
representing up to 95% of all diagnosed cases (1, 2). Risk factors for
T2D include obesity, family history of diabetes, physical inactivity, eth-
nicity, and advanced age (1, 2). Diabetes and its complications now
rank among the leading causes of death in the United States (2). In fact,
diabetes is the leading cause of nontraumatic foot amputation, adult
blindness, and need for kidney dialysis, and multiplies risk for myo-
cardial infarction, peripheral artery disease, and cerebrovascular disease
(3–6). The total estimated direct medical cost attributable to diabetes in
the United States in 2012 was $176 billion, with an estimated $76 billion
attributable to hospital inpatient care alone. There is a great need to im-
prove understanding of T2D and its complex factors to facilitate pre-
vention, early detection, and improvements in clinical management.
A more precise characterization of T2D patient populations can en-
hance our understanding of T2D pathophysiology (7, 8). Current
clinical definitions classify diabetes into three major subtypes: type 1 dia-
betes (T1D), T2D, and maturity-onset diabetes of the young. Other sub-
types based on phenotype bridge the gap between T1D and T2D, for
example, latent autoimmune diabetes in adults (LADA) (7) and ketosis-
prone T2D. The current categories indicate that the traditional definition of
diabetes, especially T2D, might comprise additional subtypes with dis-
tinct clinical characteristics. A recent analysis of the longitudinal Whitehall
II cohort study demonstrated improved assessment of cardiovascular
risks when subgrouping T2D patients according to glucose concentration
criteria (9). Genetic association studies reveal that the genetic architec-
ture of T2D is profoundly complex (10–12). Identified T2D-associated
risk variants exhibit allelic heterogeneity and directional differentiation
among populations (13, 14). The apparent clinical and genetic com-
plexity and heterogeneity of T2D patient populations suggest that there
are opportunities to refine the current, predominantly symptom-based,
definition of T2D into additional subtypes (7).
Because etiological and pathophysiological differences exist among
T2D patients, we hypothesize that a data-driven analysis of a clinical
population could identify new T2D subtypes and factors. Here, we de-
velop a data-driven, topology-based approach to (i) map the complexity
of patient populations using clinical data from electronic medical re-
cords (EMRs) and (ii) identify new, emergent T2D patient subgroups
with subtype-specific clinical and genetic characteristics. We apply this
approachtoadatasetcomprisingmatchedEMRsandgenotypedatafrom
more than 11,000 individuals. Topological analysis of these data revealed
three distinct T2D subtypes that exhibited distinct patterns of clinical
characteristics and disease comorbidities. Further, we identified genetic
markers associated with each T2D subtype and performed gene- and
pathway-level analysis of subtype genetic associations. Biological and
phenotypic features enriched in the genetic analysis corroborated clinical
disparities observed among subgroups. Our findings suggest that data-
driven,topologicalanalysisofpatientco
내분비내과
LETTER
Derma o og - eve c a ca on o k n cancer
w h deep neura ne work
피부과
FOCUS LETTERS
W
W
W
W
W
Ca d o og s eve a hy hm a de ec on and
c ass ca on n ambu a o y e ec oca d og ams
us ng a deep neu a ne wo k
M m
M
FOCUS LETTERS
심장내과
D p a n ng nab obu a m n and on o
human b a o y a n v o a on
산부인과
O G NA A
W on o On o og nd b e n e e men
e ommend on g eemen w h n e pe
mu d p n umo bo d
종양내과
D m
m
B D m OHCA
m Kw MD K H MD M H M K m MD
M M K m MD M M L m MD M K H K m
MD D MD D MD D R K C
MD D B H O MD D
D m Em M M H
K
D C C C M H
K
T w
A D C D m
M C C M H
G m w G R K
Tw w
C A K H MD D C
D m M C C M
H K G m w G
R K T E m
m @ m m
A
A m O OHCA m
m m w w
T m
m DCA
M T w m K OHCA w
A
CCEPTED
M
A
N
U
SCRIPT
응급의학과
No choice but to bring AI into the medicine
Martin Duggan,“IBM Watson Health - Integrated Care  the Evolution to Cognitive Computing”
l 4 URUOUM AM c Z Q USQZOQ
q
q $ $ $ $
lq 4 URUOUM :QZQ M Z Q USQZOQ
q v
q $ $ $ $ … z
l 4 URUOUM Fa Q Z Q USQZOQ
q $ v
q o p % ;
2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
90%
50%
10%
PT-AI
AGI
EETNTOP100 Combined
m o w m3
Philosophy and Theory of AI (2011)
Artificial General Intelligence (2012)
Greek Association for Artificial Intelligence
Survey of most frequently cited 100 authors (2013)
Combined
응답자
누적 비율
Superintelligence, Nick Bostrom (2014)
Superintelligence: Science of fiction?
Panelists: Elon Musk (Tesla, SpaceX), Bart Selman (Cornell), Ray Kurzweil (Google),
David Chalmers (NYU), Nick Bostrom(FHI), Demis Hassabis (Deep Mind), Stuart
Russell (Berkeley), Sam Harris, and Jaan Tallinn (CSER/FLI)
January 6-8, 2017, Asilomar, CA
https://brunch.co.kr/@kakao-it/49
https://www.youtube.com/watch?v=h0962biiZa4
Superintelligence: Science of fiction?
Panelists: Elon Musk (Tesla, SpaceX), Bart Selman (Cornell), Ray Kurzweil (Google),
David Chalmers (NYU), Nick Bostrom(FHI), Demis Hassabis (Deep Mind), Stuart
Russell (Berkeley), Sam Harris, and Jaan Tallinn (CSER/FLI)
January 6-8, 2017, Asilomar, CA
D0 m w m3
D0 m s m w n m3
Table 1
Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn
YES YES YES YES YES YES YES YES YES
Table 1-1
Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn
YES YES YES YES YES YES YES YES YES
D0 ‘ m3
Table 1-1-1
Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn
Complicated Complicated Complicated YES Complicated YES YES Complicated Complicated
https://brunch.co.kr/@kakao-it/49
https://www.youtube.com/watch?v=h0962biiZa4
http://waitbutwhy.com/2015/01/artificial-intelligence-revolution-2.html
http://waitbutwhy.com/2015/01/artificial-intelligence-revolution-2.html
Superintelligence, Nick Bostrom (2014)
v !Yf R SRdV V x $
!dfaVc eV XV TV !eR V WW
v 
How far to superintelligence
l 4 URUOUM AM c Z Q USQZOQ
q
q $ $ $ $
lq 4 URUOUM :QZQ M Z Q USQZOQ
q v
q $ $ $ $ … z
l 4 URUOUM Fa Q Z Q USQZOQ
q $ v
q o p % ;
l 0 (
l( 0 t
l) 0 x w m
q… d XYe
q '• '
q '
l UZ UST
q '• '
q '
Jeopardy!
()) v ‘
600,000 pieces of medical evidence
2 million pages of text from 42 medical journals and clinical trials
69 guidelines, 61,540 clinical trials
IBM Watson on Medicine
Watson learned...
+
1,500 lung cancer cases
physician notes, lab results and clinical research
+
14,700 hours of hands-on training
! 
•
•
OG
t
( ( ( ( ) ( ( +
EKC
! 
E
! •
E
89K;G
$
! 
?V VE$
! 
A:E
ORed @VR eY ’
$
B B$ $
$
!=@J 
! OG
$
%
GE=
( -
t
•
KfXRcAI
’ • $
OG
( ,
! %

• 

OG
t •
• 

•
$
•
’




t
( .
•
5 JM Z QM T 6T ZUO Q
OG
! 
•
•
OG
t
( ( ( ( ) ( ( +
EKC
! 
E
! •
E
89K;G
$
! 
?V VE$
! 
A:E
ORed @VR eY ’
$
B B$ $
$
!=@J 
! OG
$
%
GE=
( -
t
•
KfXRcAI
’ • $
OG
( ,
! %

• 

OG
•
$
•
’




t
( .
•
5 JM Z QM T 6T ZUO Q
OG
t •
• 

Annals of Oncology (2016) 27 (suppl_9): ix179-ix180. 10.1093/annonc/mdw601
Validation study to assess performance of IBM cognitive
computing system Watson for oncology with Manipal
multidisciplinary tumour board for 1000 consecutive cases: 

An Indian experience
l  J9B h i
q .+0 $ ) . $ ) , $ ))
l
q !-(
$ ! 0
$ !)/

q -

l
q !0-
$ !)/0

q !./1
$ @=J !+-
San Antonio Breast Cancer Symposium—December 6-10, 2016
Concordance WFO (@T2) and MMDT (@T1* v. T2**)
(N= 638 Breast Cancer Cases)
Time Point
/Concordance
REC REC + FC
n % n %
T1* 296 46 463 73
T2** 381 60 574 90
This presentation is the intellectual property of the author/presenter.Contact somusp@yahoo.com for permission to reprint and/or distribute.26
* T1 Time of original treatment decision by MMDT in the past (last 1-3 years)
** T2 Time (2016) of WFO’s treatment advice and of MMDT’s treatment decision upon blinded re-review of non-concordant
cases
WFO in ASCO 2017
q=Rc j ViaVc V TV h eY A:E OG T X e gV T afe X djdeV W c f X 



R U T cVTeR TR TVc ecVRe V e ! • 

q + v2 f X TR TVc!)) $ T TR TVc!) .$ cVTef
TR TVc!) ,
q f X TR TVc2 TR kVU 001
$ VeR 1/1

qT TR TVc2 TR kVU 0--
$ VeR /..

qcVTef TR TVc2 TR kVU 1.0
$ VeR 0(.

Performance of WFO in India
2017 ASCO annual Meeting, J Clin Oncol 35, 2017 (suppl; abstr 8527)
WFO in ASCO 2017
lm
q !deRXV AA%AN +,(
q )0- !JVec daVTe gV

l
l 0 -)
q !RU fgR e -( 2 0-

q 1( 2 ,(


l 0 /
q LcRdekf RS'GDGP t x t
q K%)!eVXRWfc$ X VcRT R U eVcRT  T da Re 2
q 3 P
ORIGINAL ARTICLE
Watson for Oncology and breast cancer treatment
recommendations: agreement with an expert
multidisciplinary tumor board
S. P. Somashekhar1*, M.-J. Sepu´lveda2
, S. Puglielli3
, A. D. Norden3
, E. H. Shortliffe4
, C. Rohit Kumar1
,
A. Rauthan1
, N. Arun Kumar1
, P. Patil1
, K. Rhee3
 Y. Ramya1
1
Manipal Comprehensive Cancer Centre, Manipal Hospital, Bangalore, India; 2
IBM Research (Retired), Yorktown Heights; 3
Watson Health, IBM Corporation,
Cambridge; 4
Department of Surgical Oncology, College of Health Solutions, Arizona State University, Phoenix, USA
*Correspondence to: Prof. Sampige Prasannakumar Somashekhar, Manipal Comprehensive Cancer Centre, Manipal Hospital, Old Airport Road, Bangalore 560017, Karnataka,
India. Tel: þ91-9845712012; Fax: þ91-80-2502-3759; E-mail: somashekhar.sp@manipalhospitals.com
Background: Breast cancer oncologists are challenged to personalize care with rapidly changing scientific evidence, drug
approvals, and treatment guidelines. Artificial intelligence (AI) clinical decision-support systems (CDSSs) have the potential to
help address this challenge. We report here the results of examining the level of agreement (concordance) between treatment
recommendations made by the AI CDSS Watson for Oncology (WFO) and a multidisciplinary tumor board for breast cancer.
Patients and methods: Treatment recommendations were provided for 638 breast cancers between 2014 and 2016 at the
Manipal Comprehensive Cancer Center, Bengaluru, India. WFO provided treatment recommendations for the identical cases in
2016. A blinded second review was carried out by the center’s tumor board in 2016 for all cases in which there was not
agreement, to account for treatments and guidelines not available before 2016. Treatment recommendations were considered
concordant if the tumor board recommendations were designated ‘recommended’ or ‘for consideration’ by WFO.
Results: Treatment concordance between WFO and the multidisciplinary tumor board occurred in 93% of breast cancer cases.
Subgroup analysis found that patients with stage I or IV disease were less likely to be concordant than patients with stage II or III
disease. Increasing age was found to have a major impact on concordance. Concordance declined significantly (P 0.02;
P  0.001) in all age groups compared with patients 45 years of age, except for the age group 55–64 years. Receptor status
was not found to affect concordance.
Conclusion: Treatment recommendations made by WFO and the tumor board were highly concordant for breast cancer cases
examined. Breast cancer stage and patient age had significant influence on concordance, while receptor status alone did not.
This study demonstrates that the AI clinical decision-support system WFO may be a helpful tool for breast cancer treatment
decision making, especially at centers where expert breast cancer resources are limited.
Key words: Watson for Oncology, artificial intelligence, cognitive clinical decision-support systems, breast cancer,
concordance, multidisciplinary tumor board
Introduction
Oncologists who treat breast cancer are challenged by a large and
rapidly expanding knowledge base [1, 2]. As of October 2017, for
example, there were 69 FDA-approved drugs for the treatment of
breast cancer, not including combination treatment regimens
[3]. The growth of massive genetic and clinical databases, along
with computing systems to exploit them, will accelerate the speed
of breast cancer treatment advances and shorten the cycle time
for changes to breast cancer treatment guidelines [4, 5]. In add-
ition, these information management challenges in cancer care
are occurring in a practice environment where there is little time
available for tracking and accessing relevant information at the
point of care [6]. For example, a study that surveyed 1117 oncolo-
gists reported that on average 4.6 h per week were spent keeping
VC The Author(s) 2018. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
All rights reserved. For permissions, please email: journals.permissions@oup.com.
Annals of Oncology 29: 418–423, 2018
doi:10.1093/annonc/mdx781
Published online 9 January 2018
Downloaded from https://academic.oup.com/annonc/article-abstract/29/2/418/4781689
by guest
ORIGINAL ARTICLE
Watson for Oncology and breast cancer treatment
recommendations: agreement with an expert
multidisciplinary tumor board
S. P. Somashekhar1*, M.-J. Sepu´lveda2
, S. Puglielli3
, A. D. Norden3
, E. H. Shortliffe4
, C. Rohit Kumar1
,
A. Rauthan1
, N. Arun Kumar1
, P. Patil1
, K. Rhee3
 Y. Ramya1
1
Manipal Comprehensive Cancer Centre, Manipal Hospital, Bangalore, India; 2
IBM Research (Retired), Yorktown Heights; 3
Watson Health, IBM Corporation,
Cambridge; 4
Department of Surgical Oncology, College of Health Solutions, Arizona State University, Phoenix, USA
*Correspondence to: Prof. Sampige Prasannakumar Somashekhar, Manipal Comprehensive Cancer Centre, Manipal Hospital, Old Airport Road, Bangalore 560017, Karnataka,
India. Tel: þ91-9845712012; Fax: þ91-80-2502-3759; E-mail: somashekhar.sp@manipalhospitals.com
Background: Breast cancer oncologists are challenged to personalize care with rapidly changing scientific evidence, drug
approvals, and treatment guidelines. Artificial intelligence (AI) clinical decision-support systems (CDSSs) have the potential to
help address this challenge. We report here the results of examining the level of agreement (concordance) between treatment
recommendations made by the AI CDSS Watson for Oncology (WFO) and a multidisciplinary tumor board for breast cancer.
Patients and methods: Treatment recommendations were provided for 638 breast cancers between 2014 and 2016 at the
Manipal Comprehensive Cancer Center, Bengaluru, India. WFO provided treatment recommendations for the identical cases in
2016. A blinded second review was carried out by the center’s tumor board in 2016 for all cases in which there was not
agreement, to account for treatments and guidelines not available before 2016. Treatment recommendations were considered
concordant if the tumor board recommendations were designated ‘recommended’ or ‘for consideration’ by WFO.
Results: Treatment concordance between WFO and the multidisciplinary tumor board occurred in 93% of breast cancer cases.
Subgroup analysis found that patients with stage I or IV disease were less likely to be concordant than patients with stage II or III
disease. Increasing age was found to have a major impact on concordance. Concordance declined significantly (P 0.02;
P  0.001) in all age groups compared with patients 45 years of age, except for the age group 55–64 years. Receptor status
was not found to affect concordance.
Conclusion: Treatment recommendations made by WFO and the tumor board were highly concordant for breast cancer cases
examined. Breast cancer stage and patient age had significant influence on concordance, while receptor status alone did not.
This study demonstrates that the AI clinical decision-support system WFO may be a helpful tool for breast cancer treatment
decision making, especially at centers where expert breast cancer resources are limited.
Key words: Watson for Oncology, artificial intelligence, cognitive clinical decision-support systems, breast cancer,
concordance, multidisciplinary tumor board
Introduction
Oncologists who treat breast cancer are challenged by a large and
rapidly expanding knowledge base [1, 2]. As of October 2017, for
example, there were 69 FDA-approved drugs for the treatment of
breast cancer, not including combination treatment regimens
[3]. The growth of massive genetic and clinical databases, along
with computing systems to exploit them, will accelerate the speed
of breast cancer treatment advances and shorten the cycle time
for changes to breast cancer treatment guidelines [4, 5]. In add-
ition, these information management challenges in cancer care
are occurring in a practice environment where there is little time
available for tracking and accessing relevant information at the
point of care [6]. For example, a study that surveyed 1117 oncolo-
gists reported that on average 4.6 h per week were spent keeping
VC The Author(s) 2018. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
All rights reserved. For permissions, please email: journals.permissions@oup.com.
Annals of Oncology 29: 418–423, 2018
doi:10.1093/annonc/mdx781
Published online 9 January 2018
Downloaded from https://academic.oup.com/annonc/article-abstract/29/2/418/4781689
by guest
Table 2. MMDT and WFO recommendations after the initial and blinded second reviews
Review of breast cancer cases (N 5 638) Concordant cases, n (%) Non-concordant cases, n (%)
Recommended For consideration Total Not recommended Not available Total
Initial review (T1MMDT versus T2WFO) 296 (46) 167 (26) 463 (73) 137 (21) 38 (6) 175 (27)
Second review (T2MMDT versus T2WFO) 397 (62) 194 (30) 591 (93) 36 (5) 11 (2) 47 (7)
T1MMDT, original MMDT recommendation from 2014 to 2016; T2WFO, WFO advisor treatment recommendation in 2016; T2MMDT, MMDT treatment recom-
mendation in 2016; MMDT, Manipal multidisciplinary tumor board; WFO, Watson for Oncology.
31%
18%
1% 2% 33%
5% 31%
6%
0% 10% 20%
Not available Not recommended RecommendedFor consideration
30% 40% 50% 60% 70% 80% 90% 100%
8% 25% 61%
64%
64%
29% 51%
62%
Concordance, 93%
Concordance, 80%
Concordance, 97%
Concordance, 95%
Concordance, 86%
2%
2%
Overall
(n=638)
Stage I
(n=61)
Stage II
(n=262)
Stage III
(n=191)
Stage IV
(n=124)
5%
Figure 1. Treatment concordance between WFO and the MMDT overall and by stage. MMDT, Manipal multidisciplinary tumor board; WFO,
Watson for Oncology.
5%Non-metastatic
HR(+)HER2/neu(+)Triple(–)
Metastatic
Non-metastatic
Metastatic
Non-metastatic
Metastatic
10%
1%
2%
1% 5% 20%
20%10%
0%
Not applicable Not recommended For consideration Recommended
20% 40% 60% 80% 100%
5%
74%
65%
34% 64%
5% 38% 56%
15% 20% 55%
36% 59%
Concordance, 95%
Concordance, 75%
Concordance, 94%
Concordance, 98%
Concordance, 94%
Concordance, 85%
Figure 2. Treatment concordance between WFO and the MMDT by stage and receptor status. HER2/neu, human epidermal growth factor
receptor 2; HR, hormone receptor; MMDT, Manipal multidisciplinary tumor board; WFO, Watson for Oncology.
Annals of Oncology Original article
ORIGINAL ARTICLE
Watson for Oncology and breast cancer treatment
recommendations: agreement with an expert
multidisciplinary tumor board
S. P. Somashekhar1*, M.-J. Sepu´lveda2
, S. Puglielli3
, A. D. Norden3
, E. H. Shortliffe4
, C. Rohit Kumar1
,
A. Rauthan1
, N. Arun Kumar1
, P. Patil1
, K. Rhee3
 Y. Ramya1
1
Manipal Comprehensive Cancer Centre, Manipal Hospital, Bangalore, India; 2
IBM Research (Retired), Yorktown Heights; 3
Watson Health, IBM Corporation,
Cambridge; 4
Department of Surgical Oncology, College of Health Solutions, Arizona State University, Phoenix, USA
*Correspondence to: Prof. Sampige Prasannakumar Somashekhar, Manipal Comprehensive Cancer Centre, Manipal Hospital, Old Airport Road, Bangalore 560017, Karnataka,
India. Tel: þ91-9845712012; Fax: þ91-80-2502-3759; E-mail: somashekhar.sp@manipalhospitals.com
Background: Breast cancer oncologists are challenged to personalize care with rapidly changing scientific evidence, drug
approvals, and treatment guidelines. Artificial intelligence (AI) clinical decision-support systems (CDSSs) have the potential to
help address this challenge. We report here the results of examining the level of agreement (concordance) between treatment
recommendations made by the AI CDSS Watson for Oncology (WFO) and a multidisciplinary tumor board for breast cancer.
Patients and methods: Treatment recommendations were provided for 638 breast cancers between 2014 and 2016 at the
Manipal Comprehensive Cancer Center, Bengaluru, India. WFO provided treatment recommendations for the identical cases in
2016. A blinded second review was carried out by the center’s tumor board in 2016 for all cases in which there was not
agreement, to account for treatments and guidelines not available before 2016. Treatment recommendations were considered
concordant if the tumor board recommendations were designated ‘recommended’ or ‘for consideration’ by WFO.
Results: Treatment concordance between WFO and the multidisciplinary tumor board occurred in 93% of breast cancer cases.
Subgroup analysis found that patients with stage I or IV disease were less likely to be concordant than patients with stage II or III
disease. Increasing age was found to have a major impact on concordance. Concordance declined significantly (P 0.02;
P  0.001) in all age groups compared with patients 45 years of age, except for the age group 55–64 years. Receptor status
was not found to affect concordance.
Conclusion: Treatment recommendations made by WFO and the tumor board were highly concordant for breast cancer cases
examined. Breast cancer stage and patient age had significant influence on concordance, while receptor status alone did not.
This study demonstrates that the AI clinical decision-support system WFO may be a helpful tool for breast cancer treatment
decision making, especially at centers where expert breast cancer resources are limited.
Key words: Watson for Oncology, artificial intelligence, cognitive clinical decision-support systems, breast cancer,
concordance, multidisciplinary tumor board
Introduction
Oncologists who treat breast cancer are challenged by a large and
rapidly expanding knowledge base [1, 2]. As of October 2017, for
example, there were 69 FDA-approved drugs for the treatment of
breast cancer, not including combination treatment regimens
[3]. The growth of massive genetic and clinical databases, along
with computing systems to exploit them, will accelerate the speed
of breast cancer treatment advances and shorten the cycle time
for changes to breast cancer treatment guidelines [4, 5]. In add-
ition, these information management challenges in cancer care
are occurring in a practice environment where there is little time
available for tracking and accessing relevant information at the
point of care [6]. For example, a study that surveyed 1117 oncolo-
gists reported that on average 4.6 h per week were spent keeping
VC The Author(s) 2018. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
All rights reserved. For permissions, please email: journals.permissions@oup.com.
Annals of Oncology 29: 418–423, 2018
doi:10.1093/annonc/mdx781
Published online 9 January 2018
Downloaded from https://academic.oup.com/annonc/article-abstract/29/2/418/4781689
by guest
Table 2. MMDT and WFO recommendations after the initial and blinded second reviews
Review of breast cancer cases (N 5 638) Concordant cases, n (%) Non-concordant cases, n (%)
Recommended For consideration Total Not recommended Not available Total
Initial review (T1MMDT versus T2WFO) 296 (46) 167 (26) 463 (73) 137 (21) 38 (6) 175 (27)
Second review (T2MMDT versus T2WFO) 397 (62) 194 (30) 591 (93) 36 (5) 11 (2) 47 (7)
T1MMDT, original MMDT recommendation from 2014 to 2016; T2WFO, WFO advisor treatment recommendation in 2016; T2MMDT, MMDT treatment recom-
mendation in 2016; MMDT, Manipal multidisciplinary tumor board; WFO, Watson for Oncology.
31%
18% 29% 51%
62%
Concordance, 93%
Concordance, 80%
Concordance, 97%
2%
2%
Overall
(n=638)
Stage I
(n=61)
5%
Annals of Oncology Original article
l 0
q 
qy • 
qy • ' t 
q v t
WHY?
l m m
q OG EKC;;
q $ t $
lA66A m
l m
q 2 gd 2
q LF:;2 gd @=J !%2
lJ9B x 3
lJ9B x 3
gd
JM Z R BZO Se
)($((( )($(((
m 3
qHc daVTe gV$ d X V S U cR U kVU ec R
qHc Rcj V Ua e2 gVcR dfcg gR !GK
qKVT URcj V Ua e2 ac XcVdd %WcVV dfcg gR !HK
lJ9B x 3
gd
JM Z R BZO Se
qOG  !   
q YVeVc XV V fd t 
q $ t 
)($((( )($(((
qHc daVTe gV$ d X V S U cR U kVU ec R
qHc Rcj V Ua e2 gVcR dfcg gR !GK
qKVT URcj V Ua e2 ac XcVdd %WcVV dfcg gR !HK
lJ9B x 3
gd
A66A m
A66A m
! JM Z R BZO Se
m w $
qOG  !   
q YVeVc XV V fd t 
q $ t 
qA:E t7
)($((( )($(((
qHc daVTe gV$ d X V S U cR U kVU ec R
qHc Rcj V Ua e2 gVcR dfcg gR !GK
qKVT URcj V Ua e2 ac XcVdd %WcVV dfcg gR !HK
q $ t7
q !  t7
q z t7
q t7
q t7
% m
s s x
Empowering the Oncology Community for Cancer Care
Genomics
Oncology
Clinical
Trial
Matching
Watson Health’s oncology clients span more than 35 hospital systems
“Empowering the Oncology Community
for Cancer Care”
Andrew Norden, KOTRA Conference, March 2017, “The Future of Health is Cognitive”
IBM Watson Health
Watson for Clinical Trial Matching (CTM)
18
1. According to the National Comprehensive Cancer Network (NCCN)
2. http://csdd.tufts.edu/files/uploads/02_-_jan_15,_2013_-_recruitment-retention.pdf© 2015 International Business Machines Corporation
Searching across
eligibility criteria of clinical
trials is time consuming
and labor intensive
Current
Challenges
Fewer than 5% of
adult cancer patients
participate in clinical
trials1
37% of sites fail to meet
minimum enrollment
targets. 11% of sites fail
to enroll a single patient 2
The Watson solution
• Uses structured and unstructured
patient data to quickly check
eligibility across relevant clinical
trials
• Provides eligible trial
considerations ranked by
relevance
• Increases speed to qualify
patients
Clinical Investigators
(Opportunity)
• Trials to Patient: Perform
feasibility analysis for a trial
• Identify sites with most
potential for patient enrollment
• Optimize inclusion/exclusion
criteria in protocols
Faster, more efficient
recruitment strategies,
better designed protocols
Point of Care
(Offering)
• Patient to Trials:
Quickly find the
right trial that a
patient might be
eligible for
amongst 100s of
open trials
available
Improve patient care
quality, consistency,
increased efficiencyIBM Confidential
q ). v @G?! @ XY R Ud G T Xj ?c fa $. (
q1( +z
q 2 ) v -(
qORed ;LE2 , -. o
qORed ;LE • /
q t 0(
 t
Watson Genomics Overview
20
Watson Genomics Content
• 20+ Content Sources Including:
• Medical Articles (23Million)
• Drug Information
• Clinical Trial Information
• Genomic Information
Case Sequenced
VCF / MAF, Log2, Dge
Encryption
Molecular Profile
Analysis
Pathway Analysis
Drug Analysis
Service Analysis, Reports,  Visualizations
2017 HIMSS, courtesy of Hyejin Kam (Asan Medical Center)
2017 HIMSS, courtesy of Hyejin Kam (Asan Medical Center)
qA R 1 deR TVd W cVec daVTe gV R R jd d$ O?9 W Ud RTe RS V d XYed R U
UV e W Vd a eV e R UcfXd W c T d UVcRe 
qLYV Rfe ReVU XV VcRe W eYVdV d XYed d RTY VgVU Sj O?9 feVd
Kazimierz O.
Wrzeszczynski, PhD*
Mayu O. Frank, NP,
MS*
Takahiko Koyama, PhD*
Kahn Rhrissorrakrai, PhD*
Nicolas Robine, PhD
Filippo Utro, PhD
Anne-Katrin Emde, PhD
Bo-Juen Chen, PhD
Kanika Arora, MS
Minita Shah, MS
Vladimir Vacic, PhD
Raquel Norel, PhD
Erhan Bilal, PhD
Ewa A. Bergmann, MSc
Julia L. Moore Vogel,
PhD
Jeffrey N. Bruce, MD
Andrew B. Lassman, MD
Peter Canoll, MD, PhD
Christian Grommes, MD
Steve Harvey, BS
Laxmi Parida, PhD
Vanessa V. Michelini, BS
Michael C. Zody, PhD
Vaidehi Jobanputra, PhD
Ajay K. Royyuru, PhD
Robert B. Darnell, MD,
Comparing sequencing assays and
human-machine analyses in actionable
genomics for glioblastoma
ABSTRACT
Objective: To analyze a glioblastoma tumor specimen with 3 different platforms and compare
potentially actionable calls from each.
Methods: Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal
DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA
sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians
and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated
system for prioritizing somatic variants and identifying drugs.
Results: More variants were identified by WGS/RNA analysis than by targeted panels. WGA com-
pleted a comparable analysis in a fraction of the time required by the human analysts.
Conclusions: The development of an effective human-machine interface in the analysis of deep
cancer genomic datasets may provide potentially clinically actionable calls for individual pa-
tients in a more timely and efficient manner than currently possible.
ClinicalTrials.gov identifier: NCT02725684. Neurol Genet 2017;3:e164; doi: 10.1212/
NXG.0000000000000164
GLOSSARY
CNV 5 copy number variant; EGFR 5 epidermal growth factor receptor; GATK 5 Genome Analysis Toolkit; GBM 5 glioblas-
toma; IRB 5 institutional review board; NLP 5 Natural Language Processing; NYGC 5 New York Genome Center; RNA-seq 5
RNA sequencing; SNV 5 single nucleotide variant; SV 5 structural variant; TCGA 5 The Cancer Genome Atlas; TPM 5
transcripts per million; VCF 5 variant call file; VUS 5 variants of uncertain significance; WGA 5 Watson Genomic Analytics;
WGS 5 whole-genome sequencing.
The clinical application of next-generation sequencing technology to cancer diagnosis and treat-
ment is in its early stages.1–3
An initial implementation of this technology has been in targeted
panels, where subsets of cancer-relevant and/or highly actionable genes are scrutinized for
potentially actionable mutations. This approach has been widely adopted, offering high redun-
dancy of sequence coverage for the small number of sites of known clinical utility at relatively
Table 3 List of variants identified as actionable by 3 different platforms
Gene Variant
Identified variant Identified associated drugs
NYGC WGA FO NYGC WGA FO
CDKN2A Deletion Yes Yes Yes Palbociclib, LY2835219
LEE001
Palbociclib LY2835219 Clinical trial
CDKN2B Deletion Yes Yes Yes Palbociclib, LY2835219
LEE002
Palbociclib LY2835219 Clinical trial
EGFR Gain (whole arm) Yes — — Cetuximab — —
ERG Missense P114Q Yes Yes — RI-EIP RI-EIP —
FGFR3 Missense L49V Yes VUS — TK-1258 — —
MET Amplification Yes Yes Yes INC280 Crizotinib, cabozantinib Crizotinib, cabozantinib
MET Frame shift R755fs Yes — — INC280 — —
MET Exon skipping Yes — — INC280 — —
NF1 Deletion Yes — — MEK162 — —
NF1 Nonsense R461* Yes Yes Yes MEK162 MEK162, cobimetinib,
trametinib, GDC-0994
Everolimus, temsirolimus,
trametinib
PIK3R1 Insertion
R562_M563insI
Yes Yes — BKM120 BKM120, LY3023414 —
PTEN Loss (whole arm) Yes — — Everolimus, AZD2014 — —
STAG2 Frame shift R1012 fs Yes Yes Yes Veliparib, clinical trial Olaparib —
DNMT3A Splice site 2083-1G.C — — Yes — — —
TERT Promoter-146C.T Yes — Yes — — —
ABL2 Missense D716N Germline NA VUS
mTOR Missense H1687R Germline NA VUS
NPM1 Missense E169D Germline NA VUS
NTRK1 Missense G18E Germline NA VUS
PTCH1 Missense P1250R Germline NA VUS
TSC1 Missense G1035S Germline NA VUS
Abbreviations: FO 5 FoundationOne; NYGC 5 New York Genome Center; RNA-seq 5 RNA sequencing; WGA 5 Watson Genomic Analytics; WGS 5 whole-
genome sequencing.
Genes, variant description, and, where appropriate, candidate clinically relevant drugs are listed. Variants identified by the FO as variants of uncertain
significance (VUS) were identified by the NYGC as germline variants.
• WGA analysis vastly accelerated the time to discovery of potentially actionable variants from the VCF files.
• WGA was able to provide reports of potentially clinically actionable insights within 10 minutes
• , while human analysis of this patient's VCF file took an estimated 160 hours of person-time
lj  OM PU bM Oa M QbQZ m w mk
q 2 +/0$ -.
q •
l 466%4 4 m m
qJR U W cVde3 D X de T cVXcVdd 3 ?cRU V e S dde X3 FVfcR Veh c
Stephen F.Weng et al PLoS One 2017
Can machine-learning improve cardiovascular
risk prediction using routine clinical data?
in a sensitivity of 62.7% and PPV of 17.1%. The random forest algorithm resulted in a net
increase of 191 CVD cases from the baseline model, increasing the sensitivity to 65.3% and
PPV to 17.8% while logistic regression resulted in a net increase of 324 CVD cases (sensitivity
67.1%; PPV 18.3%). Gradient boosting machines and neural networks performed best, result-
ing in a net increase of 354 (sensitivity 67.5%; PPV 18.4%) and 355 CVD (sensitivity 67.5%;
PPV 18.4%) cases correctly predicted, respectively.
The ACC/AHA baseline model correctly predicted 53,106 non-cases from 75,585 total non-
cases, resulting in a specificity of 70.3% and NPV of 95.1%. The net increase in non-cases
Table 3. Top 10 risk factor variables for CVD algorithms listed in descending order of coefficient effect size (ACC/AHA; logistic regression),
weighting (neural networks), or selection frequency (random forest, gradient boosting machines). Algorithms were derived from training cohort of
295,267 patients.
ACC/AHA Algorithm Machine-learning Algorithms
Men Women ML: Logistic
Regression
ML: Random Forest ML: Gradient Boosting
Machines
ML: Neural Networks
Age Age Ethnicity Age Age Atrial Fibrillation
Total Cholesterol HDL Cholesterol Age Gender Gender Ethnicity
HDL Cholesterol Total Cholesterol SES: Townsend
Deprivation Index
Ethnicity Ethnicity Oral Corticosteroid
Prescribed
Smoking Smoking Gender Smoking Smoking Age
Age x Total Cholesterol Age x HDL Cholesterol Smoking HDL cholesterol HDL cholesterol Severe Mental Illness
Treated Systolic Blood
Pressure
Age x Total Cholesterol Atrial Fibrillation HbA1c Triglycerides SES: Townsend
Deprivation Index
Age x Smoking Treated Systolic Blood
Pressure
Chronic Kidney Disease Triglycerides Total Cholesterol Chronic Kidney Disease
Age x HDL Cholesterol Untreated Systolic
Blood Pressure
Rheumatoid Arthritis SES: Townsend
Deprivation Index
HbA1c BMI missing
Untreated Systolic
Blood Pressure
Age x Smoking Family history of
premature CHD
BMI Systolic Blood Pressure Smoking
Diabetes Diabetes COPD Total Cholesterol SES: Townsend
Deprivation Index
Gender
Italics: Protective Factors
https://doi.org/10.1371/journal.pone.0174944.t003
PLOS ONE | https://doi.org/10.1371/journal.pone.0174944 April 4, 2017 8 / 14
q 9;;'9@9 t
q $l RSVeVd l l
q $ y 
q;GH$ dVgVcV V eR Vdd$ acVdTc S X W cR T ce T deVc Ud
qec X jTVc UV VgV
Stephen F.Weng et al PLoS One 2017
Can machine-learning improve cardiovascular
risk prediction using routine clinical data?
correctly predicted compared to the baseline ACC/AHA model ranged from 191 non-cases for
the random forest algorithm to 355 non-cases for the neural networks. Full details on classifi-
cation analysis can be found in S2 Table.
Discussion
Compared to an established AHA/ACC risk prediction algorithm, we found all machine-
learning algorithms tested were better at identifying individuals who will develop CVD and
those that will not. Unlike established approaches to risk prediction, the machine-learning
methods used were not limited to a small set of risk factors, and incorporated more pre-exist-
Table 4. Performance of the machine-learning (ML) algorithms predicting 10-year cardiovascular disease (CVD) risk derived from applying train-
ing algorithms on the validation cohort of 82,989 patients. Higher c-statistics results in better algorithm discrimination. The baseline (BL) ACC/AHA
10-year risk prediction algorithm is provided for comparative purposes.
Algorithms AUC c-statistic Standard Error* 95% Confidence
Interval
Absolute Change from Baseline
LCL UCL
BL: ACC/AHA 0.728 0.002 0.723 0.735 —
ML: Random Forest 0.745 0.003 0.739 0.750 +1.7%
ML: Logistic Regression 0.760 0.003 0.755 0.766 +3.2%
ML: Gradient Boosting Machines 0.761 0.002 0.755 0.766 +3.3%
ML: Neural Networks 0.764 0.002 0.759 0.769 +3.6%
*Standard error estimated by jack-knife procedure [30]
https://doi.org/10.1371/journal.pone.0174944.t004
Can machine-learning improve cardiovascular risk prediction using routine clinical data?
q t 9;;'9@9 t 
qFVfcR FVeh c d 9M;5(/., t 
qo +-- t TRcU gRdTf Rc VgV e p
qVVa DVRc X
q?V Ve T W c Re t c d WRTe c
l( . 8 E
q t
q v
q +(
l 

l 0
q =EJ acV%ac TVdd X $
q 8 E 2 M;K$ M;E ! • 
q $
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)
인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)

Mais conteúdo relacionado

Mais procurados

[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어Yoon Sup Choi
 
When digital medicine becomes the medicine (1/2)
When digital medicine becomes the medicine (1/2)When digital medicine becomes the medicine (1/2)
When digital medicine becomes the medicine (1/2)Yoon Sup Choi
 
[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어Yoon Sup Choi
 
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면Yoon Sup Choi
 
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가 - 최윤섭 (updated 18년 10월)
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가 - 최윤섭 (updated 18년 10월)의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가 - 최윤섭 (updated 18년 10월)
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가 - 최윤섭 (updated 18년 10월)Yoon Sup Choi
 
디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)Yoon Sup Choi
 
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로디지털 의료의 현재와 미래: 임상신경생리학을 중심으로
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로Yoon Sup Choi
 
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가Yoon Sup Choi
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약Yoon Sup Choi
 
디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)Yoon Sup Choi
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)Yoon Sup Choi
 
의료의 미래, 디지털 헬스케어: 신약개발을 중심으로
의료의 미래, 디지털 헬스케어: 신약개발을 중심으로의료의 미래, 디지털 헬스케어: 신약개발을 중심으로
의료의 미래, 디지털 헬스케어: 신약개발을 중심으로Yoon Sup Choi
 
Artificial Intelligence in Medicine
Artificial Intelligence in Medicine Artificial Intelligence in Medicine
Artificial Intelligence in Medicine Yoon Sup Choi
 
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)Yoon Sup Choi
 
Recent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcareRecent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcareYoon Sup Choi
 
디지털 신약, 누구도 가보지 않은 길
디지털 신약, 누구도 가보지 않은 길디지털 신약, 누구도 가보지 않은 길
디지털 신약, 누구도 가보지 않은 길Yoon Sup Choi
 
Clinical Trial Accrual Challenges: Is Social Media Here to Help? (A. Denicoff)
Clinical Trial Accrual Challenges: Is Social Media Here to Help? (A. Denicoff)Clinical Trial Accrual Challenges: Is Social Media Here to Help? (A. Denicoff)
Clinical Trial Accrual Challenges: Is Social Media Here to Help? (A. Denicoff)Esmeralda Casas-Silva, Ph.D.
 
디지털 헬스케어의 잠재적 규제 이슈
디지털 헬스케어의 잠재적 규제 이슈 디지털 헬스케어의 잠재적 규제 이슈
디지털 헬스케어의 잠재적 규제 이슈 Yoon Sup Choi
 
Automated image analysis: rescue for diffusion-MRI of threat to radiologists?
Automated image analysis: rescue for diffusion-MRI of threat to radiologists?Automated image analysis: rescue for diffusion-MRI of threat to radiologists?
Automated image analysis: rescue for diffusion-MRI of threat to radiologists?Erik R. Ranschaert, MD, PhD
 
Paper id 36201506
Paper id 36201506Paper id 36201506
Paper id 36201506IJRAT
 

Mais procurados (20)

[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
[KNAPS] 포스트 코로나 시대, 제약 산업과 디지털 헬스케어
 
When digital medicine becomes the medicine (1/2)
When digital medicine becomes the medicine (1/2)When digital medicine becomes the medicine (1/2)
When digital medicine becomes the medicine (1/2)
 
[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어[C&C] 의료의 미래 디지털 헬스케어
[C&C] 의료의 미래 디지털 헬스케어
 
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
한국에서 혁신적인 디지털 헬스케어 스타트업이 탄생하려면
 
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가 - 최윤섭 (updated 18년 10월)
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가 - 최윤섭 (updated 18년 10월)의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가 - 최윤섭 (updated 18년 10월)
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가 - 최윤섭 (updated 18년 10월)
 
디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)디지털 의료가 '의료'가 될 때 (2/2)
디지털 의료가 '의료'가 될 때 (2/2)
 
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로디지털 의료의 현재와 미래: 임상신경생리학을 중심으로
디지털 의료의 현재와 미래: 임상신경생리학을 중심으로
 
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가
의료 인공지능: 인공지능은 의료를 어떻게 혁신하는가
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약
 
디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)디지털 헬스케어와 보험의 미래 (2019년 5월)
디지털 헬스케어와 보험의 미래 (2019년 5월)
 
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)
인공지능은 의료를 어떻게 혁신하는가 (2019년 3월)
 
의료의 미래, 디지털 헬스케어: 신약개발을 중심으로
의료의 미래, 디지털 헬스케어: 신약개발을 중심으로의료의 미래, 디지털 헬스케어: 신약개발을 중심으로
의료의 미래, 디지털 헬스케어: 신약개발을 중심으로
 
Artificial Intelligence in Medicine
Artificial Intelligence in Medicine Artificial Intelligence in Medicine
Artificial Intelligence in Medicine
 
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
 
Recent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcareRecent advances and challenges of digital mental healthcare
Recent advances and challenges of digital mental healthcare
 
디지털 신약, 누구도 가보지 않은 길
디지털 신약, 누구도 가보지 않은 길디지털 신약, 누구도 가보지 않은 길
디지털 신약, 누구도 가보지 않은 길
 
Clinical Trial Accrual Challenges: Is Social Media Here to Help? (A. Denicoff)
Clinical Trial Accrual Challenges: Is Social Media Here to Help? (A. Denicoff)Clinical Trial Accrual Challenges: Is Social Media Here to Help? (A. Denicoff)
Clinical Trial Accrual Challenges: Is Social Media Here to Help? (A. Denicoff)
 
디지털 헬스케어의 잠재적 규제 이슈
디지털 헬스케어의 잠재적 규제 이슈 디지털 헬스케어의 잠재적 규제 이슈
디지털 헬스케어의 잠재적 규제 이슈
 
Automated image analysis: rescue for diffusion-MRI of threat to radiologists?
Automated image analysis: rescue for diffusion-MRI of threat to radiologists?Automated image analysis: rescue for diffusion-MRI of threat to radiologists?
Automated image analysis: rescue for diffusion-MRI of threat to radiologists?
 
Paper id 36201506
Paper id 36201506Paper id 36201506
Paper id 36201506
 

Semelhante a 인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)

의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어Yoon Sup Choi
 
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성Yoon Sup Choi
 
디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들Yoon Sup Choi
 
[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래Yoon Sup Choi
 
Digitalisation Of Healthcare - Towards A Better Future - Free Download E book
Digitalisation Of Healthcare - Towards A Better Future - Free Download E bookDigitalisation Of Healthcare - Towards A Better Future - Free Download E book
Digitalisation Of Healthcare - Towards A Better Future - Free Download E bookkevin brown
 
K Bobyk - %22A Primer on Personalized Medicine - The Imminent Systemic Shift%...
K Bobyk - %22A Primer on Personalized Medicine - The Imminent Systemic Shift%...K Bobyk - %22A Primer on Personalized Medicine - The Imminent Systemic Shift%...
K Bobyk - %22A Primer on Personalized Medicine - The Imminent Systemic Shift%...Kostyantyn Bobyk
 
Digital Health 101 for Hospital Executives (October 4, 2021)
Digital Health 101 for Hospital Executives (October 4, 2021)Digital Health 101 for Hospital Executives (October 4, 2021)
Digital Health 101 for Hospital Executives (October 4, 2021)Nawanan Theera-Ampornpunt
 
Digital Health Transformation for Health Executives (January 18, 2022)
Digital Health Transformation for Health Executives (January 18, 2022)Digital Health Transformation for Health Executives (January 18, 2022)
Digital Health Transformation for Health Executives (January 18, 2022)Nawanan Theera-Ampornpunt
 
Webinar Replay: How To Provide High Quality, Low Cost Healthcare
Webinar Replay: How To Provide High Quality, Low Cost HealthcareWebinar Replay: How To Provide High Quality, Low Cost Healthcare
Webinar Replay: How To Provide High Quality, Low Cost HealthcareSocial Media Today
 
Europe's Top 5 Effective Leaders in Healthcare.pdf
Europe's Top 5 Effective Leaders in Healthcare.pdfEurope's Top 5 Effective Leaders in Healthcare.pdf
Europe's Top 5 Effective Leaders in Healthcare.pdfinsightscare
 
Europe's Top 5 Effective Leaders in Healthcare Edition.pdf
Europe's Top 5 Effective Leaders in Healthcare Edition.pdfEurope's Top 5 Effective Leaders in Healthcare Edition.pdf
Europe's Top 5 Effective Leaders in Healthcare Edition.pdfinsightscare
 
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언Yoon Sup Choi
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약Yoon Sup Choi
 
The Future of mHealth - Jay Srini - March 2011
The Future of mHealth - Jay Srini - March 2011The Future of mHealth - Jay Srini - March 2011
The Future of mHealth - Jay Srini - March 2011LifeWIRE Corp
 
Social Media Research: Partnering with Academia
Social Media Research: Partnering with AcademiaSocial Media Research: Partnering with Academia
Social Media Research: Partnering with AcademiaKevin Clauson
 
The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.Merry D'souza
 
Expert Opinion - Would You Invest In A Digital Doctor_
Expert Opinion - Would You Invest In A Digital Doctor_Expert Opinion - Would You Invest In A Digital Doctor_
Expert Opinion - Would You Invest In A Digital Doctor_Hamish Clark
 

Semelhante a 인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상) (20)

의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어의료의 미래, 디지털 헬스케어
의료의 미래, 디지털 헬스케어
 
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
의료의 미래, 디지털 헬스케어 + 의료 시장의 특성
 
디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들디지털 헬스케어, 그리고 예상되는 법적 이슈들
디지털 헬스케어, 그리고 예상되는 법적 이슈들
 
[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래[365mc] 디지털 헬스케어: 의료의 미래
[365mc] 디지털 헬스케어: 의료의 미래
 
Digitalisation Of Healthcare - Towards A Better Future - Free Download E book
Digitalisation Of Healthcare - Towards A Better Future - Free Download E bookDigitalisation Of Healthcare - Towards A Better Future - Free Download E book
Digitalisation Of Healthcare - Towards A Better Future - Free Download E book
 
K Bobyk - %22A Primer on Personalized Medicine - The Imminent Systemic Shift%...
K Bobyk - %22A Primer on Personalized Medicine - The Imminent Systemic Shift%...K Bobyk - %22A Primer on Personalized Medicine - The Imminent Systemic Shift%...
K Bobyk - %22A Primer on Personalized Medicine - The Imminent Systemic Shift%...
 
Digital Health 101 for Hospital Executives (October 4, 2021)
Digital Health 101 for Hospital Executives (October 4, 2021)Digital Health 101 for Hospital Executives (October 4, 2021)
Digital Health 101 for Hospital Executives (October 4, 2021)
 
Digital Health Transformation for Health Executives (January 18, 2022)
Digital Health Transformation for Health Executives (January 18, 2022)Digital Health Transformation for Health Executives (January 18, 2022)
Digital Health Transformation for Health Executives (January 18, 2022)
 
Webinar Replay: How To Provide High Quality, Low Cost Healthcare
Webinar Replay: How To Provide High Quality, Low Cost HealthcareWebinar Replay: How To Provide High Quality, Low Cost Healthcare
Webinar Replay: How To Provide High Quality, Low Cost Healthcare
 
Tarea 4
Tarea 4Tarea 4
Tarea 4
 
Europe's Top 5 Effective Leaders in Healthcare.pdf
Europe's Top 5 Effective Leaders in Healthcare.pdfEurope's Top 5 Effective Leaders in Healthcare.pdf
Europe's Top 5 Effective Leaders in Healthcare.pdf
 
Europe's Top 5 Effective Leaders in Healthcare Edition.pdf
Europe's Top 5 Effective Leaders in Healthcare Edition.pdfEurope's Top 5 Effective Leaders in Healthcare Edition.pdf
Europe's Top 5 Effective Leaders in Healthcare Edition.pdf
 
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
성공하는 디지털 헬스케어 스타트업을 위한 8가지 조언
 
디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약디지털 치료제, 또 하나의 신약
디지털 치료제, 또 하나의 신약
 
The Future of mHealth - Jay Srini - March 2011
The Future of mHealth - Jay Srini - March 2011The Future of mHealth - Jay Srini - March 2011
The Future of mHealth - Jay Srini - March 2011
 
BSi-Dec-2014-P58-59
BSi-Dec-2014-P58-59BSi-Dec-2014-P58-59
BSi-Dec-2014-P58-59
 
Social Media Research: Partnering with Academia
Social Media Research: Partnering with AcademiaSocial Media Research: Partnering with Academia
Social Media Research: Partnering with Academia
 
The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.The 10 most trusted diagnostics and pathology center.
The 10 most trusted diagnostics and pathology center.
 
Expert Opinion - Would You Invest In A Digital Doctor_
Expert Opinion - Would You Invest In A Digital Doctor_Expert Opinion - Would You Invest In A Digital Doctor_
Expert Opinion - Would You Invest In A Digital Doctor_
 
Tech RHEUM
Tech RHEUM Tech RHEUM
Tech RHEUM
 

Mais de Yoon Sup Choi

한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈Yoon Sup Choi
 
원격의료 시대의 디지털 치료제
원격의료 시대의 디지털 치료제원격의료 시대의 디지털 치료제
원격의료 시대의 디지털 치료제Yoon Sup Choi
 
디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료Yoon Sup Choi
 
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언Yoon Sup Choi
 
원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각Yoon Sup Choi
 
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건Yoon Sup Choi
 
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가Yoon Sup Choi
 
성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언Yoon Sup Choi
 
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019Yoon Sup Choi
 

Mais de Yoon Sup Choi (9)

한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈한국 원격의료 산업의 주요 이슈
한국 원격의료 산업의 주요 이슈
 
원격의료 시대의 디지털 치료제
원격의료 시대의 디지털 치료제원격의료 시대의 디지털 치료제
원격의료 시대의 디지털 치료제
 
디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료디지털 헬스케어 파트너스 (DHP) 소개 자료
디지털 헬스케어 파트너스 (DHP) 소개 자료
 
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
한국 디지털 헬스케어의 생존을 위한 규제 혁신에 대한 고언
 
원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각원격의료에 대한 생각, 그리고 그 생각에 대한 생각
원격의료에 대한 생각, 그리고 그 생각에 대한 생각
 
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
포스트 코로나 시대, 혁신적인 디지털 헬스케어 기업의 조건
 
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
인허가 이후에도 변화하는 AI/ML 기반 SaMD를 어떻게 규제할 것인가
 
성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언성공하는 디지털 헬스케어 스타트업을 위한 조언
성공하는 디지털 헬스케어 스타트업을 위한 조언
 
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
디지털 헬스케어 파트너스 (DHP) 소개: 데모데이 2019
 

Último

Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...Arohi Goyal
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomdiscovermytutordmt
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Dipal Arora
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...indiancallgirl4rent
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeCall Girls Delhi
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escortsaditipandeya
 
Chandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD availableChandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD availableDipal Arora
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...astropune
 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...vidya singh
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Call Girls in Nagpur High Profile
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...narwatsonia7
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls JaipurRussian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...jageshsingh5554
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...chandars293
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 

Último (20)

Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Chandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD availableChandrapur Call girls 8617370543 Provides all area service COD available
Chandrapur Call girls 8617370543 Provides all area service COD available
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 8250192130 ⟟ Call Me For Gen...
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
 
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls JaipurRussian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
 

인공지능은 의료를 어떻게 혁신하는가 (2019년 7월) (상)

  • 2. “It's in Apple's DNA that technology alone is not enough. 
 It's technology married with liberal arts.”
  • 3. The Convergence of IT, BT and Medicine
  • 4.
  • 5. 최윤섭 지음 의료인공지능 표지디자인•최승협 컴퓨터 털 헬 치를 만드는 것을 화두로 기업가, 엔젤투자가, 에반 의 대표적인 전문가로, 활 이 분야를 처음 소개한 장 포항공과대학교에서 컴 동 대학원 시스템생명공 취득하였다. 스탠퍼드대 조교수, KT 종합기술원 컨 구원 연구조교수 등을 거 저널에 10여 편의 논문을 국내 최초로 디지털 헬스 윤섭 디지털 헬스케어 연 국내 유일의 헬스케어 스 어 파트너스’의 공동 창업 스타트업을 의료 전문가 관대학교 디지털헬스학과 뷰노, 직토, 3billion, 서지 소울링, 메디히어, 모바일 자문을 맡아 한국에서도 고 있다. 국내 최초의 디 케어 이노베이션』에 활발 을 연재하고 있다. 저서로 와 『그렇게 나는 스스로 •블로그_ http://www •페이스북_ https://w •이메일_ yoonsup.c 최윤섭 의료 인공지능은 보수적인 의료 시스템을 재편할 혁신을 일으키고 있다. 의료 인공지능의 빠른 발전과 광범위한 영향은 전문화, 세분화되며 발전해 온 현대 의료 전문가들이 이해하기가 어려우며, 어디서부 터 공부해야 할지도 막연하다. 이런 상황에서 의료 인공지능의 개념과 적용, 그리고 의사와의 관계를 쉽 게 풀어내는 이 책은 좋은 길라잡이가 될 것이다. 특히 미래의 주역이 될 의학도와 젊은 의료인에게 유용 한 소개서이다. ━ 서준범, 서울아산병원 영상의학과 교수, 의료영상인공지능사업단장 인공지능이 의료의 패러다임을 크게 바꿀 것이라는 것에 동의하지 않는 사람은 거의 없다. 하지만 인공 지능이 처리해야 할 의료의 난제는 많으며 그 해결 방안도 천차만별이다. 흔히 생각하는 만병통치약 같 은 의료 인공지능은 존재하지 않는다. 이 책은 다양한 의료 인공지능의 개발, 활용 및 가능성을 균형 있 게 분석하고 있다. 인공지능을 도입하려는 의료인, 생소한 의료 영역에 도전할 인공지능 연구자 모두에 게 일독을 권한다. ━ 정지훈, 경희사이버대 미디어커뮤니케이션학과 선임강의교수, 의사 서울의대 기초의학교육을 책임지고 있는 교수의 입장에서, 산업화 이후 변하지 않은 현재의 의학 교육 으로는 격변하는 인공지능 시대에 의대생을 대비시키지 못한다는 한계를 절실히 느낀다. 저와 함께 의 대 인공지능 교육을 개척하고 있는 최윤섭 소장의 전문적 분석과 미래 지향적 안목이 담긴 책이다. 인공 지능이라는 미래를 대비할 의대생과 교수, 그리고 의대 진학을 고민하는 학생과 학부모에게 추천한다. ━ 최형진, 서울대학교 의과대학 해부학교실 교수, 내과 전문의 최근 의료 인공지능의 도입에 대해서 극단적인 시각과 태도가 공존하고 있다. 이 책은 다양한 사례와 깊 은 통찰을 통해 의료 인공지능의 현황과 미래에 대해 균형적인 시각을 제공하여, 인공지능이 의료에 본 격적으로 도입되기 위한 토론의 장을 마련한다. 의료 인공지능이 일상화된 10년 후 돌아보았을 때, 이 책 이 그런 시대를 이끄는 길라잡이 역할을 하였음을 확인할 수 있기를 기대한다. ━ 정규환, 뷰노 CTO 의료 인공지능은 다른 분야 인공지능보다 더 본질적인 이해가 필요하다. 단순히 인간의 일을 대신하는 수준을 넘어 의학의 패러다임을 데이터 기반으로 변화시키기 때문이다. 따라서 인공지능을 균형있게 이 해하고, 어떻게 의사와 환자에게 도움을 줄 수 있을지 깊은 고민이 필요하다. 세계적으로 일어나고 있는 이러한 노력의 결과물을 집대성한 이 책이 반가운 이유다. ━ 백승욱, 루닛 대표 의료 인공지능의 최신 동향뿐만 아니라, 의의와 한계, 전망, 그리고 다양한 생각거리까지 주는 책이다. 논쟁이 되는 여러 이슈에 대해서도 저자는 자신의 시각을 명확한 근거에 기반하여 설득력 있게 제시하 고 있다. 개인적으로는 이 책을 대학원 수업 교재로 활용하려 한다. ━ 신수용, 성균관대학교 디지털헬스학과 교수 최윤섭지음 의료인공지능 값 20,000원 ISBN 979-11-86269-99-2 최초의 책! 계 안팎에서 제기 고 있다. 현재 의 분 커버했다고 자 것인가, 어느 진료 제하고 효용과 안 누가 지는가, 의학 쉬운 언어로 깊이 들이 의료 인공지 적인 용어를 최대 서 다른 곳에서 접 를 접하게 될 것 너무나 빨리 발전 책에서 제시하는 술을 공부하며, 앞 란다. 의사 면허를 취득 저가 도움되면 좋 를 불러일으킬 것 화를 일으킬 수도 슈에 제대로 대응 분은 의학 교육의 예비 의사들은 샌 지능과 함께하는 레이닝 방식도 이 전에 진료실과 수 겠지만, 여러분들 도생하는 수밖에 미래의료학자 최윤섭 박사가 제시하는 의료 인공지능의 현재와 미래 의료 딥러닝과 IBM 왓슨의 현주소 인공지능은 의사를 대체하는가 값 20,000원 ISBN 979-11-86269-99-2 레이닝 방식도 이 전에 진료실과 수 겠지만, 여러분들 도생하는 수밖에 소울링, 메디히어, 모바일 자문을 맡아 한국에서도 고 있다. 국내 최초의 디 케어 이노베이션』에 활발 을 연재하고 있다. 저서로 와 『그렇게 나는 스스로 •블로그_ http://www •페이스북_ https://w •이메일_ yoonsup.c
  • 6. l 0 ( l( 0 t l) 0 x w m
  • 7. l 0 ( l( 0 t l) 0 x w m
  • 8.
  • 11. Vinod Khosla Founder, 1st CEO of Sun Microsystems Partner of KPCB, CEO of KhoslaVentures LegendaryVenture Capitalist in SiliconValley
  • 12. “Technology will replace 80% of doctors”
  • 13. https://www.youtube.com/watch?time_continue=70&v=2HMPRXstSvQ “영상의학과 전문의를 양성하는 것을 당장 그만둬야 한다. 5년 안에 딥러닝이 영상의학과 전문의를 능가할 것은 자명하다.” Hinton on Radiology
  • 14.
  • 15.
  • 16. Luddites in the 1810’s
  • 18.
  • 19. q9H 2 v q $((( z t q +((z s +$((( z
  • 20. • 1978 • As part of the obscure task of “discovery” — providing documents relevant to a lawsuit — the studios examined six million documents at a cost of more than $2.2 million, much of it to pay for a platoon of lawyers and paralegals who worked for months at high hourly rates. • 2011 • Now, thanks to advances in artificial intelligence, “e-discovery” software can analyze documents in a fraction of the time for a fraction of the cost. • In January, for example, Blackstone Discovery of Palo Alto, Calif., helped analyze 1.5 million documents for less than $100,000.
  • 21. “At its height back in 2000, the U.S. cash equities trading desk at Goldman Sachs’s New York headquarters employed 600 traders, buying and selling stock on the orders of the investment bank’s large clients. Today there are just two equity traders left”
  • 22. q >f f +( $ A:E ORed =ia cVc q ORed q +( q JGA t q) 2 ),( jV q 2 (( jV
  • 23.
  • 24. Copyright 2016 American Medical Association. All rights reserved. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD; Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB; Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD IMPORTANCE Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation. OBJECTIVE To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs. DESIGN AND SETTING A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency. EXPOSURE Deep learning–trained algorithm. MAIN OUTCOMES AND MEASURES The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity. RESULTS TheEyePACS-1datasetconsistedof9963imagesfrom4997patients(meanage,54.4 years;62.2%women;prevalenceofRDR,683/8878fullygradableimages[7.8%]);the Messidor-2datasethad1748imagesfrom874patients(meanage,57.6years;42.6%women; prevalenceofRDR,254/1745fullygradableimages[14.6%]).FordetectingRDR,thealgorithm hadanareaunderthereceiveroperatingcurveof0.991(95%CI,0.988-0.993)forEyePACS-1and 0.990(95%CI,0.986-0.995)forMessidor-2.Usingthefirstoperatingcutpointwithhigh specificity,forEyePACS-1,thesensitivitywas90.3%(95%CI,87.5%-92.7%)andthespecificity was98.1%(95%CI,97.8%-98.5%).ForMessidor-2,thesensitivitywas87.0%(95%CI,81.1%- 91.0%)andthespecificitywas98.5%(95%CI,97.7%-99.1%).Usingasecondoperatingpoint withhighsensitivityinthedevelopmentset,forEyePACS-1thesensitivitywas97.5%and specificitywas93.4%andforMessidor-2thesensitivitywas96.1%andspecificitywas93.9%. CONCLUSIONS AND RELEVANCE In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment. JAMA. doi:10.1001/jama.2016.17216 Published online November 29, 2016. Editorial Supplemental content Author Affiliations: Google Inc, Mountain View, California (Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Nelson, Webster); Department of Computer Science, University of Texas, Austin (Venugopalan); EyePACS LLC, San Jose, California (Cuadros); School of Optometry, Vision Science Graduate Group, University of California, Berkeley (Cuadros); Aravind Medical Research Foundation, Aravind Eye Care System, Madurai, India (Kim); Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India (Raman); Verily Life Sciences, Mountain View, California (Mega); Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts (Mega). Corresponding Author: Lily Peng, MD, PhD, Google Research, 1600 Amphitheatre Way, Mountain View, CA 94043 (lhpeng@google.com). Research JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY (Reprinted) E1 Copyright 2016 American Medical Association. All rights reserved. Downloaded From: http://jamanetwork.com/ on 12/02/2016 안과 LETTERS https://doi.org/10.1038/s41591-018-0335-9 1 Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China. 2 Institute for Genomic Medicine, Institute of Engineering in Medicine, and Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA. 3 Hangzhou YITU Healthcare Technology Co. Ltd, Hangzhou, China. 4 Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory and National Clinical Research Center for Respiratory Disease, Guangzhou, China. 5 Guangzhou Kangrui Co. Ltd, Guangzhou, China. 6 Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China. 7 Veterans Administration Healthcare System, San Diego, CA, USA. 8 These authors contributed equally: Huiying Liang, Brian Tsui, Hao Ni, Carolina C. S. Valentim, Sally L. Baxter, Guangjian Liu. *e-mail: kang.zhang@gmail.com; xiahumin@hotmail.com Artificial intelligence (AI)-based methods have emerged as powerful tools to transform medical care. Although machine learning classifiers (MLCs) have already demonstrated strong performance in image-based diagnoses, analysis of diverse and massive electronic health record (EHR) data remains chal- lenging. Here, we show that MLCs can query EHRs in a manner similar to the hypothetico-deductive reasoning used by physi- cians and unearth associations that previous statistical meth- ods have not found. Our model applies an automated natural language processing system using deep learning techniques to extract clinically relevant information from EHRs. In total, 101.6 million data points from 1,362,559 pediatric patient visits presenting to a major referral center were analyzed to train and validate the framework. Our model demonstrates high diagnostic accuracy across multiple organ systems and is comparable to experienced pediatricians in diagnosing com- mon childhood diseases. Our study provides a proof of con- cept for implementing an AI-based system as a means to aid physicians in tackling large amounts of data, augmenting diag- nostic evaluations, and to provide clinical decision support in cases of diagnostic uncertainty or complexity. Although this impact may be most evident in areas where healthcare provid- ers are in relative shortage, the benefits of such an AI system are likely to be universal. Medical information has become increasingly complex over time. The range of disease entities, diagnostic testing and biomark- ers, and treatment modalities has increased exponentially in recent years. Subsequently, clinical decision-making has also become more complex and demands the synthesis of decisions from assessment of large volumes of data representing clinical information. In the current digital age, the electronic health record (EHR) represents a massive repository of electronic data points representing a diverse array of clinical information1–3 . Artificial intelligence (AI) methods have emerged as potentially powerful tools to mine EHR data to aid in disease diagnosis and management, mimicking and perhaps even augmenting the clinical decision-making of human physicians1 . To formulate a diagnosis for any given patient, physicians fre- quently use hypotheticodeductive reasoning. Starting with the chief complaint, the physician then asks appropriately targeted questions relating to that complaint. From this initial small feature set, the physician forms a differential diagnosis and decides what features (historical questions, physical exam findings, laboratory testing, and/or imaging studies) to obtain next in order to rule in or rule out the diagnoses in the differential diagnosis set. The most use- ful features are identified, such that when the probability of one of the diagnoses reaches a predetermined level of acceptability, the process is stopped, and the diagnosis is accepted. It may be pos- sible to achieve an acceptable level of certainty of the diagnosis with only a few features without having to process the entire feature set. Therefore, the physician can be considered a classifier of sorts. In this study, we designed an AI-based system using machine learning to extract clinically relevant features from EHR notes to mimic the clinical reasoning of human physicians. In medicine, machine learning methods have already demonstrated strong per- formance in image-based diagnoses, notably in radiology2 , derma- tology4 , and ophthalmology5–8 , but analysis of EHR data presents a number of difficult challenges. These challenges include the vast quantity of data, high dimensionality, data sparsity, and deviations Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence Huiying Liang1,8 , Brian Y. Tsui 2,8 , Hao Ni3,8 , Carolina C. S. Valentim4,8 , Sally L. Baxter 2,8 , Guangjian Liu1,8 , Wenjia Cai 2 , Daniel S. Kermany1,2 , Xin Sun1 , Jiancong Chen2 , Liya He1 , Jie Zhu1 , Pin Tian2 , Hua Shao2 , Lianghong Zheng5,6 , Rui Hou5,6 , Sierra Hewett1,2 , Gen Li1,2 , Ping Liang3 , Xuan Zang3 , Zhiqi Zhang3 , Liyan Pan1 , Huimin Cai5,6 , Rujuan Ling1 , Shuhua Li1 , Yongwang Cui1 , Shusheng Tang1 , Hong Ye1 , Xiaoyan Huang1 , Waner He1 , Wenqing Liang1 , Qing Zhang1 , Jianmin Jiang1 , Wei Yu1 , Jianqun Gao1 , Wanxing Ou1 , Yingmin Deng1 , Qiaozhen Hou1 , Bei Wang1 , Cuichan Yao1 , Yan Liang1 , Shu Zhang1 , Yaou Duan2 , Runze Zhang2 , Sarah Gibson2 , Charlotte L. Zhang2 , Oulan Li2 , Edward D. Zhang2 , Gabriel Karin2 , Nathan Nguyen2 , Xiaokang Wu1,2 , Cindy Wen2 , Jie Xu2 , Wenqin Xu2 , Bochu Wang2 , Winston Wang2 , Jing Li1,2 , Bianca Pizzato2 , Caroline Bao2 , Daoman Xiang1 , Wanting He1,2 , Suiqin He2 , Yugui Zhou1,2 , Weldon Haw2,7 , Michael Goldbaum2 , Adriana Tremoulet2 , Chun-Nan Hsu 2 , Hannah Carter2 , Long Zhu3 , Kang Zhang 1,2,7 * and Huimin Xia 1 * NATURE MEDICINE | www.nature.com/naturemedicine 소아청소년과 ARTICLES https://doi.org/10.1038/s41591-018-0177-5 1 Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA. 2 Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA. 3 Department of Pathology, New York University School of Medicine, New York, NY, USA. 4 School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece. 5 Institute for Systems Genetics, New York University School of Medicine, New York, NY, USA. 6 Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA. 7 Center for Biospecimen Research and Development, New York University, New York, NY, USA. 8 Department of Population Health and the Center for Healthcare Innovation and Delivery Science, New York University School of Medicine, New York, NY, USA. 9 These authors contributed equally to this work: Nicolas Coudray, Paolo Santiago Ocampo. *e-mail: narges.razavian@nyumc.org; aristotelis.tsirigos@nyumc.org A ccording to the American Cancer Society and the Cancer Statistics Center (see URLs), over 150,000 patients with lung cancer succumb to the disease each year (154,050 expected for 2018), while another 200,000 new cases are diagnosed on a yearly basis (234,030 expected for 2018). It is one of the most widely spread cancers in the world because of not only smoking, but also exposure to toxic chemicals like radon, asbestos and arsenic. LUAD and LUSC are the two most prevalent types of non–small cell lung cancer1 , and each is associated with discrete treatment guidelines. In the absence of definitive histologic features, this important distinc- tion can be challenging and time-consuming, and requires confir- matory immunohistochemical stains. Classification of lung cancer type is a key diagnostic process because the available treatment options, including conventional chemotherapy and, more recently, targeted therapies, differ for LUAD and LUSC2 . Also, a LUAD diagnosis will prompt the search for molecular biomarkers and sensitizing mutations and thus has a great impact on treatment options3,4 . For example, epidermal growth factor receptor (EGFR) mutations, present in about 20% of LUAD, and anaplastic lymphoma receptor tyrosine kinase (ALK) rearrangements, present in<5% of LUAD5 , currently have tar- geted therapies approved by the Food and Drug Administration (FDA)6,7 . Mutations in other genes, such as KRAS and tumor pro- tein P53 (TP53) are very common (about 25% and 50%, respec- tively) but have proven to be particularly challenging drug targets so far5,8 . Lung biopsies are typically used to diagnose lung cancer type and stage. Virtual microscopy of stained images of tissues is typically acquired at magnifications of 20×to 40×, generating very large two-dimensional images (10,000 to>100,000 pixels in each dimension) that are oftentimes challenging to visually inspect in an exhaustive manner. Furthermore, accurate interpretation can be difficult, and the distinction between LUAD and LUSC is not always clear, particularly in poorly differentiated tumors; in this case, ancil- lary studies are recommended for accurate classification9,10 . To assist experts, automatic analysis of lung cancer whole-slide images has been recently studied to predict survival outcomes11 and classifica- tion12 . For the latter, Yu et al.12 combined conventional thresholding and image processing techniques with machine-learning methods, such as random forest classifiers, support vector machines (SVM) or Naive Bayes classifiers, achieving an AUC of ~0.85 in distinguishing normal from tumor slides, and ~0.75 in distinguishing LUAD from LUSC slides. More recently, deep learning was used for the classi- fication of breast, bladder and lung tumors, achieving an AUC of 0.83 in classification of lung tumor types on tumor slides from The Cancer Genome Atlas (TCGA)13 . Analysis of plasma DNA values was also shown to be a good predictor of the presence of non–small cell cancer, with an AUC of ~0.94 (ref. 14 ) in distinguishing LUAD from LUSC, whereas the use of immunochemical markers yields an AUC of ~0.94115 . Here, we demonstrate how the field can further benefit from deep learning by presenting a strategy based on convolutional neural networks (CNNs) that not only outperforms methods in previously Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning Nicolas Coudray 1,2,9 , Paolo Santiago Ocampo3,9 , Theodore Sakellaropoulos4 , Navneet Narula3 , Matija Snuderl3 , David Fenyö5,6 , Andre L. Moreira3,7 , Narges Razavian 8 * and Aristotelis Tsirigos 1,3 * Visual inspection of histopathology slides is one of the main methods used by pathologists to assess the stage, type and sub- type of lung tumors. Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the most prevalent subtypes of lung cancer, and their distinction requires visual inspection by an experienced pathologist. In this study, we trained a deep con- volutional neural network (inception v3) on whole-slide images obtained from The Cancer Genome Atlas to accurately and automatically classify them into LUAD, LUSC or normal lung tissue. The performance of our method is comparable to that of pathologists, with an average area under the curve (AUC) of 0.97. Our model was validated on independent datasets of frozen tissues, formalin-fixed paraffin-embedded tissues and biopsies. Furthermore, we trained the network to predict the ten most commonly mutated genes in LUAD. We found that six of them—STK11, EGFR, FAT1, SETBP1, KRAS and TP53—can be pre- dicted from pathology images, with AUCs from 0.733 to 0.856 as measured on a held-out population. These findings suggest that deep-learning models can assist pathologists in the detection of cancer subtype or gene mutations. Our approach can be applied to any cancer type, and the code is available at https://github.com/ncoudray/DeepPATH. NATURE MEDICINE | www.nature.com/naturemedicine 병리과병리과병리과병리과병리과병리과병리과 ARTICLES https://doi.org/10.1038/s41551-018-0301-3 1 Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China. 2 Shanghai Wision AI Co., Ltd, Shanghai, China. 3 Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Advanced Endoscopy, Boston , MA, USA. *e-mail: gary.samsph@gmail.com C olonoscopy is the gold-standard screening test for colorectal cancer1–3 , one of the leading causes of cancer death in both the United States4,5 and China6 . Colonoscopy can reduce the risk of death from colorectal cancer through the detection of tumours at an earlier, more treatable stage as well as through the removal of precancerous adenomas3,7 . Conversely, failure to detect adenomas may lead to the development of interval cancer. Evidence has shown that each 1.0% increase in adenoma detection rate (ADR) leads to a 3.0% decrease in the risk of interval colorectal cancer8 . Although more than 14million colonoscopies are performed in the United States annually2 , the adenoma miss rate (AMR) is estimated to be 6–27%9 . Certain polyps may be missed more fre- quently, including smaller polyps10,11 , flat polyps12 and polyps in the left colon13 . There are two independent reasons why a polyp may be missed during colonoscopy: (i) it was never in the visual field or (ii) it was in the visual field but not recognized. Several hardware innovations have sought to address the first problem by improv- ing visualization of the colonic lumen, for instance by providing a larger, panoramic camera view, or by flattening colonic folds using a distal-cap attachment. The problem of unrecognized polyps within the visual field has been more difficult to address14 . Several studies have shown that observation of the video monitor by either nurses or gastroenterology trainees may increase polyp detection by up to 30%15–17 . Ideally, a real-time automatic polyp-detection system could serve as a similarly effective second observer that could draw the endoscopist’s eye, in real time, to concerning lesions, effec- tively creating an ‘extra set of eyes’ on all aspects of the video data with fidelity. Although automatic polyp detection in colonoscopy videos has been an active research topic for the past 20 years, per- formance levels close to that of the expert endoscopist18–20 have not been achieved. Early work in automatic polyp detection has focused on applying deep-learning techniques to polyp detection, but most published works are small in scale, with small development and/or training validation sets19,20 . Here, we report the development and validation of a deep-learn- ing algorithm, integrated with a multi-threaded processing system, for the automatic detection of polyps during colonoscopy. We vali- dated the system in two image studies and two video studies. Each study contained two independent validation datasets. Results We developed a deep-learning algorithm using 5,545colonoscopy images from colonoscopy reports of 1,290patients that underwent a colonoscopy examination in the Endoscopy Center of Sichuan Provincial People’s Hospital between January 2007 and December 2015. Out of the 5,545images used, 3,634images contained polyps (65.54%) and 1,911 images did not contain polyps (34.46%). For algorithm training, experienced endoscopists annotated the pres- ence of each polyp in all of the images in the development data- set. We validated the algorithm on four independent datasets. DatasetsA and B were used for image analysis, and datasetsC and D were used for video analysis. DatasetA contained 27,113colonoscopy images from colo- noscopy reports of 1,138consecutive patients who underwent a colonoscopy examination in the Endoscopy Center of Sichuan Provincial People’s Hospital between January and December 2016 and who were found to have at least one polyp. Out of the 27,113 images, 5,541images contained polyps (20.44%) and 21,572images did not contain polyps (79.56%). All polyps were confirmed histo- logically after biopsy. DatasetB is a public database (CVC-ClinicDB; Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy Pu Wang1 , Xiao Xiao2 , Jeremy R. Glissen Brown3 , Tyler M. Berzin 3 , Mengtian Tu1 , Fei Xiong1 , Xiao Hu1 , Peixi Liu1 , Yan Song1 , Di Zhang1 , Xue Yang1 , Liangping Li1 , Jiong He2 , Xin Yi2 , Jingjia Liu2 and Xiaogang Liu 1 * The detection and removal of precancerous polyps via colonoscopy is the gold standard for the prevention of colon cancer. However, the detection rate of adenomatous polyps can vary significantly among endoscopists. Here, we show that a machine- learningalgorithmcandetectpolypsinclinicalcolonoscopies,inrealtimeandwithhighsensitivityandspecificity.Wedeveloped the deep-learning algorithm by using data from 1,290 patients, and validated it on newly collected 27,113 colonoscopy images from 1,138 patients with at least one detected polyp (per-image-sensitivity, 94.38%; per-image-specificity, 95.92%; area under the receiver operating characteristic curve, 0.984), on a public database of 612 polyp-containing images (per-image-sensitiv- ity, 88.24%), on 138 colonoscopy videos with histologically confirmed polyps (per-image-sensitivity of 91.64%; per-polyp-sen- sitivity, 100%), and on 54 unaltered full-range colonoscopy videos without polyps (per-image-specificity, 95.40%). By using a multi-threaded processing system, the algorithm can process at least 25 frames per second with a latency of 76.80±5.60ms in real-time video analysis. The software may aid endoscopists while performing colonoscopies, and help assess differences in polyp and adenoma detection performance among endoscopists. NATURE BIOMEDICA L ENGINEERING | VOL 2 | OCTOBER 2018 | 741–748 | www.nature.com/natbiomedeng 741 소화기내과 1Wang P, et al. Gut 2019;0:1–7. doi:10.1136/gutjnl-2018-317500 Endoscopy ORIGINAL ARTICLE Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study Pu Wang,  1 Tyler M Berzin,  2 Jeremy Romek Glissen Brown,  2 Shishira Bharadwaj,2 Aymeric Becq,2 Xun Xiao,1 Peixi Liu,1 Liangping Li,1 Yan Song,1 Di Zhang,1 Yi Li,1 Guangre Xu,1 Mengtian Tu,1 Xiaogang Liu  1 To cite: Wang P, Berzin TM, Glissen Brown JR, et al. Gut Epub ahead of print: [please include Day Month Year]. doi:10.1136/ gutjnl-2018-317500 ► Additional material is published online only.To view please visit the journal online (http://dx.doi.org/10.1136/ gutjnl-2018-317500). 1 Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China 2 Center for Advanced Endoscopy, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA Correspondence to Xiaogang Liu, Department of Gastroenterology Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China; Gary.samsph@gmail.com Received 30 August 2018 Revised 4 February 2019 Accepted 13 February 2019 © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. ABSTRACT Objective The effect of colonoscopy on colorectal cancer mortality is limited by several factors, among them a certain miss rate, leading to limited adenoma detection rates (ADRs).We investigated the effect of an automatic polyp detection system based on deep learning on polyp detection rate and ADR. Design In an open, non-blinded trial, consecutive patients were prospectively randomised to undergo diagnostic colonoscopy with or without assistance of a real-time automatic polyp detection system providing a simultaneous visual notice and sound alarm on polyp detection.The primary outcome was ADR. Results Of 1058 patients included, 536 were randomised to standard colonoscopy, and 522 were randomised to colonoscopy with computer-aided diagnosis.The artificial intelligence (AI) system significantly increased ADR (29.1%vs20.3%, p<0.001) and the mean number of adenomas per patient (0.53vs0.31, p<0.001).This was due to a higher number of diminutive adenomas found (185vs102; p<0.001), while there was no statistical difference in larger adenomas (77vs58, p=0.075). In addition, the number of hyperplastic polyps was also significantly increased (114vs52, p<0.001). Conclusions In a low prevalent ADR population, an automatic polyp detection system during colonoscopy resulted in a significant increase in the number of diminutive adenomas detected, as well as an increase in the rate of hyperplastic polyps.The cost–benefit ratio of such effects has to be determined further. Trial registration number ChiCTR-DDD-17012221; Results. INTRODUCTION Colorectal cancer (CRC) is the second and third- leading causes of cancer-related deaths in men and women respectively.1 Colonoscopy is the gold stan- dard for screening CRC.2 3 Screening colonoscopy has allowed for a reduction in the incidence and mortality of CRC via the detection and removal of adenomatous polyps.4–8 Additionally, there is evidence that with each 1.0% increase in adenoma detection rate (ADR), there is an associated 3.0% decrease in the risk of interval CRC.9 10 However, polyps can be missed, with reported miss rates of up to 27% due to both polyp and operator charac- teristics.11 12 Unrecognised polyps within the visual field is an important problem to address.11 Several studies have shown that assistance by a second observer increases the polyp detection rate (PDR), but such a strategy remains controversial in terms of increasing the ADR.13–15 Ideally, a real-time automatic polyp detec- tion system, with performance close to that of expert endoscopists, could assist the endosco- pist in detecting lesions that might correspond to adenomas in a more consistent and reliable way Significance of this study What is already known on this subject? ► Colorectal adenoma detection rate (ADR) is regarded as a main quality indicator of (screening) colonoscopy and has been shown to correlate with interval cancers. Reducing adenoma miss rates by increasing ADR has been a goal of many studies focused on imaging techniques and mechanical methods. ► Artificial intelligence has been recently introduced for polyp and adenoma detection as well as differentiation and has shown promising results in preliminary studies. What are the new findings? ► This represents the first prospective randomised controlled trial examining an automatic polyp detection during colonoscopy and shows an increase of ADR by 50%, from 20% to 30%. ► This effect was mainly due to a higher rate of small adenomas found. ► The detection rate of hyperplastic polyps was also significantly increased. How might it impact on clinical practice in the foreseeable future? ► Automatic polyp and adenoma detection could be the future of diagnostic colonoscopy in order to achieve stable high adenoma detection rates. ► However, the effect on ultimate outcome is still unclear, and further improvements such as polyp differentiation have to be implemented. on17March2019byguest.Protectedbycopyright.http://gut.bmj.com/Gut:firstpublishedas10.1136/gutjnl-2018-317500on27February2019.Downloadedfrom 소화기내과 Downloadedfromhttps://journals.lww.com/ajspbyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3MyLIZIvnCFZVJ56DGsD590P5lh5KqE20T/dBX3x9CoM=on10/14/2018 Downloadedfromhttps://journals.lww.com/ajspbyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3MyLIZIvnCFZVJ56DGsD590P5lh5KqE20T/dBX3x9CoM=on10/14/2018 Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer David F. Steiner, MD, PhD,* Robert MacDonald, PhD,* Yun Liu, PhD,* Peter Truszkowski, MD,* Jason D. Hipp, MD, PhD, FCAP,* Christopher Gammage, MS,* Florence Thng, MS,† Lily Peng, MD, PhD,* and Martin C. Stumpe, PhD* Abstract: Advances in the quality of whole-slide images have set the stage for the clinical use of digital images in anatomic pathology. Along with advances in computer image analysis, this raises the possibility for computer-assisted diagnostics in pathology to improve histopathologic interpretation and clinical care. To evaluate the potential impact of digital assistance on interpretation of digitized slides, we conducted a multireader multicase study utilizing our deep learning algorithm for the detection of breast cancer metastasis in lymph nodes. Six pathologists reviewed 70 digitized slides from lymph node sections in 2 reader modes, unassisted and assisted, with a wash- out period between sessions. In the assisted mode, the deep learning algorithm was used to identify and outline regions with high like- lihood of containing tumor. Algorithm-assisted pathologists demon- strated higher accuracy than either the algorithm or the pathologist alone. In particular, algorithm assistance significantly increased the sensitivity of detection for micrometastases (91% vs. 83%, P=0.02). In addition, average review time per image was significantly shorter with assistance than without assistance for both micrometastases (61 vs. 116 s, P=0.002) and negative images (111 vs. 137 s, P=0.018). Lastly, pathologists were asked to provide a numeric score regarding the difficulty of each image classification. On the basis of this score, pathologists considered the image review of micrometastases to be significantly easier when interpreted with assistance (P=0.0005). Utilizing a proof of concept assistant tool, this study demonstrates the potential of a deep learning algorithm to improve pathologist accu- racy and efficiency in a digital pathology workflow. Key Words: artificial intelligence, machine learning, digital pathology, breast cancer, computer aided detection (Am J Surg Pathol 2018;00:000–000) The regulatory approval and gradual implementation of whole-slide scanners has enabled the digitization of glass slides for remote consults and archival purposes.1 Digitiza- tion alone, however, does not necessarily improve the con- sistency or efficiency of a pathologist’s primary workflow. In fact, image review on a digital medium can be slightly slower than on glass, especially for pathologists with limited digital pathology experience.2 However, digital pathology and image analysis tools have already demonstrated po- tential benefits, including the potential to reduce inter-reader variability in the evaluation of breast cancer HER2 status.3,4 Digitization also opens the door for assistive tools based on Artificial Intelligence (AI) to improve efficiency and con- sistency, decrease fatigue, and increase accuracy.5 Among AI technologies, deep learning has demon- strated strong performance in many automated image-rec- ognition applications.6–8 Recently, several deep learning– based algorithms have been developed for the detection of breast cancer metastases in lymph nodes as well as for other applications in pathology.9,10 Initial findings suggest that some algorithms can even exceed a pathologist’s sensitivity for detecting individual cancer foci in digital images. How- ever, this sensitivity gain comes at the cost of increased false positives, potentially limiting the utility of such algorithms for automated clinical use.11 In addition, deep learning algo- rithms are inherently limited to the task for which they have been specifically trained. While we have begun to understand the strengths of these algorithms (such as exhaustive search) and their weaknesses (sensitivity to poor optical focus, tumor mimics; manuscript under review), the potential clinical util- ity of such algorithms has not been thoroughly examined. While an accurate algorithm alone will not necessarily aid pathologists or improve clinical interpretation, these benefits may be achieved through thoughtful and appropriate in- tegration of algorithm predictions into the clinical workflow.8 From the *Google AI Healthcare; and †Verily Life Sciences, Mountain View, CA. D.F.S., R.M., and Y.L. are co-first authors (equal contribution). Work done as part of the Google Brain Healthcare Technology Fellowship (D.F.S. and P.T.). Conflicts of Interest and Source of Funding: D.F.S., R.M., Y.L., P.T., J.D.H., C.G., F.T., L.P., M.C.S. are employees of Alphabet and have Alphabet stock. Correspondence: David F. Steiner, MD, PhD, Google AI Healthcare, 1600 Amphitheatre Way, Mountain View, CA 94043 (e-mail: davesteiner@google.com). Supplemental Digital Content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal’s website, www.ajsp.com. Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. ORIGINAL ARTICLE Am J Surg Pathol Volume 00, Number 00, ’’ 2018 www.ajsp.com | 1 병리과 S E P S I S A targeted real-time early warning score (TREWScore) for septic shock Katharine E. Henry,1 David N. Hager,2 Peter J. Pronovost,3,4,5 Suchi Saria1,3,5,6 * Sepsis is a leading cause of death in the United States, with mortality highest among patients who develop septic shock. Early aggressive treatment decreases morbidity and mortality. Although automated screening tools can detect patients currently experiencing severe sepsis and septic shock, none predict those at greatest risk of developing shock. We analyzed routinely available physiological and laboratory data from intensive care unit patients and devel- oped “TREWScore,” a targeted real-time early warning score that predicts which patients will develop septic shock. TREWScore identified patients before the onset of septic shock with an area under the ROC (receiver operating characteristic) curve (AUC) of 0.83 [95% confidence interval (CI), 0.81 to 0.85]. At a specificity of 0.67, TREWScore achieved a sensitivity of 0.85 and identified patients a median of 28.2 [interquartile range (IQR), 10.6 to 94.2] hours before onset. Of those identified, two-thirds were identified before any sepsis-related organ dysfunction. In compar- ison, the Modified Early Warning Score, which has been used clinically for septic shock prediction, achieved a lower AUC of 0.73 (95% CI, 0.71 to 0.76). A routine screening protocol based on the presence of two of the systemic inflam- matory response syndrome criteria, suspicion of infection, and either hypotension or hyperlactatemia achieved a low- er sensitivity of 0.74 at a comparable specificity of 0.64. Continuous sampling of data from the electronic health records and calculation of TREWScore may allow clinicians to identify patients at risk for septic shock and provide earlier interventions that would prevent or mitigate the associated morbidity and mortality. INTRODUCTION Seven hundred fifty thousand patients develop severe sepsis and septic shock in the United States each year. More than half of them are admitted to an intensive care unit (ICU), accounting for 10% of all ICU admissions, 20 to 30% of hospital deaths, and $15.4 billion in an- nual health care costs (1–3). Several studies have demonstrated that morbidity, mortality, and length of stay are decreased when severe sep- sis and septic shock are identified and treated early (4–8). In particular, one study showed that mortality from septic shock increased by 7.6% with every hour that treatment was delayed after the onset of hypo- tension (9). More recent studies comparing protocolized care, usual care, and early goal-directed therapy (EGDT) for patients with septic shock sug- gest that usual care is as effective as EGDT (10–12). Some have inter- preted this to mean that usual care has improved over time and reflects important aspects of EGDT, such as early antibiotics and early ag- gressive fluid resuscitation (13). It is likely that continued early identi- fication and treatment will further improve outcomes. However, the best approach to managing patients at high risk of developing septic shock before the onset of severe sepsis or shock has not been studied. Methods that can identify ahead of time which patients will later expe- rience septic shock are needed to further understand, study, and im- prove outcomes in this population. General-purpose illness severity scoring systems such as the Acute Physiology and Chronic Health Evaluation (APACHE II), Simplified Acute Physiology Score (SAPS II), SequentialOrgan Failure Assessment (SOFA) scores, Modified Early Warning Score (MEWS), and Simple Clinical Score (SCS) have been validated to assess illness severity and risk of death among septic patients (14–17). Although these scores are useful for predicting general deterioration or mortality, they typical- ly cannot distinguish with high sensitivity and specificity which patients are at highest risk of developing a specific acute condition. The increased use of electronic health records (EHRs), which can be queried in real time, has generated interest in automating tools that identify patients at risk for septic shock (18–20). A number of “early warning systems,” “track and trigger” initiatives, “listening applica- tions,” and “sniffers” have been implemented to improve detection andtimelinessof therapy forpatients with severe sepsis andseptic shock (18, 20–23). Although these tools have been successful at detecting pa- tients currently experiencing severe sepsis or septic shock, none predict which patients are at highest risk of developing septic shock. The adoption of the Affordable Care Act has added to the growing excitement around predictive models derived from electronic health data in a variety of applications (24), including discharge planning (25), risk stratification (26, 27), and identification of acute adverse events (28, 29). For septic shock in particular, promising work includes that of predicting septic shock using high-fidelity physiological signals collected directly from bedside monitors (30, 31), inferring relationships between predictors of septic shock using Bayesian networks (32), and using routine measurements for septic shock prediction (33–35). No current prediction models that use only data routinely stored in the EHR predict septic shock with high sensitivity and specificity many hours before onset. Moreover, when learning predictive risk scores, cur- rent methods (34, 36, 37) often have not accounted for the censoring effects of clinical interventions on patient outcomes (38). For instance, a patient with severe sepsis who received fluids and never developed septic shock would be treated as a negative case, despite the possibility that he or she might have developed septic shock in the absence of such treatment and therefore could be considered a positive case up until the 1 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA. 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA. 3 Armstrong Institute for Patient Safety and Quality, Johns Hopkins University, Baltimore, MD 21202, USA. 4 Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21202, USA. 5 Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA. 6 Department of Applied Math and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA. *Corresponding author. E-mail: ssaria@cs.jhu.edu R E S E A R C H A R T I C L E www.ScienceTranslationalMedicine.org 5 August 2015 Vol 7 Issue 299 299ra122 1 onNovember3,2016http://stm.sciencemag.org/Downloadedfrom An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest Joon-myoung Kwon, MD;* Youngnam Lee, MS;* Yeha Lee, PhD; Seungwoo Lee, BS; Jinsik Park, MD, PhD Background-—In-hospital cardiac arrest is a major burden to public health, which affects patient safety. Although traditional track- and-trigger systems are used to predict cardiac arrest early, they have limitations, with low sensitivity and high false-alarm rates. We propose a deep learning–based early warning system that shows higher performance than the existing track-and-trigger systems. Methods and Results-—This retrospective cohort study reviewed patients who were admitted to 2 hospitals from June 2010 to July 2017. A total of 52 131 patients were included. Specifically, a recurrent neural network was trained using data from June 2010 to January 2017. The result was tested using the data from February to July 2017. The primary outcome was cardiac arrest, and the secondary outcome was death without attempted resuscitation. As comparative measures, we used the area under the receiver operating characteristic curve (AUROC), the area under the precision–recall curve (AUPRC), and the net reclassification index. Furthermore, we evaluated sensitivity while varying the number of alarms. The deep learning–based early warning system (AUROC: 0.850; AUPRC: 0.044) significantly outperformed a modified early warning score (AUROC: 0.603; AUPRC: 0.003), a random forest algorithm (AUROC: 0.780; AUPRC: 0.014), and logistic regression (AUROC: 0.613; AUPRC: 0.007). Furthermore, the deep learning– based early warning system reduced the number of alarms by 82.2%, 13.5%, and 42.1% compared with the modified early warning system, random forest, and logistic regression, respectively, at the same sensitivity. Conclusions-—An algorithm based on deep learning had high sensitivity and a low false-alarm rate for detection of patients with cardiac arrest in the multicenter study. (J Am Heart Assoc. 2018;7:e008678. DOI: 10.1161/JAHA.118.008678.) Key Words: artificial intelligence • cardiac arrest • deep learning • machine learning • rapid response system • resuscitation In-hospital cardiac arrest is a major burden to public health, which affects patient safety.1–3 More than a half of cardiac arrests result from respiratory failure or hypovolemic shock, and 80% of patients with cardiac arrest show signs of deterioration in the 8 hours before cardiac arrest.4–9 However, 209 000 in-hospital cardiac arrests occur in the United States each year, and the survival discharge rate for patients with cardiac arrest is 20% worldwide.10,11 Rapid response systems (RRSs) have been introduced in many hospitals to detect cardiac arrest using the track-and-trigger system (TTS).12,13 Two types of TTS are used in RRSs. For the single-parameter TTS (SPTTS), cardiac arrest is predicted if any single vital sign (eg, heart rate [HR], blood pressure) is out of the normal range.14 The aggregated weighted TTS calculates a weighted score for each vital sign and then finds patients with cardiac arrest based on the sum of these scores.15 The modified early warning score (MEWS) is one of the most widely used approaches among all aggregated weighted TTSs (Table 1)16 ; however, traditional TTSs including MEWS have limitations, with low sensitivity or high false-alarm rates.14,15,17 Sensitivity and false-alarm rate interact: Increased sensitivity creates higher false-alarm rates and vice versa. Current RRSs suffer from low sensitivity or a high false- alarm rate. An RRS was used for only 30% of patients before unplanned intensive care unit admission and was not used for 22.8% of patients, even if they met the criteria.18,19 From the Departments of Emergency Medicine (J.-m.K.) and Cardiology (J.P.), Mediplex Sejong Hospital, Incheon, Korea; VUNO, Seoul, Korea (Youngnam L., Yeha L., S.L.). *Dr Kwon and Mr Youngnam Lee contributed equally to this study. Correspondence to: Joon-myoung Kwon, MD, Department of Emergency medicine, Mediplex Sejong Hospital, 20, Gyeyangmunhwa-ro, Gyeyang-gu, Incheon 21080, Korea. E-mail: kwonjm@sejongh.co.kr Received January 18, 2018; accepted May 31, 2018. ª 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. DOI: 10.1161/JAHA.118.008678 Journal of the American Heart Association 1 ORIGINAL RESEARCH byguestonJune28,2018http://jaha.ahajournals.org/Downloadedfrom 감염내과 심장내과 BRIEF COMMUNICATION OPEN Digital biomarkers of cognitive function Paul Dagum1 To identify digital biomarkers associated with cognitive function, we analyzed human–computer interaction from 7 days of smartphone use in 27 subjects (ages 18–34) who received a gold standard neuropsychological assessment. For several neuropsychological constructs (working memory, memory, executive function, language, and intelligence), we found a family of digital biomarkers that predicted test scores with high correlations (p 10−4 ). These preliminary results suggest that passive measures from smartphone use could be a continuous ecological surrogate for laboratory-based neuropsychological assessment. npj Digital Medicine (2018)1:10 ; doi:10.1038/s41746-018-0018-4 INTRODUCTION By comparison to the functional metrics available in other disciplines, conventional measures of neuropsychiatric disorders have several challenges. First, they are obtrusive, requiring a subject to break from their normal routine, dedicating time and often travel. Second, they are not ecological and require subjects to perform a task outside of the context of everyday behavior. Third, they are episodic and provide sparse snapshots of a patient only at the time of the assessment. Lastly, they are poorly scalable, taxing limited resources including space and trained staff. In seeking objective and ecological measures of cognition, we attempted to develop a method to measure memory and executive function not in the laboratory but in the moment, day-to-day. We used human–computer interaction on smart- phones to identify digital biomarkers that were correlated with neuropsychological performance. RESULTS In 2014, 27 participants (ages 27.1 ± 4.4 years, education 14.1 ± 2.3 years, M:F 8:19) volunteered for neuropsychological assessment and a test of the smartphone app. Smartphone human–computer interaction data from the 7 days following the neuropsychological assessment showed a range of correla- tions with the cognitive scores. Table 1 shows the correlation between each neurocognitive test and the cross-validated predictions of the supervised kernel PCA constructed from the biomarkers for that test. Figure 1 shows each participant test score and the digital biomarker prediction for (a) digits backward, (b) symbol digit modality, (c) animal fluency, (d) Wechsler Memory Scale-3rd Edition (WMS-III) logical memory (delayed free recall), (e) brief visuospatial memory test (delayed free recall), and (f) Wechsler Adult Intelligence Scale- 4th Edition (WAIS-IV) block design. Construct validity of the predictions was determined using pattern matching that computed a correlation of 0.87 with p 10−59 between the covariance matrix of the predictions and the covariance matrix of the tests. Table 1. Fourteen neurocognitive assessments covering five cognitive domains and dexterity were performed by a neuropsychologist. Shown are the group mean and standard deviation, range of score, and the correlation between each test and the cross-validated prediction constructed from the digital biomarkers for that test Cognitive predictions Mean (SD) Range R (predicted), p-value Working memory Digits forward 10.9 (2.7) 7–15 0.71 ± 0.10, 10−4 Digits backward 8.3 (2.7) 4–14 0.75 ± 0.08, 10−5 Executive function Trail A 23.0 (7.6) 12–39 0.70 ± 0.10, 10−4 Trail B 53.3 (13.1) 37–88 0.82 ± 0.06, 10−6 Symbol digit modality 55.8 (7.7) 43–67 0.70 ± 0.10, 10−4 Language Animal fluency 22.5 (3.8) 15–30 0.67 ± 0.11, 10−4 FAS phonemic fluency 42 (7.1) 27–52 0.63 ± 0.12, 10−3 Dexterity Grooved pegboard test (dominant hand) 62.7 (6.7) 51–75 0.73 ± 0.09, 10−4 Memory California verbal learning test (delayed free recall) 14.1 (1.9) 9–16 0.62 ± 0.12, 10−3 WMS-III logical memory (delayed free recall) 29.4 (6.2) 18–42 0.81 ± 0.07, 10−6 Brief visuospatial memory test (delayed free recall) 10.2 (1.8) 5–12 0.77 ± 0.08, 10−5 Intelligence scale WAIS-IV block design 46.1(12.8) 12–61 0.83 ± 0.06, 10−6 WAIS-IV matrix reasoning 22.1(3.3) 12–26 0.80 ± 0.07, 10−6 WAIS-IV vocabulary 40.6(4.0) 31–50 0.67 ± 0.11, 10−4 Received: 5 October 2017 Revised: 3 February 2018 Accepted: 7 February 2018 1 Mindstrong Health, 248 Homer Street, Palo Alto, CA 94301, USA Correspondence: Paul Dagum (paul@mindstronghealth.com) www.nature.com/npjdigitalmed 정신의학과 P R E C I S I O N M E D I C I N E Identification of type 2 diabetes subgroups through topological analysis of patient similarity Li Li,1 Wei-Yi Cheng,1 Benjamin S. Glicksberg,1 Omri Gottesman,2 Ronald Tamler,3 Rong Chen,1 Erwin P. Bottinger,2 Joel T. Dudley1,4 * Type 2 diabetes (T2D) is a heterogeneous complex disease affecting more than 29 million Americans alone with a rising prevalence trending toward steady increases in the coming decades. Thus, there is a pressing clinical need to improve early prevention and clinical management of T2D and its complications. Clinicians have understood that patients who carry the T2D diagnosis have a variety of phenotypes and susceptibilities to diabetes-related compli- cations. We used a precision medicine approach to characterize the complexity of T2D patient populations based on high-dimensional electronic medical records (EMRs) and genotype data from 11,210 individuals. We successfully identified three distinct subgroups of T2D from topology-based patient-patient networks. Subtype 1 was character- ized by T2D complications diabetic nephropathy and diabetic retinopathy; subtype 2 was enriched for cancer ma- lignancy and cardiovascular diseases; and subtype 3 was associated most strongly with cardiovascular diseases, neurological diseases, allergies, and HIV infections. We performed a genetic association analysis of the emergent T2D subtypes to identify subtype-specific genetic markers and identified 1279, 1227, and 1338 single-nucleotide polymorphisms (SNPs) that mapped to 425, 322, and 437 unique genes specific to subtypes 1, 2, and 3, respec- tively. By assessing the human disease–SNP association for each subtype, the enriched phenotypes and biological functions at the gene level for each subtype matched with the disease comorbidities and clinical dif- ferences that we identified through EMRs. Our approach demonstrates the utility of applying the precision medicine paradigm in T2D and the promise of extending the approach to the study of other complex, multi- factorial diseases. INTRODUCTION Type 2 diabetes (T2D) is a complex, multifactorial disease that has emerged as an increasing prevalent worldwide health concern asso- ciated with high economic and physiological burdens. An estimated 29.1 million Americans (9.3% of the population) were estimated to have some form of diabetes in 2012—up 13% from 2010—with T2D representing up to 95% of all diagnosed cases (1, 2). Risk factors for T2D include obesity, family history of diabetes, physical inactivity, eth- nicity, and advanced age (1, 2). Diabetes and its complications now rank among the leading causes of death in the United States (2). In fact, diabetes is the leading cause of nontraumatic foot amputation, adult blindness, and need for kidney dialysis, and multiplies risk for myo- cardial infarction, peripheral artery disease, and cerebrovascular disease (3–6). The total estimated direct medical cost attributable to diabetes in the United States in 2012 was $176 billion, with an estimated $76 billion attributable to hospital inpatient care alone. There is a great need to im- prove understanding of T2D and its complex factors to facilitate pre- vention, early detection, and improvements in clinical management. A more precise characterization of T2D patient populations can en- hance our understanding of T2D pathophysiology (7, 8). Current clinical definitions classify diabetes into three major subtypes: type 1 dia- betes (T1D), T2D, and maturity-onset diabetes of the young. Other sub- types based on phenotype bridge the gap between T1D and T2D, for example, latent autoimmune diabetes in adults (LADA) (7) and ketosis- prone T2D. The current categories indicate that the traditional definition of diabetes, especially T2D, might comprise additional subtypes with dis- tinct clinical characteristics. A recent analysis of the longitudinal Whitehall II cohort study demonstrated improved assessment of cardiovascular risks when subgrouping T2D patients according to glucose concentration criteria (9). Genetic association studies reveal that the genetic architec- ture of T2D is profoundly complex (10–12). Identified T2D-associated risk variants exhibit allelic heterogeneity and directional differentiation among populations (13, 14). The apparent clinical and genetic com- plexity and heterogeneity of T2D patient populations suggest that there are opportunities to refine the current, predominantly symptom-based, definition of T2D into additional subtypes (7). Because etiological and pathophysiological differences exist among T2D patients, we hypothesize that a data-driven analysis of a clinical population could identify new T2D subtypes and factors. Here, we de- velop a data-driven, topology-based approach to (i) map the complexity of patient populations using clinical data from electronic medical re- cords (EMRs) and (ii) identify new, emergent T2D patient subgroups with subtype-specific clinical and genetic characteristics. We apply this approachtoadatasetcomprisingmatchedEMRsandgenotypedatafrom more than 11,000 individuals. Topological analysis of these data revealed three distinct T2D subtypes that exhibited distinct patterns of clinical characteristics and disease comorbidities. Further, we identified genetic markers associated with each T2D subtype and performed gene- and pathway-level analysis of subtype genetic associations. Biological and phenotypic features enriched in the genetic analysis corroborated clinical disparities observed among subgroups. Our findings suggest that data- driven,topologicalanalysisofpatientco 내분비내과 LETTER Derma o og - eve c a ca on o k n cancer w h deep neura ne work 피부과 FOCUS LETTERS W W W W W Ca d o og s eve a hy hm a de ec on and c ass ca on n ambu a o y e ec oca d og ams us ng a deep neu a ne wo k M m M FOCUS LETTERS 심장내과 D p a n ng nab obu a m n and on o human b a o y a n v o a on 산부인과 O G NA A W on o On o og nd b e n e e men e ommend on g eemen w h n e pe mu d p n umo bo d 종양내과 D m m B D m OHCA m Kw MD K H MD M H M K m MD M M K m MD M M L m MD M K H K m MD D MD D MD D R K C MD D B H O MD D D m Em M M H K D C C C M H K T w A D C D m M C C M H G m w G R K Tw w C A K H MD D C D m M C C M H K G m w G R K T E m m @ m m A A m O OHCA m m m w w T m m DCA M T w m K OHCA w A CCEPTED M A N U SCRIPT 응급의학과
  • 25.
  • 26. No choice but to bring AI into the medicine
  • 27. Martin Duggan,“IBM Watson Health - Integrated Care the Evolution to Cognitive Computing”
  • 28. l 4 URUOUM AM c Z Q USQZOQ q q $ $ $ $ lq 4 URUOUM :QZQ M Z Q USQZOQ q v q $ $ $ $ … z l 4 URUOUM Fa Q Z Q USQZOQ q $ v q o p % ;
  • 29.
  • 30. 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 90% 50% 10% PT-AI AGI EETNTOP100 Combined m o w m3 Philosophy and Theory of AI (2011) Artificial General Intelligence (2012) Greek Association for Artificial Intelligence Survey of most frequently cited 100 authors (2013) Combined 응답자 누적 비율 Superintelligence, Nick Bostrom (2014)
  • 31. Superintelligence: Science of fiction? Panelists: Elon Musk (Tesla, SpaceX), Bart Selman (Cornell), Ray Kurzweil (Google), David Chalmers (NYU), Nick Bostrom(FHI), Demis Hassabis (Deep Mind), Stuart Russell (Berkeley), Sam Harris, and Jaan Tallinn (CSER/FLI) January 6-8, 2017, Asilomar, CA https://brunch.co.kr/@kakao-it/49 https://www.youtube.com/watch?v=h0962biiZa4
  • 32. Superintelligence: Science of fiction? Panelists: Elon Musk (Tesla, SpaceX), Bart Selman (Cornell), Ray Kurzweil (Google), David Chalmers (NYU), Nick Bostrom(FHI), Demis Hassabis (Deep Mind), Stuart Russell (Berkeley), Sam Harris, and Jaan Tallinn (CSER/FLI) January 6-8, 2017, Asilomar, CA D0 m w m3 D0 m s m w n m3 Table 1 Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn YES YES YES YES YES YES YES YES YES Table 1-1 Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn YES YES YES YES YES YES YES YES YES D0 ‘ m3 Table 1-1-1 Elon Musk Start Russell Bart Selman Ray Kurzweil David Chalmers Nick Bostrom DemisHassabis Sam Harris Jaan Tallinn Complicated Complicated Complicated YES Complicated YES YES Complicated Complicated https://brunch.co.kr/@kakao-it/49 https://www.youtube.com/watch?v=h0962biiZa4
  • 35. Superintelligence, Nick Bostrom (2014) v !Yf R SRdV V x $ !dfaVc eV XV TV !eR V WW v How far to superintelligence
  • 36. l 4 URUOUM AM c Z Q USQZOQ q q $ $ $ $ lq 4 URUOUM :QZQ M Z Q USQZOQ q v q $ $ $ $ … z l 4 URUOUM Fa Q Z Q USQZOQ q $ v q o p % ;
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44. l 0 ( l( 0 t l) 0 x w m
  • 45. q… d XYe q '• ' q '
  • 46. l UZ UST q '• ' q '
  • 47.
  • 49. 600,000 pieces of medical evidence 2 million pages of text from 42 medical journals and clinical trials 69 guidelines, 61,540 clinical trials IBM Watson on Medicine Watson learned... + 1,500 lung cancer cases physician notes, lab results and clinical research + 14,700 hours of hands-on training
  • 50.
  • 51.
  • 52.
  • 53. ! • • OG t ( ( ( ( ) ( ( + EKC ! E ! • E 89K;G $ ! ?V VE$ ! A:E ORed @VR eY ’ $ B B$ $ $ !=@J ! OG $ % GE= ( - t • KfXRcAI ’ • $ OG ( , ! % • 
 OG t • • 
 • $ • ’ 
 
 t ( . • 5 JM Z QM T 6T ZUO Q OG
  • 54. ! • • OG t ( ( ( ( ) ( ( + EKC ! E ! • E 89K;G $ ! ?V VE$ ! A:E ORed @VR eY ’ $ B B$ $ $ !=@J ! OG $ % GE= ( - t • KfXRcAI ’ • $ OG ( , ! % • 
 OG • $ • ’ 
 
 t ( . • 5 JM Z QM T 6T ZUO Q OG t • • 

  • 55.
  • 56. Annals of Oncology (2016) 27 (suppl_9): ix179-ix180. 10.1093/annonc/mdw601 Validation study to assess performance of IBM cognitive computing system Watson for oncology with Manipal multidisciplinary tumour board for 1000 consecutive cases: 
 An Indian experience l J9B h i q .+0 $ ) . $ ) , $ )) l q !-( $ ! 0 $ !)/ q - l q !0- $ !)/0 q !./1 $ @=J !+-
  • 57. San Antonio Breast Cancer Symposium—December 6-10, 2016 Concordance WFO (@T2) and MMDT (@T1* v. T2**) (N= 638 Breast Cancer Cases) Time Point /Concordance REC REC + FC n % n % T1* 296 46 463 73 T2** 381 60 574 90 This presentation is the intellectual property of the author/presenter.Contact somusp@yahoo.com for permission to reprint and/or distribute.26 * T1 Time of original treatment decision by MMDT in the past (last 1-3 years) ** T2 Time (2016) of WFO’s treatment advice and of MMDT’s treatment decision upon blinded re-review of non-concordant cases
  • 58. WFO in ASCO 2017 q=Rc j ViaVc V TV h eY A:E OG T X e gV T afe X djdeV W c f X 
 
 R U T cVTeR TR TVc ecVRe V e ! • 
 q + v2 f X TR TVc!)) $ T TR TVc!) .$ cVTef TR TVc!) , q f X TR TVc2 TR kVU 001 $ VeR 1/1 qT TR TVc2 TR kVU 0-- $ VeR /.. qcVTef TR TVc2 TR kVU 1.0 $ VeR 0(. Performance of WFO in India 2017 ASCO annual Meeting, J Clin Oncol 35, 2017 (suppl; abstr 8527)
  • 59. WFO in ASCO 2017 lm q !deRXV AA%AN +,( q )0- !JVec daVTe gV
 l l 0 -) q !RU fgR e -( 2 0- q 1( 2 ,( 
 l 0 / q LcRdekf RS'GDGP t x t q K%)!eVXRWfc$ X VcRT R U eVcRT T da Re 2 q 3 P
  • 60. ORIGINAL ARTICLE Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board S. P. Somashekhar1*, M.-J. Sepu´lveda2 , S. Puglielli3 , A. D. Norden3 , E. H. Shortliffe4 , C. Rohit Kumar1 , A. Rauthan1 , N. Arun Kumar1 , P. Patil1 , K. Rhee3 Y. Ramya1 1 Manipal Comprehensive Cancer Centre, Manipal Hospital, Bangalore, India; 2 IBM Research (Retired), Yorktown Heights; 3 Watson Health, IBM Corporation, Cambridge; 4 Department of Surgical Oncology, College of Health Solutions, Arizona State University, Phoenix, USA *Correspondence to: Prof. Sampige Prasannakumar Somashekhar, Manipal Comprehensive Cancer Centre, Manipal Hospital, Old Airport Road, Bangalore 560017, Karnataka, India. Tel: þ91-9845712012; Fax: þ91-80-2502-3759; E-mail: somashekhar.sp@manipalhospitals.com Background: Breast cancer oncologists are challenged to personalize care with rapidly changing scientific evidence, drug approvals, and treatment guidelines. Artificial intelligence (AI) clinical decision-support systems (CDSSs) have the potential to help address this challenge. We report here the results of examining the level of agreement (concordance) between treatment recommendations made by the AI CDSS Watson for Oncology (WFO) and a multidisciplinary tumor board for breast cancer. Patients and methods: Treatment recommendations were provided for 638 breast cancers between 2014 and 2016 at the Manipal Comprehensive Cancer Center, Bengaluru, India. WFO provided treatment recommendations for the identical cases in 2016. A blinded second review was carried out by the center’s tumor board in 2016 for all cases in which there was not agreement, to account for treatments and guidelines not available before 2016. Treatment recommendations were considered concordant if the tumor board recommendations were designated ‘recommended’ or ‘for consideration’ by WFO. Results: Treatment concordance between WFO and the multidisciplinary tumor board occurred in 93% of breast cancer cases. Subgroup analysis found that patients with stage I or IV disease were less likely to be concordant than patients with stage II or III disease. Increasing age was found to have a major impact on concordance. Concordance declined significantly (P 0.02; P 0.001) in all age groups compared with patients 45 years of age, except for the age group 55–64 years. Receptor status was not found to affect concordance. Conclusion: Treatment recommendations made by WFO and the tumor board were highly concordant for breast cancer cases examined. Breast cancer stage and patient age had significant influence on concordance, while receptor status alone did not. This study demonstrates that the AI clinical decision-support system WFO may be a helpful tool for breast cancer treatment decision making, especially at centers where expert breast cancer resources are limited. Key words: Watson for Oncology, artificial intelligence, cognitive clinical decision-support systems, breast cancer, concordance, multidisciplinary tumor board Introduction Oncologists who treat breast cancer are challenged by a large and rapidly expanding knowledge base [1, 2]. As of October 2017, for example, there were 69 FDA-approved drugs for the treatment of breast cancer, not including combination treatment regimens [3]. The growth of massive genetic and clinical databases, along with computing systems to exploit them, will accelerate the speed of breast cancer treatment advances and shorten the cycle time for changes to breast cancer treatment guidelines [4, 5]. In add- ition, these information management challenges in cancer care are occurring in a practice environment where there is little time available for tracking and accessing relevant information at the point of care [6]. For example, a study that surveyed 1117 oncolo- gists reported that on average 4.6 h per week were spent keeping VC The Author(s) 2018. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com. Annals of Oncology 29: 418–423, 2018 doi:10.1093/annonc/mdx781 Published online 9 January 2018 Downloaded from https://academic.oup.com/annonc/article-abstract/29/2/418/4781689 by guest
  • 61. ORIGINAL ARTICLE Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board S. P. Somashekhar1*, M.-J. Sepu´lveda2 , S. Puglielli3 , A. D. Norden3 , E. H. Shortliffe4 , C. Rohit Kumar1 , A. Rauthan1 , N. Arun Kumar1 , P. Patil1 , K. Rhee3 Y. Ramya1 1 Manipal Comprehensive Cancer Centre, Manipal Hospital, Bangalore, India; 2 IBM Research (Retired), Yorktown Heights; 3 Watson Health, IBM Corporation, Cambridge; 4 Department of Surgical Oncology, College of Health Solutions, Arizona State University, Phoenix, USA *Correspondence to: Prof. Sampige Prasannakumar Somashekhar, Manipal Comprehensive Cancer Centre, Manipal Hospital, Old Airport Road, Bangalore 560017, Karnataka, India. Tel: þ91-9845712012; Fax: þ91-80-2502-3759; E-mail: somashekhar.sp@manipalhospitals.com Background: Breast cancer oncologists are challenged to personalize care with rapidly changing scientific evidence, drug approvals, and treatment guidelines. Artificial intelligence (AI) clinical decision-support systems (CDSSs) have the potential to help address this challenge. We report here the results of examining the level of agreement (concordance) between treatment recommendations made by the AI CDSS Watson for Oncology (WFO) and a multidisciplinary tumor board for breast cancer. Patients and methods: Treatment recommendations were provided for 638 breast cancers between 2014 and 2016 at the Manipal Comprehensive Cancer Center, Bengaluru, India. WFO provided treatment recommendations for the identical cases in 2016. A blinded second review was carried out by the center’s tumor board in 2016 for all cases in which there was not agreement, to account for treatments and guidelines not available before 2016. Treatment recommendations were considered concordant if the tumor board recommendations were designated ‘recommended’ or ‘for consideration’ by WFO. Results: Treatment concordance between WFO and the multidisciplinary tumor board occurred in 93% of breast cancer cases. Subgroup analysis found that patients with stage I or IV disease were less likely to be concordant than patients with stage II or III disease. Increasing age was found to have a major impact on concordance. Concordance declined significantly (P 0.02; P 0.001) in all age groups compared with patients 45 years of age, except for the age group 55–64 years. Receptor status was not found to affect concordance. Conclusion: Treatment recommendations made by WFO and the tumor board were highly concordant for breast cancer cases examined. Breast cancer stage and patient age had significant influence on concordance, while receptor status alone did not. This study demonstrates that the AI clinical decision-support system WFO may be a helpful tool for breast cancer treatment decision making, especially at centers where expert breast cancer resources are limited. Key words: Watson for Oncology, artificial intelligence, cognitive clinical decision-support systems, breast cancer, concordance, multidisciplinary tumor board Introduction Oncologists who treat breast cancer are challenged by a large and rapidly expanding knowledge base [1, 2]. As of October 2017, for example, there were 69 FDA-approved drugs for the treatment of breast cancer, not including combination treatment regimens [3]. The growth of massive genetic and clinical databases, along with computing systems to exploit them, will accelerate the speed of breast cancer treatment advances and shorten the cycle time for changes to breast cancer treatment guidelines [4, 5]. In add- ition, these information management challenges in cancer care are occurring in a practice environment where there is little time available for tracking and accessing relevant information at the point of care [6]. For example, a study that surveyed 1117 oncolo- gists reported that on average 4.6 h per week were spent keeping VC The Author(s) 2018. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com. Annals of Oncology 29: 418–423, 2018 doi:10.1093/annonc/mdx781 Published online 9 January 2018 Downloaded from https://academic.oup.com/annonc/article-abstract/29/2/418/4781689 by guest Table 2. MMDT and WFO recommendations after the initial and blinded second reviews Review of breast cancer cases (N 5 638) Concordant cases, n (%) Non-concordant cases, n (%) Recommended For consideration Total Not recommended Not available Total Initial review (T1MMDT versus T2WFO) 296 (46) 167 (26) 463 (73) 137 (21) 38 (6) 175 (27) Second review (T2MMDT versus T2WFO) 397 (62) 194 (30) 591 (93) 36 (5) 11 (2) 47 (7) T1MMDT, original MMDT recommendation from 2014 to 2016; T2WFO, WFO advisor treatment recommendation in 2016; T2MMDT, MMDT treatment recom- mendation in 2016; MMDT, Manipal multidisciplinary tumor board; WFO, Watson for Oncology. 31% 18% 1% 2% 33% 5% 31% 6% 0% 10% 20% Not available Not recommended RecommendedFor consideration 30% 40% 50% 60% 70% 80% 90% 100% 8% 25% 61% 64% 64% 29% 51% 62% Concordance, 93% Concordance, 80% Concordance, 97% Concordance, 95% Concordance, 86% 2% 2% Overall (n=638) Stage I (n=61) Stage II (n=262) Stage III (n=191) Stage IV (n=124) 5% Figure 1. Treatment concordance between WFO and the MMDT overall and by stage. MMDT, Manipal multidisciplinary tumor board; WFO, Watson for Oncology. 5%Non-metastatic HR(+)HER2/neu(+)Triple(–) Metastatic Non-metastatic Metastatic Non-metastatic Metastatic 10% 1% 2% 1% 5% 20% 20%10% 0% Not applicable Not recommended For consideration Recommended 20% 40% 60% 80% 100% 5% 74% 65% 34% 64% 5% 38% 56% 15% 20% 55% 36% 59% Concordance, 95% Concordance, 75% Concordance, 94% Concordance, 98% Concordance, 94% Concordance, 85% Figure 2. Treatment concordance between WFO and the MMDT by stage and receptor status. HER2/neu, human epidermal growth factor receptor 2; HR, hormone receptor; MMDT, Manipal multidisciplinary tumor board; WFO, Watson for Oncology. Annals of Oncology Original article
  • 62. ORIGINAL ARTICLE Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board S. P. Somashekhar1*, M.-J. Sepu´lveda2 , S. Puglielli3 , A. D. Norden3 , E. H. Shortliffe4 , C. Rohit Kumar1 , A. Rauthan1 , N. Arun Kumar1 , P. Patil1 , K. Rhee3 Y. Ramya1 1 Manipal Comprehensive Cancer Centre, Manipal Hospital, Bangalore, India; 2 IBM Research (Retired), Yorktown Heights; 3 Watson Health, IBM Corporation, Cambridge; 4 Department of Surgical Oncology, College of Health Solutions, Arizona State University, Phoenix, USA *Correspondence to: Prof. Sampige Prasannakumar Somashekhar, Manipal Comprehensive Cancer Centre, Manipal Hospital, Old Airport Road, Bangalore 560017, Karnataka, India. Tel: þ91-9845712012; Fax: þ91-80-2502-3759; E-mail: somashekhar.sp@manipalhospitals.com Background: Breast cancer oncologists are challenged to personalize care with rapidly changing scientific evidence, drug approvals, and treatment guidelines. Artificial intelligence (AI) clinical decision-support systems (CDSSs) have the potential to help address this challenge. We report here the results of examining the level of agreement (concordance) between treatment recommendations made by the AI CDSS Watson for Oncology (WFO) and a multidisciplinary tumor board for breast cancer. Patients and methods: Treatment recommendations were provided for 638 breast cancers between 2014 and 2016 at the Manipal Comprehensive Cancer Center, Bengaluru, India. WFO provided treatment recommendations for the identical cases in 2016. A blinded second review was carried out by the center’s tumor board in 2016 for all cases in which there was not agreement, to account for treatments and guidelines not available before 2016. Treatment recommendations were considered concordant if the tumor board recommendations were designated ‘recommended’ or ‘for consideration’ by WFO. Results: Treatment concordance between WFO and the multidisciplinary tumor board occurred in 93% of breast cancer cases. Subgroup analysis found that patients with stage I or IV disease were less likely to be concordant than patients with stage II or III disease. Increasing age was found to have a major impact on concordance. Concordance declined significantly (P 0.02; P 0.001) in all age groups compared with patients 45 years of age, except for the age group 55–64 years. Receptor status was not found to affect concordance. Conclusion: Treatment recommendations made by WFO and the tumor board were highly concordant for breast cancer cases examined. Breast cancer stage and patient age had significant influence on concordance, while receptor status alone did not. This study demonstrates that the AI clinical decision-support system WFO may be a helpful tool for breast cancer treatment decision making, especially at centers where expert breast cancer resources are limited. Key words: Watson for Oncology, artificial intelligence, cognitive clinical decision-support systems, breast cancer, concordance, multidisciplinary tumor board Introduction Oncologists who treat breast cancer are challenged by a large and rapidly expanding knowledge base [1, 2]. As of October 2017, for example, there were 69 FDA-approved drugs for the treatment of breast cancer, not including combination treatment regimens [3]. The growth of massive genetic and clinical databases, along with computing systems to exploit them, will accelerate the speed of breast cancer treatment advances and shorten the cycle time for changes to breast cancer treatment guidelines [4, 5]. In add- ition, these information management challenges in cancer care are occurring in a practice environment where there is little time available for tracking and accessing relevant information at the point of care [6]. For example, a study that surveyed 1117 oncolo- gists reported that on average 4.6 h per week were spent keeping VC The Author(s) 2018. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com. Annals of Oncology 29: 418–423, 2018 doi:10.1093/annonc/mdx781 Published online 9 January 2018 Downloaded from https://academic.oup.com/annonc/article-abstract/29/2/418/4781689 by guest Table 2. MMDT and WFO recommendations after the initial and blinded second reviews Review of breast cancer cases (N 5 638) Concordant cases, n (%) Non-concordant cases, n (%) Recommended For consideration Total Not recommended Not available Total Initial review (T1MMDT versus T2WFO) 296 (46) 167 (26) 463 (73) 137 (21) 38 (6) 175 (27) Second review (T2MMDT versus T2WFO) 397 (62) 194 (30) 591 (93) 36 (5) 11 (2) 47 (7) T1MMDT, original MMDT recommendation from 2014 to 2016; T2WFO, WFO advisor treatment recommendation in 2016; T2MMDT, MMDT treatment recom- mendation in 2016; MMDT, Manipal multidisciplinary tumor board; WFO, Watson for Oncology. 31% 18% 29% 51% 62% Concordance, 93% Concordance, 80% Concordance, 97% 2% 2% Overall (n=638) Stage I (n=61) 5% Annals of Oncology Original article
  • 63. l 0 q qy • qy • ' t q v t
  • 64. WHY? l m m q OG EKC;; q $ t $ lA66A m l m q 2 gd 2 q LF:;2 gd @=J !%2
  • 66. lJ9B x 3 gd JM Z R BZO Se )($((( )($((( m 3 qHc daVTe gV$ d X V S U cR U kVU ec R qHc Rcj V Ua e2 gVcR dfcg gR !GK qKVT URcj V Ua e2 ac XcVdd %WcVV dfcg gR !HK
  • 67. lJ9B x 3 gd JM Z R BZO Se qOG !   q YVeVc XV V fd t q $ t )($((( )($((( qHc daVTe gV$ d X V S U cR U kVU ec R qHc Rcj V Ua e2 gVcR dfcg gR !GK qKVT URcj V Ua e2 ac XcVdd %WcVV dfcg gR !HK
  • 68. lJ9B x 3 gd A66A m A66A m ! JM Z R BZO Se m w $ qOG !   q YVeVc XV V fd t q $ t qA:E t7 )($((( )($((( qHc daVTe gV$ d X V S U cR U kVU ec R qHc Rcj V Ua e2 gVcR dfcg gR !GK qKVT URcj V Ua e2 ac XcVdd %WcVV dfcg gR !HK
  • 69. q $ t7 q ! t7 q z t7 q t7 q t7 % m s s x
  • 70. Empowering the Oncology Community for Cancer Care Genomics Oncology Clinical Trial Matching Watson Health’s oncology clients span more than 35 hospital systems “Empowering the Oncology Community for Cancer Care” Andrew Norden, KOTRA Conference, March 2017, “The Future of Health is Cognitive”
  • 71. IBM Watson Health Watson for Clinical Trial Matching (CTM) 18 1. According to the National Comprehensive Cancer Network (NCCN) 2. http://csdd.tufts.edu/files/uploads/02_-_jan_15,_2013_-_recruitment-retention.pdf© 2015 International Business Machines Corporation Searching across eligibility criteria of clinical trials is time consuming and labor intensive Current Challenges Fewer than 5% of adult cancer patients participate in clinical trials1 37% of sites fail to meet minimum enrollment targets. 11% of sites fail to enroll a single patient 2 The Watson solution • Uses structured and unstructured patient data to quickly check eligibility across relevant clinical trials • Provides eligible trial considerations ranked by relevance • Increases speed to qualify patients Clinical Investigators (Opportunity) • Trials to Patient: Perform feasibility analysis for a trial • Identify sites with most potential for patient enrollment • Optimize inclusion/exclusion criteria in protocols Faster, more efficient recruitment strategies, better designed protocols Point of Care (Offering) • Patient to Trials: Quickly find the right trial that a patient might be eligible for amongst 100s of open trials available Improve patient care quality, consistency, increased efficiencyIBM Confidential
  • 72. q ). v @G?! @ XY R Ud G T Xj ?c fa $. ( q1( +z q 2 ) v -( qORed ;LE2 , -. o qORed ;LE • /
  • 73. q t 0( t
  • 74. Watson Genomics Overview 20 Watson Genomics Content • 20+ Content Sources Including: • Medical Articles (23Million) • Drug Information • Clinical Trial Information • Genomic Information Case Sequenced VCF / MAF, Log2, Dge Encryption Molecular Profile Analysis Pathway Analysis Drug Analysis Service Analysis, Reports, Visualizations
  • 75. 2017 HIMSS, courtesy of Hyejin Kam (Asan Medical Center)
  • 76. 2017 HIMSS, courtesy of Hyejin Kam (Asan Medical Center)
  • 77. qA R 1 deR TVd W cVec daVTe gV R R jd d$ O?9 W Ud RTe RS V d XYed R U UV e W Vd a eV e R UcfXd W c T d UVcRe qLYV Rfe ReVU XV VcRe W eYVdV d XYed d RTY VgVU Sj O?9 feVd
  • 78. Kazimierz O. Wrzeszczynski, PhD* Mayu O. Frank, NP, MS* Takahiko Koyama, PhD* Kahn Rhrissorrakrai, PhD* Nicolas Robine, PhD Filippo Utro, PhD Anne-Katrin Emde, PhD Bo-Juen Chen, PhD Kanika Arora, MS Minita Shah, MS Vladimir Vacic, PhD Raquel Norel, PhD Erhan Bilal, PhD Ewa A. Bergmann, MSc Julia L. Moore Vogel, PhD Jeffrey N. Bruce, MD Andrew B. Lassman, MD Peter Canoll, MD, PhD Christian Grommes, MD Steve Harvey, BS Laxmi Parida, PhD Vanessa V. Michelini, BS Michael C. Zody, PhD Vaidehi Jobanputra, PhD Ajay K. Royyuru, PhD Robert B. Darnell, MD, Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma ABSTRACT Objective: To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each. Methods: Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs. Results: More variants were identified by WGS/RNA analysis than by targeted panels. WGA com- pleted a comparable analysis in a fraction of the time required by the human analysts. Conclusions: The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual pa- tients in a more timely and efficient manner than currently possible. ClinicalTrials.gov identifier: NCT02725684. Neurol Genet 2017;3:e164; doi: 10.1212/ NXG.0000000000000164 GLOSSARY CNV 5 copy number variant; EGFR 5 epidermal growth factor receptor; GATK 5 Genome Analysis Toolkit; GBM 5 glioblas- toma; IRB 5 institutional review board; NLP 5 Natural Language Processing; NYGC 5 New York Genome Center; RNA-seq 5 RNA sequencing; SNV 5 single nucleotide variant; SV 5 structural variant; TCGA 5 The Cancer Genome Atlas; TPM 5 transcripts per million; VCF 5 variant call file; VUS 5 variants of uncertain significance; WGA 5 Watson Genomic Analytics; WGS 5 whole-genome sequencing. The clinical application of next-generation sequencing technology to cancer diagnosis and treat- ment is in its early stages.1–3 An initial implementation of this technology has been in targeted panels, where subsets of cancer-relevant and/or highly actionable genes are scrutinized for potentially actionable mutations. This approach has been widely adopted, offering high redun- dancy of sequence coverage for the small number of sites of known clinical utility at relatively
  • 79. Table 3 List of variants identified as actionable by 3 different platforms Gene Variant Identified variant Identified associated drugs NYGC WGA FO NYGC WGA FO CDKN2A Deletion Yes Yes Yes Palbociclib, LY2835219 LEE001 Palbociclib LY2835219 Clinical trial CDKN2B Deletion Yes Yes Yes Palbociclib, LY2835219 LEE002 Palbociclib LY2835219 Clinical trial EGFR Gain (whole arm) Yes — — Cetuximab — — ERG Missense P114Q Yes Yes — RI-EIP RI-EIP — FGFR3 Missense L49V Yes VUS — TK-1258 — — MET Amplification Yes Yes Yes INC280 Crizotinib, cabozantinib Crizotinib, cabozantinib MET Frame shift R755fs Yes — — INC280 — — MET Exon skipping Yes — — INC280 — — NF1 Deletion Yes — — MEK162 — — NF1 Nonsense R461* Yes Yes Yes MEK162 MEK162, cobimetinib, trametinib, GDC-0994 Everolimus, temsirolimus, trametinib PIK3R1 Insertion R562_M563insI Yes Yes — BKM120 BKM120, LY3023414 — PTEN Loss (whole arm) Yes — — Everolimus, AZD2014 — — STAG2 Frame shift R1012 fs Yes Yes Yes Veliparib, clinical trial Olaparib — DNMT3A Splice site 2083-1G.C — — Yes — — — TERT Promoter-146C.T Yes — Yes — — — ABL2 Missense D716N Germline NA VUS mTOR Missense H1687R Germline NA VUS NPM1 Missense E169D Germline NA VUS NTRK1 Missense G18E Germline NA VUS PTCH1 Missense P1250R Germline NA VUS TSC1 Missense G1035S Germline NA VUS Abbreviations: FO 5 FoundationOne; NYGC 5 New York Genome Center; RNA-seq 5 RNA sequencing; WGA 5 Watson Genomic Analytics; WGS 5 whole- genome sequencing. Genes, variant description, and, where appropriate, candidate clinically relevant drugs are listed. Variants identified by the FO as variants of uncertain significance (VUS) were identified by the NYGC as germline variants. • WGA analysis vastly accelerated the time to discovery of potentially actionable variants from the VCF files. • WGA was able to provide reports of potentially clinically actionable insights within 10 minutes • , while human analysis of this patient's VCF file took an estimated 160 hours of person-time
  • 80. lj OM PU bM Oa M QbQZ m w mk q 2 +/0$ -. q • l 466%4 4 m m qJR U W cVde3 D X de T cVXcVdd 3 ?cRU V e S dde X3 FVfcR Veh c
  • 81. Stephen F.Weng et al PLoS One 2017 Can machine-learning improve cardiovascular risk prediction using routine clinical data? in a sensitivity of 62.7% and PPV of 17.1%. The random forest algorithm resulted in a net increase of 191 CVD cases from the baseline model, increasing the sensitivity to 65.3% and PPV to 17.8% while logistic regression resulted in a net increase of 324 CVD cases (sensitivity 67.1%; PPV 18.3%). Gradient boosting machines and neural networks performed best, result- ing in a net increase of 354 (sensitivity 67.5%; PPV 18.4%) and 355 CVD (sensitivity 67.5%; PPV 18.4%) cases correctly predicted, respectively. The ACC/AHA baseline model correctly predicted 53,106 non-cases from 75,585 total non- cases, resulting in a specificity of 70.3% and NPV of 95.1%. The net increase in non-cases Table 3. Top 10 risk factor variables for CVD algorithms listed in descending order of coefficient effect size (ACC/AHA; logistic regression), weighting (neural networks), or selection frequency (random forest, gradient boosting machines). Algorithms were derived from training cohort of 295,267 patients. ACC/AHA Algorithm Machine-learning Algorithms Men Women ML: Logistic Regression ML: Random Forest ML: Gradient Boosting Machines ML: Neural Networks Age Age Ethnicity Age Age Atrial Fibrillation Total Cholesterol HDL Cholesterol Age Gender Gender Ethnicity HDL Cholesterol Total Cholesterol SES: Townsend Deprivation Index Ethnicity Ethnicity Oral Corticosteroid Prescribed Smoking Smoking Gender Smoking Smoking Age Age x Total Cholesterol Age x HDL Cholesterol Smoking HDL cholesterol HDL cholesterol Severe Mental Illness Treated Systolic Blood Pressure Age x Total Cholesterol Atrial Fibrillation HbA1c Triglycerides SES: Townsend Deprivation Index Age x Smoking Treated Systolic Blood Pressure Chronic Kidney Disease Triglycerides Total Cholesterol Chronic Kidney Disease Age x HDL Cholesterol Untreated Systolic Blood Pressure Rheumatoid Arthritis SES: Townsend Deprivation Index HbA1c BMI missing Untreated Systolic Blood Pressure Age x Smoking Family history of premature CHD BMI Systolic Blood Pressure Smoking Diabetes Diabetes COPD Total Cholesterol SES: Townsend Deprivation Index Gender Italics: Protective Factors https://doi.org/10.1371/journal.pone.0174944.t003 PLOS ONE | https://doi.org/10.1371/journal.pone.0174944 April 4, 2017 8 / 14 q 9;;'9@9 t q $l RSVeVd l l q $ y q;GH$ dVgVcV V eR Vdd$ acVdTc S X W cR T ce T deVc Ud qec X jTVc UV VgV
  • 82. Stephen F.Weng et al PLoS One 2017 Can machine-learning improve cardiovascular risk prediction using routine clinical data? correctly predicted compared to the baseline ACC/AHA model ranged from 191 non-cases for the random forest algorithm to 355 non-cases for the neural networks. Full details on classifi- cation analysis can be found in S2 Table. Discussion Compared to an established AHA/ACC risk prediction algorithm, we found all machine- learning algorithms tested were better at identifying individuals who will develop CVD and those that will not. Unlike established approaches to risk prediction, the machine-learning methods used were not limited to a small set of risk factors, and incorporated more pre-exist- Table 4. Performance of the machine-learning (ML) algorithms predicting 10-year cardiovascular disease (CVD) risk derived from applying train- ing algorithms on the validation cohort of 82,989 patients. Higher c-statistics results in better algorithm discrimination. The baseline (BL) ACC/AHA 10-year risk prediction algorithm is provided for comparative purposes. Algorithms AUC c-statistic Standard Error* 95% Confidence Interval Absolute Change from Baseline LCL UCL BL: ACC/AHA 0.728 0.002 0.723 0.735 — ML: Random Forest 0.745 0.003 0.739 0.750 +1.7% ML: Logistic Regression 0.760 0.003 0.755 0.766 +3.2% ML: Gradient Boosting Machines 0.761 0.002 0.755 0.766 +3.3% ML: Neural Networks 0.764 0.002 0.759 0.769 +3.6% *Standard error estimated by jack-knife procedure [30] https://doi.org/10.1371/journal.pone.0174944.t004 Can machine-learning improve cardiovascular risk prediction using routine clinical data? q t 9;;'9@9 t qFVfcR FVeh c d 9M;5(/., t qo +-- t TRcU gRdTf Rc VgV e p qVVa DVRc X q?V Ve T W c Re t c d WRTe c
  • 83. l( . 8 E q t q v q +( l 
 l 0 q =EJ acV%ac TVdd X $ q 8 E 2 M;K$ M;E ! • q $